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Abstract
Signal detection theory (SDT) and two-high threshold models (2HT) are often used to analyze accuracy data in recognition 
memory paradigms. However, when reaction times (RTs) and/or confidence levels (CLs) are also measured, they usually are 
analyzed separately or not at all as dependent variables (DVs). We propose a new approach to include these variables based on 
multinomial processing tree models for discrete and continuous variables (MPT-DC) with the aim to compare fits of SDT and 
2HT models. Using Juola et al.’s (2019, Memory & Cognition, 47[4], 855–876) data we have found that including CLs and 
RTs reduces the standard errors of parameter estimates and accounts for interactions among accuracy, CLs, and RTs that clas-
sical versions of SDT and 2HT models do not. In addition, according to the simulations, there is an increase in the proportion 
of correct model selections when relevant DV are included. We highlight the methodological and substantive advantages of 
MPT-DC in the disentanglement of contributing processes in recognition memory.
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Theories of cognitive architectures and processes can perhaps 
best be evaluated by deriving quantitative predictions that can 
be tested against data from behavioral experiments. Determining 
which mathematical models best describe human behavior is an 
interesting way to evaluate theories and a crucial step towards 
finding methods to answer our research questions. To model 
effectively, the types of variables involved (nominal, ordinal, 
interval, or ratio) and the roles they play in specific experimental 
paradigms (as dependent or independent variables, etc.) must be 
defined, and all variables that carry relevant information should 
be included in the model. In the present study, we will illustrate 
this point by focusing on recognition memory models.

In standard recognition-memory experiments, participants 
first study a list of items (usually words) and then try to iden-
tify items presented in a test phase as to whether they had 

been previously studied or not. Those words that had been 
previously studied are to be classified as “old” and nonstud-
ied words are to be called “new.” By knowing the type of 
word presented for a test and the response of the participant, 
we can distinguish four categories of responses (see Table 1): 
previously studied (target) words result in a Hit (Hit: “old” 
response to an old item) or a Miss (Miss: “new” response to 
an old item), whereas new (distractor) words can result in a 
false alarm (FA: “old” response to a new item) or a correct 
rejection (CR: “new” response to a new item). In order to 
explain the experimental results obtained with this paradigm, 
two classes of mathematical models have been fitted: signal 
detection theory models (SDT; Ashby, 2014; Atkinson & 
Juola, 1973, 1974; Juola et al., 1971; Luce, 1959; Thurstone, 
1927) and multinomial processing trees, MPT, which include 
the two-high-threshold (2HT) model (Batchelder & Riefer, 
1990; Bröder & Schütz, 2009; Erdfelder et al., 2009; for a 
recent MPT tutorial, see Schmidt et al., 2023).

Although these models have proven useful because they were 
originally designed to include categorical variables, recognition 
experiments often also measure continuous variables such as 
response times (RTs), besides ordinal variables such as con-
fidence levels (CLs). Traditional SDT and 2HT models make 
predictions about these variables, and also about speed–accuracy 
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relationships (Atkinson & Juola, 1973; Hockley, 1982; Murdock 
& Dufty, 1972). However, when both categorical and quantita-
tive variables are measured (e.g., by recording RT in a recogni-
tion task), they are usually analyzed separately, or one variable 
is just ignored. Such practices have several limitations.

First, there is a risk of interpreting only the significant 
effects of one variable (e.g., RT) without considering the other 
one (e.g., accuracy), which would be prone to the accumu-
lation of Type I errors (Voss et al., 2013). Second, because 
of the well-known speed–accuracy trade-off effect, we can-
not predict whether a participant will prioritize performing 
the task well or on performing it fast. The response strategy 
may vary among individuals, items, experimental designs, 
instructions, and conditions, and this will affect both RT and 
accuracy Tourangeau et al. (2000). Consequently, we cannot 
have an overall interpretation when ignoring one variable, and 
analyzing both measures separately can lead to incongruent 
results (Liesefeld, & Janczyk, 2019). Furthermore, when 
considering only one variable we lose information about the 
other and this can affect the accuracy of parameter estimates. 
Also, if individual differences in performance are distributed 
between the two metrics (e.g., RTs and accuracy), we might 
not detect significant effects in either of them. Thus, we could 
see a reduction in statistical power (Voss et al., 2013). Psy-
chometry has addressed this issue by using hierarchical mod-
els based on item response theory (Molenaar et al., 2015; van 
der Linden, 2007), and it has demonstrated that if two dimen-
sions are related, the estimates of one are improved when the 
other’s data are analyzed jointly. These psychometric models 
are applicable to many research areas because they are general 
measurement models and are not limited by any specific pro-
cess models (De Boeck, & Jeon, 2019; Wagenmakers, 2009).

Thanks to recent developments in MPT models, many previ-
ous obstacles can be overcome, and quantitative and categori-
cal variables can be modeled jointly (Heck & Erdfelder, 2016; 
Heck et al., 2018b; Klauer & Kellen; 2018; Schweickert & 
Zheng, 2019). MPT models for discrete and continuous vari-
ables (MPT-DC) are process models with a theoretical rationale 
that assumes that processes have intrinsic attributes (e.g., pro-
cessing time), and modeling these variables can help to iden-
tify and measure these attributes and their theoretical sources. 
Therefore, MPT-DC have both methodological and theoretical 
benefits. These models could yield different conclusions than 
models that do not jointly analyze quantitative and categorical 
variables. Furthermore, they allow us to make new inferences 

about the structure and functioning of cognitive models, study 
the relationships between dependent variables including trade-
offs and lead to a finer understanding of how individuals pro-
cess information and respond accordingly.

Quantitative variables, such as RT (Heck & Erdfelder, 
2016, 2020; Klauer & Kellen, 2018) and both RT and CLs 
jointly (Starns, 2021) have been included in 2HT models 
through MPT-DC models. Here we propose to include both 
RT and CLs jointly in SDT models by a solution based on 
reparametrizing SDT as multinomial models (estimating 
SDT models as multinomial models has previously been 
proposed by Singmann & Kellen, 2013). To the best of our 
knowledge, the extension of both MPT-DC and SDT models 
to RT and CL data has not yet been developed.

In short, MPT-DC allows us to (1) solve methodological 
problems resulting from studying categorical and continuous 
variables separately; (2) study discrete latent cognitive states 
(e.g., as in 2HT models) and the latent continuous variables 
associated with these states; and (3) estimate parameters of 
SDT models that include ordinal and continuous variables.

The main purpose of the present study is to highlight 
the advantages of incorporating quantitative variables in 
both 2HT and SDT models. More specifically, we will try 
to widen the range of research questions related to these 
models and to make more accurate conclusions about them. 
To achieve these goals, we use the data from Juola et al. 
(2019), in which continuous and categorical variables (RTs 
and confidence levels, respectively) were measured in a rec-
ognition experiment using words lists, and the proportions 
of targets were manipulated across trial blocks.

Theoretical assumptions and modeling 
approach

The psychological assumptions about confidence ratings and 
RTs are different for the SDT and 2HT models. In the next sec-
tion we will explain the theoretical assumptions of each model 
and, following the experimental design of Juola et al. (2019), 
we will describe their reparameterization as MPT-DC models.

Classic two‑high‑threshold model

Although the underlying variable of memory strength might 
be continuous, the 2HT model assumes that two thresholds 
exist that define three states, within each of which the cogni-
tive experience is the same. One can experience relatively 
certain states of detect new, detect old, and an intermediate 
state of uncertainty that results in old or new guesses (see 
Fig. 1). These cognitive states are determined by a series 
of discrete processes whose probabilities can be estimated 
using MPT models (Bröder & Schütz, 2009).

