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Abstract We used a general stage-based model of reaction
time (RT) to investigate the psychometric properties of mean
RTs and experimental effect sizes (i.e., differences in mean
RTs). Using the model, formulas were derived for the reliabil-
ities of mean RTs and RT difference scores, and these formu-
las provide guidance about the number of trials per participant
needed to obtain reliable estimates of these measures. In
addition, formulas were derived for various different types
of correlations computed in RT research (e.g., correlations
between a mean RTand an external non-RTmeasure, between
two mean RTs, between a mean RTand an RTeffect size). The
analysis revealed that observed RT-based correlations depend
on many parameters of the underlying processes contributing
to RT. We conclude that these correlations often fail to
support the inferences drawn from them and that their
proper interpretation is far more complex than is generally
acknowledged.
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Correlation analysis

Classically, reaction time (RT) research has compared per-
formance across different conditions to assess the effects of
various experimental manipulations and group differences
on RT. Most often, the results have been summarized in
terms of the mean RTs for each condition or group, although
occasionally comparisons are made with respect to vari-
ances or full RT distributions (e.g., Luce, 1986; Posner,
1978; Sanders, 1998; Smith, Ratcliff, & Wolfgang, 2004).

Increasingly, RT researchers also have examined the cor-
relations of different RT-based measures with each other and
with other measures. Such correlations are of interest in at
least two kinds of research. First, RTs offer a promising tool
for assessing individual differences (Cattell, 1890). For ex-
ample, many researchers have looked for correlations of
intelligence with overall mean RT and with the sizes of
particular effects (i.e., differences in mean RT) used to
assess the time needed for specific mental operations (e.g.,
Beauducel & Brocke, 1993; Helmbold, Troche, &
Rammsayer, 2007; Hunt, 1978; Keating & Bobbitt, 1978;
Kirby & Nettelbeck, 1989; Neubauer, Riemann, Mayer, &
Angleitner, 1997; Smith & Stanley, 1983; Vernon & Mori,
1992; for a review, see Vernon, 1990). RT means and effect
sizes have also been used to assess individual differences
within many different areas, including social psychology
(e.g., Hofmann, Gawronski, Gschwendner, Le, & Schmitt,
2005; Nosek & Smyth, 2007; Richeson & Shelton, 2003;
Wiers, Van Woerden, Smulders, & De Jong, 2002), person-
ality psychology (e.g., Indermühle, Troche, & Rammsayer,
2011; Karwoski & Schachter, 1948; Smulders & Meijer,
2008), aging research (e.g., Eckert, Keren, Roberts,
Calhoun, & Harris, 2010; Myerson, Robertson, & Hale,
2007; Wood, Willmes, Nuerk, & Fischer, 2008), and assess-
ment of brain damage and psychopathology (e.g., Godefroy,
Lhullier, & Rousseaux, 1994; Nettlebeck, 1980; Stuss,
Pogue, Buckle, & Bondar, 1994).
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Second, evenwhere individual differences are not the focus
of investigation, correlations between different RTeffects may
intuitively be thought to provide important information about
the underlying mechanisms responsible for those effects. For
example, Corballis (2002) examined the correlation between
two RT-based effects thought to depend on the time needed for
interhemispheric transmission (i.e., redundancy gain and the
crossed–uncrossed difference) in order to find out whether the
two effects were mediated by a common neural pathway.
Likewise, Maloney, Risko, Preston, Ansari and Fugelsang
(2010) examined correlations of numerical distance effects
obtained with different number formats in order to see whether
these different effects assessed the same underlying numerical
representations and comparison mechanisms. Similarly,
Stolz, Besner and Carr (2005; see also Waechter, Stolz,
& Besner, 2010) examined the intercorrelations of se-
mantic priming effects across different RT sessions in
order to assess the extent to which individual variation
in these effects reflect systematic differences in semantic
associations between individuals, as opposed to merely
statistical noise.

The main purpose of this article was to examine formally
the factors influencing the reliabilities and correlations of
RT-based measures. Although much has been written about
important statistical considerations involved in correlational
research using RTs (e.g., Brown, 2011; Jensen, 2006;
Sriram, Greenwald, & Nosek, 2010; Stolz et al., 2005), the
fundamental questions of exactly what determines RT re-
liabilities and correlations and of how these quantities are
related to the durations of underlying mental processes have
not been addressed. In short, we ask in this article, “What
aspects of mental processing times affect the reliabilities and
correlations of RT-based measures?” The answers to these
questions are important not only for the proper interpretation
of correlations involving RT, but also for the evaluation of
contemplated correlational research protocols (e.g., how
power will depend on the number of trials per individual).

The main conclusion of this article is that interpretations
of RT-based correlations are far more complicated than has
typically been acknowledged. We analyzed several different
types of RT-based correlations (e.g., mean RTs, RT effect
sizes), each of which has been studied across a wide range
of substantive areas. The common finding running through
our analyses is that the meanings of these correlations are far
more complex than intuition would suggest. Specifically,
our analyses reveal that RT-based correlations are difficult
to interpret because they are influenced by many factors that
are not intuitively obvious. To motivate our analyses, we
start with brief descriptions of four prototypical examples
arising in quite different research domains. The implications
of our analyses extend far beyond these prototypical exam-
ples, of course, extending to all situations involving corre-
lations of RT-based measures.

As a first example of the complications associated with RT-
based correlations, consider the question of how strongly gen-
eral intelligence correlates with a given RT effect size—the
latter measured either as the difference between experimental
and control conditions (e.g., Hunt, 1978) or, equivalently, as the
slope relating RT to some quantitative independent variable
(e.g., Jensen & Munro, 1979; but see Beauducel & Brocke,
1993). Intuitively, it seems that this correlation should be rela-
tively strong to the extent that extra processing required in the
experimental condition is specifically associated with general
intelligence. Our analysis shows, however, that this intuition is
vastly oversimplified. In fact, the correlation of the RT effect
size with intelligence is also influenced by numerous other
factors, including the correlation of intelligence with perfor-
mance in the control condition and the correlation of perfor-
mance in the experimental and control conditions.

A second and somewhat similar example involves the
correlations of explicit measures of socially sensitive atti-
tudes with RT-based measures of those same attitudes
obtained with the implicit association test (e.g.,
Greenwald, McGhee, & Schwartz, 1998; Nosek & Smyth,
2007). Small correlations of explicit and implicit attitude
measures have been taken as evidence that these measures
tap into different underlying attitude representations or sys-
tems (e.g., Greenwald et al., 1998), which seems intuitively
to be quite a plausible interpretation of the small correlation.
Our analysis suggests, however, that this interpretation is
unwarranted and the influences of other parameters could
cause the observed correlations to be quite low even if the
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A third example involves the correlation between costs
and benefits—measured relative to a common neutral con-
dition—in the Stroop color-naming task (e.g., Brown, 2011).
Intuitively, it seems clear that this correlation should be large
if costs and benefits are determined by the same mechanism,
and researchers have therefore measured this correlation to
assess single-mechanism accounts of Stroop effects (e.g.,
Brown, 2011; Lindsay & Jacoby, 1994). Our analysis shows,
however, that this intuition is wrong, because the correlation
of costs and benefits can be very small or negative even
when a single-mechanism account is correct. In particular,
the observable correlation of costs and benefits is influenced
markedly by the correlations of performance in the two
experimental conditions (i.e., facilitation and interference)
with that in the neutral condition. Identical complications
arise, of course, when interpreting correlations of costs and
benefits obtained with a variety of other paradigms (e.g.,
precuing; Jonides & Mack, 1984).

Finally, as a fourth example, consider the correlation
between two RT effects measured under different condi-
tions, such as negative-priming effects assessed with normal
versus degraded visual inputs (e.g., Kane, May, Hasher,
Rahhal, & Stoltzfus, 1997). Again, intuition leads one to

two measures are driven by a single attitude system.



expect that these two effects should be strongly positively
associated if they are signs of the same underlying mecha-
nism, as would be expected. The present analysis, however,
indicates that the correlation of such effects can be small
even when they are driven by a common mechanism, be-
cause other factors can easily conceal the expected associa-
tion between such effects. Analogous problems can even
arise when two measures of the same RT effect are correlat-
ed across different testing sessions (e.g., Stolz et al., 2005).
Low correlations between these two measures may simply
indicate low test–retest reliability even though both mea-
sures seem necessarily to be driven by a single mechanism.

The individual differences in reaction time (IDRT)
model

To explore the effects on RT-based reliabilities and correla-
tions, we developed a general framework called the individ-
ual differences in RT (IDRT) model. IDRT is a specific
classical test theory model, thereby allowing standard mea-
sures of classical test theory (e.g., reliabilities and correla-
tions) to be investigated within an RT modeling framework.
(Appendix 1 provides selected material on aspects of clas-
sical test theory especially relevant to this article.) Broadly,
the IDRT model is intended to relate measurable RTs to
underlying mental processes across a wide variety of tasks
and to subsume standard RT models as special cases (e.g.,
diffusion models, accumulator models). It is also general
enough to capture the key features of prominent models in
the literature on individual differences in RT (e.g., Cerella,
1985; Fisher & Glaser, 1996; Hartley, 2001). We used the
IDRT to analyze various different types of reliabilities and
correlations that are computed using RT-based measures.
The results of the analyses provide insights about how
various parameters characterizing the times needed for men-
tal processing would influence these quantities. Table 1
summarizes the different dependent measures whose re-
liabilities are considered in this article, and Table 2
summarizes the different types of correlational analyses
studied—each in its own section. Readers interested in a
particular type of analysis can focus on the section of
interest but should first read the description of the IDRT
model and the sections about the reliability of their
measures (i.e., mean RT or difference score). The deri-
vations of IDRT’s predicted reliabilities and correlations
are presented in Appendix 2, and the main text provides
numerical illustrations of the predictions for various
combinations of the model’s parameters. Readers inter-
ested in other combinations of model parameters can, of
course, use the general equations in Appendix 2 to
examine the predicted reliabilities and correlations under
any scenario of interest.

According to the general IDRT model, the total RT is
the sum of latencies of several processing stages inter-
vening between the stimulus and the response (e.g.,
Sternberg, 1969, 2001). The model is agnostic with
respect to the nature of the processing within each
stage, so this processing could conform to assumptions
of diffusion models (e.g., Ratcliff, 1978), accumulator
models (e.g., Usher & McClelland, 2001; Vickers, 1970),
parallel models (e.g., Townsend & Nozawa, 1995), and
so on. In addition, consistent with prior literature ex-
ploring individual differences in RT, IDRT proceeds
from the assumption that an individual participant’s
average latency in an RT task depends on certain latent
processing time variables that differ across participants.
Thus, IDRT attempts to integrate individual differences
into a general framework that can be used to study the
psychometric properties of mean RTs and their differ-
ences across a variety of tasks.

In general, IDRT represents the observed mean reaction
time RTk of a single participant, k, with the equation1

RTk ¼ Aþ B þ Cð Þ �Gk þ B � Δk þ Rk þ Ek : ð1Þ

As is described next, according to this model, the observed
mean RTk is determined by three conceptually separate sets
of components.

The first component consists of the mental processing
required in each stage of a task. In keeping with a long
tradition within RT research, this component of the
model characterizes task requirements rather generically
as a set of three sequential stages—A, B, and C—that
must be carried out between the onset of the stimulus
and the initiation of the response (e.g., Donders,
1868/1969; Pashler, 1994; Smith, 1968; Sternberg,
1969). Stages A and C can be conceived as perceptual
input and motor output stages, respectively, whereas
stage B is a task-specific central stage such as response
selection. The constants A, B, and C represent the
amounts of work that need to be done in each of the
three stages, and these are assumed to depend on the
task but not on the person performing it.

The second component of the model represents individ-
ual differences in processing time that would allow RT to
differ across people performing the same task. In keeping

1 We adopted two related notational conventions. First, consistent with
the notation of Lord and Novick (1968, Chap. 2), we differentiated
between measurements taken for a fixed person k and measurements
taken for a randomly selected person. In our notation, the subscript k is
used to indicate a value for a fixed person k. When the subscript k is
omitted, we refer to measurements taken for randomly selected partici-
pants. Second, unlike Lord and Novick, we denote random variables with
boldface type and constants with normal type. This somewhat elaborate
notation is designed to distinguish clearly between constants and random
variables, as is essential for our analysis.
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with much current thinking about the relationship of RT to
intelligence (e.g., Vernon, 1990), the ability of each partic-
ipant to perform cognitive tasks is modeled in terms of a
general processing time parameter, Gk, which could be
related to overall neural processing speed (e.g., Eysenck,
1986; Miller, 1994; Reed & Jensen, 1991; Vernon & Mori,
1992). This parameter may be thought of as the amount of
time needed to carry out a single, arbitrarily defined unit of
cognitive work, which we will sometimes refer to as the
processing time. For example, participant k’s total processing

time in the perceptual stage (A) is A·Gk. Analogous ap-
proaches in modeling stage processing times or speed param-
eters can be found in virtually all RTmodels (e.g., S. Brown&
Heathcote, 2005; Kieras & Meyer, 1997; Miller & Ulrich,
2003; Navon & Miller, 2002; Ratcliff & Smith, 2004; Smith,
2000; Tombu & Jolicœur, 2003; Townsend & Nozawa, 1995;
Usher & McClelland, 2001; for a review of older examples,
see Luce, 1986).

In addition to the general processing time, Gk, the second
component also includes a processing time parameter
reflecting participant k’s particular facility at the central
processing required by a particular task, Δk. For example,
this participant’s total time for central stage (B) processing is
B � Gk þ Δkð Þ. Because of the parameter Δk, the size of
an experimental effect on central processing time can
vary across participants who have the same general
processing time, Gk. Similar parameters could be added
to capture individual differences in the durations of
stages A and C, but in order to keep the analysis
tractable, we considered only tasks varying in the re-
quirements at the central stage (B). In developing this
model, we allowed the general and task-specific process-
ing times, Gk and Δk, to be correlated across participants,
because a positive correlation is predicted by the idea that all
cognitive operations depend to some extent on a common
underlying neural processing speed (e.g., Eysenck, 1986;
Vernon & Mori, 1992).

The second component also includes a residual term,
Rk, which reflects individual differences in RT that are
uncorrelated, or at least negligibly correlated, with the
processing times represented by Gk and Δk. These seem
most likely to involve fairly peripheral latency compo-
nents that we assumed are constant across conditions
within the same task. For example, Rk may include very
early sensory processes starting with light transduction
processes within the retina and very late motor process-
es ending with the activation of single muscle fibers
(e.g., Ulrich & Wing, 1991). Although there is evidence
that residual processes have at most a weak correlation with
overall processing time or intelligence (e.g., Reed & Jensen,
1991; Vernon & Mori, 1992), we nonetheless included the
correlation parameters ρΔR and ρGR in the model development
for completeness and generality.

The third component of the model is a purely statistical
error term, Ek. This term arises from the random trial-to-trial
variability of RT for a given participant in a given condition.
To model this within-condition variability, we assumed that
the standard deviation of RT was proportional to the mean,
on the basis of prior evidence that the ratio of the standard
deviation of RT to the mean RT—also known as the coef-
ficient of variation (CV)—is approximately constant in a
number of RT models and data sets (e.g., Luce, 1986;
Wagenmakers & Brown, 2007). For a given participant k,

Table 1 Dependent measures involved in correlational analyses

Measure Meaning

Y an external (non-RT) measure

RT, RTx, and RTy observed mean RTs in arbitrary tasks

RT′ a second observed measure of RT from
a separate set of trials

RTc and RTe observed mean RTs in control and
experimental conditions

D (also called Dce) an observed experimental effect RTe − RTc

RTu and RTv observed mean RTs in a second pair
of control and experimental conditions

Duv a second observed experimental effect
RTv − RTu

RTn observed mean RT in a neutral condition
used to assess cost and benefit

RTf observed mean RT in a facilitation
condition used to assess benefit relative
to a neutral condition

RTi observed mean RT in an interference
condition used to assess cost relative to
a neutral condition

Df observed RT benefit, RTn − RTf

Di observed RT cost, RTi − RTn

Table 2 Types of correlation analyses and notation used

Type of correlation analysis Notation

Reliability of a mean RT Corr RT;RT
0� �

Correlation of a mean RT with
an external measure, Y

Corr[RT, Y]

Correlation of two mean RTs Corr[RTx, RTy]

Reliability of a difference between
two mean RTs

Corr D;D
0� �

Correlation of a difference between two
mean RTs with an external measure, Y

Corr[D, Y]

Correlation of two differences between
mean RTs

Corr[Dce, Duv]

Correlation of two differences between
mean RTs computed with a common term

Corr[Di, Df]

Correlation of a difference between two
mean RTs and the smaller mean

Corr[RTc, D]

Correlation of the average and difference
of two mean RTs

Corr RT;D
� �

Note. The meanings of the dependent measures are given in Table 1.
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then, the variance associated with the error term E for a
mean across N trials is

Var Ek½ � ¼ CV � E RTk½ �ð Þ2 N= : ð2Þ
This assumption implies that the mean and within-subjects
standard deviation of RT would be strongly correlated
across participants, as is commonly observed (e.g., Jensen,
1992). Although the predictions derived below do not de-
pend on any distributional assumptions about Ek, the central
limit theorem implies that this error term would have a
nearly normal distribution with a reasonably large number
of trials, as is typical in RT research.

