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Abstract Dual-system models of visual category learning posit
the existence of an explicit, hypothesis-testing reflective system,
as well as an implicit, procedural-based reflexive system. The
reflective and reflexive learning systems are competitive and
neurally dissociable. Relatively little is known about the role of
these domain-general learning systems in speech category learn-
ing. Given the multidimensional, redundant, and variable nature
of acoustic cues in speech categories, our working hypothesis is
that speech categories are learned reflexively. To this end, we
examined the relative contribution of these learning systems to
speech learning in adults. Native English speakers learned to
categorize Mandarin tone categories over 480 trials. The training
protocol involved trial-by-trial feedback and multiple talkers.
Experiments 1 and 2 examined the effect of manipulating the
timing (immediate vs. delayed) and information content (full vs.
minimal) of feedback. Dual-system models of visual category
learning predict that delayed feedback and providing rich, infor-
mational feedback enhance reflective learning, while immediate
and minimally informative feedback enhance reflexive learning.
Across the two experiments, our results show that feedback
manipulations that targeted reflexive learning enhanced category
learning success. In Experiment 3, we examined the role of trial-
to-trial talker information (mixed vs. blocked presentation) on
speech category learning success. We hypothesized that the
mixed condition would enhance reflexive learning by not
allowing an association between talker-related acoustic cues
and speech categories. Our results show that the mixed talker
condition led to relatively greater accuracies. Our experiments

demonstrate that speech categories are optimally learned by
training methods that target the reflexive learning system.
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Introduction

A large body of behavioral and neuroscience research sug-
gests that visual category learning is mediated by at least two
separate, albeit partially overlapping, learning systems (Ashby
& Maddox, 2005; Knowlton, 1999; Nomura & Reber, 2008;
Poldrack & Packard, 2003). The explicit, reflective learning
system depends on working memory and executive attention
to develop and test hypotheses and rules for explicit classifi-
cation. Processing in this system is available to conscious
awareness and is mediated by a circuit primarily involving
the dorsolateral prefrontal cortex, anterior cingulate, and an-
terior caudate nucleus (Ashby & Ell, 2001; Seger & Miller,
2010). The implicit, procedural-based, reflexive learning sys-
tem is not consciously penetrable and operates by associating
perception with actions that lead to reinforcement via feed-
back. Dual-system models predict that the two systems are
complementary in learning various category structures, some
of which are reflective-optimal, and others reflexive-optimal.
Although more than 20 years of research has motivated the
dual-system framework, this model has not been systemati-
cally applied to examine speech category learning.

Previous speech-learning studies have examined category
learning as an emergent property of unsupervised and/or
supervised learning processes (Goudbeek, Cutler, & Smits,
2008; McClelland, Fiez, & McCandliss, 2002; Norris,
McQueen, & Cutler, 2003; Toscano & McMurray, 2010;
Vallabha, McClelland, Pons, Werker, & Amano, 2007). In
unsupervised learning, statistical regularities in the input lead
to category representations in sensory regions through a
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process of implicit Hebbian learning (Goudbeek et al., 2008;
Goudbeek, Swingley, & Smits, 2009; McClelland et al.,
2002). More recent, computationally based, unsupervised-
learning models incorporate competition in addition to statis-
tical learning (McMurray, Aslin, & Toscano, 2009; Toscano&
McMurray, 2010). From the neurobiological perspective,
unsupervised category learning is instantiated within topo-
graphical maps in the primary and secondary auditory regions
that are sensitive to input statistics (Guenther, Nieto-Castanon,
Ghosh, & Tourville, 2004; Vallabha & McClelland, 2007). In
contrast, supervised-learning models posit that some form of
instructional feedback (lexical or selective attention) to the
sensory network is necessary, in addition to Hebbian learning
(Norris et al., 2003). Although significant unsupervised
speech learning can occur in adults, category learning with
feedback can lead to substantially larger gains (Goudbeek
et al., 2008; McClelland et al., 2002).