Table 1  Recognition paradigm categories

Presented Stimulus Participant’s response

“Old” “New”

Old Hit Miss
New FA CR
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As can be seen in Fig. 1, the detect old and the detect new 
states are determined by the probabilities of detecting old, do, 
and new words, dn, respectively. The high thresholds do not 
allow the detect old state to be entered on new word trials, nor 
are target trials allowed to result in the detect new state. The 
guessing states include both a nondetection probability and a 
guessing probability. Depending on whether old or new words 
are presented, the probability of nondetection will be the com-
plementary of the detection probability for each tree (i.e., 1 − do 
for old words and 1 − dn for new words). The guess states result 
in a bias for saying “old” or “new” when the participant is not in 
a detect old or detect new state (Delay & Wixted, 2021; Malm-
berg, 2008). While the guess old state includes a guessing old 
probability, g, the guess new state includes a guessing new 
probability, 1 − g. Notice that in the current model the guess-
ing old (g) and guessing new (1 − g) probabilities for old and 
new stimuli are the same. This assumption is based on previous 
studies (Juola et al., 2019), although with different theoretical 
assumptions, other restrictions could be established (Heck & 
Erdfelder, 2016; Heck et al., 2018b; Kellen & Klauer, 2014; Kel-
len et al., 2015). Also, because manipulating the proportion of 
targets has the assumed effect of changing the guessing bias, but 
not the detection probability, the probability g varies among the 
J experimental conditions defined by the proportions of targets, 
thus having gj parameters. The expected effect is that gj increases 
as the proportion of targets increases in any trial block.

Confidence levels for the two‑high‑threshold 
model

CLs in 2HT models are given by a translation of memory 
states into confidence scales. However, the way this transla-
tion is done is not entirely straightforward. One possible 

assumption, called the certainty assumption, is that a detec-
tion state, for both old and new stimuli, can produce only 
high-confidence responses, whereas states of uncertainty 
(guess old or guess new states) can generate responses of 
all CLs. The certainty assumption has been widely criticized 
as poorly fitting the data and being unrealistic (e.g., Luce, 
1963). In response to this issue, more flexible models have 
been generated, but these have been criticized for being too 
unconstrained and neither generalizable nor useful. Authors 
such as Bröder et al. (2013) suggest that model flexibility 
might be essential to grasp the actual complexity of some 
experimental paradigms, because the individual distribution 
of confidence ratings in a 2HT model may be influenced by 
many variables unrelated to the recognition system. Such 
nuisance variables, reflect the participants’ response styles 
(Henninger & Plieninger, 2021; Naemi et al., 2009) more 
than their detection abilities or guessing strategies.

In other words, the use of a 2HT model without too 
many constraints is motivated by the vast number of ways 
of responding and the various factors that influence the dis-
tribution of CLs. That said, here we will assume that any 
cognitive state can be the source of “high,” “medium,” and 
“low” confidence responses, but the distribution of CLs is 
conditioned by the cognitive states included in the 2HT 
model (e.g., confidence distributions in detect states are 
usually characterized by a higher probability of high- than 
of low-confidence levels).

To simplify the description of the 2HT model in which 
CLs are incorporated (2HT-CL), we exemplify the exten-
sion of the detect old state of the MPT-DC model, with 
probability do (see Fig. 2.). As in Juola et al. (2019) the 
CL is an ordinal variable with three levels, and the confi-
dence bins (high, medium, and low confidence) have been 
included for each branch of the 2HT model. This implies 

Fig. 1  Classic 2HT model. Note. The left column refers to the presented 
stimulus whereas the 2HT model column includes the process prob-
abilities. The responses produced by each 2HT branch are displayed in 
the category column (Hit/Miss/FA/CR), while distinguishable branches, 

which form cognitive states, are shown in the right column. Parameters 
do, dn, and g represent the probabilities of the detect old, detect new, 
and guess old processes, respectively. Subindex j of parameter gj indi-
cates the condition corresponding to relative target frequencies
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that the total number of trials must be distributed among 
more subcategories. The new nodes will be associated 
with the L parameters,1 that model the probability of each 
confidence category and branch. Hence, for the detect old 
state the probability of a high-confidence response will 
be, Ldo1, for medium-confidence, (1 − Ldo1) · Ldo2, and for 
low-confidence,(1 − Ldo1) · (1 − Ldo2).

Reaction time in the two‑high‑threshold 
model

Regarding RTs in 2HT models, it has been advocated that 
once the detection threshold is exceeded, faster responses 
occur compared with those found in nondetection states, 
which is compatible with the results of several studies (Heck 
& Erdfelder, 2016; Klauer & Kellen, 2018; Starn, 2021). To 
study the relationships between cognitive states and their 
RTs, a model that allows modeling latent RTs is needed.

Two procedures have been proposed to evaluate an MPT 
model in which a quantitative variable, such as RT, has been 
incorporated: parametric (Heck et al., 2018b; Klauer & Kel-
len, 2018) and nonparametric (Heck & Erdfelder, 2016). The 
parametric model is based on assumptions about the shape of 
the distribution of the quantitative variables and the param-
eters that characterize them (Heck et al., 2018b). Although it 
leverages and provides more information from the data than 
the nonparametric version, it may not be a suitable procedure 
for situations with important discrepancies between what is 
assumed and how the data are distributed (Klauer & Kellen, 
2018). With respect to the nonparametric procedure, instead 
of analyzing the whole set of observed RTs, it assumes that 
any continuous variable can be discretized into bins and 

represented by a histogram (Van Zandt, 2000). Although it 
provides limited information about quantitative data, it has 
the advantage of requiring fewer assumptions about their 
distributions.

As far as usability is concerned, the nonparametric proce-
dure may be easier to apply with a user-friendly library origi-
nally made for classical MPTs, called MPTinR (Singmann et al., 
2022). This procedure enables fitting SDT models with continu-
ous variables, something that, to the best of our knowledge, is still 
not allowed by libraries specifically built for fitting parametric 
MPT-DCs (Heck et al., 2018a; Klauer & Kellen, 2018).

Considering all the above, we will now explain the 
modeling procedure of RTs according to the nonparamet-
ric approach of Heck and Erdfelder (2016). To do this, the 
continuous variable is discretized into RT-bins and then 
the model is reparametrized, forming an extended-MPT 
model. In other words, the branches of the original MPT 
are subdivided into as many subbranches as RT-bins, which 
implies that the total number of observations must be dis-
tributed among the bins. Then a new probability parameter 
is assigned to each bin. In our work, the continuous variable 
RT has been divided into fast and slow bins. We exemplify 
the extension of the detect old state in Fig. 3.

Confidence level and reaction time 
two‑high‑threshold model

To study whether, as theory predicts (Juola et al., 2019; 
Murdock, 1985; Ratcliff & Murdock, 1976), higher CLs 
result in faster responses than lower CLs, we need to 
study the interactions between RTs and CLs, and thereby 
model these variables jointly. For this purpose, we can 
use the 2HT-CL model and, from each of the extended CL 
branches, add two new branches that are the result of dis-
cretizing the RT data into two bins, the fast and slow ones. 
These bins will have an associated probability H which 
is the probability of each RT bin given an extended CL 

Fig. 2  Confidence level and two-high-threshold model exten-
sion example. Note: The do parameter in the 2HT column rep-
resents the detect old state probability of the classic 2HT model. 
The L  parameters characterize the probability of each confidence 
bin (CL-BIN) included in each state. The subscript “do” of the Ldo 

parameter denotes that it is the L parameter associated with the 
detect old state. The probability for a high-confidence response will 
be, Ldo1, for medium-confidence, (1 − Ldo1) · Ldo2, and for low-confi-
dence,(1 − Ldo1) · (1 − Ldo2)

1 The model is presented in a binary version, where each of the 
three CL-BIN (High/Medium/Low) bin probabilities (L1

′, L2
′ and 

L3
′, respectively) is formulated as: L1

′ = L1; L2
′ = (1 − L1)L2;and 

L3
′ = (1 − L1)(1 − L2).
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branch. For example, by extending the old high-confidence 
detect state (see Fig. 4), there is the parameter Hdo1, which 
represents the probability that the high-confidence detect 
response is fast, and 1 − Hdo1 that it is slow.

