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Abstract We tested whether the unequal-variance signal-
detection (UVSD) and dual-process signal-detection
(DPSD) models of recognition memory mimic the behavior
of each other when applied to individual data. Replicating
previous results, there was no mimicry for an analysis that
fit each individual, summed the goodness-of-fit values over
individuals, and compared the two sums (i.e., a single
model selection). However, when the models were com-
pared separately for each individual (i.e., multiple model
selections), mimicry was substantial. To quantify the
diagnosticity of the individual data, we used mimicry to
calculate the probability of making a model selection error
for each individual. For nondiagnostic data (high model
selection error), the results were compatible with equal-
variance signal-detection theory. Although neither model
was justified in this situation, a forced-choice between the
UVSD and DPSD models favored the DPSD model for
being less flexible. For diagnostic data (low model selection
error), the UVSD model was selected more often.
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When comparing models based on goodness of fit (GOF),
model flexibility (or complexity) is an important issue to
address. Model flexibility refers to the ability of a model to
flexibly capture any data pattern (Myung, 2000). A useful

concept for understanding model flexibility is the response
surface methodology (Bates & Watts, 1988), which is a plot
of all possible results that a model can explain (an area in
the data space). A more flexible model will cover a larger
proportion of the data space, which indicates that it is
difficult to find data to reject that model, as compared to all
possible alternative models. However, sometimes research-
ers want to directly compare two leading candidate models.
The relevant consideration is the area of overlap between
the two models (the region in which they mimic each
other), as compared to the area in the data space that is
unique to each model, and in this case, model mimicry is an
important consideration (Wagenmakers, Ratcliff, Gomez, &
Iverson, 2004). In contrast to absolute flexibility, model
mimicry can be thought of as a measure of relative
flexibility when comparing two particular models.

Another important issue to consider when comparing two
models is whether to analyze data at the individual or the group
level. Cohen, Sanborn, and Shiffrin (2008) conducted model
mimicry simulations fitting both individual and group data in
order to determine which method was more effective in
recovering the true underlying model (see also Cohen,
Rotello, & Macmillan, 2008). They found that model
selection based on the sum of GOF values was more accurate
when the data of each individual were fit separately, provided
that there were a sufficient number of data for each
individual; otherwise, model selection was superior when
based on group data. The experiments we analyzed collected
at least 140 observations per individual—enough observa-
tions to favor individual analysis over group analysis. Thus,
we only consider the results of applying models separately to
each individual, which allowed us to investigate the
possibility that model mimicry is not the same for all
individuals.

An issue that arises when fitting two competing models
at the individual level concerns the degree to which each
data set yields diagnostic information (i.e., information that
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is capable of distinguishing between the two models). Not
all participants yield diagnostic data, and it is important to
consider how model mimicry varies as a function of
diagnosticity. In the studies by Cohen and colleagues, the
models were compared only once, based on the sum of the
separate individual GOF values. Therefore, these studies
did not address diagnosticity at the level of individual data
(some individuals could yield more informative data than
others). In the present study, we used a new individual
analysis that compared models separately for each individ-
ual without summing the GOF values across individuals.
Hereafter, we refer to the former as single-comparison
analysis and the latter as multiple-comparison analysis.
Both are based on fits of individual data but ask
fundamentally different questions. The single-comparison
analysis asks which model is better in a simultaneous fit of
all of the separate individuals’ data whereas the multiple-
comparison analysis asks which model is better at fitting
each individual separately. As applied to model mimicry
simulations, the latter analysis allows for the possibility that
model mimicry may differ for different regions of the data
space.

Model comparison using model mimicry simulations

Wagenmakers et al. (2004) presented a general method to
quantify model mimicry, termed the parametric bootstrap
cross-fitting method, PBCM (see Navarro, Pitt, & Myung,
2004, for a similar technique). Consider a comparison
between Model A and Model B. The PBCM begins with a
nonparametric bootstrap sample: sampling with replace-
ment from the observed data to produce a single data set
that contains as many observations as exist in the original
data. Next, both models are fit to this sample to estimate
model-specific parameters, which are used to produce a
parametric bootstrap sample according to each model. That
is, using the estimated model-specific parameters for each
model, a simulated data set is generated from Model A, and
another simulated data set is generated from Model B.
Then, both models are fit to the simulated data generated by
Model A and to the simulated data generated by Model B.
Finally, a GOF difference (ΔGOF) is calculated for the
situation when Model A generated the simulated data, and
another when Model B generated the simulated data. The
entire sequence of steps is repeated M times, where M is
usually a large number, to produce two ΔGOF distributions
(one when Model A is true, and the other when Model B is
true). The PBCM, based on simple resampling techniques,
is a useful tool to measure relative flexibility given a
limited data set.