Following classical test theory, the IDRT model for a
particular participant (i.e., Eq. 1) is generalized to a randomly
selected participant by regarding the person-specific general
processing time (Gk), task-specific processing time (Δk), and
residual time (Rk) as random variablesG,Δ, andR. Thus, the
RT for a randomly selected participant is

RT ¼ Aþ B þ Cð Þ �Gþ B �Δþ R þ E: ð3Þ
To produce more compact expressions, we define
S ¼ Aþ Bþ C, so that Eq. 3 can be written as2

RT ¼ S �Gþ B �Δþ R þ E: ð4Þ
The expected value of RT is given by

E RT½ � ¼ S � E G½ � þ B � E Δ½ � þ E R½ �; ð5Þ
because E[E] = 0. In order to simplify the notation, we
generally denote expected values of parameters with terms
like μG and μΔ so that the above expectation may be written

E½RT� ¼ S � μG þ B � μΔ þ μR; ð6Þ
and we similarly denote variances as σ2

G, σ
2
Δ, and so on.

The variance of RT is derived in Appendix 2 for the most
general case (Eq. 38). As would be expected, this variance
increases with task difficulty (i.e., the times needed for the
perceptual, central, and motor stages [A, B, C]) and with the
variability across participants of the individual processing
time and sensory–motor residual parameters (i.e., G,Δ, and
R), as well as the variance associated with measurement
error (E). It also increases with the correlation between the
general and task-specific processing times, G and Δ.

For further details concerning standard simplifying as-
sumptions and plausible estimates of parameter values that
we used in exploring the predictions of this model, the
interested reader can consult Appendix 3. In addition, a

preliminary check on the overall plausibility of the model
involves its ability to produce realistic Brinley plots, which
is examined in Appendix 4.

As was mentioned earlier, IDRT rests on rather general
assumptions and subsumes many specific RT models that
provide detailed descriptions of the latency mechanisms
contributing to individual stages. It should be emphasized
that these specific models describe total RT as the sum of a
particular modeled stage and a residual component that is
beyond the scope of the model (e.g., Jepma, Wagenmakers,
& Nieuwenhuis, 2012; Ratcliff, 1978). For example, the
information accumulation stage of a diffusion model would
correspond to IDRT’s central stage B, and that model’s extra
parameter for encoding and motor time would correspond to
the sum of IDRT’s times for stages A and C. Similarly,
almost all models of detection (e.g., Ollman, 1973; Smith,
1995), discrimination (e.g., Usher & McClelland, 2001),
visual and memory search (e.g., Shiffrin & Schneider,
1977), and other cognitive processes postulate a sum of
times for the key modeled process and the unmodeled
residual processes (Luce, 1986), and this sum corresponds
directly to IDRT’s additive stage times. Furthermore, many
models that do not describe RT as a sum (e.g., McClelland,
1979) can be approximated well by an additive model (e.g.,
Miller, Van der Ham, & Sanders, 1995; Molenaar & Van der
Molen, 1986). In further work it would also be possible to
consider predicted reliabilities and correlations within more
elaborate RT models that are not approximately additive, but
it seems self-evident that such models would yield relation-
ships even more complicated than the ones emerging from
our simple model. In short, the complexity of
interpreting correlations that emerges from the present
analysis of our simple RT model, IDRT, is likely to
provide a lower bound on such complexities within
the space of all existing RT models. As was noted by
Hillis (1993), “when a system is too complex to under-
stand, it often helps to understand a simpler system with
analogous behavior” (p. 80).

Mean reaction times

The most basic RT measure that might be used in cor-
relational research is the mean RT, and this measure has
been used by researchers in numerous fields, including
intelligence (e.g., Jensen, 1985) and neurological assess-
ment (e.g., Godefroy et al., 1994; Stuss et al., 1994). To
interpret the correlations obtained in such studies, it is
essential to have a picture of the psychometric properties
of mean RTs. In this section, we investigated the re-
liabilities and correlations of mean RTs using the IDRT
model; RT-based difference scores are considered in the
next section.

2 Equation 4 is an elaborated version of the basic model of classical test
theory shown in Appendix 1 (Eq. 20). Specifically, RT is the observ-
able measure comparable to X, and it is the sum of a true score, T ¼
S �Gþ B �Δþ R; plus a measurement error, E.
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Reliability of mean reaction times

We began by studying the reliability of mean RTs,
because the reliability of any measure limits the corre-
lations it might have (see Eq. 25). As in classical test
theory, the reliability of a mean RT is the correlation
across individuals of two parallel measures, Corr RT;RT

0� �
(Lord & Novick, 1968, p. 61).

Figure 1 shows the reliability of mean RTs under various
parameter combinations chosen to reveal the effects of task
properties on reliability. Of course, the exact choices of
parameter values were necessarily somewhat arbitrary, but
we attempted to vary each parameter over its widest possible
range of plausible values in order to see how large its effects
might be.

Not surprisingly, the reliability of mean RTs is quite strongly
affected by the number of trials, N. With these parameter
combinations, reliability is often less than .5 for small numbers
of trials but generally exceeds .85 with even 10–20 trials. By
100 trials—a range that is sometimes attainable in practice—
reliability virtually always exceeds .95. Thus, these results

provide some reassurance to researchers planning correlational
studies using mean RT: High reliability can be obtained with
only moderate numbers of trials.

As is also illustrated by Fig. 1, the reliability of mean RTs is
strongly influenced by the RT distribution’s coefficient of
variation, CV. The trial-to-trial error variance σ2

E increases
with this CV, so reliability decreases as the CV increases.
Naturally, researchers should take steps to minimize trial-to-
trial fluctuations in arousal, attention, and other factors that
might increase RT variability. The effect of the coefficient of
variation, CV, diminishes rapidly as the number of trials in-
creases, however, so such steps would not be very important
with more than approximately 20–30 trials per participant.

Perhaps surprisingly, Fig. 1 also shows that task difficulty
has only a rather small effect on RT reliability. This may at
first be surprising, because it is well known that RTs are more
variable in slower tasks, which would tend to increase error
variance and thereby reduce reliability. On the other hand,
increasing task difficulty also tends to increase the true score
variance of the individual participants’ mean RTs and, hence,
to increase the covariance across two independent measures
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Fig. 1 Reliability of mean
reaction time, Corr RT;RT

0� �
,

as a function of the number of
trials (N) and the task-related
variables A, B, and the
coefficient of variation (CV).
Default values of the other
parameters are shown in
Table 15. Corr RT;RT

0� �
was

computed using Eq. 24 from the
covariance given in Eq. 40 and
from the variances given in
Eqs. 38 and 39
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(Eq. 40). The results shown in Fig. 1 suggest that these two
counteracting forces balance each other out to a good approx-
imation, leaving reliability fairly independent of task
difficulty.

Figure 2 illustrates how the reliability of mean RTs de-
pends on the population variability in the individual cognitive
processing and sensory–motor residual time parameters, G,
Δ, and R. Somewhat arbitrarily, these levels of population
variability were chosen to range from very small values—
simulating homogeneous populations—to values large
enough to yield visible effects on reliability. Reliability in-
creases with variability in all three of these parameters, con-
sistent with the well-known phenomenon that the reliability of
any measure depends not only on the measuring instrument
itself, but also on the population to which it is applied (e.g.,
Graham, 2006). In particular, the general rule within classical
test theory is that reliability increases with the amount of true
score variance (Eq. 24; Lord & Novick, 1968). The most
important new message of this figure is that the reliability of

a mean RT tends to be high as long as there is variability in at
least one of these three population parameters. This message
is both good news and bad news for researchers studying
correlations of mean RTs with other variables. It is good news
because meanRTs can be expected to be highly reliable except
in the worst case where there is severe range restriction on all
three variables simultaneously (i.e., G,Δ, and R). For exam-
ple, even in a sample that is restricted with respect to the
cognitive processing times G and Δ (e.g., university stu-
dents), the reliability of mean RTs will be high as long as
there is adequate variability in the residual peripheral sensory
and motor processing time, R. At the same time, this message
is bad news because good reliability per se does not imply
adequate sample variation in any particular type of processing
time. If mean RTs are highly reliable only because of variation
in R, for example, they might fail to correlate with cognitive
measures (e.g., IQ) because of range restriction on the critical
cognitive processing time parameters reflecting general and
task-specific abilities, G and Δ.

Correlation of mean reaction times with another measure

Researchers often correlate the mean RT in one task with
some external (i.e., non-RT) measure Y (e.g., IQ, total score
on a symptom checklist). Figure 3 illustrates how Corr[RT,
Y] is determined by the correlations of Y with the underly-
ing cognitive processing time parameters determining mean
RTs (i.e., G and Δ), because researchers computing such
correlations seem to be interested mainly in the correlations
of Y with these underlying processing times. Clearly, the
main determinant of Corr[RT,Y] is ρGY . The relationship
between these two correlations is remarkably linear, and
they are nearly equal in most cases. There is also an effect
of ρΔY on Corr[RT,Y], however, and Corr[RT,Y] best
matches ρGY and ρΔY when the latter two correlations are
equal to each other.
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of the population-related variables σG, σΔ, and σR. Default values of
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puted using the same equations as those indicated in Fig. 1
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Figure 3 has two important implications for researchers
trying to correlate external measures with mean RTs. First,
researchers interested in correlating some such measure (e.g.,
IQ) with general processing time (G) must be alert to the fact
that their observed correlations will inevitably also be
influenced to some extent by the task-specific processing time
(Δ) of whatever task they choose to use. The general solution
to this problem is to use a variety of tasks and extract G as a
common factor across all of them, correlating factor scores
with the external measure (Jensen, 1993). Second and con-
versely, researchers trying to study the relationship between an
external measure and some task-specific processing time (i.e.,
to correlateYwith some particularΔ) must be alert to the fact
that their observed correlations will be strongly influenced by
the correlation of Y with the general processing time G. For
example, if G and Y are uncorrelated, the correlation of RT
and Y will be less than the correlation between Δ and Y, due
to the diluting influence of extraneous variability contributed
by G. In fact, the results in Fig. 3 suggest that the correlation
of the external measure with general processing time, ρGY ,
almost completely dominates the observed correlation,
Corr[RT, Y], making it almost impossible to assess the exter-
nal measure’s correlation with the task-specific processing
time, ρΔY. Similar influences could also arise from the resid-
ual component R if it were correlated with Y and varied
substantially across individuals.

Correlation of two mean reaction times

In some situations, researchers might want to examine the
correlation across individuals between the mean RTs from
two different tasks,RTx andRTy, possibly to assess the extent
to which these tasks tap into the same versus different mental
processes or to validate the equivalence of different RT-based
measures of individual differences (e.g., Chen, Myerson,
Hale, & Simon, 2000; Kauranen & Vanharanta, 2001;
Seashore & Seashore, 1941; Simonen, Videman, Battie, &
Gibbons, 1995). Since any general influence on processing
time would be the same in both tasks by definition, the
between-task correlation would presumably vary mainly with
the correlation of the task-specific processing times, ρΔx Δy

.

Under IDRT, the observed mean RTs for randomly selected
individuals in the two tasks (i.e., i = x, y) are

RTi ¼ Si �Gþ Bi �Δi þ Ri þ Ei: ð7Þ
Example results shown in Fig. 4 clearly indicate that the

correlation between the two RTs is not a good index of the
correlation between the two task-specific processing times,
ρΔx Δy

. In particular, Corr[RTx,RTy] is virtually always much
higher thanρΔx Δy

. This overestimation increases with σG, so it
is evidently driven by the common contribution of the general
processing time, G, to both tasks. The overestimation does

lessen somewhat with increases in the variability of the task-
specific processing times, σΔx and σΔy , because increases in
their variability allow the task-specific times to determine
more of the variance in the corresponding RTs. The inadequa-
cy of Corr[RTx, RTy] as a measure of the correlation of task-
specific times, ρΔx Δy

, is also obvious because of the shallow
slopes of the lines in Fig. 4, indicating that large changes in
ρΔx Δy

produce much smaller changes in Corr[RTx, RTy].
Thus, without detailed information about other parameters,
the correlation between two RTs provides virtually no infor-
mation about the correlation of the underlying task-specific
processing times, ρΔx Δy

.

Reaction time difference scores

Often, researchers measure an individual’s performance
using a difference between two mean RTs rather than a
single overall mean. The difference score is generally used
in order to focus more specifically on a particular kind of
mental processing. For example, differences in mean mem-
ory scanning RTs to small versus large memory set sizes
have been used to assess an individual’s speed of retrieval
from short-term memory (e.g., Keating & Bobbitt, 1978;
Neubauer et al., 1997). Similarly, differences in visual
search RTs with displays of different sizes have been used
to index perceptual inspection and comparison time (e.g.,
Schweizer, 1989). Other RT differences have been used to
assess interhemispheric communication (e.g., Corballis,
2002; Iacoboni & Zaidel, 2000; Schulte, Pfefferbaum, &
Sullivan, 2004), semantic memory access (Hunt, 1978),
executive function (e.g., Larson & Clayson, 2011), and
multisensory integration (e.g., Barutchu et al., 2011).
Within social psychology, the implicit association test
(IAT) uses differences in the mean RTs of different stimu-
lus–response mapping conditions to assess an individual’s
implicit attitudes about socially sensitive matters such as
racial bias (e.g., Greenwald et al., 1998), although there is
considerable debate about the meaning of the differences
obtained in this way (e.g., Blanton, Jaccard, Gonzales, &
Christie, 2006).3

Using IDRT, it is also possible to study correlations
involving differences in mean RT. For simplicity, we denote
the two conditions generically as “experimental” and “con-
trol” and, hence, use the subscripts “e” and “c” to distin-
guish them. Also, we assume that the residual sensory–

3 Some researchers have transformed RTs nonlinearly to remove skew
before computing differences (e.g., Nosek, Banaji, & Greenwald,
2002), and others have suggested IAT measures that are more
elaborate than pure difference scores (e.g., Greenwald, Nosek, &
Banaji, 2003). The analysis of correlations obtained with suchmore
complex methods is beyond the scope of the present investigation.
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motor component is the same in all conditions of a given
task, so we omit the subscript on R. Thus, the observed
mean difference score is

D ¼ RTe � RTc

¼ Se �Gþ Be �Δe þ R þ Ee½ � � Sc �Gþ Bc �Δc þ R þ Ec½ �:
ð8Þ

We assume that the experimental manipulation only influ-
ences the amount of processing needed in the central stage
(B), so that Ae = Ac and Ce = Cc, in which case this simplifies
to

D ¼ Be � Bcð Þ �Gþ Be �Δe � Bc �Δc þ Ee � Ec: ð9Þ
One immediate implication of this model is that the
measured difference score does not completely isolate
the individual ability of interest—that is, the time needed
for task-specific processing in the experimental condition,
Δe. Equation 9 shows that the difference also depends
on both overall processing time, G, and the task-specific
processing time in the control condition, Δc.

Common versus opposing task-specific processes

It is important to distinguish between two extreme types of
RT difference scores that are typically measured in RT
experiments. We will refer to these as differences in which
the control and experimental conditions have common ver-
sus opposing task-specific processes. The distinction is im-
portant because the analyses reported below indicate that
these two types of RT differences have very different psy-
chometric properties. As later numerical examples illustrate,
for example, reliabilities tend to be higher for differences
based on opposing processes than for those based on com-
mon processes. In contrast, correlations with an external
measure tend to be stronger for differences based on com-
mon processes.

Comparisons involving common task-specific processes
are those in which the control and experimental conditions
differ with respect to the amount of some hypothesized
mental processing. For example, researchers interested in
mental rotation processes might compute the difference
between mean RTs to stimuli rotated (say) 90° versus
180°, reasoning that the larger mean RT for the 180°
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Fig. 4 Illustrations of how the
correlation of two mean
reaction times, RTx and RTy,
varies as a function of the
correlation of the underlying
task-specific processing times
(ρΔx Δy

), the correlation of each
of these processing times with
G (ρΔG), and the variability of
the processing times σG and
σΔx ¼ σΔy ¼ σΔ, with N = 30
trials per participant in each
task. A value of ρRxRy

¼ :40was
assumed. Default values of the
other parameters are shown in
Table 15. Corr[RTx, RTy] was
computed using Eq. 23 from the
covariance given in Eq. 42 and
from the variance given in
Eq. 38 for each term
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In contrast, comparisons involving opposing task-specific
processes are those in which the control and experimental
conditions differ with respect to the consequences of some
hypothesized mental processing. As one example, consider
color name interference as it is often measured in the Stroop
(1935) paradigm. Participants are presented with words
displayed in colored letters, and they must name the color of
the letters. In a congruent control condition, the word matches
the letter color (e.g., the word “red” displayed in red letters). In
an incongruent experimental condition, the word is a
conflicting color name (e.g., the word “blue” displayed in
red letters). The difference between these two conditions re-
flects the effects of an automatic word reading process.
Critically, this effect has opposite consequences for the two
conditions. Specifically, stronger automatic processing of ir-
relevant word name tends to speed responses in the congruent
condition (i.e., to reduce Δc) but tends to slow them in the
incongruent one (i.e., to increaseΔe). Thus, within IDRT, the
difference would involve a strong negative correlation across
individuals ofΔc andΔe—that is, ρΔc Δe

� 0—so it seems
natural to refer to these experimental and control conditions as
having opposing task-specific processes.