Classic signal theory detection model

We will now explain a continuous memory recognition 
model (i.e., the SDT model). According to this model, the 
test stimulus is translated by the observer into a continuous 

random variable of memory strength or familiarity. As can 
be seen in Fig. 5, the probability density functions of this 
random variable for old and new stimuli are assumed to 
follow two normal (i.e., Gaussian) distributions, respec-
tively, that overlap to some extent (Macmillan & Creel-
man, 2004). Here the recognition model is described by 
the sensitivity parameter of the SDT, d′, and by the amount 
of variability in the familiarity (standard deviation), that 
could be σ1 and σ2, for new and old items, respectively, 
or just σ if homoscedasticity is assumed. The subject 
establishes a decision criterion, c, that allows him or her 

Fig. 3  Reaction time two-high-threshold model extension example. 
Note. The do parameter on the 2HT column represents the detect old 
state probability of the classic 2HT model. The H parameters charac-

terize the probability of each RT-bin included in each state. Hdo1 is 
the probability that a response triggered by the detect old state (sub-
script “do”) is fast, and a probability of 1 − Hdo1 that it is slow

Fig. 4  Confidence levels and reaction times for the two-high-thresh-
old model extension example. Note. The 2HT column represents the 
detect old state probability of the classic 2HT model. The L param-

eters characterize the probabilities of entering each confidence bin 
(CL-bin) and the H parameters the probabilities of each reaction time 
bin (RT-bin) included in the detect old state

Fig. 5  Signal detection theory model. Note. Signal detection model 
of recognition. The areas to the right of cj in the target (right) dis-
tribution and the distractor (left) distribution represent Hit and FA 

probabilities, respectively. The areas to the left of cj in the target and 
distractor distributions represent the respective probabilities of a Miss 
and a CR
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to divide the familiarity continuum into two regions, an 
“old” response region above c, and a “new” response 
region below c. Depending on experimental conditions c 
can vary. For example, it is expected that when the propor-
tions of targets in a test block is increased, c decreases, 
while sensitivity should not change (Juola et al., 2019). 
Then, as there are J = 3 experimental conditions differ-
ing in target proportions (65%, 50%, and 35%) there will 
be three parameters cj. Note that to reduce the number of 
parameters the mean of the new stimulus distribution, μ1, 
is set to 0, and its standard deviation, σ1, to 1, then: d′, the 
difference between the means of the two distributions is 
equal to μ2. Thus only d′, σ and cj need to be estimated.

Confidence in the signal detection theory 
model

The establishment of new criteria allows for capturing 
the distribution of CLs (see Fig. 6). The continuous pro-
cess model assumes that confidence judgments are based 
on the establishment of a more specific set of decision 
boundaries that allows participants to give combinations 
of the type of stimulus and the level of confidence in their 
responses. The CLs given by each participant are simply 
graded “old”/“new” judgments made according to where 
the familiarity of each test stimulus is positioned (Bröder 
et al., 2013; e.g., in Fig. 6 a familiarity value between c3j 
and c4j would result in an “old-low” response). Thus, for 
modeling the Juola et al. (2019) experiment, where there 
are six possible answers (“old-high,” “old-medium,” “old-
low,” “new-low,” “new-medium,” and “new-high”) since 
K = 5, criteria ckj are included. Note that the j subscript of 
ckj implies that the manipulation of the target proportions 
(j) affects all criteria. Nevertheless, if, as expected, the 
response criteria change monotonically with the relative 

target frequency blocks (Juola et al., 2019), then, the j con-
ditions affect the ck parameter by the same amount. That is, 
although the manipulation of target proportion alters the 
position of all response criteria, the distance between dif-
ferent ck is assumed to be the same under the j conditions. 
Therefore, only the K − 1 neighborhood distances between 
criteria (∆c = ck − ck − 1) will have to be estimated, such that,

Reaction time in the signal detection theory 
model

Due to the direct relationship with SDT models, confi-
dence has been extensively studied; however, RTs tend to 
be ignored. The strength theory is precisely an attempt to 
theoretically relate SDT models and RTs. It suggests that the 
closer the evidence of familiarity of the stimulus is to the cri-
terion, the longer the RT (Emmerich et al., 1972; Malmberg, 
2008; Murdock, 1985; Norman & Wickelgren, 1969). To test 
these hypotheses, we propose to employ MPT-DC models.

For building an SDT model in which RTs are incorpo-
rated, the SDT model is first reparametrized as a multino-
mial model (see Singmann & Kellen, 2013). Figure 7 shows 
the reparametrized SDT model, in which the branches of the 
multinomial model represent different response categories 

(1)c2j = c1j + Δc2,

(2)c3j = c1j + Δc2 + Δc3,

(3)c4j = c1j + Δc2 + Δc3 + Δc4,

(4)c5j = c1j + Δc2 + Δc3 + Δc4 + Δc5.

Fig. 6  Signal detection theory confidence model. Note. Signal detec-
tion model of recognition with varying confidence levels. Each deci-
sion criterion ckj along the familiarity continuum delimits the area or 

probability of CLs for new and old responses (from “new-high” to 
“old-high”) in both distractor (left) and target (right) distributions
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and the probability of each category is a function with typi-
cal SDT parameters. The parameters included in the table 
are d′, which represents the sensitivity, and σ the variability 
of the signal distribution ( μ1 is set to 0 and its standard 
deviation, σ1, to 1; see Footnote 3). The cumulative normal 
distribution is represented by Φ.

Once the SDT is reparametrized, we can follow the previ-
ously used logic for the inclusion of the H parameters associated 
to the probability of each RT-bin (see Fig. 8 for an example of 
RT inclusion in the SDT model for the first branch). Again, the 
Hso1 is the probability for fast responses and 1 − Hso1 for slow 
ones. The subscript “so” has been added to the H parameter in 
Fig. 8 to refer to the first branch of the SDT model where a signal 
is presented, and the response is “old.”

Confidence and reaction time in the signal 
detection model

As noted above, strength theory (Emmerich et al., 1972; 
Murdock, 1985; Norman & Wickelgren, 1969) suggests that 
more extreme familiarity (high-confidence responses) results 

in shorter RTs. Consequently, there is an inverse relationship 
between confidence and RTs. Indeed, results from numer-
ous studies have shown an inverted U-shaped relationship 
between familiarity and latencies, and a U-shaped relation-
ship between familiarity and confidence judgments, which 
is compatible with strength theory (Baranski & Petrusic, 
1994, 1998; Murdock & Dufty, 1972; Ratcliff & Starn, 2009; 
Starn, 2021; Weidemann & Kahana, 2016). However, it does 
not capture whether the relationship differs between correct 
(CR, Hit) and incorrect (Miss, FA) responses, and would 
imply an inverse relationship between RTs and CLs for all 
categories, which may not be a feasible prediction.

In short, to disentangle this issue, it is necessary to 
build models that allow the relationships among response 
categories, CLs, and RTs to appear.

In order to develop a more general model of CLs and RTs, 
we propose to use a reparametrized SDT confidence model, 
SDT-CL, and then include RTs by means of an MPT-DC. 
The parameters included in the SDT-CL are those already 
referred to for a transformed SDT model parameterized as a 
multinomial model (see Fig. 7) and, additionally, Δc1, Δc2, 
Δc3, Δc4and Δc5, the K − 1 increments of criterion (∆c) (see 

Fig. 7  Signal detection theory model. Note. The left column refers to the presented stimulus whereas the SDT model column includes the prob-
ability for each category. The responses produced by each SDT model branch are displayed in the category column (Hit, Miss, FA, CR)

Fig. 8  Reaction time signal detection theory model extension example. Note. The SDT column represents the Hit category probability of the 
classic 2HT model. The H parameters characterize the probability of each reaction time bin (RT-BIN) included in the example
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Equations 1–4). Having done the above, as shown in the 
example in Fig. 9, it would suffice to include the H param-
eters that characterize the RT-bins of the SDT-CL model.

In summary, with the described MPT-DC procedure 
we can (1) fit classic 2HT and SDT models of recognition 
memory (without CLs and/or RTs), (2) either include the 
CLs (by aggregating the ∆c parameters or L parameter, for 
SDT and 2HT classical models, respectively), (3) or RTs (by 
aggregating the H parameters to the classical models), (4) 
or include all variables simultaneously. We will work with 
all these versions of such models with the aim of studying 
the methodological and theoretical advantages of including 
none, one, or both aforementioned variables.