The extent to which competing models are able to mimic
each other is determined by the overlap between these

ΔGOF distributions. If the models do not mimic each other,
the distributions will not overlap, and a simple comparison
is equivalent to using a criterion of zero. Another important
question is whether the two distributions are symmetric
about the zero point, both in terms of their average
positions and their variances (generally, the shapes of the
two distributions). If not, this asymmetry indicates that the
two models are not equally flexible. If Model A is found to
be more flexible than Model B, Model A needs to exceed
Model B’s fit by a certain amount (nonzero criterion),
which is a penalty term to offset Model A’s extra flexibility.
Cohen and colleagues set this penalty to the optimal
criterion, which is the value at which the fit of each model
is equally likely (the crossover point between the distribu-
tions: for details, see Wagenmakers et al., 2004). However,
as we will see below, this method does not necessarily
equate the probability of making a selection error in favor
of each model.

Model mimicry between two signal-detection models
of recognition memory

Using model mimicry, the present study compared two
signal-detection models of recognition memory: the
unequal-variance signal-detection (UVSD) model (Egan,
1975) and the dual-process signal-detection (DPSD) model
(Yonelinas, 1994). The two models were advanced to
explain the shape of a receiver operating characteristic
(ROC), which is a plot of the hit rate (HR) versus the false
alarm rate (FAR), or the slope of the z-ROC where HR and
FAR are converted to z scores (Green & Swets, 1966). For
recognition memory, target variance is typically greater
than lure variance (the z-ROC slope is less than 1.0), and
each of these models provides a different explanation of
this departure from the equal-variance signal-detection
(EVSD) model. The UVSD model assumes that both
distributions are Gaussian and allows a different variance
for the distribution of memory strength in response to
targets as compared to the distribution in response to lures.
In contrast, the DPSD model assumes that responses to
targets are either based on categorical recollection, which
produces high confidence, or on a sense of familiarity that
is drawn from a Gaussian distribution with variance equal
to that of the lure distribution. Thus, both of these models
collapse to the EVSD model as a special case.

Although numerous studies have compared the two
models (for a review, see Wixted, 2007; see also Yonelinas
& Parks, 2007), one concern is that these comparisons were
usually made by raw GOF only from a single experiment,
without any consideration of relative flexibility differences,
or sometimes by adjustment for flexibility based only on
different numbers of parameters rather than functional
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complexity (for details, see, e.g., Myung, 2000). Providing
one exception, Cohen et al. (2008) performed model
mimicry simulations with the UVSD and DPSD models
(which were referred to as the one-dimensional and
standard dual-process models, respectively) for experiments
that collected remember–know recognition judgments.
Their study was an apt application of the technique because
remember–know judgments are often used to measure the
separate contributions of familiarity and recollection. They
found that the summed ΔGOF distributions of the two
models did not overlap when fitting individual data, and
concluded that the two models “are approximately equal in
complexity” (p. 915).

However, there are at least two limitations to their
conclusion. First, the absence of mimicry is not the same as
equal flexibility. For instance, Myung, Pitt, and Navarro
(2007) found situations in which models differed in
flexibility, as determined by other measures, even though
these models did not mimic each other. In fact, Cohen et al.
(2008) found that the UVSD model distribution fell farther
from zero than the DPSD model distribution, which
implies that the UVSD model is more flexible. Second,
and more importantly, their conclusion was based on a
single-comparison analysis, and it is unclear whether it
would generalize to comparisons for each individual. To
examine these limitations, we compared the UVSD and
DPSD models separately for each individual. To test a
range of situations that have been addressed in the
literature, we applied these models to simultaneous fits of
yes/no and two-alternative forced-choice (2AFC) data
from the same individual, and we also fit yes/no
recognition data in isolation, which is the more common
situation.