While the role of statistical learning and feedback instruction
in the form of lexical influences has been extensively researched
in speech learning, there has been less focus on the role of
domain-general feedback-based learning processes in mediating
category-learning success. This is despite the fact that functional
neuroimaging studies examining speech category learning in
adults implicate reflective and reflexive learning circuitry in
addition to the auditory regions (Callan et al., 2003; Tricomi,
Delgado, McCandliss, McClelland, & Fiez, 2006). In dual-
system models, reflective rules are encoded within the sensory
areas with bidirectional connections to working memory units
within the lateral portion of the prefrontal cortex (PFC). When a
new rule is generated, the excitatory input from the PFC to the
head of the caudate is strengthened, resulting in the maintenance
of a newly established rule. The PFC units, each of which
represents a particular rule, are activated by the anterior cingulate
to select among various alternative rules. In comparison, during
reflexive learning, a single striatal unit (or small group of units)
implicitly associates an abstract cortical–motor response with a
large group of sensory cells. The critical aspect of learning occurs
at cortical–striatal synapses, and synaptic plasticity is facilitated
by a dopamine-mediated reinforcement training signal. Despite
the different circuitries, both the reflective and reflexive learning
systems utilize the sensory component within the primary and
association auditory regions. These components are reflectively
or reflexively associated with rewards (e.g., instructional
feedback).

Our working hypothesis is that speech categories are optimal-
ly learned by the reflexive learning system. This is because
speech categories are often difficult to verbalize, are easily
learned by infants whose attention and working memory net-
works are immature (Echols, 1993; Mugitani et al., 2009;
Pierrehumbert, 2003), and utilize acoustic cues that are multidi-
mensional, highly redundant, and variable across talkers
(Gandour, 1983; Holt & Lotto, 2008, 2010). Creating rules for
such a large dimensional space may not be optimal, since

generating and testing rules that involve multiple dimensions is
resource intensive. In the present article, we use training manip-
ulations on trial-by-trial feedback (Experiments 1 and 2) and
talker variability (Experiment 3) to examine the relative contri-
bution of the reflective and reflexive learning systems to speech
learning success.

The reflective and reflexive learning systems respond dif-
ferentially to various training manipulations. For example,
delaying the presentation of feedback impairs learning in the
reflexive system, but not in the reflective system (Maddox,
Ashby, & Bohil, 2003). This is because the reflexive system is
critically dependent on dopamine-mediated stimulus–re-
sponse implicit reward learning. Delaying feedback interferes
with dopamine release, reducing the effectiveness of the as-
sociation of stimulus–response with reward. Also, “full” feed-
back that provides the correctness of the response on each
trial, as well as information about which category was present,
speeds learning in the reflective system (Maddox, Love,
Glass, & Filoteo, 2008), relative to “minimal” feedback that
provides only the correctness of the response on each trial.
Full feedback promotes the generation and testing of rules that
are critical to reflective learning but disrupts the transfer of
control to the reflexive system (Maddox et al., 2008). Previous
studies have used these timing and feedback manipulations to
dissociate the learning systems in artificial category learning,
but not in natural speech category learning.

To this end, we conducted three category learning experi-
ments to examine the effect of various training manipulations
that target either the reflective or the reflexive learning sys-
tems on speech category learning success. In each experiment,
native English speakers were trained to categorize nonnative
Mandarin tone categories produced by multiple talkers
(Fig. 1) with instructional feedback. This type of training
structure (trial-by-trial feedback, high talker variability) is
ubiquitous in the speech learning literature. In Mandarin
Chinese, tone contours signify differences in word meaning
(e.g., /ma/ with a rising tone means “mother,” while /ma/ with
a falling tone means “to scold”; see Fig. 1). Previous studies
have shown that native English speakers have difficulty in
learning tone categories, which is hypothesized to result from
inadequate relative weighting of talker-independent pitch di-
rection cues (Chandrasekaran, Sampath, & Wong, 2010;
Wang, Jongman, & Sereno, 2003).