Method

Data availability

The data have been collected from https:// osf. io/ y78mk/. 
Detailed information on the participants, materials and 
experimental procedure can be found in Juola et al. (2019). 
The following is a summary of these sections:

• PARTICIPANTS: The data were obtained from 47 stu-
dents and members of the academic community from the 
Universidad Autónoma de Madrid.

• MATERIALS: The study used 500 common Spanish 
nouns. These words were displayed one at a time on a 
computer monitor during the study and test phases. The 
experiment was conducted using E-Prime 3, a software 
tool specifically designed for psychological research.

• EXPERIMENTAL PROCEDURE: The participants were 
presented with a study list consisting of 250 words, dis-
played one at a time, and they were instructed to pro-
nounce each word as it appeared. Following the comple-

tion of the study phase, participants engaged in a short 
intervention task followed by five blocks of test trials. 
Each block consisted of 100 words, and the target pro-
portions in each block were varied between .15 and .85. 
Participants were informed in advance of these propor-
tions and were told to respond as rapidly as possible with 
an old/new response while being careful to avoid errors. 
After the response, they were asked to indicate their con-
fidence on a 3-point scale indicating whether they were 
certain, relatively certain, or uncertain of the accuracy of 
their response. The entire session lasted less than 1 hour. 
In analyzing the data, we became aware that the most 
extreme manipulation conditions, when the proportions 
of targets were .15 or .85, seriously affected the good-
ness of fit of the models. This was likely due to these 
conditions yielding parameter estimates that were close 
to the boundaries of the parameter space (e.g., guessing 
probabilities very close to either 0 or 1; Silvapulle & Sen, 
2005). Therefore, we decided to restrict our analysis to the 
blocks with target proportions of .35, .50, and .65.

Model details

Four separate analyses were conducted to study: (1) clas-
sic SDT and 2HT recognition models with only the accu-
racy measures; (2) 2HT and SDT models with CL bins 
(2HT-CL and SDT-CL, respectively); (3) 2HT and SDT 
with RT bins (2HT-RT and SDT-RT); and (4) 2HT and 
SDT with both CL and RT bins (2HT-CL-RT and SDT-
CL-RT, respectively).

Models were built using a nonparametric procedure 
(Heck & Erdfelder, 2016) with the discretization of the 
continuous RTs into bins set individually for each subject 
using the geometric mean of their RTs. If the RTs exceed 
this criterion, they were assigned to the slow bin, while 
those below the criterion were assigned to the fast bin. 

Fig. 9  Confidence levels and reaction times in the signal detection 
theory extension model example. Note. The SDT-CL column rep-
resents the hit category probability of the SDT model, for high (top 

row) medium (middle row) and low (bottom row) CLs. The H param-
eters characterize que probabilities of each reaction time bin (RT-
BIN) included for the hit category

https://osf.io/y78mk/
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The criterion was set using data-dependent RT bounda-
ries, namely the log-normal approximation, which is the 
default recommendation extrapolated from previous simu-
lation studies. The procedure consists of log-transforming 
the RTs, calculating the mean and variance, obtaining the 
quantiles, and then converting them back to the standard 
RT scale to obtain the necessary cut-offs for categoriza-
tion (see log-normal approximation procedure and simu-
lations in Heck & Erdfelder, 2016).

Both 2HT and SDT classic versions include five param-
eters. The 2HT model includes two detection parameters, 
do and dn, and J = 3 guessing parameters, gj, one for each 
target proportion manipulation condition j. The SDT model 
includes one sensitivity parameter, d′, one variability param-
eter, σ, and J = 3 criteria, cj.

The 2HT-CL model contains 13 parameters, which are 
five from the classical version, plus the L parameters that 
define the three CL-bins for detect old, detect new, guess 
old, and guess new states. The SDT-CL model includes 
nine parameters, the five previously indicated in the SDT 
model plus the K − 1 = 4 criterion increments (∆c) that 
allow estimating the distances between the different crite-
ria for response confidence ratings.

The 2HT-RT model contains nine parameters, the five 
classic parameters plus the H parameter that defines the two 
RT bins of the detect old, detect new, guess old, and guess 
new states. The SDT-RT model contains nine parameters, 
the five classic parameters plus the H parameter that defines 
the two RT-bins for Hits, Misses, FAs, and CRs.

In the 2HT-CL-RT model 25 parameters were included. 
The 13 indicated in 2HR-CL plus the H parameters that 
define the probabilities for the two RT bins per each extended 
branch of the 2HT-CL model. The SDT-CL-RT model has 
21 parameters, the nine from SDT-CL plus the H parameters 
that define the probabilities of the two RT bins per branch.

Fits

All models were fitted using MPTinR (Singmann et al., 
2022) for R Core Team (2022) and their formulation is 
available in Appendix A Tables 6, 7, 8, 9, 10, 11, 12 and 
13. The SE (standard errors) of the estimated parameters is 
obtained directly from MPTinR using the Hessian matrix. 
For assessing goodness of fit, we initially employed the Pear-
son chi-squared (χ2) goodness of fit test. However, due to 
the presence of low expected frequencies in some cells of 
the fitted models, the use of chi-squared tests is not recom-
mended, since the asymptotic properties are not preserved 
(Langeheine et al., 1996; Lin et al., 2015). As an alterna-
tive, we adopted a parametric bootstrap goodness-of-fit 
test. To do so, we generated 1,000 parametric bootstrap 
samples for each to-be-tested model and subject, fitting the 

corresponding model to each of these samples and calcu-
lating χ2. From each bootstrap-generated χ2 distribution, 
we obtained the critical value. To evaluate the statistical 
significance, we compared the estimated chi-squared value 
derived from fitting the observed data with the critical value. 
If the estimated χ2 value was less than or equal to the critical 
value, we retained the null hypothesis, indicating that the 
differences between observed and expected frequencies were 
not statistically significant, thus concluding that the model 
provided a suitable fit to the data.

In addition, since the ratio between the data (n) and the 
number of parameters (p) is relatively low, a corrected AIC 
has been calculated (Burnham & Anderson, 2002) which 
follows the expression below:

Analysis

To determine whether parameter estimations could be 
improved by adding more dependent variables, we found 
the standard errors (SE) of the estimated parameters of the 
SDT and 2HT models without and then with the inclusion 
of CL (2HT-CL and SDT-CL), RT (2HT-RT and SDT-RT) 
and with the simultaneous inclusion of both CL and RT 
data (2HT-CL-RT and SDT-CL-RT). The results of this 
analysis can be found in the first results section.

In the second results section we assess the scope of 
research questions that can be covered using MPT-DC 
models, fitting 2HT and SDT models that jointly model 
CLs and RTs. Descriptive analyses were performed on raw 
aggregated data (see Appendix B Tables 14, 15 and Fig. 12), 
while statistical comparisons for each model were made on 
individual estimated parameters. As for the analyses of the 
parameter predictions, we will only mention those related to 
the interactions between latent branches (cognitive states or 
categories), CLs and RTs. Details concerning all analyses 
performed and their predictions can be found in Appendix 
C Figs. 13, 14, 15, 16 and 17.

In the third results section we address the continuous-
process versus discrete-process questions to demonstrate 
that the CL and RT evidence might alter conclusions about 
models’ performance. Individual comparisons between SDT 
and 2HT models were made using the Akaike information 
criterion (AIC) obtained by fitting the models to experi-
mental data from Juola et al. (2019). Cross tabulations 
were constructed to analyze changes in the selection of the 
best individual model (in the comparison between the SDT 
vs. 2HT models) based on the variables included in these 
models. The χ2 test of independences was applied to each 
crosstab, where Phi (φ) was used as a measure of effect size. 
Significance level alpha was set to .05.

AICC = AIC +
[

(2⋅p⋅(p+1))
/

(n–p–1)

]

.
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Results

Accuracy analysis

Figure 10 shows box and whisker plots for individual SEs for 
the estimated parameters of the 2HT model. Despite a slight 
decrease in SEs for the d̂n , d̂o , and ĝj parameters with the inclu-
sion of CL parameters, we observed a clear decrease of SEs 
when CL and RT were simultaneously analyzed. Regarding the 
SDT model (see Fig. 11), we observed a slight reduction of �̂� 
and the ĉk SEs when including both CL and RT.