Exactly analogous arguments suggest that opposing task-
specific processes are involved in many other tasks assessing
different kinds of congruence effects, including the flanker
effect, the Simon effect, the crossed–uncrossed difference in
simple RT tasks (e.g., Hasbroucq, Kornblum, & Osman,
1988), the SNARC effect (e.g., Dehaene, Bossini, & Giraux,
1993), and so on (e.g., Keye, Wilhelm, Oberauer, & Van
Ravenzwaaij, 2009; Larson & Clayson, 2011; McConnell &

Shore, 2011). In every case, the same processing that speeds
responses in the congruent condition tends to slow responses
in the incongruent one, so this processing has opposing con-
sequences in the two conditions. Other examples include cue
validity effects with spatial, semantic, and response cues (e.g.,
Huang, Mo, & Li, 2012; McConnell & Shore, 2011; Versace,
Mazzetti, & Codispoti, 2008). The cues evoke selective prep-
aration for a particular stimulus location, stimulus identity, or
response; that preparation leads to especially fast responses in
the valid cue condition, where it is appropriate, but to espe-
cially slow responses in the invalid cue condition, where it is
inappropriate (i.e., a different stimulus location or identity was
presented or a different response was required).

The above distinction focuses on the extremes of strongly
correlated task-specific processing times (i..e.,ρΔc Δe

� 0and
ρΔc Δe

� 0), but intermediate cases are also possible.With the
mental rotation task, for example, comparing rotations of 0°
versus 180° would lead to less positively correlated task-
specific processing times, because rotation is involved in only
one of the two conditions. In the Stroop task example, com-
paring the incongruent condition against a neutral condition of
colored Xs would lead to less negatively correlated task-
specific processing times, because automatic word reading
processes would have little or no effect with the Xs.
Similarly, comparisons between primed and unprimed condi-
tions (e.g., Tipper, 1985) and between cued and uncued con-
ditions (e.g., Fan,McCandliss, Sommer, Raz, & Posner, 2002)
would tend to be intermediate, because the processes respon-
sible for the priming and cuing effects would simply be absent
from the unprimed and uncued control conditions. In the
following, to investigate the psychometric properties of various
types of difference scores, we used task-specific speed corre-
lations of ρΔc Δe

¼ �:8, ρΔc Δe
¼0, and ρΔc Δe

¼ :8 to represent
difference scores based on opposing, unrelated, and common
processes, respectively.

Reliability of reaction time difference scores

The reliability of a difference score is defined as the correla-
tion of two separate estimates of that difference, Corr D;D

0� �
.

Figure 5 shows how the reliability of RT difference scores
depends on a number of task-related variables that might be
expected to influence these differences. In general, the number
of trials, N, has a large effect, as expected. With some combi-
nations of parameters, though, many more trials are needed to
obtain reliable RT difference scores than were required to
obtain reliable mean RTs. Hundreds of trials per condition
are sometimes needed to produce reliabilities exceeding .8;
although not shown in the figure, thousands are sometimes
needed for reliabilities exceeding .9. Unless it is practical to
obtain thousands of trials per participant and condition, these
results raise a caution for researchers studying correlations of
RT differences: It may be difficult to obtain high reliability.
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condition reflects the extra time needed for the larger rota-
tion (e.g., Cooper & Podgorny, 1976; Just & Carpenter,
1985). It is usually assumed that each individual participant
rotates at approximately the same rate in both conditions,
which implies within IDRT that the values of Δc and Δe

would be approximately equal for each individual. Thus,
across individuals, the difference shown in Eq. 9 would
have strongly positively correlated values of Δc and Δe—
that is, ρΔc Δe

� 0 —so it seems natural to refer to these
experimental and control conditions as having common
task-specific processes. As other examples of differences
based on common task-specific processes, researchers might
assess the speed of visual search by comparing target-
detection RTs in displays with smaller versus larger numbers
of items (e.g., Schweizer, 1989), and researchers might
assess the speed of short-term memory search by comparing
target-detection RTs in conditions with smaller versus larger
numbers of items held in memory (e.g., Chiang & Atkinson,
1976; Wilson & O’Donnell, 1986). In such comparisons, the
control and experimental conditions differ in the amount of
the common process needed (e.g., more mental rotation in
the 180° experimental condition, more memory search with
more items held in memory).



It is clear from Fig. 5 that RT difference scores computed
from opposing tasks (5a, 5d, and 5g: ρΔc Δe

¼ �:8) are more
reliable than those computed from common tasks (5c, 5f,
and 5i: ρΔc Δe

¼ :8 ). RT differences computed from
unrelated tasks (5b, 5e, and 5h: ρΔc Δe

¼ 0) are intermediate.
Furthermore, the Corr[D,D′] difference between common
and opposing tasks can be quite large. For example, keeping
other parameters constant, reliability could be .8 for oppos-
ing tasks but only .1 for common tasks.

As would be expected, reliability tends to increase
with a larger effect size (i.e., larger values of central
stage processing time Be relative to the fixed Bc).
Interestingly, increases in the duration of the perceptual
stage A decrease reliability, despite the fact that these
stage times are removed from the difference score by the
subtraction, and the same pattern is also found with the
durations of the motor stage (C). This pattern results
from increased trial-to-trial error variance, which in-
creases with the overall RT when perceptual or motor
time (i.e., A or C) increases. For the same reason, reli-
ability would decrease with increases in the coefficient of
variation CV, although this is not illustrated in the figure.

Figure 6 illustrates the increases in difference score reli-
ability resulting from increases in the variabilities of the
general and task-specific processing times (σG and σΔ), with
the range of parameter values again chosen to produce clear
effects. In general, these effects are not too large over the
range of parameter values examined here. Again, the differ-
ence between common and opposing task-specific processes
plays a crucial role, with reliability decreasing dramatically
as ρΔc Δe

increases from −.8 to .8.
In summary, researchers wanting to study correlations

involving an RT difference score must be aware that many
more trials—often an order of magnitude more—are needed
to obtain adequate reliability than are needed with mean
RTs. Moreover, the relationship between the two conditions
entering into the difference score must also be considered,
because this relationship has a big effect on the number of
trials needed for adequate reliability. Indeed, thousands of
trials per condition may be needed when the two conditions
involve common task-specific processing, especially if the
effect is not too large. Fortunately, the equations presented
in Appendix 2 can be used to estimate reliability and,
thereby, help determine the number of trials needed to
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Fig. 5 Reliability of a mean
reaction time difference score,
D, as a function of the number
of trials (N), the duration of
stage A, the duration of stage
B in the experimental condition
(Be), as compared with a
duration of Bc = 200 ms in the
control condition, and the
correlation of task-specific
processing times in the two
conditions involved in the
difference score (ρΔc Δe

).
Default values of the other
parameters are shown in
Table 15. Corr D;D

0� �
was

computed using Eq. 24 from the
covariance given in Eq. 45
and from the variance
given in Eq. 43
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obtain a desired reliability level for a specific set of assumed
parameter values that seem appropriate for the difference
score under study.

In practice, unfortunately, it might be difficult to estimate
the extent to which a given RT difference score involves
common versus opposing processes, because this involves
estimating the value of ρΔc Δe

. At present, we know of no
way to do that empirically and, thus, could rely only on a
theoretical analysis of the tasks entering into the difference
score. Although such analysis seems convincing in most of
the cases that have been considered here (e.g., set size effect
in memory scanning, Stroop congruency effect), it certainly
need not do so in all cases.

Correlation of reaction time difference scores
with another measure

One of the most common uses of RT in correlational re-
search is to study the relationship of an RT difference score,
D = RTe − RTc, with some external measure, Y (e.g.,
Greenwald et al., 1998; Hunt, 1978; Williams, Light,
Braff, & Ramachandran, 2010). Intuitively, the RT differ-
ence score is used in order to remove unwanted influences
of general processing time, G, and of residual sensory–
motor time, R. The usual goal of the correlation is to assess
the relationship between the external measure and the task-
specific processing time in the experimental condition, Δe.

For example, the difference between RTs in primed and
unprimed conditions in the negative-priming paradigm is
thought to isolate the effects of inhibitory processes (e.g.,
Tipper, 1985), and researchers have correlated this measure
of inhibitory processes with the severity of schizophrenic

symptoms in order to examine the hypothesis that inhibition
is disrupted by schizophrenia (e.g., Moritz & Andresen,
2004; Moritz & Mass, 1997). Others have correlated an
RT-based measure of hemispheric disconnection known as
the crossed–uncrossed difference with other behavioral
(e.g., Cherbuin & Brinkman, 2006) and neurophysiological
(e.g., Iacoboni & Zaidel, 2004) measures of such discon-
nection, essentially attempting to determine the validity of
the RT-based disconnection measure. Likewise, RT differ-
ence scores are sometimes used to isolate particular cogni-
tive processes, such as memory retrieval, that are thought to
be especially strongly related to standard psychometric mea-
sures of IQ (e.g., Hunt, 1978; Keating & Bobbitt, 1978). As
a final example, RT difference scores are now used exten-
sively in social psychology within the context of the IAT
(Greenwald et al., 1998), as was mentioned earlier. In the
IAT people must classify examples based on two different
categorical distinctions (e.g., flowers vs. insects and words
having pleasant vs. unpleasant meanings). There are only
two possible responses (e.g., left and right hands), and
across two experimental conditions, the response assign-
ments for the two distinctions are paired in opposite ways
(e.g., flowers + pleasant words vs. insects + unpleasant
words in one condition, flowers + unpleasant words vs.
insects + pleasant words in the other). If the two distinctions
are semantically related, responses should presumably be
faster in the condition with two associated categories
assigned to the same response (e.g., flowers + pleasant
words vs. insects + unpleasant words) than in the condition
with two unassociated categories assigned to the same re-
sponse (e.g., flowers + unpleasant words vs. insects + pleas-
ant words). Thus, the RT difference between these two
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Fig. 6 Reliability of a mean
reaction time difference score,
D, as a function of σG, σΔ,
ρΔc Δe

, and the number of trials
(N). Default values of the other
parameters are shown in
Table 15. Correlations were
computed using the same
equations as those indicated
in Fig. 5
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conditions may be a measure of the strength of the semantic
associations between categories (but see Blanton et al.,
2006). This RT difference measure is thought to be implicit
because it is extracted from performance measures rather
than explicit questions about attitudes, and such RT differ-
ence scores are often correlated with corresponding explicit
attitude measures (for a recent review and meta-analysis, see
Hofmann et al., 2005). Moreover, the difference seems to be
based on opposing processes, because stronger semantic
associations would speed responses with associated catego-
ries and slow responses with unassociated categories.

In this section we analyze the correlation of an RT dif-
ference score, D = RTe − RTc, with an external measure, Y.
As in the section on difference score reliability, we assume
that a randomly selected participant’s difference score is
described by Eq. 9. Figure 7 illustrates the correlations
predicted by IDRT under a wide range of combinations of
true correlations among model terms. When the researcher’s
goal is to assess the correlation between Δe and Y, the
perfect outcome would be Corr D;Y½ � ¼ ρΔeY, which would
imply that all points in each panel of the figure would lie
exactly on the positive diagonal. As can be seen in the
figure, the observable correlation Corr[D, Y] does tend to
increase linearly with the correlation of Y with the underly-
ing task-specific processing time, ρΔeY , which is good.
Nonetheless, the values of Corr[D, Y] and ρΔeY are often
quite different (i.e., many points are far from the diagonal),
so the former is not necessarily a good estimate of the latter.
Moreover, depending on the other parameters, the observ-
able correlation Corr[D, Y] can be either larger or smaller
than the underlying correlation of interest, ρΔeY , so re-
searchers cannot even be certain whether Corr[D, Y] will
tend to underestimate or overestimate the true target value of
ρΔeY . Comparisons across panels indicate that the observ-
able Corr[D, Y] tends to increase with increases in the
correlation of Y with general processing time, ρGY , and to
decrease with increases in the correlation of Y with task-
specific processing time in the control condition, ρΔcY .

The results shown in Fig. 7 also indicate that there is a
substantial effect of whether the RT difference score is based
on common, unrelated, or opposing processes (i.e.,
ρΔc Δe

¼ :8 , 0, or −.8). Thus, the relation between task-
specific processes, ρΔc Δe

, has an important effect on the
observable correlation Corr[D, Y] even though this parameter
does not directly involve Y. As can be seen within each panel,
the lines relating the observable Corr[D, Y] to the underlying
ρΔeY are steepest with differences based on common process-
es and shallowest with differences based on opposing pro-
cesses. In this sense, Corr[D, Y] may be regarded as a better
indicator of ρΔeY with common rather than opposing process-
es, although the actual numerical difference between the ob-
servable Corr[D,Y] and the target ρΔeY depends on many
parameters and is in many cases smaller with opposing

processes than with common ones. In the final analysis, then,
an observed value of Corr[D,Y] by itself conveys little infor-
mation about the correlation betweenYand the time needed for
task-specific processing in the experimental condition. For
example, it seems quite risky to assess the relation between
schizophrenia and inhibitory processes by correlating the extent
of schizophrenic symptoms with the difference in RTs between
a condition with inhibitory negative priming and a neutral
control condition, because the observable correlation is
influenced by too many factors to provide a good estimate of
the association between schizophrenia and inhibitory processes.

Correlation of two distinct reaction time difference scores

Researchers might also want to examine the correlation
across participants between two different experimental ef-
fects, perhaps in order to estimate the degree to which the
effects are determined by the same versus distinct mental
processes. Typically, the size of each effect is estimated for
each participant by the difference in mean RTs between two
conditions of a particular task, and these effect sizes are then
correlated.

For example, Fan et al. (2002) developed the Attention
Network Test (ANT) in order to obtain separate assessments
of three previously suggested attentional networks involved
in alerting, spatial orienting, and conflict resolution.
Specifically, their goal was “to assess whether or not sub-
jects’ efficiency within each of the [three attentional] net-
works was correlated” (p. 343) as a test of whether these
attentional networks “engage separate brain mechanisms”
(p. 344). On each trial, participants were presented with a
row of five left- or right-pointing arrows and were required
to respond with the left or right hand in accordance with the
direction of the target arrow in the center of the row, with the
other arrows being distractors (cf. Eriksen & Eriksen, 1974).
The time needed for conflict resolution was measured as the
difference in mean RT between trials with congruent
distractor arrows (i.e., pointing in the same direction as the
center target) and trials with incongruent distractors (i.e.,
pointing in the opposite direction). In addition, the spatial
location of the row of arrows was either cued or
unpredictable, and the difference between the mean RTs in
these conditions was used to assess the efficiency of spatial
orienting. Finally, the onset time of the row of arrows was
either cued or unpredictable, with the difference between
these conditions used to assess alerting. There were no
statistically reliable correlations among these three effects,
leading the authors to conclude that these effects are medi-
ated by separate processes, although subsequent analyses of
the psychometric properties of these measures have called
this conclusion into question (e.g., MacLeod et al., 2010).
The following analysis using IDRT also suggests that cor-
relations may be small even if there are common
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components and that Fan et al.’s conclusion is, therefore,
only weakly supported by the findings. This is especially
true because only approximately 25 trials per condition and
participant were included in some of the difference scores,
weakening reliability.

Again, we consider one effect to be a comparison be-
tween experimental and control conditions, Dce = RTe −
RTc, so that the difference for each individual in a particular
task is given by Eq. 9. Let the second effect be denoted as
Duv = RTv − RTu, so that the analogous equations apply
substituting u and v for c and e. As before, we assume that
both experimental effects involve changes in the time need-
ed for the central stage, B.

In most situations, researchers seem mainly interested in
the correlation of the task-specific processing times of the two
experimental conditions, ρΔe Δv

, so one question is clearly
how well that parameter is estimated by Corr[Dce, Duv] (e.g.,
Kane et al., 1997). Figure 8 illustrates how the true correlation
Corr[Dce, Duv] varies as a function of the correlation between
the task-specific processing times of the two experimental
conditions, ρΔe Δv

, as well as the correlations between other

pairs of task-specific processing times (e.g., ρΔc Δe
, ρΔu Δv

).
Specifically, the different panels represent correlations in
which the difference scores represent different combinations
of common, unrelated, and opposing task-specific processes.
For example, Fig. 8b represents a correlation between one
difference score involving unrelated task-specific processes
(i.e., ρΔc Δe

¼ 0) and one difference score involving opposing
processes (i.e., ρΔu Δv

¼ �:8 ), which corresponds to the
correlation of the flanker effect (opposing) and the spatial
cuing effect (unrelated) in the study of Fan et al. (2002).

One important fact influencing the patterns shown in most
panels of Fig. 8 is that the interrelationships of the different
processing time parameters are tightly constrained. Because of
these constraints, some values of ρΔe Δv

are impossible given
specified values of the other correlations, which causes left
and right truncation of the lines in most panels. For example,
consider the correlation of two differences both involving
opposing task-specific processes (Fig. 8a). If the task-
specific processing times of the two control conditions are
uncorrelated (i.e., ρΔc Δu

¼ 0 ) and all of the task-specific
processing times have the same small correlation with G
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Fig. 7 Correlation of a mean
reaction time difference score,
D, and an external measure,
Y, as a function of the true
correlations ρGY , ρΔcY , ρΔc Δe

,
and ρΔeY . Default values of the
other parameters are shown in
Table 15. Corr[D, Y] was
computed using Eq. 47
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(i.e., ρΔcG ¼ ρΔeG ¼ ρΔuG ¼ ρΔvG ¼ :2 ), then the task-
specific processing times of the two experimental conditions
cannot possibly have a strong positive or negative correlation.
Instead, their correlation must lie within the range of approx-
imately −.1 to +.3. Thus, researchers interested in estimating
such correlations (e.g., the correlation of the Stroop effect with
the flanker effect) should keep in mind that the correlation
under investigation is part of a complex network of
interrelated quantities—not an entirely free parameter
like mean effect size.