The training manipulations used in Experiments 1 and 2
were derived from visual category learning studies.
Experiment 1 determined the extent to which the immediacy
of feedback (immediate vs. delayed) impacts tone category
learning. Experiment 2 determined the extent to which infor-
mation content of feedback (full vs. minimal feedback) im-
pacts tone category learning (Fig. 2). Immediate feedback is
critical for the reflexive system but not the reflective system
(Maddox et al., 2003), while full feedback selectively speeds
reflective learning but impairs reflexive learning (Maddox
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et al., 2008). On the basis of our working hypothesis, we
predicted that feedback manipulations that targeted the reflex-
ive learning system (immediate or minimal feedback) would
enhance learning, relative to those that target the reflective
learning system (delayed or full feedback).

While dual-system models of visual category learning
make specific predictions about feedback processing, they
offer no clear prediction about the impact of talker variability
on category learning success, which is argued to be important
for generalization to new talkers (Lively, Logan, & Pisoni,
1993) and association of categories with more reliable acous-
tic cues (Apfelbaum & McMurray, 2011; Rost & McMurray,
2009). While most agree that multitalker training is advanta-
geous, the role of the order of talker presentation, if any, has
not been systematically examined (although see Perrachione,
Lee, Ha, &Wong, 2011, which we return to in the Discussion
section). Within the framework of the dual learning systems,
we predicted that systematically blocked talker presentation
would promote reflective learning, whereas a randomly mixed
talker presentation would enhance reflexive learning. Our logic
here is that blocked talker presentation promotes faster hypothe-
sis testing and validation and is, therefore, less resource intensive
for the reflective system than is the mixed talker condition.
Indeed, previous neuroimaging work has shown that the mixed
talker condition engages the frontal working memory system
more extensively than does the blocked talker condition
(Wong, Nusbaum, & Small, 2004). Furthermore, the mixed
talker presentation does not allow learners to predict the next
talker in advance, disrupting the reflective generation and testing
of talker-specific rules. Therefore, learners are more likely to
associate talker-invariant acoustic cues (e.g., pitch direction) with
implicit reward than talker-variant cues (e.g., pitch height). On
the basis of the hypothesis that speech learning is optimally
learned by the reflexive learning system, we predicted enhanced

Fig. 1 Example of multiple-talker stimuli used in the category training
study. Fundamental frequency contours of the four tones (T1 = high-level;
T2 = low-rising; T3 = low-dipping; T4 = falling) produced by four native
Mandarin speakers (two female). Tone contours were obtained using
Praat (Boersma & Weenink, 2011)

Fig. 2 Experimental procedures. In Experiments 1–3, we examined the effects of reflexive (top) or reflective (bottom) training manipulations on tone
category learning success

490 Psychon Bull Rev (2014) 21:488–495



learning in the mixed talker condition, relative to the blocked
talker condition.

To summarize, enhanced learning in the immediate feed-
back condition relative to delayed feedback (Experiment 1),
minimal feedback relative to full feedback (Experiment 2),
and mixed talker condition relative to blocked talker condition
(Experiment 3) will be considered as support for the domi-
nance of the reflexive system in speech learning during
adulthood.