In summary, by jointly modeling accuracy, confidence and 
speed, the standard errors of the individual parameter esti-
mates have been reduced, especially in 2HT, but also in SDT.

Discrete state versus continuous process

Table 2 displays the percentage of subjects for whom the 
null hypothesis of the χ2 bootstrapped test was rejected (see 
Appendix D Tables 16, 17, 18 and 19 for individual χ2 esti-
mations and critical values obtained through bootstrapping). 
Based on bootstrapped chi-squared tests, we conclude that 

Fig. 10  2HT individual standard errors for detect new, detect old, and 
guess old probability parameter estimates. Note. Box and whisker 
plots for the SEs of the estimated parameters in the 2HT models. 
The bottom and top sides of the boxes are the first and third quartiles 

while the horizontal lines inside the boxes are the median SE values. 
The lower and upper limits of the whiskers represent ±3 standard 
deviations, respectively

Fig. 11  SDT individual standard errors for the sensitivity, variability, 
and decision criteria parameters. Note. Box and whisker plots for the 
SEs of the estimated parameters in the SDT models. The bottom and 

top sides of the boxes are the first and third quartiles while horizontal 
lines inside the boxes are the median SE values. The lower and upper 
limits of the whiskers represent ±3 standard deviations, respectively
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there is apparently no difference in the percentage of sub-
jects with acceptable fits between the SDT and 2HT models. 
In particular, of the 47 subjects, only two (4.3%) showed a 
lack of fit to the classical models. This percentage increases 
when additional DVs are added, reaching almost 60% inad-
equate fits when both RTs and CLs are included. In princi-
ple, this could lead us to think that the choice of the classical 
versions of these models would be the most appropriate. 
As we will see in the results derived from the simulations, 
goodness-of-fit tests are not a good indicator of the relevance 
of the DVs when what really interests the researcher is the 
comparison between models.

Regarding whether recognition memory is best explained 
by a continuous process or by discrete states, we find that, for 
Juola et al.’s (2019) experimental data (see Table 3), when 
not considering CLs nor RTs, there are more individuals 
that are better fit by the continuous SDT model (72.3%) than 
for the discrete 2HT model (27.7%). The same is true when 
considering RTs alone, but here the discrepancy of selec-
tion frequency in favor of SDT models is slightly smaller 
(70.2%). The same holds true when CLs are considered. 
In these situations, there is even a higher selection of the 
SDT model as the better one (80.9% for CL and 87.2% for 
CL+RT). The AICC values for each subject and model can 
be found in Appendix D Tables 16, 17, 18 and 19.

Considering the cross tables of model selection shown in 
Table 4, we observe that model selection when accounting 
for CLs or both CLs and RTs (CL+RT) tends to coincide. 
Specifically, we can observe in Table 4 (A) that in matching 
selections made between models with CL and CL+RT, 38 
subjects’ data are best classified by an SDT model and six 
by a 2HT model, with only three subjects changing their best 
model classification. In fact, we reject the null hypothesis of 
independence between selections made for models including 
CLs and those including CL+RT, with a considerably larger 
effect size compared with the other tests of independence 
(see Table 5 for tests of independence). We also observe 
in Table 4 (E) and (F) that the hypothesis of independence 
between selections made with RTs and those made with CLs 

or CL+RT, respectively, is rejected, although the size effect 
is not as strong as in Table 4 (A). In other words, model 
selections made with CLs or CL+RTs are related to those 
made when including RTs, but there are still quite a few 
inconsistencies between these classifications. Specifically, 
the number of subjects with incongruent classifications 
increases to 11 when comparing the selections made with 
models that include RTs and those that include CLs+RTs, 
and to 12 when considering models that include RTs and 
models that include CLs. Finally, when we analyze the 
classifications made with classical versions of the models, 
Table 4 (B), (C), and (D), we maintain the null hypothesis 
that selections made between classical models and any other 
version are not related to each other.

Discussion

Accuracy improvements

In this section we will discuss the benefits of jointly ana-
lyzing different dependent variables in 2HT and SDT mod-
els. When we only use the frequency of each category of 
responses (Hit/Miss/FA/CR) we may lose information 
regarding other variables intrinsically linked to our experi-
mental design.

Our results indicate that, indeed, the modeling of cat-
egory frequencies with their confidence ratings and RTs 
together reduces SEs and thus improve the precision of 
the classical parameter estimates of the 2HT and SDT 
models. However, the informativeness is fully depend-
ent on the variables to be included in each model. In our 
case, including RTs alone does not improve the precision 
of the estimates. This does not mean that the RTs do not 
reduce SEs, but only that they do so in conjunction with 

Table 2  Frequency of hypothesis rejection of the bootstrap goodness-
of-fit test

Note. The first column indicates the 2HT and SDT model versions, 
the second and third columns indicate the frequency and percentage 
of subjects in which the null hypothesis of the χ2 bootstrapped good-
ness-of-fit test is not rejected, for the 2HT and 2HT model, respec-
tively.

Model 2HT SDT

Accuracy 2 (4.26%) 2 (4.26%)
CLs 25 (53.2%) 21 (44.7%)
RTs 24 (51.1%) 25 (53.2%)
CLs+RTs 27 (57.4%) 28 (59.6%)

Table 3  Best model selection

Note. SDT vs. 2HT model comparisons are made by using classic 
model versions (Classic rows), that also include confidence levels 
data (CL rows), reaction time data (RT rows), and that uses all men-
tioned data (CL+RT rows). The number of parameters included in 
each model appears in the n.par column. The number of times and the 
percentage of best fit selection appears in the AIC.best columns.

 Model n.par AIC.best %AIC.best

Classic SDT 5 34 72.3
2HT 5 13 27.7

CL SDT 9 38 80.9
2HT 13 9 19.1

RT SDT 9 33 70.2
2HT 9 14 29.8

CL+RT SDT 21 41 87.2
2HT 25 6 12.8
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CLs. On the other hand, including CLs leads to a slight 
reduction of the SEs, which means that the precision of 
the joint estimation of CLs and RTs is greater than that of 
the separate estimations of the two variables.

Recognition memory predictions

The SDT and 2HT models in their classical versions do not 
allow the simultaneous study of RTs, CLs, and accuracy.

To work with these variables authors such as Juola et al. 
(2019) performed three separate analyses to study the effects 
of (1) experimental manipulation of target rates; (2) cluster-
ing of responses into confidence bins; and (3) clustering of 
responses into RT bins. This has a certain limitation. First, 
CLs and RTs are not studied as dependent variables, so we 
cannot study the interaction between dependent variables, 
nor can we estimate latent CLs and RTs (e.g., separate esti-
mates for RTs of detect old and guess old states). Second, 
trials from different blocks of relative target frequency are 
clustered in the same CL and RT bins and may interact in 
a masked way with the estimates from each model. Third, 
doing multiple separate analyses increases the risk of Type I 
errors and may encourage reporting only partial information 
when one variable has significant effects, but the other does 
not. The use of MPT-DCs models, however, allows us to 
overcome the above methodological difficulties while study-
ing the compatibility of the theoretical hypotheses reported 
in the literature.

As expected, we found that the probability of guessing 
old, for the 2HT model, and the decision criterion between 
“new”/“old” responses, for the SDT model, changed mono-
tonically with relative target frequency; the former being a 
direct relationship and the latter an inverse one. This pattern 
agrees with the analyses of the effect of aggregating data 
according to the relative frequency of targets in the Juola 
et al. (2019) study, in which the value of g decreased and 
the criterion values ( c1 to c3) shifted from left to the right as 
the target frequencies decreased (see Appendix C Figs. 13, 
14, 15, 16 and 17).