Each panel of Fig. 8 reveals a highly linear relation
between the observable correlation of difference scores,
Corr[Dce, Duv], and the underlying correlation of the task-
specific processing times in the two experimental condi-
tions, ρΔe Δv

, suggesting that the former could provide a
good estimate of the latter within the narrow range of
possible values. Unfortunately, the observable and target
values (i.e., Corr[Dce, Duv] and ρΔe Δv

, respectively) are
not generally equal, raising complications for such esti-
mates. For example, consider first the correlation of two
differences both involving opposing task-specific processes

(Fig. 8a). The observable values of Corr[Dce, Duv] are
systematically closer to zero than the underlying target
values of ρΔe Δv

, making it less likely that researchers will
find a statistically significant correlation even when the two
task-specific processes are truly correlated (i.e., ρΔe Δv

6¼ 0).
For example, Fan et al. (2002) might not have obtained
correlations among attentional effects even if the same
mechanisms influenced task-specific processes in the
experimental conditions, depending upon the relation-
ships among the task-specific processes in the control
conditions.

In addition, the separate lines within Fig. 8a illustrate that
the observable Corr[Dce, Duv] increases with the correlation
between task-specific processing times in the two control
conditions, ρΔc Δu

. This effect indicates that the observable
Corr[Dce, Duv] is not a pure measure of the target correlation
ρΔe Δv

. Moreover, it shows that the observable Corr[Dce, Duv]
can differ from zero even when the target correlation ρΔe Δv

equals zero, leading to the possibility that researchers will
incorrectly reject the null hypothesis of interest (i.e., H0 :
ρΔe Δv

¼ 0 ). For example, researchers might incorrectly
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Fig. 8 Correlation of two mean
reaction time difference scores,
Dce and Duv, as a function of the
correlations between task-
specific processing times
ρΔc Δe

, ρΔu Δv
, ρΔc Δu

, and
ρΔe Δv

. Correlations between
two differences involving two
opposing, two unrelated, and
two common task-specific
processes, are depicted in a, c,
and f, respectively, whereas b,
d, and e depict correlations of
two differences involving other
combinations of task-specific
differences. Values
of ρΔc Δv

¼ ρΔe Δu
¼ 0 were

assumed. Default values of the
other parameters are shown in
Table 15. Corr[Dce, Duv] was
computed using Eq. 23 from the
covariance given in Eq. 48 and
from the variance given in
Eq. 43 for each term
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conclude that two experimental conditions are correlated when,
in fact, only the two control conditions are related.

Similar problems for the estimation of the underlying
ρΔe Δv

by the observable Corr[Dce, Duv] are also evident in
Fig. 8b–f. Specifically, the lines do not generally lie on the
positive diagonal, making it difficult for researchers to esti-
mate the underlying correlation of interest, ρΔe Δv

, from the
observable value of Corr[Dce, Duv]. For example, even
across the relatively restricted range of ± .25 examined here,
the nuisance parameter ρΔc Δu

always has a clear effect on
Corr[Dce, Duv], demonstrating that the observable value de-
pends noticeably on factors other than the underlying cor-
relation of interest.

Correlation of two reaction time difference scores involving
the same baseline

A prominent variant of the RT difference score analysis
considered in the previous section arises when researchers
assess two effects on RT by computing difference scores
that involve the same baseline condition. One case in which
researchers examine such RT differences, on which we
focus here, involves what is sometimes called cost–benefit
analysis (e.g., Jonides & Mack, 1984). In this type of
analysis, the researcher obtains the mean RTs for three
conditions. Condition n is a neutral baseline condition,
whereas conditions f and i represent conditions with some
type of facilitation and interference, respectively. In the
Stroop (1935) color naming task, for example, facilitation
is expected when the irrelevant word matches the to-be-
named color and inhibition is expected when the irrelevant
word names an alternative color, relative to a neutral condi-
tion in which the word has no color association (e.g.,
Brown, 2011).4

In cost–benefit analysis, the measured cost of interfer-
ence is Di = RTi − RTn, the measured benefit of facilitation
is Df = RTn − RTf, and the correlation between facilitation

and interference is often of theoretical interest. Note that
the neutral condition mean RTn enters into the two
differences with opposite signs, which tends to produce
a negative correlation between these two differences
(e.g., Brown, 2011).

Considering as usual the case in which only the central
stage B varies across conditions, the RTs for the interference
and neutral conditions involved in the cost–benefit analysis
can be represented under IDRT as

RTi ¼ Aþ Bi þ Cð Þ �Gþ Bi �Δi þ R þ Ei; and ð10Þ

RTn ¼ Aþ Bn þ Cð Þ �Gþ Bn �Δn þ R þ En: ð11Þ
It is most intuitive, however, to represent the mean RT in the
facilitation condition as

RTf ¼ Aþ Bf þ C
� � �G� Bf �Δf þ R þ Ef ; ð12Þ

with Bf · Δf subtracted from rather than added to the overall
total RTf. With this definition of RTf, larger values of Δf

produce smaller values of RTf, so Δf reflects the amount of
facilitation, as one intuitively expects. Furthermore, with
this definition a positive correlation of Δf and Δi means
that larger facilitation is associated with larger inhibition, as
one also intuitively expects. Using these definitions, the
measured cost of interference, Di = RTi − RTn, and benefit
of facilitation, Df = RTn − RTf, are

Di ¼ Bi � Bnð Þ �Gþ Bi �Δi � Bn �Δn þ Ei � En

and
ð13Þ

Df ¼ Bn � Bf

� � �Gþ Bn �Δn þ Bf �Δf þ En � Ef :

ð14Þ

Figure 9 shows the correlation between observable costs
and benefits, Corr[Df , Di], as a function of the correlation of
the underlying task-specific processing times in the facilitation
and inhibition conditions,ρΔf Δi

, as well the overall effect size
indexed by central processing time in the interference condi-
tion, Bi, the variability associated with the general processing
timeG, and the correlation of task-specific processing times in
the inhibition and neutral conditions, ρΔi Δn

. The figure re-
veals that the observable Corr[Df ,Di] is linearly related to the
underlying correlation of task-specific costs and benefits that
is of interest, ρΔf Δi

, but is not generally equal to it, even
approximately. Indeed, Corr[Df ,Di] and ρΔf Δi

often differ in
sign, so the observed value need not even capture the true
direction of the correlation of interest. Furthermore, when the
value of the underlying target correlation ρΔf Δi

approaches
the extremes of ±1, the observable Corr[Df ,Di] is far too
small in absolute value. Both within and across panels, it is

4 A slightly different case in which the same baseline enters into two
differences is when two different experimental effects are measured relative
to the same control condition. That is, the researcher would obtain mean
RTs in a control condition c and in two experimental conditions e and v. The
two experimental effects would then be measured as Dce = RTe − RTc and
Dcv = RTv − RTc. For example, a human-factors researcher might measure
separate effects of alcohol and sleep loss on RTs in a simulated driving task
by comparing RTs obtainedwith each of thesemanipulations against RTs in
a normal control condition. This situation differs from the cost–benefit
analysis in that the baseline condition enters into both differences with
the same sign. This implies that a positive correlation between RTe and
RTv, which would result from a positive correlation betweenΔe andΔv,
would tend to produce a positive correlation between the RT differences,
Corr[Dce, Dcv]. Thus, the correlation in this case is simply the negative of
the correlation for the cost–benefit case in which the baseline condition
enters into the two differences with opposite signs. Because of the simple
relationship between the two cases, we considered only one of them, and
we chose the cost–benefit case because it is more frequent in the literature.
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also clear that the other parameters have substantial effects on
the observable Corr[Df ,Di] (e.g., the population variability of
general processing time, σG), making it impossible to estimate
the target ρΔf Δi

from the observable Corr[Df ,Di] without
precise information about the values of these other parameters.
It is especially noteworthy that the observable Corr[Df ,Di]
depends on the correlations of task-specific processing time in
the neutral condition with the time in the inhibition condition
(ρΔi Δn

, illustrated across panels) and with the time in the
facilitation condition ( ρΔf Δn

, not illustrated). Thus, re-
searchers studying the relationship between facilitation and
interference must allow for effects of these auxiliary neutral-
condition correlations on the observable Corr[Df ,Di]. Debates

about the appropriateness of different neutral conditions have
previously focused on mean RT (e.g., Brown, 2011), but this
analysis shows that the correlation of this condition with the
facilitation and inhibition conditions must also be considered
when effect-size correlations are being investigated.

One particularly interesting special case of a correlation
involving difference scores with a common neutral term
arises in the analysis of Stroop effects (e.g., MacLeod,
1991). As was reviewed by Brown (2011), many models
of the Stroop task posit that facilitation in the congruent
condition and interference in the incongruent condition are
driven by a single underlying mechanism for automatic
word recognition. Within these models, one would naturally
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Fig. 9 Correlation of mean reaction time difference scores measuring
the benefit of facilitation, Df = RTn − RTf, and the cost of interference,
Di = RTi − RTn, computed using a common neutral condition, RTn.
Correlations are displayed as a function of σG; the amount of stage B
processing needed in the inhibition condition, Bi,which determines the
mean cost relative to the fixed stage B processing amounts in the
facilitation and neutral conditions (i.e., Bf = 200 ms and Bn =
250 ms); the correlation of the task-specific processing times in the
neutral and inhibition conditions,ρΔi Δn

; and the correlation of the task-
specific processing times in the facilitation and inhibition conditions,

ρΔf Δi
. The value of ρΔf G ¼ �:2 was assumed—in contrast to the

values of ρΔiG ¼ ρΔnG ¼ :2 —because the task-specific processing
time was subtracted from the total RT in the benefit condition (Eq. 12),
rather than adding to it as in the cost and neutral conditions (Eqs. 10
and 12). Default values of the other parameters are shown in Table 15.
Corr[Df, Di] was computed using Eq. 23 from the covariance given in
Eq. 49. The variance of Di is given by Eq. 43, with the neutral and
inhibition conditions corresponding to the control and experimental
conditions, respectively, and the variance of Df is given by Eq. 44
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expect both a perfect correlation of the underlying facilita-
tion and inhibition (i.e., ρΔf Δi

¼ 1 ) and, consequently,
a strong correlation of the measured costs and benefits
(i.e., Corr Df ;Di½ � � 0).

Figure 10 shows example correlations computed for this
single-mechanism special case. As is evident from the fig-
ure, the correlation of the observed RT facilitation and
inhibition (i.e., Corr[Df, Di]) can be quite low even when
the single-mechanism model is correct (i.e., ρΔf Δi

¼ 1). In
fact, the correlation can even be negative, which is possible
because the random error component of the neutral condi-
tion, En, enters into the facilitation and interference mea-
sures with opposite signs (Brown, 2011). Thus, the clear
implication of Fig. 10 is that researchers cannot confidently
reject single-mechanism accounts of facilitation and inter-
ference based on small correlations of measured facilitation
and interference. This example also illustrates another way
in which IDRT can be helpful; namely, by providing exact
numerical values—possibly rather unexpected ones—for
correlations that might be predicted by qualitative theories
such as the single-process mechanism.

Correlations between mean reaction times and reaction
time difference scores

In some situations, researchers correlate mean RTs with dif-
ference scores. As was discussed by Chapman, Chapman,
Curran and Miller (1994), for example, one main motivation
for such correlations is that slower individuals or groups
generally show larger effects of experimental manipulations
in most RT tasks. This is to be expected, they argued, because
“slow subjects tend to be slow in most aspects of performance
with the result that they show greater differences than fast
subjects between long-latency and short-latency tasks. By
analogy, slow typists tend to show a larger difference in
completion times between a long manuscript and a short one
than do fast typists” (p. 162). It is particularly important to
understand correlations between mean RT and effect size
because these correlations complicate the interpretation of
different-sized effects found for groups that differ in overall
ability (Chapman et al., 1994). In this section we examine the
correlation of a mean RT with an RT difference score.5

One simple and intuitive way to quantify the relationship
between overall RT and effect size is by correlating the
observed mean RT in a control condition, RTc, with the size

of the experimental effect, D = RTe − RTc. On the basis of
the idea that the effects of the experimental manipulation
might depend on a participant’s overall processing time, one
might expect Corr[RTc, D] to reflect primarily the correla-
tion of the general processing time with the task-specific
processing time in the experimental condition, ρΔeG . On the
other hand, given that RTc enters with opposite signs into
the two measurements being correlated (i.e., RTc and D),
one might expect the correlation to be negative. Given these
two conflicting expectations, it is not surprising that the true
situation is more complicated than either one suggests.

The influences of various factors on the observable
Corr[RTc, D] can be studied within IDRT. Again we assume
that the RTs in the control and experimental conditions are
given by Eq. 7, with i = c, e, and that these two conditions
differ only with respect to processing in the central stage B,
so the observed experimental effect D is given by Eq. 9.
Figure 11 illustrates how the correlation of the control
RT and the difference score depends on several key param-
eters. First, there is a clear tendency for the observable
Corr[RTc, D] to increase with the underlying correlation of
the general processing time with the task-specific processing
time in the experimental condition, ρΔeG , as is intuitively
expected. Nonetheless, these two correlations may be quite
different, as is indicated by the deviations from the positive
diagonal. In fact, depending on the values of the other
parameters, the observable Corr[RTc, D] can be substantial-
ly larger or smaller than the underlying target correlation
ρΔeG . For example, as is shown within each panel, the
observable Corr[RTc, D] tends to increase with the popula-
tion variability of general processing time, σG, as would be
expected because both the mean and the difference tend
to increase with G. Not surprisingly, the observable
Corr[RTc, D] also tends to increase with the size of the
experimental effect (i.e., with the duration of the central
stage Be). In addition, the observable correlation increases
with the correlation of task-specific processing times, ρΔc Δe

,
which implies that larger observable correlations would be
expected when differences involve common, rather than op-
posing, task-specific processes. Finally, although it is not
shown in this figure, the observable Corr[RTc, D] also tends
to increase with the variability of general processing times,
σG , which is to be expected because the true score variability
of each of the two terms involved in the correlation tends to
increase with the variability of G.

A slightly different way to assess the relationship be-
tween effect size and processing time is to examine the
correlation between the size of an experimental effect and
the average of the RTs in the control and experimental
conditions, RT ¼ RTc þ RTeð Þ 2= (e.g., Chapman et al.,
1994; Gignac & Vernon, 2004). The analysis of this corre-
lation shows effects that are quite similar to those shown in

5 The general properties of correlations between linear combinations
and their components (e.g., Corr[X, Y − X]) have previously been
examined outside of the context of RT models (e.g., Brown, 2011;
Fuguitt & Lieberson, 1973; Sriram et al., 2010). In contrast, the present
investigation focuses on the specific implications of such correlations
within IDRT.
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Fig. 11, so the situation apparently only changes minimally
when using RTc þ RTeð Þ 2= rather than RTc to index faster
versus slower participants. The main difference between the
two cases is that the correlations are slightly higher using
RT. This makes sense, because the correlation would tend to
be increased by the positive contribution of the experimental
condition mean, RTe, to both of the terms being correlated.
The bottom line, then, is that many factors influence the
correlation between overall processing time and effect size
within IDRT, whether processing time is indexed by RTc or
RTc þ RTeð Þ 2= . In particular, the model suggests that it will
not be easy to determine whether a slower group shows a
larger effect size just because of general slowing (i.e.,

changes in G). Instead, the appropriate adjustment in effect
size for general slowing depends on a number of parameters,
and this adjustment can be determined only within the
context of a specific model.

General discussion

Analyses of correlations involving RT play a prominent role
in research investigating both individual-differences (e.g.,
Jensen, 1985, 1993; Sheppard & Vernon, 2008) and basic
cognitive processes (e.g., Corballis, 2002; Stolz et al., 2005).
Although researchers conducting such analyses have often
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Fig. 10 Correlation of mean reaction time difference scores measuring
the benefit of facilitation, Df = RTn − RTf, and the cost of interference,
Di = RTi − RTn, computed using a common neutral condition, RTn,
for the special case in which a single mechanism is responsible for both
facilitation and inhibition (i.e., ρΔf Δi

¼ 1). Correlations are displayed
as a function of the number of trials, the amount of cost indexed by Bi

relative to fixed values of Bf = 200 and Bn = 250, the standard deviation
of G, and the common standard deviation of all task-specific process-
ing times (σΔf ¼ σΔn ¼ σΔi � σΔ ). Values of ρΔf G ¼ ρΔiG ¼ 0
were assumed, in contrast to ρΔnG ¼ :2, because of two constraints

inherent in the single-mechanism model. First, Δf and Δi necessarily
have the same correlation with G if they are perfectly correlated with
one another. Second, Δf and Δi have opposite correlations with RTf

and RTi, respectively, because the facilitation term is subtracted from
RTf, whereas the cost term is added to RTi (Eqs. 12 and 10). If G is to
be equally correlated with RTf and RTi, then, ρΔf G ¼ ρΔiG ¼ 0 is the
only possibility. Default values of the other parameters are shown in
Table 15. Correlations were computed using the same equations indi-
cated in Fig. 9
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considered classical psychometric testing concepts (e.g., reli-
ability) in assessing their correlations, no attempt has been
made to assess the precise meanings of these correlations
within the framework of standard RT models. Therefore, the
goal of this article was to investigate how RT-based correla-
tions would be influenced by the various underlying processes
within standard RT models. To achieve that, we developed a
general model of individual differences in RT, called IDRT,
and linked this model to psychometric concepts from classical
test theory. This linkage was especially direct because IDRT
involves a linear combination of random variables. We ex-
plored the consequences of this model for several different
types of correlational analyses involving RTs. In particular, the
model’s predictions can be determined regarding correlations
involving both mean RTs and difference scores (see Table 2).