Method

Participants

Undergraduate students at the University of Texas were
recruited (n = 194; age range: 18–35 years) and monetarily
compensated for their participation. Participants reported no
history of neurological or hearing deficits and were native
speakers of American English, with no prior exposure to a
tone language. Music history questionnaires were collected to
match the groups on musicianship (Wong, Perrachione, &
Parrish, 2007). All participants provided informed consent
and were debriefed following the experiment. In Experiment
1, participants were divided into immediate (n = 25; 15
female) and delayed (n = 30; 14 female) feedback groups
(equivalent years of musical training, p = .585; immediate,
mean = 3.42, SEM = .675; delayed, mean = 2.90, SEM =
.664). In Experiment 2, participants were divided intominimal
(n = 41; 20 female) and full (n = 40; 21 female) feedback
groups (equivalent years of musical training, p = .979; mini-
mal, mean = 2.20, SEM = .525; full, mean = 2.21, SEM =
.393). In Experiment 3, participants were divided into mixed
(n = 30; 18 female) and blocked (n =28; 15 female) talker
groups (equivalent years of musical training, p = .723; mixed,
mean = 3.18, SEM = .787; blocked, mean = 3.57, SEM =
.776). Participants did not overlap between groups.

Stimuli for tone category training

Four native Mandarin Chinese speakers (2 female) originally
from Beijing produced four Mandarin tones: tone 1 (T1; high-
level), tone 2 (T2; low-rising), tone 3 (T3; low-dipping), and
tone 4 (T4; high-falling; see Fig. 1). The tones were produced
in citation form in the context of five monosyllabic Mandarin
Chinese words (bu, di, lu, ma, and mi), reflecting variability
inherent in natural language. The 80 stimuli were RMS am-
plitude and duration normalized (70 dB, 0.44 s). Duration
normalization was achieved using the PSOLA (Pitch
Synchronous Overlap and Add) module incorporated within
the Praat software (Boersma & Weenink, 2011). Five inde-
pendent nativeMandarin Chinese speakers rated the stimuli as

highly natural and accurately (>95%) identified the tone
categories.

Procedure

In all experiments, each auditory stimulus was presented
with the following written prompt: “Which category?
(Press the number key).” Participants generated a response
by pressing one of four buttons on a keyboard labeled “1,”
“2,” “3,” or “4,” corresponding to T1, T2, T3, and T4,
respectively. Feedback was displayed for 1,000 ms after
the response, depending on the experimental condition:
immediately or delayed by 500 or 1,000 ms. The content
of feedback varied depending on the accuracy of the
response (“Correct/No”) and the experimental condition,
in which full feedback informed the participant of the
correct answer regardless of the accuracy. The stimulus–
response–feedback sequence made up a single trial. One
block consisted of a randomized presentation of all 80
stimuli. Six blocks were presented, yielding a total of
480 trials per participant. In Experiment 1, the response-
to-feedback interval was immediate or delayed (1 s), al-
ways with full information. In Experiment 2, feedback
information content was minimal or full, with a fixed
response-to-feedback interval of 500 ms. In Experiment
3, the order of presentation of talker information was
manipulated. In the mixed talker condition, the stimuli
were presented in a random sequence. In the blocked
talker condition, the stimuli were randomized only in
terms of syllables and tones but ordered in terms of talker
information. The feedback in Experiment 3 was always
immediate and minimal (Fig. 2). In short, for all experi-
ments, six blocks of 80 trials each were presented to the
participants. The order of talkers was completely random-
ized for Experiments 1 and 2. In Experiment 3, in the
blocked condition, the sequence of talkers (n = 4) was
randomized. Within a talker sequence, participants lis-
tened to all stimuli (also randomized) produced by the
talker (n = 20).

Results

Category learning over training trials

Figure 3 shows the proportion of participants who made a
correct category response (sliding window of 80 trials) across
conditions. Visually, reflexive and reflective conditions are
more equivalent in the beginning than toward the end of the
experiment, where the reflexive conditions consistently lead
to improved learning progress. This inspection was corrobo-
rated with a statistical analysis detailed in the next section.
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Data analysis

For each participant, response to each trial was coded as
“correct” or “incorrect.”Amixed logit analysis was conducted
to predict the log odds of producing a correct response, using
the lmer program with binomial logit link (Bates, Maechler, &
Bolker, 2012). The dependent variable was set as the “correct”
or “incorrect” outcome of each response. The fixed effects of
interest were the between-subjects condition (reflexive vs.
reflective), trial number (increasing from 1 to 480; mean-
centered to 0 and divided by 100), and their interaction term.
The model was corrected for by-subject and by-item random
intercepts, which was the most complex model as justified by
the data (p < .05):