Method

Two previous studies: Yes/no and 2AFC recognition
memory experiments

For the model mimicry applications to recognition memory,
we adopted data from two previous studies that collected
both yes/no and 2AFC recognition judgments (33 partic-
ipants in Jang, Wixted, & Huber, 2009; 29 in Smith &
Duncan, 2004), and conducted another experiment (which
is described below). In both previous experiments, partic-
ipants studied a list of 280 words that were presented one at
a time for 5 s each. During the test phase, participants were
given a randomly ordered mixture of yes/no test trials (70
targets and 70 lures) and 2AFC test trials (70 left responses
correct and 70 right responses correct). Responses were
collected on a 6-point rating scale for each test trial (for the
yes/no test trials, Certain YES/NO, Probably YES/NO, and

Guess YES/NO, and for the 2AFC test trials, Certain LEFT/
RIGHT, Probably LEFT/RIGHT, and Guess LEFT/RIGHT).

Smith and Duncan (2004) fit the yes/no and 2AFC data
separately. However, Jang et al. (2009) demonstrated that
separate fits are inadequate tests of whether a model can
generalize between test formats. Instead, they found that
fitting both test formats simultaneously allowed recovery of
the true model. To reach this conclusion, they used a single-
comparison model mimicry analysis that only produced a
probability of recovery rather than the full recovery
distributions that would be necessary to determine relative
flexibility.

A new yes/no recognition memory experiment: Weak
versus strong memory

Because the aforementioned studies tested yes/no and
2AFC recognition in the same test block, which might
influence retrieval strategies, we ran a new experiment with
only yes/no recognition memory. In addition, this study
manipulated memory strength (weak vs. strong). According
to dual-process theories, stronger memories more often
produce recollection, which tends to increase the number of
highest-confidence responses for targets. Therefore, a
manipulation of memory strength may be useful for
distinguishing between these models.

Participants A total of 35 undergraduate students at the
University of California, San Diego, participated in this
experiment for course credit.

Materials The stimuli were 720 moderately high-frequency
words (an average frequency of 60, according to Kučera &
Francis, 1967) from four to eight letters in length.

Procedure The experiment consisted of four blocks that
used the same procedure. In each block, participants studied
90 words that were presented one at a time for 1 s each.
Half of the items were presented once (weak), and the other
half three times (strong). The words were randomly
assigned to weak and strong conditions and presented in
random order, except that the items of the strong condition
were not presented consecutively (to avoid massed pre-
sentations). Memory was tested using the same 6-point
rating scale as in the previous experiments. Each test list
contained, in random order, 45 weak and 45 strong study
words for targets and 90 new words for lures.

Model mimicry simulations

According to the PBCM, 1,000 simulated data were
generated for each model. The UVSD and DPSD models
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were fit to the data by using maximum likelihood
estimation (GOF measure). The ΔGOF value was
calculated by subtracting the GOF value of the UVSD
model from that of the DPSD model. The model mimicry
method of Cohen et al. (2008) was also used, which is
identical to the PBCM, except that it does not include the
initial nonparametric sample (we refer to it as the short-
version method), and the results are reported in the
supplemental material. By including nonparametric sam-
pling, the PBCM entails extra variability that is related to
sampling from the population of possible observations,
although both methods produced qualitatively similar
results.

In total, we analyzed seven data sets from 97 individuals.
For both of the previously published data sets, we
performed model mimicry simulations on the yes/no and
2AFC data fits simultaneously (as in Jang et al., 2009) and
also on the yes/no data fits in isolation (as in Smith &
Duncan, 2004). These combinations produced the first four
data sets. The remaining three came from our new
experiment, which only included yes/no data. We consid-
ered the weak memory data in isolation, the strong memory
data in isolation, and a simultaneous analysis across the
weak and strong memory data.

Results

The results below focus mainly on the multiple-comparison
analysis, and Table 1 reports them in summary form.

Model comparison without adjusting for flexibility: Model
fit results

Without adjusting for model flexibility (using the zero
criterion), as seen in the table, 65% (ranging from 57% to

76%) of the data were fit better by the UVSD model. The
ΔGOF values were negative (not significantly below zero
for four of the seven data sets). On the surface, these
findings suggest that the UVSD model is somewhat better
able to account for yes/no and 2AFC recognition memory.