Our model is based on the simple assumption that pro-
cessing from stimulus input to response output proceeds via
a series of computational steps or stages whose durations
sum to produce the overall RT. Within IDRT, individuals of
course differ in the time needed to carry out each of the
stages (e.g., Vernon, 1990). This model makes it possible to
distinguish between general and task-specific processing

times, and the influences of these times on various observ-
able correlations can be assessed, thereby helping to eluci-
date the precise meanings of such correlations. This model
is attractive because of its simplicity, generality, and exten-
sive theoretical development (e.g., Donders, 1868/1969;
Smith, 1969; Sternberg, 1969, 2001). At the same time, as
was discussed in the section “The individual differences in
reaction time (IDRT) model,” it seems plausible that the
conclusions emerging from this simple model system would
also be applicable within more detailed models providing a
richer description of specific RT tasks (Hillis, 1993).

Implications regarding correlations

The most important general conclusion emerging from our
analysis is that the observable correlations involving RT
means and difference scores depend on many factors
influencing performance within the task, including charac-
teristics of both the task (e.g., times needed for perceptual,
central, and motor processing [A, B, C]) and the population
(e.g., variability of general and task-specific processing
times, and their correlation [σG, σΔ, and ρΔG]). Obviously,
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Fig. 11 Correlation of the
mean reaction time in a control
condition, RTc, with the
difference between means,
D = RTe − RTc. Correlations
are displayed as a function of
the size of the experimental
effect, indexed by Be, the
standard deviation of G, and the
correlations ρΔc Δe

and ρΔeG .
Default values of the other
parameters are shown in
Table 15. Corr[RTc, D] was
computed using Eq. 23 from the
covariance given in Eq. 50
and from the variances given
in Eqs. 38 and 43
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the fact that the observable correlations are influenced by so
many parameters greatly complicates the interpretation of
any particular observed correlation. This finding critically
underscores the need for extreme caution in interpreting
observed correlations, especially because there are cases in
which correlations can be expected to be far higher or far
lower than the correlations of internal parameters that they
might be intuitively assumed to measure. Ultimately, this
finding raises the question of just what is actually being
learned about individual differences and mental processes
by studying such correlations. Although the present general
model provides a first step toward understanding the impli-
cations of RT-based correlations, it is clear that there is a
long way to go before it will be possible to draw strong
conclusions from the size or in some cases even from the
direction of an RT-based correlation.

The equations for the correlations predicted by the model
clearly illustrate the above general conclusion for each of
the different scenarios we examined (see Table 2). For
example, Eq. 42 shows that even the correlation between
two mean RTs—one of the simplest cases—depends on at
least ten parameters. From an observed correlation of
means, then, it is therefore impossible to estimate the value
of a single parameter of interest without detailed knowledge
about the other parameters. As a second example, Eq. 50
shows how the correlation between an effect size and the
mean RT in the control condition depends on many param-
eters affecting the mean RTs in both the experimental and
control conditions. Thus, although it seems intuitively rea-
sonable to ask about such a correlation (i.e., whether an
effect size increases for individuals who are slower in the
control condition), the observed correlation value simply
has no straightforward interpretation in terms of the under-
lying RT processes involved in the two conditions.

The present findings weaken many previous conclusions
based on correlations of RT measures. As one example, con-
sider the finding of low correlations among several different
attentional effects reported by Fan et al. (2002), which was
discussed in the earlier section “Correlation of two distinct
reaction time difference scores”. It is certainly possible that
these low correlations reflect truly independent neural mecha-
nisms involved in the different attentional systems assessed via
the RT difference scores, which is what Fan et al. concluded.
Figure 8 shows, however, that—depending on the values of the
other parameters—there could actually be a rather high corre-
lation between the times needed for the task-specific mecha-
nisms used in the experimental conditions (i.e., ρΔe Δv

), despite
the fact that the correlation of the RT difference scores is very
low. Thus, it is possible that a low correlation of difference
scores actually provides only illusory evidence of functional
dissociations between the task-specific mechanisms under
study. Before accepting a low correlation as evidence of a
functional dissociation, then, it would be necessary to show

that the values of the other parameters were not responsible for
the low observed correlation. Unfortunately, it is not yet clear
how to do this, because none of these parameters can be
estimated directly.

Similarly, the present results raise doubts about the inter-
pretation of weak correlations between RT-based measures
of facilitation and interference. Some models of the Stroop
(1935) task suggest, for example, that interference and facil-
itation are driven by the same underlying word recognition
mechanism. Because the two effects are opposite sides of the
same coin within these models, the models seem intuitively
to predict that the effects should be strongly correlated. On
that basis, findings of weak correlations have been regarded
as evidence against single-mechanism models (Brown,
2011). As is illustrated in Fig. 10, however, such models
need not predict a strong correlation between facilitation and
interference. Depending on the values of other parameters,
they may predict small or even negative correlations. Thus,
the absence of a strong correlation between facilitation and
interference does not actually imply the existence of separate
mechanisms underlying the two effects.6

Despite the complications evident in the formulas, the
numerical results indicate that some types of observed cor-
relations do sometimes provide very good estimates of
underlying relationships of interest to researchers. For ex-
ample, Fig. 3 shows that the correlation Corr[RT, Y] be-
tween mean RT and the score on an external (i.e., non-RT)
measure, Y, is often quite similar to the correlation of
general processing time, G, with that measure. This result
provides encouragement that it may be possible to use mean
RTs for fairly accurate assessments of correlations of exter-
nal measures with general processing time, and it is there-
fore quite consistent with the large literature suggesting that
the mean RTs of many tasks correlate well with general
intelligence (e.g., Jensen, 2006).

What can be concluded from RT-based correlations?

Even if RT-based correlations are highly replicable empiri-
cal phenomena, they may be devilishly complicated to in-
terpret. Given the multiplicity of factors influencing RT-
based correlations of each type shown in Table 2, re-
searchers must obviously be cautious in interpreting ob-
served values of these correlations. Statistical reliability of

6 In theory, the present analysis could be used to derive more appro-
priate tests of single-mechanism models. Using the model developed
here, it would be possible to determine the exact correlation predicted
by a single-mechanism model, ρp. Testing this prediction would then
provide a direct assessment of the model. In practice, however, this
approach would require numerical values for each of the parameters
determining the predicted correlation, and it is not clear how these
values could be determined.
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the observed values should be assessed as usual, but the
interpretations of both statistically significant and nonsig-
nificant correlations must also take into account the many
possible influences that could be responsible for the results.

Consider, for example, a significant correlation between
the mean RTs of two distinct tasks, RTx and RTy. Although
it may be tempting to attribute this correlation to a common
task-specific central process hypothesized to be involved in
both tasks (i.e., Δx = Δy), the correlation may actually be
produced mainly by something else entirely, such as a
general processing time parameter (G) common to all tasks
(e.g., Jensen, 2006) or a correlation of the sensory–motor
residual times (R) of the two tasks.

It seems clear that relatively sophisticated research strat-
egies will be required to reach strong conclusions from
between-task correlations of mean RTs. Specifically, re-
searchers will need to base their conclusions on the patterns
of correlations across a range of tasks—not just pairs of
tasks. For example, suppose that the correlation of RTx and
RTy is demonstrably higher than the correlation of either of
these with a third task’s RTz (within the same sample of
participants). If the third task were constructed so that RTz

involved the same sensory–motor residual times as RTx and
RTy, and if all three tasks appeared to depend equally
strongly on general processing time G (e.g., because all
correlated equally well with IQ), then the researcher would
clearly be on stronger ground in attributing at least part of
the RTx/RTy correlation to a hypothesized common central
process contributing to RTx and RTy but not RTz.

In view of the multiplicity of influences on correlations, it
is perhaps surprising that the present results do suggest that
very strong correlations can have quite specific implications.
Consider, for example, Iacoboni and Zaidel’s (2004) report of
a .9 correlation between the crossed–uncrossed difference in
simple RT (i.e., stimulus light on the same vs. opposite side of
the body midline as the respond hand) and an fMRI-based
measure of activity in the right superior parietal cortex. From
this strong relationship, they concluded that this area has “a
key role . . . in the type of interhemispheric visuo-motor
integration required by [the task]” (Iacoboni & Zaidel, 2004,
p. 423), but even more specific conclusions can be reached on
the basis of IDRT. First, it seems clear that this RT difference
must reflect opposing or unrelated task-specific processes in
the two RT conditions being compared (i.e., ρΔc Δe

� 0 ),
because such a strong correlation is not found with common
task-specific processes (i.e., ρΔc Δe

� 0 ; Fig. 7). Second,
activity in the right superior parietal cortex must have been
both negatively correlated with RT in the uncrossed condition
(ρΔcY � 0) and positively correlated with RT in the crossed
condition (ρΔeY � 0), because very strong correlations of RT
difference scores with an external measure are not found
unless both of these requirements are met (e.g., Fig. 7). In
short, given the multiplicity of influences on RT-based

correlations, extreme values near ±1 can be found only when
most or all of the relevant parameters have certain required
settings.

On the other hand, the interpretations of small correla-
tions are much more poorly constrained. Consider, for ex-
ample, possible interpretations of the finding that two RT-
based effect sizes are only weakly correlated, as in the case
of Fan et al.’s (2002) attentional effects. It would be tempt-
ing to conclude that different mechanisms are responsible
for the effects in the two experimental conditions, but our
analysis shows that other interpretations are possible. For
instance, the correlation of the two effect sizes is also
strongly influenced by the correlation of the RTs in the
two control conditions (Fig. 7), and the effect sizes could
be weakly correlated even when the same mechanism was
responsible for both effects if the RTs in the two control
conditions were negatively correlated. Indeed, given the rich
set of constraints among the correlations of the four condi-
tions involved in the difference scores (i.e., two control
conditions and two experimental conditions), it seems clear
that the entire set of correlations needs to be examined when
assessing the mechanisms involved in producing the differ-
ent experimental effects.

Again, more sophisticated research strategies can help to
strengthen conclusions from correlations of RT-based ef-
fects. As an example, consider the study of Miles and
Proctor (2012), who examined correlations of Simon com-
patibility effects obtained with three different types of stim-
ulus materials (i.e., locations, arrows, and words). They
found a significant correlation between the compatibility
effects obtained with arrows and words, but no correlation
between either of these effects and the compatibility effect
obtained with location stimuli. This pattern of changing
correlations among fairly similar tasks provides stronger
support for the claim that the underlying mechanisms re-
sponsible for Simon effects with arrows and words have
more in common with each other than either one does with
the mechanisms responsible for location-based Simon ef-
fects. On the other hand, it is impossible to be certain about
this conclusion in the absence of a complete model for the
task, because it is might be possible to construct models that
produce unequal correlations despite having common mech-
anisms for all three stimulus types. The present work strong-
ly suggests that the proper interpretation of RT correlations
requires explicit models, perhaps even more so than the
interpretation of mean RT results.

It should be emphasized that our conclusions about RT-
based correlations apply only to situations where correla-
tions are computed across participants—not where they are
computed across trials for a given participant. In studies of
the performance of two successive tasks within the psycho-
logical refractory period paradigm, for example, many re-
searchers have examined the correlation across trials
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between the RTs of the two tasks (e.g., Davis, 1959; Pashler &
Johnston, 1989; Sigman & Dehaene, 2006; Way &
Gottsdanker, 1968). Both the task parameters and the
individual-difference parameters of the present version of
IDRT (e.g., A, B, G, Δ, R) would be held constant across
trials within such correlations, so an elaborated version of the
model would be needed for the analysis of such correlations.7

Would partial correlations avoid the problems
of difference scores?

As has been discussed already, the main rationale for using
an RT difference score like D = RTe − RTc is usually to
isolate the influence of a specific processing stage
lengthened in the experimental condition, removing the
effects of stages common to the experimental and con-
trol conditions. For example, the correlation of RT ben-
efits and costs measured relative to a common neutral
condition, Corr RTn � RTf ;RTi � RTn½ � ¼ Corr Df ;Di½ � ,
is intended to assess the relationship between the task-
specific processes generating those costs and benefits, ρΔf Δi

.
We have seen, however, that the observable correlation
Corr[Df, Di] does not accomplish its intended task (e.g.,
Fig. 9), because this correlation is influenced by many param-
eters other than the intended one.

Some readers might wonder whether partial correlations
would avoid the difficulties associated with difference
scores. For example, researchers could compute the partial
correlation of the mean RTs in the facilitation and inhibition
conditions, partialling out the mean RT in the neutral con-
dition, Corr RTf ;RTijRTn½ �. The partial correlation seems to
have some intuitive appeal for this purpose, given its usual
interpretation as “removing the effect of” the variable being
partialled out. Thus, for example, this partial correlation
might intuitively be expected to provide another way to
assess the relationship between benefits and costs after
removing effects that were common with the neutral condi-
tion, just as the difference score was meant to do. In fact,
however, despite the intuitive similarity of the partial corre-
lation and the difference score in removing effects of neutral
condition performance, these measures are not identical
(i.e., Corr RTf ;RTijRTn½ � 6¼ Corr Df ;Di½ �). Therefore, it is
mathematically possible that the partial correlation would
directly assess the desired relationship of the task-specific

processing times in the facilitation and inhibition conditions,
ρΔf Δi

, even though correlation of the difference scores,
Corr[Df, Di], does not.

Fortunately, this possibility can also be examined within
IDRT. In general, a partial correlation measures the relationship
between X and Y after each of these two variables have been
adjusted by linear regression to remove any association with Z
(i.e., partialling out Z’s contribution to X and to Y). The partial
correlation is therefore defined as Corr X;YjZ½ � ¼ Corr U;V½ �,
whereU andVare the residuals whenX andYare regressed on
Z. Conveniently, the correlation of the residuals can be com-
puted from the three pairwise correlations of the original vari-
ables X, Y, and Z. For example, the partial correlation between
RTf and RTi controlling for RTn is

Corr RTf ;RTijRTn½ �

¼ Corr RTf ;RTi½ � � Corr RTf ;RTn½ � � Corr RTi;RTn½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Corr RTf ;RTn½ �2

� �
� 1� Corr RTi;RTn½ �2
� �r :

ð15Þ
It is possible to investigate partial correlations within IDRT

in basically the same manner that we have used to investigate
simple correlations. The pairwise correlation between any two
mean RTs can be derived using the methods discussed in the
section “Correlation of two mean reaction times,” so the full
predicted correlation matrix for any set of mean RTs can be
obtained by repeated pairwise applications of these methods.
Then, the partial correlation of two variables controlling for
one or more additional variables can be determined from these
pairwise correlations (e.g., Eq. 15). In short, predicted partial
correlations can be derived from IDRT because they depend
only on predicted pairwise correlations.

It is beyond the scope of this article to present or illustrate
the partial correlations predicted by IDRT, but the overall
conclusion of such an analysis is clear. Just like simple corre-
lations, partial correlations are also influenced by numerous
parameters beyond the ones of interest to researchers, so these
are subject to the same sorts of interpretation difficulties that
plague difference score correlations.

Ultimately, it appears that neither correlations of differ-
ence scores nor partial correlations can measure the simple
relationships of intuitive interest, because the underlying RT
process is not completely additive.8 Consider, for example,

7 Within bottleneck models of psychological refractory period tasks,
for example, the correlation between the RTs of the two tasks arises
because (1) the individual stage times within each task are random
variables and (2) task 2 central processing cannot start until task 1
central processing is finished. Within IDRT, the random components of
single-trial RTs were aggregated into a single term (E) for simplicity,
and it would be necessary to elaborate IDRT to have separate random
components for each stage in order to derive its predictions about
correlations computed across trials for a single individual.

8 The same basic problems also arise with a further type of correlation
known as semi-partial correlation. This type of correlation assesses the
relation between two variables when the influence of a third variable is
removed from one—but not both—of the first two variables. Although
we have not discussed semi-partial correlations explicitly, the same
sorts of complications with these correlations arise within IDRT,
preventing any straightforward interpretations of their values in terms
of relationships between particular cognitive processes.
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the general processing time parameter G, which is related to
a hypothesized neural processing speed influencing all
stages. Within any general model of RT, this parameter has
a multiplicative effect [i.e., RT ¼ Aþ B þ Cð Þ 	Gþ R]
rather than a purely additive one as is assumed by the
general model underlying difference scores and partial cor-
relations. This is even true for IDRT despite the fact that it
was constructed to have a relatively simple additive struc-
ture in the first place, so it is extremely doubtful that corre-
lations would have simpler interpretations within other, less
additive RT models.

Implications regarding reliability

As is well known within classical test theory and has been
acknowledged by many researchers focusing on RT (e.g.,
Jensen, 1985), the reliabilities of RT-based measures are
crucial. In general, reliability is determined by true score
variance and error variance, and it is important because it
places an upper limit on the correlations that can be
observed.