Table 4  Crosstabs for selection of the best model according to the variables included

Note. Crosstabs for model selection are made between the following model version comparisons: CL and CL+RT model (A), Classic and RT 
(B), Classic and CL+RT (C), Classic and CL (D), RT and CL+RT (E), and RT and CL (F). The cells show the number of times a model was 
selected as the best one.

A CL+RT Total B RT Total
SDT 2HT SDT 2HT

CL SDT 38 0 38 Classic SDT 26 9 35
2HT 3 6 9 2HT 7 5 12

Total 41 6 47 Total 33 14 47
C CL+RT Total D CL Total

SDT 2HT SDT 2HT
Classic SDT 29 6 35 Classic SDT 27 11 38

2HT 12 0 12 2HT 8 1 8
Total 41 6 47 Total 35 12 47
E CL+RT Total F CL Total

SDT 2HT SDT 2HT
RT SDT 31 2 33 RT SDT 30 3 33

2HT 10 4 12 2HT 8 14 14
Total 41 6 47 Total 38 9 47

Table 5  Test of independence for selection crosstabs

Note. The values of the χ2 statistic of the tests of independence 
between model selection patterns found in Table 5 are in the second 
column, while each row of the first column indicates the crosstabs on 
which the test is performed (from A to F). The following columns 
present the degrees of freedom (gl), the p value (p), and the effect size 
(φ) of the test.

Crosstab χ2 gl p φ

A 29.41 1 >.001 .786
B 1.09 1 .287 .297
C 2.36 1 .125 .224
D 1.22 1 .27 .161
E 4.47 1 .034 .308
F 7.085 1 .013 .393
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The 2HT-CL-RT model was consistent with evidence 
relating detection responses to high confidence. High-confi-
dence responses were faster than medium or low-confidence 
responses. However, when we separated this confidence 
probability distribution by states, we found some peculiari-
ties. For example, the inverse relationship between RTs and 
CLs holds for all states but guess old states, where we actu-
ally find shorter RTs in low-confidence responses than in 
medium confidence responses. Note that these results could 
not be detected without a model capable of studying the 
interactions between the RTs of CLs and latent cognitive 
states (detect old/detect new/guess old/guess new).

As for the SDT model, some of the expected interac-
tion trends were also not fulfilled. For instance, there 
is a clear pattern of faster responses at high CLs than at 
medium and low CLs in all categories except FA. That is, 
we again observe a different pattern of responses between 
“new”/“old” decisions.

Thus, the distribution of response times depends on the 
confidence level and the cognitive state (in 2HT) or response 
type (in SDT), and this result contradicts the idea that RT 
and CLs are measuring the same thing (Thomas & Myers, 
1972; Weidemann & Kahana, 2016). These results also dem-
onstrate the need for us to estimate the variables jointly to 
unravel the complexity of the relationships between them.

Discrete‑state versus continuous‑process dilemma

The debate on whether recognition processes are discrete or 
continuous has been carried out with the classical versions 
of the SDT and 2HT models. Now that we have the data with 
MPT-DC models, with increased validity and the integration 
of continuous and discrete variables, we may draw a differ-
ent and more complete set of conclusions.

The result of comparing discrete and continuous mod-
els is different if we treat quantitative variables as depend-
ent variables, as proposed here, or as factors, as in Juola 
et al. (2019). What we do find in common is that it does not 
appear that all subjects have the same model of best fit, and 
that the proportions of subjects who follow a continuous or 
discrete model vary when different variables are considered.

These variations can have implications for comparisons 
between non-nested models, such as SDT and 2HT. Let’s 
consider a scenario in which an experimenter compares 
the SDT and 2HT models when RTs alone are included. In 
this case, if only the AICs of both models are compared, 
it could be concluded that there is an important number of 
subjects that fit the 2HT model better than the SDT model 
(27.7%). However, as discussed later, this last conclusion 
would be misleading because models that solely incorpo-
rate RTs do not appear to be based on the best variable to 
include in this particular comparison, and if we were to 
take into account other variables we would see that this 

percentage is considerably lower. Hence, not all the vari-
ables that can be included in the models hold the same 
level of validity or relevance, indicating the importance of 
judicious selection among the variables to be considered 
and manipulated.

In contrast, our results when classifying participants 
using CL and RT or only CL, as dependent variables, are 
much more consistent with each other than those using only 
RT and allow us to make a more appropriate model selec-
tion. In the following section, we will justify this statement 
by means of a simulation study.

Model simulations

In order to study possible explanations and thus to verify in 
which situations the comparison between models is more 
accurate, we have used a simulation approach. Specifically, 
we generated data following each 2HT and SDT model ver-
sion (Classic, CL, RT, and CL+RT versions), with param-
eter values based on each model’s estimations when fitted to 
data from Juola et al. (2019). We then fitted the various ver-
sions of the SDT and 2HT models to the simulated data and 
performed a model comparison based on AIC. Simulation 
details and results are described in Appendix E Tables 20, 
21, 22 and 23.

Based on the simulations performed, the models that 
include CLs or CLs and RTs together resulted in selection 
of the true model for a large majority of subjects. How-
ever, when neither of these variables was considered, 
nearly one-third of the subjects resulted in incorrect model 
comparisons. Considering the results of the simulations, 
we can expect that the individual model selections for the 
experimental data are more reliable when based on CL or 
CL+RT and, therefore, the individual selections when CL 
and CL+RT are taken into account should be consistent with 
each other.

With the simulation results in mind, it is not surpris-
ing that of the 47 participants in the Juola et al. (2019) 
experiment, there are 38 subjects whose data are best fit 
by a continuous SDT model and 9 by a discrete 2HT model 
when CLs are analyzed. On the other hand, 41 subjects’ 
data were best fit by the SDT model and 6 by the 2HT 
model, leaving only three subjects with inconsistent best-
model selections (see Table 4). Furthermore, the results of 
the simulations indicated that when CLs and RTs were not 
modeled, the frequency of selection of the true model was 
lower, so one would expect a decrease in the frequency 
of selection of the true model in the experimental data 
leading to the erroneous conclusion that there will be an 
increased number of subjects who fit the 2HT better than 
the SDT model when comparing classical models or mod-
els that only include RTs. This is precisely what we found 
when fitting experimental data from Juola et al. (2019).
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Thus, based on the simulation results, the usefulness 
of MPT-DC can be improved with the appropriate selec-
tion and inclusion of multiple dependent variables. For 
example, the conclusions as to whether the recognition 
model of each participant is better described by a discrete 
or a continuous model depends on the selection of such 
variables. Yet why is it that only when CL and RT, or 
only CL, are included, that the true models are selected 
as the best ones? One possible reason is that the MPT-
DC model takes advantage of information that allows 
it to differentiate model branches (e.g., CLs are higher 
in detecting old than in guessing old) thus improving 
estimates and power. This issue has been analyzed by 
simulations in the study by Heck et al. (2018b), where it 
was found that, when the distributions of RTs are equal 
for the different branches, the model does not benefit 
from the inclusion of this variable and therefore the 
estimates will be equivalent to those of a classical MPT 
model. Another possible explanation is that comparisons 
between models with RT with two bins are worse than 
those with CLs with three bins, not due to the amount 
of information each variable yields but to the number 
of bins each variable has. Increasing the number of bins 
can allow us to be more precise about the shape of the 
variable’s distribution. However, this also means that 
we must discretize the same set of observed data into 
more subcategories and, therefore, there is a greater risk 
of having bins with very few or even no observations. 
This might affect the estimation capability of the model, 
and thereby prevent the calculation of standard errors 
of estimation and the use of chi-squared fit indices. In 
fact, we have not been able to fit 2HT models or estimate 
standard errors with three RT bins, since the information 
matrix was not invertible, something that can occur with 
insufficient numbers of observations per bin. Unfortu-
nately, despite having a relatively high number of trials 
per subject (100 trials per tree and subject in our case), 
we cannot ensure adequate observations solely based on 
this number. This is because the combination of branches 
and bins of RTs and CLs can lead to sparse data in certain 
cells, particularly when dealing with extreme probabili-
ties. Nonetheless, the choice of the number of RT bins 
will depend, in practice, on the substantive question. If 
the question of interest lies in a measure of the relative 
speed of cognitive processes, two RT categories may be 
sufficient. For example, stating responses of detection 
states as faster than those of guessing implies that the 
probability of being fast is greater than that of guessing, 
which does not necessarily require a three-bin catego-
rization of slow, medium, and fast responses. A simple 
division into slow and fast may suffice.