Model comparison with adjustment for flexibility: Model
mimicry results

First, we briefly consider the single-comparison analysis (as
in Cohen et al. 2008). The top panel of Fig. 1 shows a
typical example of the ΔGOF histograms from the single-
comparison analysis. This particular example shows the
simultaneous fit to yes/no and 2AFC testing for the
experiment of Smith and Duncan (2004). The x-axis
indicates the ΔGOF values from the 1,000 simulated experi-
ments when the data were generated by the UVSD model
(left) versus the DPSD model (right). The y-axis indicates
how many simulated experiments fell into each bin of the
ΔGOF scale. All values of the UVSD model fall to the left
side of zero, and those of the DPSD model fall to the right
side of zero: The two models do not mimic each other. The
two distributions are slightly asymmetrical around zero,
which suggests that the UVSD model is somewhat more
flexible than the DPSD model. These findings are in
agreement with those of Cohen et al. (2008).

Next, we consider the multiple-comparison analysis,
which produced a different set of results by considering the
possibility that different models apply to different individ-
uals. The bottom panel of Fig. 1 illustrates the ΔGOF
histograms of a representative individual (who participated
in the experiment of Smith & Duncan, 2004). Unlike the
results of the single-comparison analysis, 10% of the white
histogram (the UVSD model) falls above zero, and 14% of
the gray histogram (the DPSD model) falls below zero.
These areas represent how often the nongenerating (i.e.,

Table 1 Model comparison results using a multiple-comparison analysis

Number of
subjects

No Adjustment for Flexibility PBCM Adjustment

UVSD
(%)

ΔGOF t p UVSD
(%)

Optimal
criterion

t p

Smith & Duncan (2004): Y/N & 2AFC 29 76 –0.83 (1.67) 2.69 <.01 72 –0.22 (0.31) 3.80 <.001

Jang et al. (2009): Y/N & 2AFC 33 58 –0.44 (1.92) 1.32 .10 54 –0.51 (0.78) 3.76 <.001

Smith & Duncan (2004): Y/N 29 62 –0.10 (0.97) 0.55 .29 34 –0.22 (0.50) 2.40 <.05

Jang et al. (2009): Y/N 33 58 –0.33 (1.27) 1.50 .07 48 –0.46 (0.66) 4.08 <.001

Weak memory: Y/N 35 57 –0.12 (2.01) 0.36 .36 54 –0.10 (0.76) 0.76 .23

Strong memory: Y/N 35 74 –0.78 (2.05) 2.26 <.05 68 –0.22 (0.31) 4.17 <.001

Both weak & strong memory: Y/N 35 69 –0.86 (2.99) 1.69 <.05 60 –0.46 (0.62) 4.36 <.001

Standard deviations are in parentheses. UVSD = unequal-variance signal-detection model; Y/N = yes/no; 2AFC = two-alternative forced-choice;
PBCM = parametric bootstrap cross-fitting method. UVSD (%) indicates how many data sets were in line with the UVSD model. ΔGOF, GOF
difference, represents LogL(DPSD) – LogL(UVSD), where L = maximum likelihood and DPSD = dual-process signal-detection model.
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incorrect) model provided a better fit (in this example, the
UVSD model is more flexible than the DPSD model). Such
overlapping distributions were found for every individual.
Thus, the default criterion of zero might not properly adjust
for differences in flexibility. We therefore assessed relative
flexibility for each individual separately based on the
distributions from each individual data set.

As seen in Table 1, the optimal criteria were significantly
below zero for six of the seven data sets. When using the
optimal criteria, only 56% (ranging from 34% to 72%) of
the model selections favored the UVSD model (i.e., a 9%
decrease after adjusting for flexibility). These findings
suggest that in general, the UVSD model is more flexible
than the DPSD model.

An important caveat to the above conclusion is the quality
of the data produced by each individual. In what follows, we
address this limitation by calculating the probability of
making a selection error. The selection error probability is
the proportion of the rejected model ΔGOF distribution that is
above the optimal criterion (if the rejected model ΔGOF
distribution lies on the left side; otherwise, below the optimal
criterion), as compared to the proportion of the selected model
ΔGOF distribution. This measure assumes that the two
particular models are the only possible models, and that they

have equal priors. This reverses the conditional probability
using Bayes’ rule, resulting in a simple calculation from the
cumulative frequency distributions. The advantage of this
measure is that it presents the diagnosticity of the observed
data, as indicated by the degree of overlap between the ΔGOF
distributions.