Regarding mean RTs, IDRT provides some grounds
for optimism. Although the number of observations need-
ed for satisfactorily high reliability of a mean RT de-
pends on the exact situation under study, as few as 15–
30 trials are often enough under realistic parameter set-
tings, and it is usually feasible to obtain at least that
many trials per participant in all conditions of an RT
study. On the other hand, IDRT indicates that high reli-
ability per se is not a sufficient indication that a popula-
tion has adequate variance in the population parameters
of interest. As is shown in Fig. 2, reliability tends to be
high if there is a reasonable amount of variability in at
least one of the general processing time, G, the task-
specific processing time, Δ, or the sensory–motor resid-
ual component, R. Thus, mean RT reliability could be
high without any variability in the cognitive processing
times that are generally of interest, G and Δ—and thus,
without any opportunity for observing correlations of RT
with other cognitive measures—as long there was large
variability in the residual component.

The situation is somewhat less promising with respect
to the reliability of difference scores, because more
observations—possibly two orders of magnitude more
—are needed for a reliable difference score. The reli-
ability of difference scores is reduced partly because the
sensory–motor residual term R does not contribute to
the difference (Eq. 9), reducing the true score variation.
Happily, this means that when the reliability of a dif-
ference score is high—unlike with mean RTs—the re-
searcher can be sure that there was substantial
variability in at least one of the cognitive processing
time parameters (i.e., G, Δc, and Δe).

Critically, the reliability of a difference score depends
greatly on the relation between the two conditions involved
in the difference. Specifically, the reliability of the differ-
ence between the mean RTs of two tasks depends on the
similarity of the underlying task-specific processes involved
in those tasks. When the two tasks involve common task-
specific processes, so that these processes are positively
correlated across participants (i.e., ρΔc Δe

� 0), reliability
tends to be relatively low. Difference scores computed from
two conditions requiring different degrees of mental
rotation, different memory loads, different display sizes
in visual search, different temporal offsets between two
overlapping tasks, and so on would be examples. In
such cases, thousands of trials per condition might be
required to obtain satisfactory levels of reliability. Not
surprisingly, then, the literature contains numerous re-
ports of low reliability for difference scores computed
from such tasks (e.g., Neubauer et al., 1997).

In contrast, when the two tasks involve opposing
task-specific processes, so that these processes are neg-
atively correlated across participants (i.e., ρΔc Δe

� 0),
reliability tends to be relatively high. A difference score
computed from two conditions involving congruent ver-
sus incongruent trials in the Stroop task would be one
example, and others might involve congruent versus
incongruent conditions in the SNARC effect, Simon
effect, flanker effect, stimulus–response compatibility
tasks, and so on. In these cases, as few as 100–200
trials per condition might be sufficient to achieve ade-
quate levels of reliability. Since correlations are inher-
ently limited by reliability, the similarity of the
underlying task-specific processes also has strong impli-
cations for correlations of difference scores with mean
RTs and with external measures, as well as for
reliability.

The practical implications of IDRT for reliability are nicely
illustrated by considering a recent pair of studies examining
the reliability of priming effects on word recognition. Stolz et
al. (2005) found that semantic priming effects were rather
unreliable across two blocks of trials, suggesting that these
effects are driven by “uncoordinated processes specific to
semantic memory” (Waechter et al., 2010, p. 553). In contrast,
using a closely-matched experimental protocol, Waechter et
al. (2010) found that repetition priming effects were notice-
ably more reliable than semantic priming. The higher reliabil-
ity of repetition priming was taken as further support for the
idea of uncoordinated semantic memory processes because it
ruled out explanations of low reliability based on
uncoordinated processes at presemantic (i.e., featural, lexical)
levels. Within the context of IDRT, however, it is easy to
imagine another possible interpretation of the higher reliability
for repetition priming than for semantic priming. Specifically,
the repetition priming effect was approximately twice as large
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as the semantic priming effect (M = 88 vs. 37 ms). Given that
the reliability of a difference score increases with the effect
size (e.g., effect of Be in Fig. 5), the larger effect size could
have been responsible for the greater reliability of repetition
priming, negating its support for the uncoordinated nature of
semantic processes. Similarly, Maloney et al. (2010) found
much lower reliability for numerical distance effects obtained
with numbers presented in symbolic formats (e.g., “4”) than
with those presented nonsymbolically (e.g., four squares), and
these reliability differences may also have been due at least
partly to the fact that the distance effect was much smaller
with symbolic than with nonsymbolic stimuli (i.e., approxi-
mately 50 vs. 500 ms). Thus, as was the case with RT corre-
lations, IDRT is useful in elucidating the many factors that
need to be considered when interpreting changes in RT
reliabilities.

Further uses of IDRT

The model developed here could also be useful in
addressing various methodological questions affecting
the exact choice of data analyses. Consider, for exam-
ple, the issue of whether it is better to use common
versus separate estimates of RT means contributing to
both of two terms being correlated. As was discussed
by Brown (2011), this question arises in correlating the
sizes of Stroop facilitation and interference, because
each of these effect sizes is estimated relative to the
mean RT in a common neutral condition. Including all
of the available neutral trials in a single estimate of the
neutral mean has the advantage of yielding an estimate
based on a larger number of trials but has the corre-
sponding disadvantage of creating an artificial depen-
dence between the two effect sizes being correlated. In
contrast, dividing the neutral trials into two sets and
computing separate estimates has the advantage of
yielding independent estimates but the disadvantage of
yielding estimates based on smaller numbers of trials.
Exactly analogous questions arise when correlating an
effect size with the control condition mean, Corr[RTc,
D], or with the average of the control and experimental
condition means, Corr RT;D

� �
, because in both of these

cases, at least one of the condition means, RTc and
RTe, contributes to both of the terms being correlated.

Within the present model, the implications of using
common versus separate RT estimates can be examined
precisely under any desired set of assumptions about the
task and individual-difference parameters. As was
discussed in the section “Correlation of two reaction
time difference scores involving the same baseline,”
trial-to-trial error variance contributes to the covariance
when a common RT mean is used, but not when sepa-
rate RT means are used. Furthermore, the error variance

of a single mean varies with the number of trials used
to compute it (Eq. 2). Thus, the true underlying corre-
lation of interest (e.g., Corr[Df, Di]) can be computed
exactly for both analysis procedures (i.e., common vs.
separate estimates), allowing a fully informed choice
about which is the better method under a particular
configuration of parameter values.

Future directions

As an initial investigation of the psychometric properties
implied by RT models, the present work has a number of
limitations that should be addressed in future extensions.
One is that we have only examined measures based on mean
RTs and their differences. Many other summaries of RT
have also been used in computing correlations, including
median RT, within-condition standard deviation of RT, and
parameters obtained by fitting particular models to RT dis-
tributions (e.g., Fjell, Ostby, & Walhovd, 2007; Forstmann
et al., 2008; Jensen, 1992; Schmiedek, Lovden, &
Lindenberger, 2009; Schmiedek, Oberauer, Wilhelm, Süß,
& Wittmann, 2007). Future research could extend the pres-
ent analysis to such other RT summary measures. Such
extensions would appear to be quite straightforward in some
cases. For example, IDRT’s predictions about the within-
condition standard deviation of RT are dictated by Eq. 2, so
predicted standard deviations can easily be computed from
the same parameters used to compute predicted means.

A second limitation of the present work is that we
have only considered the true values of the reliabilities
and correlations implied by the model. In any empirical
study, of course, the reliabilities and correlations would
be estimated from observed data and would therefore
fluctuate randomly around the true values provided by
our formulas. We have not explored the implications of
the IDRT model for these purely statistical fluctuations
due to sampling error, and these implications could be
important. For example, the reliability of a mean RT or
a difference score could be estimated using a test–retest
procedure, a split-half analysis, or some other technique,
and it is not clear which of these would provide the
reliability estimate with the best statistical properties
(i.e., least bias and lowest standard error).

A third limitation of this work is that we have
examined in detail only the relationships of observable
correlations to the correlations between certain pairs of
underlying parameters. Figure 7, for example, shows
how the observable correlation of an external measure
Y with an RT difference score is related to the under-
lying correlation of Ywith the time needed for task-specific
processing in the experimental condition,Δe. One might ask,
instead, how the observable correlation is related to Y’s cor-
relation with the time needed for task-specific processing in
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the control condition (Δc), or even how it is related to Y’s
correlation with the difference in task-specific processing
times (i.e., Δ* ¼ BeΔe � BcΔc ). It is beyond the scope of
this initial investigation to consider all such possible relation-
ships, but two points can be made. First, the equations devel-
oped in Appendix 2 could be used to study IDRT’s predictions
concerning any such relationship of particular interest. As one
illustration, Fig. 12 shows how Corr[D, Y] is related to the
underlying correlation of Y with the difference in experimen-
tal versus control central processing times just defined, ρΔ*Y ,
under various assumptions about the other parameters.
Second, and in keeping with the more general conclusions
from this research, the complexity of these equations strongly
suggests that all relationships between observable correlations
and underlying parameters will be complicated, making it
difficult to reach straightforward conclusions about the corre-
lations of underlying processing durations from observable
correlations.

A fourth limitation of this work is that it ignores the
possibility that the observed RTs are contaminated by
speed–accuracy trade-offs. The possibility of such contam-
ination plagues all RT research (e.g., Pachella, 1974), of
course—not just research focusing on correlations. Within
correlational RT research, it appears that the possibility of
such contamination can be addressed only by using a formal
model to combine RT and accuracy into a single measure of
processing efficiency (e.g., Brown & Heathcote, 2005;
Ratcliff, 1978; Yellott, 1971).

Finally, it might also be worthwhile to extend the present
approach to other analytical techniques beyond the compu-
tation of reliabilities and correlations. As one example, an
alternative approach for investigating individual differences
is to divide participants into groups based on one variable
(e.g., age or IQ) and then to compare mean RTs and RT
differences across the groups (e.g., Der & Deary, 2006;
Dickman & Meyer, 1988; Eaton & Ritchot, 1995;
Ellermeier, Eigenstetter, & Zimmer, 2001; Exposito &
Andres-Pueyo, 1997; Myerson, Hale, Chen, & Lawrence,
1997; Smulders & Meijer, 2008). A persistent problem
within this approach is to make a fair comparison of the
sizes of RT differences across groups differing in overall
mean RT. For example, Chapman et al. (1994) suggested
that “slower or less accurate individuals tend generally to
show larger differences between pairs of scores [RTs], and
this may explain the finding in many kinds of tasks that
slower and less accurate groups . . . show heightened [RT]
priming difference scores” (p. 160). Researchers have de-
veloped a number of ad hoc procedures to adjust RT effect
sizes in order to more fairly compare effect sizes across
groups (e.g., ANCOVA), but none of these procedures has
been developed from an explicit model of the underlying
RTs. If the IDRT model could be extended to this situation,
it might be useful for comparing the effectiveness of

different suggested adjustment procedures or even to find
a new model-based adjustment procedure for making the
desired comparisons.

Appendix 1 Classical test theory background

This appendix reviews briefly some major concepts and
results from classical test theory that underlie the analysis
of correlational research using any dependent measure, in-
cluding RT. Naturally, we emphasize aspects of classical test
theory that are especially relevant for the analysis of RT-
based correlations, including some equations not presented
in its standard references (e.g., Eqs. 32–35). As is developed
in the main text of this article, it is possible to address these
issues more specifically within the RT domain by consider-
ing a general model of RTwithin the classical framework. In
the present appendix, we adapt somewhat the standard no-
tation used within classical test theory in order to match
more naturally the standard RT notation used in the main
text.

Basic model for an individual

The basic model of classical test theory is that the observed
score Xk for a single individual k in a particular test is the
sum of that individual’s true score, Tk, on that test, which is
regarded as a fixed value for each individual, and a random
measurement error, Ek:

Xk ¼ Tk þ Ek : ð16Þ
A basic assumption in classical test theory is that the

expected value of the observed score equals the true score,

E Xk½ � ¼ Tk ; ð17Þ
and this implies that the expected value of the error score
equals zero,

E Ek½ � ¼ 0: ð18Þ
This basic model also implies that the variance of a single

individual k’s observed scores equals the variance of the
random error term,

Var Xk½ � ¼ Var Ek½ �: ð19Þ

Distribution across individuals

Naturally, true scores differ across individuals. Therefore, for
a randomly selected individual, the above additive model
becomes

844 Psychon Bull Rev (2013) 20:819–858



X ¼ Tþ E: ð20Þ
Note that a true score is a fixed value when considered
for one particular individual, Tk, but it is a random
variable, T, when considered for a randomly selected
individual.

As is depicted by the solid line in Fig. 13 and is also
illustrated in Table 3, the full distribution of X modeled
by Eq. 20 is a mixture distribution. The components of
this mixture are the distributions associated with the
particular individuals in the population, depicted by the
dotted lines in Fig. 13 and modeled by Eq. 16. Thus,
one can imagine obtaining a value of X by a two-step
process: (1) Select a random individual k from the
population, and (2) select a particular observed score
Xk ¼ Tk þ Ek from that person’s individual distribution.
Within the domain of RT research, for example, the Xk

values might represent individual participants’ mean RTs
in a certain condition. Each true value Tk would be
participant k’s true mean RT in that condition, which
could be measured only across an infinite number of
trials. The error term, Ek, would reflect the standard

error of the mean for that participant, which would
naturally depend on the variability of that participant’s
RT distribution and on the number of trials in which
that participant was tested.

As onemight expect, the properties of themixture distribution
are fully determined by the properties of the individual compo-
nent distributions that contribute to it (see Everitt & Hand, 1981,
for formal details). Because the components of the mixture are
equally likely in this case, and because E Ek½ � ¼ 0 must
hold, it follows from Eq. 20, that the mean of X is

E X½ � ¼ E T½ �: ð21Þ

Furthermore, the variance of X is

Var X½ � ¼ Var T½ � þ E Var Ek½ �½ �: ð22Þ

Equation 22 expresses the fact that the total variance of the
mixture distribution of observed scores is the sum of (1) the
true score variance Var [T] over individuals’ true scores and
(2) the average error variance Var E½ � ¼ E Var Ek½ �½ � over
individuals’ error variances. Note that Var Ek½ � is the error
variance associated with a particular individual k, and the
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Fig. 12 Correlation of a mean
reaction time difference score,
D, and an external measure,
Y, as a function of the true
correlations ρGY, ρΔc Δe

, and
ρΔ*Y and of the assumed
relationship between ρΔcY and
ρΔeY . Default values of the
other parameters are shown in
Table 15. As in Fig. 7,
Corr[D, Y] was computed using
Eq. 47. Values of ρΔ*Y were
computed using Eq. 55
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expectation of this quantity is the average error variance
across all individuals.

Reliability of single scores

A fundamental concept of classical test theory is the reliability
of a measure (e.g., a psychometric test or—as is mainly
considered in this article—an individual measure derived
from one or more mean RTs). Although many definitions of
reliability are possible, a common and intuitively appealing
one involves the notion of parallel measures, say X and X′,

which share the fundamental property that the two tests assess
the same true score and have the same observed score variance
for every individual k. Specifically, if Xk ¼ Tk þ Ek and

X
0
k ¼ Tk þ E

0
k are the two parallel measures, then the reli-

ability of each one is the correlation between these two mea-
sures across individuals. In general, a convenient definition of
the correlation between any two random variables X and Y is

ρXY � Corr½X;Y� � Cov½X;Y�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½X��Var½Y�

p : ð23Þ

With respect to two parallel measures, this reduces to

ρXX 0 � Corr½X;X0 � � Cov½X;X�0
Var½X� ¼ Var½T�

Var½X� ¼ 1� Var½E�
Var½X�:

ð24Þ
This equation illustrates the important fact that, as a general
rule, reliability tends to increase with increases in the variance
of the true scores and with decreases in the error variance.

Reliability is an important topic within test theory because
the correlation between any two measures is limited by the
reliability of the measures (e.g., Lord & Novick, 1968).
Specifically,

ρXY � ffiffiffiffiffiffiffiffiffi
ρXX 0

p
; ð25Þ

where X and Y are any two measures, and X′ is a
measure parallel to X. This inequality indicates that
the correlation between X and Y must always be small-
er than the square root of the reliability of measure X.
For example, if the reliability of X is equal to .64, the
correlation of X with an arbitrary variable Y cannot

exceed the upper bound of
ffiffiffiffiffiffiffi
:64

p ¼ :8. Therefore, it is
important for a measure X to have a high reliability
when assessing a potential correlation between X and Y.

Differences of observed scores

Since RT research often focuses on effect sizes, the difference
between two random variables is especially important within
this context. Fortunately, classical test theory also provides
information about the statistical properties of difference
scores. For example, it is well-known that the reliability of
the difference between two random variables, D = X − Y, is
notoriously low, as compared with the reliability of their sum,
S =X +Y. This statistical phenomenon arises because the true
values that are associated with X and Y will tend to cancel
each other out in the difference, D = X − Y, at least to the
extent that X and Y measure the same construct. In the
extreme case of identical true score components, D reflects
only the error components of X and Y and is thus completely
unreliable. By contrast, the reliability of S =X +Y tends to be
even higher than the reliability of X or Y because the true
scores sum rather than canceling each other out.
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Distribution of X for a Randomly Selected Individual
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Fig. 13 Illustration of the model represented by Eq. 20 using an
idealized population with only four individuals. As is listed in Table 3,
each individual k has a true score Tk and a measurement error variance
Var [Ek]. The dotted lines show the probability density functions
(PDFs) of the observed scores for each individual (i.e., Xk = Tk +
Ek); these are normal distributions centered at the true scores. The solid
line shows the PDF of the observed score from a randomly selected
individual, X; this is a mixture distribution, with scores equally likely
to come from each of the individual distributions. As is summarized in
Table 3, the mean and variance of the population distribution X can be
computed from the properties of the individual distributions, Tk and
Var [Ek]. The plotted PDFs of the individuals have been rescaled to an
area one fourth that of the mixture distribution to improve visual clarity
and to reflect their contributions to the mixture distribution

Table 3 Parameter values for the idealized population of four individ-
uals depicted in Fig. 13.