Conclusion

The purpose of the present study is to analyze the advan-
tages of jointly modeling the continuous and discrete vari-
ables typically studied in recognition memory paradigms 
using the 2HT and SDT models. To answer this question, 
we have explored whether the inclusion of CLs and RTs in 
MPT-DC models (1) improves the estimation accuracy of 
classical recognition models, (2) allows us to address new 
research questions, and (3) encourages us to rethink old 
ones (i.e., the discrete vs. continuous dilemma).

Concerning the first of these goals, we can conclude 
that, indeed, the inclusion of variables by means of MPT-
DC allows the reduction of standard errors for parameter 
estimates. However, what may be true for one model may 
not be true for another. Specifically, we find a reduction 
in the uncertainty of the estimates when adding CL in the 
2HT models, but only when CL and RT are added simul-
taneously is there an obvious improvement in accuracy 
in both SDT and 2HT models. It should be mentioned 
that this result is not necessarily generalizable to other 
quantitative variables of interest (e.g., eye tracking, mouse 
trajectory) or to other models (e.g., the two-low-threshold 
and one-high-threshold model). Therefore, the experi-
menter wishing to use MPT-DC must rely on data (e.g., 
comparing models) and theory to choose which variables 
to include in the MPT-DC model.

As to whether MPT-DC can expand the scope of test-
able research questions, we have concluded that by jointly 
modeling CL and RT we can study effects that cannot be 
studied when analyzing these variables separately. Juola 
et al. (2019) studied the effects of grouping the data into 
relative target frequency blocks; confidence level blocks; 
or RT blocks, but not all three variables at once. The data 
indicated that, unlike some previous research indicat-
ing similar effects of these variables, all three methods 
of grouping the data yielded differences in the receiver-
operating characteristic (ROC) curves. However, it was 
not possible to estimate the distribution of CLs or RTs 
associated with each response category or cognitive state, 
nor to study the interactions between the two variables 
or how they might interact with relative target frequency. 
On the contrary, with the 2HT-CL-RT and SDT-CL-RT 
models, we were able to detect, among others effects, pat-
terns such as (a) “old” responses tend to be of high con-
fidence, and confidence is generally higher for responses 
emanating from the detect old state than from the guess 
states; (b) low-confidence responses are more likely than 
medium-confidence responses only for the guess old state; 
and (c) the inverse relationship between CLs and RTs is 
not fulfilled in the guess old state in 2HT models nor in 
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the FA categories in SDT models. That said, studying the 
continuous variables simultaneously as dependent vari-
ables allows us to make inferences about the relationships 
between processes and their outcomes in an integrated 
manner, avoiding methodological issues derived from 
including quantitative variables as factors. In addition, 
although it was not the aim of our study, MPT-DC models 
can be used to disentangle response strategies or styles 
(Heck & Erdfelder, 2020). For example, whether extreme 
styles of confidence ratings tend to result in “high-fast” 
and “low-fast” responses rather than more typical response 
styles that result in “high-fast” and “low-slow” responses.

To address the third research question, on whether our 
modeling proposal allows us to reach new conclusions on 
old research questions, we faced the continuous-process 
versus discrete-state recognition model dilemma. Our 
results allowed us to reconsider several aspects of this mat-
ter. First, our results suggest that the question of whether 
recognition memory is continuous or discrete may need to 
be rephrased. Do subjects always fit a discrete or a continu-
ous model better? The answer to that question seems to be 
negative. Our results indicate that only 23 out of 47 sub-
jects always fit the same model, regardless of the variable 
included. This leads us to the second question. Does the 
validity of the model comparison depend on measured vari-
ables? On one hand, we find that adding more DVs, regard-
less of the model fitted or the type of DV added, apparently 
can have a negative impact on the goodness-of-fit of the 
model. The more DVs we added, the number of subjects’ 
data for which the goodness-of-fit test was maintained 
decreased. This seems to indicate that these tests do not tell 
us much about the fit of each model, but rather that the fit 
is influenced by the number of categories we are modeling. 
As mentioned above, by adding more categories, we subdi-
vide the number of trials into more cells, which decreases 
the number of observations per category and seems to have 
an effect on the estimate of χ2 (Davis-Stober, 2009). On 
the contrary, it is worth noting that our simulation results 
indicate that only when comparing 2HT and SDT models 
that include CL and RT simultaneously or CLs alone can 
we actually identify the model that generates data correctly. 
The experimental results have also been consistent with 
the simulations, since if the selections made with CL and 
CL+RT are correct, as indicated by the simulations, then 
model selections made with CL or CL+RT should match, 
which is what we found when using the actual data. In 
short, according to our results, the comparison between 
discrete and continuous models depends on the included 
variables, and we should give more consideration to the 
model selection made when both CL and RTs or only 
CLs are taken into account. Third, individual differences 

impede us from answering the dilemma in a deterministic 
way. Bearing in mind the relevant variables analyzed in 
the particular sample used by Juola et al. (2019), there are 
between 81% and 87% of subjects’ data that fit better to a 
continuous model, and between 19% and 13% to a discrete 
one. This could indicate that participants have different 
response strategies Tourangeau et al. (2000), or that other 
factors come into play that have not been studied, which 
make the data fit better to one model or the other, or even 
that there is a more general or hybrid model, encompassing 
both the SDT and 2HT models.

The use of MPT-DC models has demonstrated their 
methodological and theoretical usefulness for modeling 
the effects of discrete and quantitative variables simulta-
neously in a recognition memory paradigm. However, as 
we have discussed above, the experimenter must choose 
which variables are most relevant to study. The motiva-
tion for choosing one or another variable may be substan-
tial to the results of both theoretical and methodological 
considerations. In this study we have seen that the accu-
racy of the estimated parameters and model comparisons 
improve when modeling CLs and CLs with RTs. How-
ever, with another sample or other models this conclusion 
might be different. To construct a protocol on how to 
select the variables of interest, new methodological stud-
ies would have to be carried out (e.g., those that manipu-
late the number of bins and observations, the distribu-
tion of the variable to be included, the cognitive process 
probabilities). Furthermore, due to the relative recency 
of the MPT-DC models, several lines of research on the 
use of these models remain open. Among them we high-
light the interest in studying which MPT-DC procedure 
is optimal for each experimental situation. If the current 
procedures differ in how they include the data, it seems 
logical to think that depending on the distribution of the 
data and the knowledge we have about it, different proce-
dures should apply to different situations. For example, it 
has been impossible for us to establish three RT bins due 
to insufficient observations per bin. This problem might 
be solved by using a parameterized MPT-DC procedure 
since, unlike the nonparametric one, it uses the data set 
instead of discretizing it into bins. On the other hand, 
as we have suggested, due to the interest that MPT-DC 
has as a method to include variables in SDT models, we 
would have to modify or create libraries that allow the use 
of MPT-DC parametric procedures adapted to continuous 
models, something that to our knowledge is not currently 
possible. Hence, despite the encouraging results of our 
study in favor of the use of MPT-DC models, there are 
still several practical aspects to be developed and inves-
tigated regarding their use.
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Alternative modeling approaches

In addition to Heck and Erdfelder’s (2016) proposal to 
extend the MPT to account for continuous variables using 
nonparametric methods, there are parametric versions 
such as those by Klauer and Kellen (2018) and Heck et al. 
(2018a) that fit fully continuous RT distributions. Klauer 
and Kellen’s (2018) version is specialized for fitting RTs 
assumed to follow ex-Gaussian distributions and assumes 
sequential processes. One of its major advantages is the 
ability to study the duration of each cognitive process 
in the sequence. This procedure can be fitted using the 
“RT-MPT” library (Klauer & Kellen, 2018), although it 
is designed specifically for RTs. However, it would not 
be difficult to extend the library to other distributions and 
thus make it applicable to other continuous variables. 
Additionally, Klauer and Kellen’s (2018) proposal requires 
serial processes and does not allow for parallel processes, 
unlike the proposals of Heck and Erdfelder (2016) and 
Heck et al. (2018b). In summary, the latter two proposals 
have the advantage of being applicable to a multitude of 
continuous variables (RT, eye tracking, cursor movement) 
and are flexible enough to study a wide variety of models 
in social psychology, basic psychology, neuroscience, and 
more, at the cost of being less explicit about the true nature 
of the processes involved. For example, they estimate the 
distributions of branches but do not specify the distribu-
tional components of the processes involved in them. Fur-
thermore, Starns (2018) proposed a model called the race 
model, which has a similar structure to an MPT-DC model 
but integrates RTs by studying the time between the start 
of a trial and the occurrence of a detection or the partici-
pant’s decision to guess. This model does not allow for the 
study of process durations but rather estimates how long 
participants take before making a guess; a crucial point 
for understanding the trade-off between speed and accu-
racy. An alternative to the race model in the nonparamet-
ric MPT-DC framework has been proposed by Heck and 
Erdfelder (2020).