Outcome
e

Condition� Trialþ 1
�

�

�Subject
� �

þ 1
�

�

�Item
� �

:

Experiment 1: Immediate versus delayed feedback

The trial effect was significant (p < .0001; each successive
trial increases the probability of an accurate response). The
trial × condition interaction was significant (p < .0001; each
successive trial increases probability of an accurate response,

more for the reflexive-immediate than for the reflective-
delayed condition). The condition effect was not significant
(see Table 1).

Experiment 2: Full versus minimal feedback

The trial effect was significant (p < .0001; each successive
trial increases the probability of an accurate response). The
trial × condition interaction was significant (p < .0001; each
successive trial increases probability of an accurate response,
more for the reflexive-minimal than for the reflective-full
condition). The condition effect was not significant (see
Table 2).

Experiment 3: Mixed versus blocked talker presentation

The trial effect was significant (p < .0001; each successive
trial increases the probability of an accurate response). The
trial × condition interaction was significant (p = .021; each
successive trial increases the probability of an accurate re-
sponse, more for reflexive-mixed than for reflective-blocked
condition). The condition effect was not significant (see
Table 3).

Fig. 3 Category learning curves across reflexive versus reflective
conditions in all three experiments: a Experiment 1, feedback delay
(immediate vs. delayed); b Experiment 2, feedback information
(minimal vs. full); c Experiment 3, talker variability (mixed vs.
blocked). Plotted in solid bold lines are the proportions of correct
responses across participants within each condition over the course
of learning. The black lines denote the reflexive conditions, and the
red the reflective conditions. For purposes of visualization of trial-
by-trial data, each point in the line denotes the average number of

correct responses in a sliding 80-trial window. For trials preceding
the 80th trial, cumulative averages were used. Plotted in thin lines
are the ranges of standard error of the averages used in the sliding
windows. Visual assessment of the learning curves suggest that both
conditions result in equivalent degrees of category learning toward
the earlier phase of experiment but that the reflexive condition leads
to greater learning than does the reflective condition toward the later
phase of the experiment. This pattern is consistent across all three
experiments
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Discussion

We hypothesized that the reflexive learning system is optimal
for adult speech category learning. The results from
Experiments 1–3 strongly support our hypothesis. All three
experiments show that training manipulations that targeted the
reflexive learning system enhanced learning, relative to those
that targeted the reflective learning system.

In Experiments 1 and 2, we examined trial-by-trial feed-
back training manipulations. Both experiments yielded a sig-
nificant interaction between trial and training manipulation,
such that accuracy increase over trials was greater for manip-
ulations that targeted the reflexive learning system. In
Experiment 1, we found that immediate feedback enhances
tone learning toward the end of training, relative to delayed
feedback. As per the dual-systemmodels, immediate feedback
is a critical requirement of the dopamine-mediated reflexive
learning system, but not reflective learning. Therefore,
delaying feedback even by just 1 s disrupts the dopamine-
mediated training signal for the reflexive learning system,
allowing control to pass to the reflective learning system. In
Experiment 2, we found that minimal feedback enhances tone
learning toward the end of training, relative to full feedback.
Since the full feedback provides information not only about
the correctness of the response, but also about the correct
category membership, interpretation of this result is counter-
intuitive without the consideration of the dual-system perspec-
tive; full feedback promotes hypothesis generation and test-
ing, which prevents transfer of control from the reflective
system to the reflexive system. Therefore, Experiment 2 also
supports the hypothesis that the reflexive system is optimal for
speech category learning.