Figure 2 shows each instance of model selection as a
function of selection error rate, as indicated by the different
symbols, which are placed at the arbitrary values of −0.5
(UVSD) and +0.5 (DPSD) to indicate which model won.
Based on these separate model selections, the solid line
plots the log ratio of the DPSD model wins to the UVSD
model wins, as calculated using Gaussian smoothing over
the probability of selection error. The graph clearly shows
that when the data were diagnostic (i.e., low selection
error), selections favored the UVSD model whereas when
the data were nondiagnostic (i.e., high selection error),
selections favored the DPSD model. For instance, among
individuals with error rates less than 15%, the ratio of
selections favoring the UVSD model versus the DPSD
model was 32% to 16%. In contrast, among individuals
with error rates greater than 35%, the ratio of selections
favoring the UVSD model versus the DPSD model was
11% to 44%.
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differences were summed across
all individual fits (single-com-
parison analysis), and the bot-
tom panel shows results for the
individual analysis of a single
participant’s data (an example of
the multiple-comparison analy-
sis). Note that the axes differ in
scale across the panels
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The figure also shows the z-ROC slope, using the same
technique of Gaussian smoothing over the probability of
selection error, as indicated by the dashed line (which can
be done equivalently using the recollection parameter of the
DPSD model). The z-ROC slope indicates whether the data
of an individual are compatible with the EVSD model: If
the data yield a z-ROC slope of 1.0, neither the UVSD
model nor the DPSD model is needed, and an equally good
fit can be found with the EVSD model even though it
contains one less parameter. As seen in the figure, as the z-
ROC slope approaches 1.0, the selection error rate
increases, and it becomes increasingly likely that the DPSD
is selected. In other words, as the data become more
compatible with the EVSD model, (1) the selection error
rate becomes higher (it is hard to differentiate between
the UVSD and DPSD models) because both models are
underconstrained by the data and (2) the log ratio of
wins favors the DPSD model because it is the less
flexible of these two models that are both too complex in
light of the data: The data that should have been
assigned to the EVSD model produce a selection of the
DPSD model because the selection was only between the
UVSD and DPSD models.

Discussion

The present study conducted model mimicry simulations to
assess the relative flexibility between the UVSD and DPSD
models of recognition memory at the individual-data level.
Replicating prior work, the two models did not mimic each

other when the individual ΔGOF values were summed
(single-comparison analysis). However, this analysis makes
a single model selection under the implicit assumption that
model mimicry is the same for all individuals, and it does
not take into account the fact that some participants yield
more diagnostic data than others. Using a single-
comparison analysis, it cannot be determined whether the
winning model is mainly favored when the data are
nondiagnostic (which would be a less compelling outcome)
or more diagnostic (which would be a more compelling
outcome).

With the multiple-comparison analysis, we found that
the UVSD model was generally more flexible. However,
additional analyses revealed that a large number of the
selections in favor of the DPSD model were based on
situations of extreme mimicry in which case the probability
of making a selection error was very high, and the z-ROC
slope was close to 1.0 (in which case, neither model would
be needed). When only diagnostic data were considered,
corresponding to a low selection error rate, more individ-
uals produced data in line with the UVSD model, which
provided a better explanation of how the data departed from
the EVSD model. These analyses demonstrate an important
but often overlooked aspect of model selection: The binary
decision in favor of one model over the other needs to be
tempered by the diagnosticity of the data and the
probability of making a selection error.

Recently, Kapucu, Macmillan, and Rotello (2010)
concluded that different individuals appear to have different
underlying models. We replicated this finding but also
demonstrated that the assignment of different models to
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different individuals might be confounded with the diag-
nosticity of the data. From our results, we reach two
conclusions: (1)When limiting model selection to the data
that are capable of differentiating between these two models
(i.e., data that are incompatible with the EVSD model),
model selection favors the UVSD model; and (2)When the
data cannot differentiate between these two models (i.e.,
they are compatible with the EVSD model), the DPSD
model is selected by default because the UVSD model was
found to be relatively more flexible. Occam’s razor dictates
that in the absence of any diagnostic information, the less
flexible model is selected for its characteristic of being
simple. However, in such situations, it is important to
consider whether either model is needed, or if an even
simpler alternative may suffice. The fact that this was the
case for many of the individual data sets suggests that a
single model comparison based on summing GOF values
across individuals may be misleading by mixing together
both diagnostic and nondiagnostic data.
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