Person k and Parameter

k Tk Var [Ek]

1 310 100

2 300 81

3 330 121

4 280 64

E T½ � ¼ 305

Var T½ � ¼ 325

Var E½ � ¼ E Var Ek½ �½ � ¼ 91:5

Var X½ � ¼ Var T½ � þ E Var Ek½ �½ � ¼ 416:5
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The reliability of a difference score D = X − Y is generally
defined as its correlation with the parallel measure

D
0 ¼ X

0 � Y
0

Corr½D;D0 � ¼ Cov½D;D0 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
D � σ2

D0

q : ð26Þ

Assuming σX ¼ σX 0 and σY ¼ σY 0 , this is equivalent to

Corr D;D
0

h i
¼ σ2

X � ρXX 0 � 2 � σXσY � ρXY þ σ2
Y � ρYY 0

σ2
X þ σ2

Y � 2 � σXσY � ρXY
:

ð27Þ
In classical test theory, the additional assumptions σX = σY and
ρXX 0 ¼ ρYY 0 can sometimes be made, although there are cases
in which these assumptions are clearly inappropriate
(Williams& Zimmerman, 1996).Within RT research, it seems
reasonable that both of these assumptions would be true to a
good approximation, because differences are usually comput-
ed between mean RTs obtained using very similar conditions.
With these two additional assumptions, Eq. 27 reduces to

Corr D;D
0

h i
¼ ρXX 0 � ρXY

1� ρXY
: ð28Þ

Figure 14 illustrates the important consequence of Eq. 28
that the reliability of a difference score D = X − Y is inversely
related to the correlation between the two components, X and
Y. It is clear from Eq. 28, for example, that the reliability of the
difference score is zero when the correlation between the two
components equals their common reliability. As can be seen in
the main text, this inverse relation of difference score reliabil-
ity and component correlation has important implications for
the psychometric properties of RT difference scores.

Classical test theory also provides information about the
correlation of a difference score with a third variable, some-
times referred to as the validity of the difference score in
classical test theory. The correlation of the difference D with
a third variable Z is

Corr D;Z½ � ¼ Cov D;Z½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
D � σ2

Z

p : ð29Þ

In general, this is

Corr D;Z½ � ¼ σX � ρXZ � σY � ρYZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
X þ σ2

Y � 2σXσY ρXY
p : ð30Þ

Under the simplifying assumption that σX = σY, this reduces to

Corr D;Z½ � ¼
ρXZ � ρYZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1� ρXYð Þp : ð31Þ

Thus, the correlation of the difference score with the third
variable depends not only on the correlations of that third

variable with the individual terms involved in computing the
difference (i.e., with X and Y), but also on the correlation of
those individual terms with each other. Other things being
equal, for example, Corr[D, Z] increases when X and Y
have a larger positive correlation.

Finally, RT researchers sometimes correlate the sizes
of two separate difference scores obtained in different
tasks, say X − Y and U − V. Although the correlation
of two difference scores is not usually considered in
classical test theory, the same underlying model can be
used to assess such correlations (e.g., Sriram et al.,
2010). Specifically, the correlation of two differences
X − Y and U − V is

Corr X� Y;U� V½ � ¼ Cov X� Y;U� V½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
X�Y � σ2

U�V

q
¼ σXσU � ρXU � σXσV � ρXV � σYσU � ρYU þ σYσV � ρYVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
X þ σ2

Y � 2σXσY � ρXY
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
U þ σ2

V � 2σUσV � ρUV
p :

ð32Þ
Two special cases of Eq. 32 are especially noteworthy.

First, when σX ¼ σY ¼ σU ¼ σV , Eq. 32 reduces to

Corr X� Y;U� V½ � ¼ 1

2
� ρXU � ρXV � ρYU þ ρYVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ρXYð Þ � 1� ρUVð Þp : ð33Þ

If, in addition, the four pairwise correlations are equal to one
another, ρXU ¼ ρXV ¼ ρYU ¼ ρYV , then this correlation is
necessarily zero.

Second, the use of a common term within the two differ-
ences (e.g., Corr[X − Z, Y − Z]) can lead to cases of
“spurious correlation” (Pearson, 1896; see also Fuguitt &
Lieberson, 1973). For example, in general

Corr X� Z;Y� Z½ �

¼ σXσY � ρXY � σYσZ � ρYZ � σXσZ � ρXZ þ σ2
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
X þ σ2

Z � 2σXσZ � ρXZ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
X þ σ2

Z � 2σXσZ � ρXZ
p :

ð34Þ
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Fig. 14 The reliability,ρDD0 , of a difference score,D =X −Y, as a function
of the correlation between X and Y, ρXY. The curve parameter is the
reliability of the scores contributing to the difference, ρXX 0 ¼ ρYY 0 . Each
curve is bounded on the left and right because ρXYj j � ρXX 0

		 		 ¼ ρYY 0
		 		

(e.g., Lord & Novick, 1968, Equation 3.9.6)
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Under the simplifying assumption that σX ¼ σY ¼ σZ , this
reduces to

Corr X� Z;Y� Z½ � ¼ 1

2
� 1þ ρXY � ρXZ � ρYZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ρXZð Þp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρYZð Þp : ð35Þ

Note that the correlation of these difference scores is neces-
sarily 1/2 when ρXY ¼ ρXZ ¼ ρYZ .

Appendix 2 Derivations of variances and covariances

This appendix presents general equations for the vari-
ances and covariances needed to compute the correla-
tions examined in this article, as derived from the IDRT
model (Eq. 3).

In all of the cases considered here, the required
covariance can be computed using the well-known for-
mula for the (co)variance of two linear combinations of
random variables (e.g., Mood, Graybill, & Boes, 1974,
p. 179). In general, let Xi, i = 1,…, m and Yj, j = 1,…,
n be two sets of random variables, possibly correlated.
The covariance of two linear combinations of these
random variables is

Cov
Xm
i¼1

aiXi;
Xn
j¼1

bjYj

" #
¼

Xm
i¼1

Xn
j¼1

aibjCov Xi;Yj

� �
; ð36Þ

where ai and bj are sets of constants.
Each of the tables in this appendix illustrates this

equation. The random variables Xi and Yj correspond to
the random variables within IDRT (e.g., G, Δ, E), and
these define the rows and columns of the tables. Each
cell within a table contains one value of aibjCov Xi;Yj

� �
,

and the overall covariance is simply the sum of all cells
in the table. In all cases, we assume that there is zero
covariance between the measurement error term (e.g., E)
and any other random variable, so the values in many
cells are zero.

The required variances can also be computed as special
cases of Eq. 36. In general, the variance of a single linear
combination is

Var
Xm
i¼1

aiXi

" #
¼

Xm
i¼1

Xm
j¼1

aiajCov Xi;Xj

� � ð37Þ

(e.g., Table 4).
Finally, the required correlations can be computed in all

cases via Eq. 23, once the variances and covariance of the
random variables have been determined.

Variance of RT

The variance of RT is the sum of the terms in the cross-
product matrix shown in Table 4. This sum is

Var RT½ � ¼ S2σ2
G þ 2BSσΔσGρΔG þ 2SσRσGρGR þ B2σ2

Δ

þ 2BσRσΔρΔR þ σ2
R þ σ2

E: ð38Þ

As in classical test theory, σ2
E is the average error variance

across individuals. We assumed that the standard error of the
mean for individual k was proportional to that individual’s

mean RT, σE ¼ CV � S � Gk þ B � Δk þ Rkð Þ ffiffiffiffi
N

p

. Across

individuals, then, the average error variance is

σ2
E ¼ CV 2 � S � μG þ B � μΔ þ μRð Þ2

N
: ð39Þ

Table 4 Cross-product matrix for the variance of RT

RVs in RT RVs in RT

G Δ R E

G S2σ2
G BSσΔσGρΔG SσRσGρGR 0

Δ SBσGσΔρΔG B2σ2
Δ BσRσΔρΔR 0

R SσGσRρGR BσΔσRρΔR σ2
R 0

E 0 0 0 σ2
E

Table 5 Cross-product matrix for the covariance of RT and RT′

RVs in RT′ RVs in RT

G Δ R E

G S2σ2
G BSσΔσGρΔG SσRσGρGR 0

Δ SBσGσΔρΔG B2σ2
Δ BσRσΔρΔR 0

R SσGσRρGR BσΔσRρΔR σ2
R 0

E′ 0 0 0 0

Table 6 Cross-product matrix for the covariance of RTx and RTy

RVs in
RTy

RVs in RTx

G Δx Rx Ex

G SxSyσ2
G BxSyσΔxσGρΔxG SyσRxσGρGRx 0

Δy SxByσGσΔyρΔyG BxByσΔxσΔyρΔx Δy
ByσRxσΔyρΔyRx 0

Ry SxσGσRyρGRy
BxσΔxσRyρΔxRy

σRxσRyρRxRy 0

Ey 0 0 0 0
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Correlation of RT and RT′

Table 5 shows the cross-product matrix for two independent
measures of the same mean, RT and RT′, as is needed to
compute their correlation (i.e., the reliability of the mean RT
measure). The covariance is the sum of terms in this cross-
product matrix, which is

Cov RT;RT
0

h i
¼ S2σ2

G þ 2BSσΔσGρΔG þ 2SσRσGρGR

þ 2BσRσΔρΔR þ B2σ2
Δ þ σ2

R: ð40Þ

Corr RT;RT
0� �

can be computed via Eq. 23 from this
covariance together with the common variance (Eq. 38).

Correlation of RT and Y

Within the model, the covariance of these two variables is

Cov RT;Y½ � ¼ Cov S �Gþ B �Δþ R þ E;Y½ �

¼ S � Cov G;Y½ � þ B�Cov Δ;Y½ � þ Cov R;Y½ �

¼ S � σG � σY � ρGY þ B � σΔ � σY � ρΔY þ σR � σY � ρRY :
ð41Þ

The correlation Corr[RT, Y] can be computed via
Eq. 23 from this covariance and the variances of RT
(Eq. 38) and Y (σ2

Y ).

Correlation of RTx and RTy

Table 6 shows the cross-product matrix for the covari-
ance of RTx and RTy. The covariance is the sum of
these terms—namely,

Cov RTx;RTy

� � ¼ SxSyσ
2
G þ BxByσΔx

σΔy
ρΔx Δy

þ BxSyσΔxσGρΔxGþSyσRxσGρGRx

þ SxByσGσΔyρΔyG þ ByσRxσΔyρΔyRx

þ SxσGσRyρGRy
þ BxσΔxσRyρΔxRy

þ σRxσRyρRxRy
: ð42Þ

The correlation of RTx and RTy can be computed via
Eq. 23 from this covariance and the variance of each mean
RT (Eq. 38).

Table 7 Cross-product matrix for the variance of D ¼ Be � Bcð Þ �Gþ Be �Δe � Bc �Δc þ Ee � Ec

RVs in RVs in D

D G Δc Δe Ec Ee

G Be � Bcð Þ2σ2
G �Bcð Þ Be � Bcð ÞσΔcσGρΔcG Be Be � Bcð ÞσΔeσGρΔeG 0 0

Δc Be � Bcð Þ �Bcð ÞσGσΔcρΔcG �Bcð Þ2σ2
Δc

Be �Bcð ÞσΔeσΔcρΔc Δe 0 0

Δe Be � Bcð ÞBeσGσΔeρΔeG �Bcð ÞBeσΔcσΔeρΔc Δe
B2
eσ

2
Δe

0 0

Ec 0 0 0 σ2
Ec

0

Ee 0 0 0 0 σ2
Ee

Note. For the cost–benefit analysis using an alternative difference score definition to index facilitation—namely, Df ¼ Bn � Bf

� � �Gþ Bn�
Δn þ Bf �Δf þ En � Ef —the term (−Bc) is replaced by (+Bf) within all entries of this matrix.

Table 8 Cross-product matrix for the covariance of D and D′

RVs in D′ RVs in D

G Δc Δe Ec Ee

G Be � Bcð Þ2σ2
G �Bcð Þ Be � Bcð ÞσΔcσGρΔcG Be Be � Bcð ÞσΔeσGρΔeG 0 0

Δe Be � Bcð ÞBeσGσΔeρΔeG �Bcð ÞBeσΔcσΔeρΔc Δe
B2
eσ

2
Δe

0 0

Δc Be � Bcð Þ �Bcð ÞσGσΔcρΔcG �Bcð Þ2σ2
Δc

Be �Bcð ÞσΔeσΔcρΔc Δe 0 0

E
0
c 0 0 0 0 0

E
0
e 0 0 0 0 0
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Variance of D

The variance of the RT difference score is needed to study its
reliability and its correlation with other variables. Table 7
shows the cross-productmatrix needed to evaluate the variance
of D¼ Be�Bcð Þ �GþBe �Δe � Bc �Δc þ Ee � Ec . The
variance is the sum of these terms,

Var D½ � ¼ Be � Bcð Þ2 � σ2
G þ B2

e � σ2
Δe

þ B2
c � σ2

Δc
þ σ2

Ee

þ σ2
Ec
þ 2 Be � Bcð ÞBeσGσΔe

ρΔeG

� 2ðBe � BcÞBcσGσΔc
ρΔcG

� 2BeBcσΔc
σΔe

ρΔc Δe
:

ð43Þ

For the cost–benefit case where facilitation is measured as
Df ¼ Bn � Bf

� � �Gþ Bn �Δn þ Bf �Δf þ En � Ef , the
variance of facilitation is

Var Df½ � ¼ Be � Bcð Þ2 � σ2
G þ B2

e � σ2
Δe

þ B2
c � σ2

Δc
þ σ2

Ee
þ σ2

Ec

þ 2 Be � Bcð ÞBeσGσΔe
ρΔeG

þ2 Be � Bcð ÞBcσGσΔc
ρΔcG

þ 2BeBcσΔc
σΔe

ρΔc Δe
:

ð44Þ

Correlation of D and D′

Table 8 shows the cross-product matrix associated with the
covariance of two independent estimates of an RT difference,
D and D′. The covariance is the sum of the terms in this
matrix, which is

Cov D;D
0

h i
¼ Be � Bcð Þ2σ2

G � 2Bc Be � Bcð ÞσΔc
σGρΔcG

þ 2Be Be � Bcð ÞσΔe
σGρΔeG

�2BcBeσΔc
σΔe

ρΔc Δe
þ B2

cσ
2
Δc

þ B2
eσ

2
Δe
:

ð45Þ
The correlation Corr D;D

0� �
(i.e., difference score reli-

ability) can be computed via Eq. 23 from this covari-
ance and the variance of the difference score (Eq. 43).

Correlation of D and Y

Table 9 shows the cross-product matrix for the covari-
ance of D and Y, and the sum of the terms in this
matrix is

Cov D;Y½ � ¼ Be � Bcð Þ � σY � σG � ρGY þ Be � σY � σΔe
� ρΔeY � Bc � σY � σΔc

� ρΔcY

¼ ½ Be � Bcð Þ � σG � ρGY þ Be � σΔe
� ρΔeY � Bc � σΔc

� ρΔcY
� � σY :

ð46Þ

The correlation of D and Y is thus

Corr D;Y½ �

¼ Be � Bcð Þ � σG � ρGY þ Be � σΔe
� ρΔeY

� Bc � σΔc
� ρΔcY

Var D½ � :

ð47Þ

Correlation of Dce and Duv

Table 10 shows the cross-product matrix for the covariance
of Dce and Duv. The covariance is the sum of its terms:

Cov Dce;Duv½ � ¼ Be � Bcð Þ Bv � Buð Þσ2G
� Bc Bv � Buð ÞσΔc

σGρΔcG

þ Be Bv � Buð ÞσΔe
σGρΔeG

þ Be � Bcð ÞBvσGσΔv
ρΔvG

� BcBvσΔc
σΔv

ρΔc Δv
þ BeBvσΔe

σΔv
ρΔe Δv

� Be � Bcð ÞBuσGσΔu
ρΔuG

þBcBuσΔc
σΔu

ρΔc Δc
� BeBuσΔe

σΔu
ρΔe Δu

:

ð48Þ

Table 9 Cross-product matrix for the covariance of D and Y

RVs in D Y

G Be � Bcð ÞσYσGρGY
Δc ð�BcÞσYσΔcρΔcY

Δe BeσYσΔeρΔeY

Ec 0

Ee 0
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Corr[Dce, Duv] can be computed via Eq. 23 from this co-
variance together with the variances of the two difference
scores, each of which is given by Eq. 43.

Correlation of Di and Df

Table 11 shows the cross-product matrix for the covari-
ance of Di and Df for the cost–benefit situation. The
covariance of Di and Df is the sum of the terms in this
matrix:

Cov Df ;Di½ � ¼ Bi � Bnð Þ Bn � Bf

� �
σ2
G þ Bi Bn � Bf

� �
σΔi

σGρΔiG

� Bn Bn � Bf

� �
σΔn

σGρΔnG

þ Bi � Bnð ÞBnσGσΔn
ρΔnG

þ BiBnσΔi
σΔn

ρΔi Δn

� B2
nσ

2
Δn

� Bi � Bnð ÞBfσGσΔf
ρΔf G

�BiBfσΔi
σΔf

ρΔf Δi
þ BnBfσΔn

σΔf
ρΔf Δn

� σ2En
:

ð49Þ

Corr[Df, Di] can be computed via Eq. 23 from this covari-
ance together with the variances of Df (Eq. 44) and Di

(Eq. 43).