In Experiment 3, we manipulated the order of talker pre-
sentation: randomly mixed or systematically blocked. This
experiment yielded an interaction between trial and training
manipulation, such that accuracy increase over trials was
greater for the mixed talker condition, relative to the blocked
talker condition. This is consistent with our prediction that the
mixed condition targets the reflexive learning system by
preventing talker-dependent hypothesis generation and testing
by the reflective system. As a result, participants in the mixed
talker condition are led to rely more on relatively talker-
invariant acoustic cues (e.g., pitch direction) than on talker-
variant cues (e.g., pitch height). These results are consistent
with those of the L1 speech acquisition literature that show
that high variability can guide category learning by allowing
associations between more invariant cues and the category
structure (Apfelbaum&McMurray, 2011; Rost &McMurray,
2009), but not consistent with the results of a previous study
that found greater Mandarin tone learning in the blocked
talker condition than in the mixed talker condition
(Perrachione et al., 2011). These contradictory findings, we
believe, may be due to methodological differences. The high
degree of variability in natural Mandarin tone categories was
somewhat reduced in the previous study, where only three of
the categories (T1, T2, and T4) were presented and the tone
contours interpolated linearly. In contrast, our study utilized
the full category structure with the natural tone contours
retained (Fig. 1). We have argued earlier that multidimension-
ality is what makes speech categories hard to verbalize and,
therefore, optimally learned through the reflexive system. In
contrast, the reflective system is more likely to suffice as the
complexity of the category structure is reduced.

In adult speech learning studies, significant category learning
is evidenced without feedback, consistent with unsupervised
learning models. The present study did not include a no-
feedback condition that could help tease apart the relative con-
tribution of unsupervised implicit learning in mediating category
learning success. However, category learning is substantially
more efficient with feedback (Goudbeek et al., 2008;
McClelland et al., 2002). Our theoretical approach does not rule
out the statistical learning processes operative within the primary
and secondary auditory cortices. Rather, our results demonstrate
the operational specifics of the domain-general feedback-based
learning system that is optimal for learning speech categories.

Table 1 Effects of feedback delay on category learning

Fixed Effect Coefficient SE z p

Intercept .23888 .21921 1.090 .276

Trial .25127 .01380 18.211 <2e-16

Condition .29577 .31519 0.0938 .348

Trial × condition .08729 .02114 4.129 3.64e-5

Note . Coefficients express log odds

Table 2 Effects of feedback information on category learning

Fixed Effect Coefficient SE z p

Intercept .03810 .18865 0.202 .840

Trial .24091 .01223 19.695 <2e-16

Condition .34199 .25305 1.351 .177

Trial × condition .10610 .01736 6.111 9.92e-10

Note . Coefficients express log odds

Table 3 Effects of talker variability on category learning

Fixed Effect Coefficient SE z p

Intercept .20323 .21452 0.947 .343457

Trial .36940 .01477 25.012 <2e-16

Condition .45136 .28765 1.569 .116612

Trial × condition .07834 .02113 3.708 .000209

Note . Coefficients express log odds

Psychon Bull Rev (2014) 21:488–495 493



Although neuroimaging studies have implicated the neostriatum
in speech category learning tasks, the role of the reflexive system
has not been systematically examined. This is despite that fact
that animal models clearly demonstrate direct, extensive, and
many-to-one connectivity between the primary/secondary audi-
tory cortex and the reflexive systems, suggesting a distinct neu-
robiological plausibility for a substantial role for this circuitry
(Petrides & Pandya, 1988; Yeterian & Pandya, 1998). Future
research should systematically examine the relative contribution
of various forms of perceptual and learning processes to speech
category learning, as well as use other category structures.

In summary, our results demonstrate that speech category
learning is optimally learned by the reflexive system. Our
results offer practical implications for the development of
optimized training approaches that can target the reflexive
learning system. Specifically, we hypothesize that for speech
categories, learning can be optimized by including minimal
and immediate feedback and high trial-by-trial talker
variability.
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