Correlation of RTc and D

Table 12 shows the cross-product matrix for the covariance
of RTc and D. The covariance of RTc and D is the sum of
these terms:

Cov RTc;D½ � ¼ Sc Be � Bcð Þσ2
G þ Bc Be � Bcð Þ � Sc½ �σΔc

σGρΔcG

þ Be � Bcð ÞσRσGρGR�B2
cσ

2
Δc

� BcσRσΔc
ρΔcR

þ ScBeσGσΔe
ρΔeG

þ BcBeσΔc
σΔe

ρΔc Δe

þBeσRσΔe
ρΔeR

� σ2
Ec
: ð50Þ

Corr[RTc, D] can be computed via Eq. 23 from this covariance
together with the variances of RTc (Eq. 38) and D (Eq. 43).

Variance of RT

To write more compact expressions involving the aver-
age of the control and experimental condition mean

RTs, we let S ¼ Aþ Bc þ Beð Þ 2þ C= .
Table 13 shows the cross-product matrix for the

variance of RT . The variance of the average is the
sum of these terms—namely,

Table 11 Cross-product matrix for the covariance of Di and Df

RVs in Df RVs in Di

G Δi Δn En Ei

G Bi � Bnð Þ Bn � Bf

� �
σ2
G Bi Bn � Bf

� �
σΔiσGρΔiG �Bnð Þ Bn � Bf

� �
σΔnσGρΔnG 0 0

Δn Bi � Bnð ÞBnσGσΔnρΔnG BiBnσΔiσΔnρΔi Δn
�Bnð ÞBnσ2

Δn
0 0

Δf Bi � Bnð ÞBf σGσΔf ρΔf G BiBf σΔiσΔf ρΔf Δi
�Bnð ÞBf σΔnσΔf ρΔf Δn 0 0

Ef 0 0 0 0 0

En 0 0 0 � σ2En
0

Table 10 Cross-product matrix for the covariance of Dce and Duv

RVs in Duv RVs in Dce

G Δc Δe Ec Ee

G Be � Bcð Þ Bv � Buð Þσ2G �Bcð Þ Bv � Buð ÞσΔcσGρΔcG Be Bv � Buð ÞσΔeσGρΔeG 0 0

Δv Be � Bcð ÞBvσGσΔvρΔvG �Bcð ÞBvσΔcσΔvρΔc Δv
BeBvσΔeσΔvρΔe Δv 0 0

Δu Be � Bcð Þ �Buð ÞσGσΔuρΔuG �Bcð Þ �Buð ÞσΔcσΔuρΔc Δu
Be �Buð ÞσΔeσΔuρΔe Δu 0 0

Ev 0 0 0 0 0

Eu 0 0 0 0 0
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σ2
RT

¼ S
2
σ2
G þ BcSσΔcσGρΔcG þ BeSσΔeσGρΔeG þ 2SσRσGρGR

þBcBe 2 � σΔcσΔeρΔc Δe


 þ BcσΔcσRρΔcR þ BeσΔeσRρΔeR

þ Bc 2=ð Þ2σ2
Δc

þ Be 2=ð Þ2σ2
Δe

þ σ2
R þ 0:52σ2

Ec
þ 0:52σ2

Ee
:

ð51Þ

Correlation of RT and D

Table 14 shows the cross-product matrix for the covariance

ofRT and D. Their covariance is the sum of the terms in this
cross-product matrix, which is

Cov RT;D
� � ¼ Be � Bcð ÞSσ2

G � BcSσΔc
σGρΔcG

þ BeSσΔe
σGρΔeG

þ0:5 Be � Bcð ÞBcσGσΔc
ρΔcG

� 0:5B2
cσ

2
Δc

þ 0:5BeBcσΔe
σΔc

ρΔc Δe

þ0:5 Be � Bcð ÞBeσGσΔe
ρΔeG

� 0:5BcBeσΔc
σΔe

ρΔc Δe
þ 0:5B2

eσ
2
Δe

þ Be � Bcð ÞσGσRρGR � BcσΔc
σRρΔcR

þ BeσΔe
σRρΔeR�0:5σ2

Ec
þ 0:5σ2

Ee
:

ð52Þ

Corr RT;D
� �

can be computed via Eq. 23 from this covari-

ance together with the variances of RT (Eq. 51) and D
(Eq. 43).

Variance of Δ* and Correlation of Y and Δ*

As is considered in the General Discussion, researchers
might be interested in estimating the correlation between
an external measure Y and the difference in task-specific
processing times between control and experimental conditions,

Δ* ¼ BeΔe � BcΔc. The covariance of these measures is

Cov Δ*;Y
� � ¼ BeσYσΔe

ρΔeY
� BcσYσΔc

ρΔcY
: ð53Þ

In general, the correlation ρΔ*Y can be computed via Eq. 23
from this covariance, the variance σ2

Y , and the variance of
Δ*, which is

σ2
Δ* ¼ B2

eσ
2
Δe

� 2BcBeσΔcσΔeρΔc Δe
þ B2

cσ
2
Δc
: ð54Þ

Assuming that σ2
Δc

¼ σ2
Δe
, the correlation is

ρΔ*Y ¼ BeρΔeY � BcρΔcYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
e � 2BcBeρΔc Δe

þ B2
c

q : ð55Þ

As is depicted in Fig. 12, the observable correlation of
Corr[D, Y] is only imperfectly related to the correlation of
Δ* and Y. The observable correlation also increases, for
example, with the correlation of G and Y, as can be seen by
comparing the three rows of the figure. Within each panel,
the exact relation between the observable correlation on the
vertical axis and the theoretical one on the horizontal axis

Table 13 Cross-product matrix for the variance of RT

RVs in RT RVs in RT

G Δc Δe R Ec Ee

G S
2
σ2
G 0:5BcSσΔcσGρΔc G 0:5BeSσΔeσGρΔe G

SσRσGρGR 0 0

Δc 0:5SBcσGσΔcρΔcG 0:25B2
cσ

2
Δc

0:25BeBcσΔeσΔcρΔc Δe
0:5BcσRσΔcρΔcR 0 0

Δe 0:5SBeσGσΔeρΔeG 0:25BcBeσΔcσΔeρΔc Δe
0:25B2

eσ
2
Δe

0:5BeσRσΔeρΔeR 0 0

R SσGσRρGR 0:5BcσΔcσRρΔcR 0:5BeσΔeσRρΔeR σ2
R 0 0

Ec 0 0 0 0 0:25σ2Ec
0

Ee 0 0 0 0 0 0:25σ2Ee

Table 12 Cross-product matrix for the covariance of RTc and D

RVs in D RVs in RTc

G Δc R Ec

G Sc Be � Bcð Þσ2
G Bc Be � Bcð ÞσΔcσGρΔcG Be � Bcð ÞσRσGρGR 0

Δc Sc �Bcð ÞσGσΔcρΔcG Bc �Bcð Þσ2Δc
�Bcð ÞσRσΔcρΔcR 0

Δe ScBeσGσΔeρΔeG BcBeσΔcσΔeρΔc Δe
BeσRσΔeρΔeR 0

Ec 0 0 0 � σ2Ec

Ee 0 0 0 0
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can also be seen to depend on the correlation of the task-
specific processing times in the experimental and control
conditions, ρΔc Δe

.

Appendix 3 Assumptions and parameter values
used to illustrate predictions of IDRT

In general, we made three types of simplifying assumptions
in deriving predictions from IDRT, although not every as-
sumption is needed for every analysis. First, we assumed
that the residual term R was not correlated either with the
general processing time G or with any task-specific process-
ing time Δ. This fits with our conceptualization of the
residual term R as indexing peripheral sensory and motor
times, whereas G and Δ reflect more central or cognitive
processing time. Second, we assumed equal variances of the
task-specific processing times, Δi, for each task i contrib-
uting to a given correlation comparison. Our impression is
that researchers generally employ tasks that are quite similar
to one another, relative to the space of all imaginable cog-
nitive tasks, so all of the tasks would have approximately the
same person-to-person variation in task-specific processing
time. Third, and for exactly the same reason, we assumed
equal correlations of general and task-specific processing
times, ρΔiG, across all of the different tasks.

To provide numerical illustrations of the predicted reliabil-
ities and correlations, it was necessary to choose specific
parameter values. Although the exact choices were necessarily
somewhat arbitrary and each study will have its own values,
informal checks with various choices show that all of the
qualitative conclusions drawn in the present study hold for
any reasonable values. To provide specific illustrations, we
chose a set of baseline parameters that would approximately
reproduce the data reported by H. D. Kane, Proctor and
Kranzler (1997, Table 1). This data set was chosen because
the study included several typical conditions whose results
agreed well with one another and because the authors reported
all of the key characteristics of the data needed to constrain the
model (i.e., mean RT, average across participants of the

within-participant standard deviation of RT, and standard de-
viation across participants of the individual mean RTs).
Starting from the baseline parameters derived from H. D.
Kane et al.’s study as is discussed next, the effects of individ-
ual parameters on reliabilities and correlations could be
assessed by introducing changes to the values of these param-
eters. Table 15 summarizes the baseline parameter values used
for all of the computations presented in the figures.

First, we used a baseline overall mean RT of 600 ms,
which was the approximate observed value in several of H.
D. Kane et al.’s (1997) conditions and which seems to be a
typical value for many RT tasks. Of this total mean RT, an
average of 200 ms was allocated to the residual term (i.e.,
peripheral sensory and motor processes; μR = 200 ms), and a

Table 15 Default values of parameters

Value Parameter(s)

100 A, Ac, Ae, Au, Av, Ax, and Ay
200 B, Bb, Bc, Be, Bn, Bu, Bv, Bx, and By

100 C, Cc, Ce, Cu, Cv, Cx, and Cy

0.14 CV

0 μΔ, μΔb
, μΔc

, μΔe
, μΔn

, μΔu
, μΔv

, μΔx
, and μΔy

1 μG

200 μR, μRc
, μRe

, μRu
, μRv

, μRx
, and μRy

50 and 100 N (number of trials per condition) for RT means
and difference scores, respectively

0.2 ρΔG, ρΔbG, ρΔcG, ρΔeG, ρΔnG, ρΔuG, and ρΔvG

0 ρΔR, ρΔcR, ρΔeR, ρΔnR, ρΔuR, ρΔvR, ρΔxRx
, ρΔxRy

,
ρΔyRx

, and ρΔyRy

0 ρGR, ρGRce
, ρGRuv

, ρGRx
, and ρGRy

0 ρRY
0.10 σΔ, σΔb , σΔc , σΔe , σΔn , σΔu , and σΔv

0.20 σG
20 σR, σRce , σRuv , σRx , and σRy

10 σY

Note. Except as noted otherwise in the figure captions or legends, these
parameter values were used in computing the reliabilities and correla-
tions displayed in Figs. 1–11.

Table 14 Cross-product matrix for the covariance of RT and D

RVs in RT RVs in D

G Δc Δe Ec Ee

G Be � Bcð ÞSσ2
G � BcSσΔcσGρΔcG BeSσΔeσGρΔeG 0 0

Δc 0:5 Be � Bcð ÞBcσGσΔcρΔcG � 0:5BcBcσ2
Δc

0:5BeBcσΔeσΔcρΔc Δe 0 0

Δe 0:5 Be � Bcð ÞBeσGσΔeρΔeG � 0:5BcBeσΔcσΔeρΔc Δe
0:5B2

eσ
2
Δe

0 0

R Be � Bcð ÞσGσRρGR � BcσΔcσRρΔcR BeσΔeσRρΔeR 0 0

Ec 0 0 0 � 0:5σ2
Ec

0

Ee 0 0 0 0 0:5σ2
Ee
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further 100 ms each was allocated to the sensory and motor
processes whose durations would be influenced by G (i.e.,
stages A and C, respectively). Various psychophysiological
evidence suggests that totals of approximately 200 ms each
would be realistic values for the total durations of the
sensory and motor stages (e.g., Carbonnell, Hasbroucq,
Grapperon, & Vidal, 2004; Hillyard & Anllo-Vento, 1998;
Ritter, Simson, & Vaughan, 1983). The remaining 200 ms
was allocated to the central stage B, which also seems
plausible for straightforward choice RT tasks with arbitrary
stimulus–response mappings. Equation 5 makes it clear that
these desired stage durations can be produced with many
different combinations of parameter values. Somewhat ar-
bitrarily, we chose A = 100, B = 200, C = 100, and μG = 1, so
that A, B, and C could be regarded as the number of milli-
seconds required by each stage for a participant with the
average G value of μG = 1. Correspondingly, μΔ was set to
zero, so values of Δ are increments and decrements that
average to zero across individuals.

Second, concerning the trial-to-trial variability of RT
that determines σ2

E (Eq. 2), we assumed that the standard
deviation of RT for a given participant would be CV =
0.14 times the participant’s mean RT. The value of
CV = 0.14 was chosen to give an average within-
participant standard deviation of RT equal to 85 ms
with the mean of 600 ms, because 85 ms was approx-
imately the average standard deviation reported by H.
D. Kane et al. (1997).

Third, we chose the remaining baseline parameter values
to produce a standard deviation of observed mean RTs (i.e.,
across individuals) of approximately 90 ms when means
were based on 30 trials per participant. H. D. Kane et al.
(1997) reported the standard deviations of observed mean
RTs for several conditions with different numbers of trials,
and adjustment of their reported values to a common value
of 30 trials suggests that 90 ms would be approximately
correct for all conditions. As is developed in Appendix 2
(e.g., Eq. 38), the standard deviation predicted by the model
depends on the variances and intercorrelations of the pro-
cessing time parameters G, Δ, and R, so again it was
possible to produce the desired value (90 ms) in various
ways. It seemed plausible to us that the residual and central
processing times would be, at most, very weakly correlated,
so we chose ρGR ¼ ρΔR ¼ 0 . A combination of the
remaining parameters that seemed plausible and produced

approximately the desired 90-ms result was σG = 0.2, σΔ =
0.1, σR = 20 ms, and ρΔG = 0.2. In addition, these choices
also yielded reliability of individual-participant observed
mean RTs to be approximately .95 when based on averages
of 30 trials, consistent with the report of Jensen (1985) that
mean RT reliability is typically quite high with 30 trials
under relatively standard conditions.

Appendix 4 Brinley plots predicted by IDRT

As a preliminary check on the ability of this model to
describe individual differences in RT, we investigated its
predictions with respect to Brinley plots, which are
known to be highly linear, to have slopes greater than
one, and to have negative intercepts. Despite some
dispute over the exact meaning of Brinley plots, the
ability to produce realistic plots is widely regarded as
a critical benchmark for models of individual differ-
ences in RT (e.g., Bashore, 1994; Cerella, 1994; Faust,
Balota, Spieler, & Ferraro, 1999; Fisk & Fisher, 1994;
Myerson, Adams, Hale, & Jenkins, 2003; Ratcliff,
Spieler, & McKoon, 2000; Van Ravenzwaaij, Brown,
& Wagenmakers, 2011).

It is convenient to investigate the form of the Brinley
plot predicted by the model summarized in Eq. 3 within
the context of a specific example. Specifically, we will
consider the relationship between the true mean RTs for
young and old participants across a series of tasks in
which only the duration of the central stage B varies.
The true mean RTo and RTy for the old and young
groups can be written as functions of B:

E RTojB½ � ¼ Aþ Cð Þ � μGo þ μGo þ μΔo

� � � B þ μRo
ð56Þ

and

E RTyjB
� � ¼ Aþ Cð Þ � μGy þ μGy þ μΔy

� �
� B þ μRy

: ð57Þ

Equation 57 can be rearranged to form

B ¼ E RTyjB
� �� Aþ Cð Þ � μGy � μRy

μGy þ μΔy

; ð58Þ

which can then be substituted into Eq. 56 to obtain

E½RTojB� ¼ðAþ CÞ � μGo þ μRo
þ ðμGo þ μΔo

Þ � E½RTyjB��ðAþCÞ�μGy�μRy

μGyþμΔy

¼ðAþ CÞ � μGo þ μRo
þ μGoþμΔo

μGyþμΔy
� fE½RTyjB� � ðAþ CÞ � μGy � μRy

g:
ð59Þ
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Equation 59 shows that IDRT does predict linear Brinley
plots, consistent with the standard empirical results.
Specifically, as the duration of the central stage B varies,

the slope of the function relating E[RTo] to E[RTy] is
μGoþμΔo
μGyþμΔy

, so the slope will be greater than one (as is normally

found) as long as the older participants have longer general
processing times (μGo > μGy). Furthermore, the intercept of

this function is

a ¼ Aþ Cð Þ � μGo þ μRo
� μGo þ μΔo

μGy þ μΔy

� Aþ Cð Þ � μGy þ μRy

h i
:

ð60Þ
This intercept will be negative, as is normally found, when

Aþ Cð Þ � μGo þ μRo
<

μGo þ μΔo

μGy þ μΔy

� Aþ Cð Þ � μGy þ μRy

h i
: ð61Þ

For example, it can be shown that the intercept is negative if all
of the parameters for older adults are proportional to those of
the younger adults (i.e., μGo ¼ c � μGy , μΔo

¼ c � μΔy
, and

μRo
¼ c � μRy

, with c > 1). As another example, the intercept is

negative ifμΔo
¼ μΔy

¼ 0 and the age effect is proportionally

larger on μG than on μR (i.e., μGo μGy

.
> μRo

μRy

.
).
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