When it comes to fitting models to a dataset with multiple 
subjects, we usually must choose between fitting a model to 
aggregated data from multiple subjects or fitting a model for 
each individual subject. In this choice, it is often preferred 
to fit MPT models individually as aggregated data can alter 
the shape of the distributions we want to study. However, 
individual fits can be quite poor when there are few obser-
vations per subject (Chechile, 2009). As a solution to this 
dilemma, hierarchical MPT-DC models allow us to estimate 

distribution shapes quite reliably, even in situations with few 
observations per subject. However, hierarchical MPT-DC 
fits have two issues when used to derive individual fits. The 
first is that they assume that all subjects follow the same 
model. It is worth noting that our data, supported by simula-
tions, indicates that some subjects fit better to SDT models 
while others fit better to 2HT models (it is possible that there 
is a general model that encompasses both SDT and 2HT, 
which would allow for the application of a single hierar-
chical model). The second issue is that current hierarchi-
cal libraries, for parametric MPT-DC models (“RT-MPT” 
from Klauer & Kellen, 2018) and nonparametric models 
(e.g., “TreeBUGS” from Heck, Arnold, et al., 2018a; see 
also Nestler & Erdfelder, 2023, for a random effects MPT 
modelling approach.) do not allow fitting of SDT models 
reparametrized as multinomial models. Therefore, it was 
not feasible to use hierarchical MPT-DC procedure in the 
present study.

On the other hand, instead of using MPT-DC mod-
els, one can turn to other types of cognitive models that 
allow for the joint analysis of continuous and discrete 
variables. Among these, diffusion models stand out as a 
specific version of evidence-accumulation models that 
can be used to analyze recognition memory. For exam-
ple, the circular diffusion model of continuous-outcome 
source (Zhou et al., 2021) is a circular model, adapted 
from the diffusion model, applied to a continuous-source 
memory retrieval task. Unlike existing source retrieval 
models that attribute all response variability to mem-
ory, the circular diffusion model decomposes the noise 
into variability arising from both memory and decision-
making processes. These findings suggest that in the 
task of continuous-source memory recall, there exists 
a memory strength threshold that must be reached to 
retrieve information about the stimulus source. Below 
this threshold, no information is retrieved, leading to 
guessing responses. Furthermore, the study suggests 
that participants’ confidence is controlled in an old/new 
recognition task, ruling out the possibility that partici-
pants’ guesses are simply due to a lack of recognition of 
the items. Additionally, we have the models proposed by 
Donkin et al. (2013), that combine a discrete state rep-
resentation with a particular sequential sampling model 
called the linear ballistic accumulator (LBA; Brown & 
Heathcote, 2008). This model has an accumulator for 
each available response, and the response is triggered 
when the amount of evidence in one of the accumula-
tors reaches a specific criterion. The LBA model uses 
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evidence accumulators for each of the possible responses 
in the task (e.g., “change” or “no change”). The model 
assumes that some trials are “guessing” trials, where the 
average accumulation rate is the same for both accumula-
tors, and the remaining trials are “memory” trials, where 
accumulation rates are determined by the presented stim-
ulus. In other words, the distribution of accumulation 
rates across trials is a discrete mixture of various types 
of trials.

Similarly, attempts have been made to model continu-
ous variables such as RTs using SDT models. According 
to strength theory, both RTs and CLs can be defined as a 
function of distance to a criterion. For example, an expo-
nential decay function was used to fit the distribution of 
RTs as a function of distance to criteria (Atkinson & Juola, 
1973). However, this approach did not produce a significant 
improvement in the model fit to justify the additional param-
eters. It is crucial to note that these functions usually assume 
an inverse relationship between CL and RT. However, if this 
assumption is not entirely true, it could lead to incorrect pre-
dictions. To address this problem, MPT-DC models estimate 
RTs distributions within each branch, which allows us to 
examine whether the inverse relationship between RTs and 
CLs holds across branches. In our research, we have found 
that this is not the case. This knowledge of the relationship 
between RT and CL is valuable, as it helps to avoid poten-
tially erroneous predictions based on nondirectly observable 
assumptions that do not hold when fitted to the real data.

In conclusion, depending on our theoretical models 
(e.g., models of continuous processes versus models of 
discrete processes), the type of theoretical hypotheses 
we want to test as researchers (e.g., hypotheses regard-
ing fast/slow responses versus expectations of changes in 
the parameters of continuous RT distributions), and the 
distribution of our data, it may be better to employ one 
approach over the other. However, it would be interest-
ing to leverage the strengths of each modeling approach 
to address the same scientific objective, thereby gaining 
robustness in our conclusions through converging evi-
dence. By combining these approaches, we can enhance 
our understanding and provide more comprehensive 
insights into the cognitive processes under investigation.

Appendix A. Model formulation

In this article we have shown both 2HT and SDT models 
as MPTs, as well as several examples in which a branch 
of the model can be extended, by means of an MPT-DC, 
to integrate CLs and/or RTs. In MPTs, the sequences of 
processes or nodes form the branches of the tree model. To 
obtain the probability of a given branch, we must multiply 
the probabilities of the nodes that belong to that branch. 
Likewise, the probability of the observed responses is the 
result of adding the probabilities of those branches that 
give rise to the same response. In the following, we show 
the equations that allow modeling the observed responses 
of all the models developed in this study.

It should be mentioned that, following Province and 
Rouder (2012), CLs and RTs distributions are condition-
ally independent, which means that the distribution of the 
variables associated with a state will be identical regardless 
of how the state was reached. This leads to the following 
assumptions:

(1) If there are two paths (i.e., MPT branches) to reach 
the same state, the distribution of CLs and RTs is the 
same for all existing paths. Therefore, the CL and RT 
distributions associated with the guess old states will be 
identical for the old or the new stimulus and the same 
applies to the confidence distribution associated with 
the guess new states.

(2) The CL and RT distributions associated with a cog-
nitive state do not change by an increase or decrease 
in the probability of entering that state. Therefore, 
changes in the probability of guessing states resulting 
from manipulation of the proportion of targets pre-
sented will not affect the CLs of the guess old and guess 
new states.

Table 6  Two-high-threshold model

Stimulus 2HT Category

Old do + (1 − do) · gj Hit
(1 − do) · (1 − gj) Miss

New (1 − dn) · gj FA
dn + (1 − dn) · (1 − gj) CR
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Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13

Table 7  Confidence levels for the two-high-threshold model

Stimulus 2HT-CL Category CL

Old do · Ldo1 + (1 − do) · gj · Lgo1 Hit high
do · (1 − Ldo1) · Ldo2 + (1 − do) · gj · (1 − Lgo1) · Lgo2 Hit medium
do · (1 − Ldo1) · (1 − Ldo2) + (1 − do) · gj · (1 − Lgo1) · (1 − Lgo2) Hit low
(1 − do) · (1 − gj) · Lgn1 Miss high
(1 − do) · (1 − gj) · (1 − Lgn1) · Lgn2 Miss medium
(1 − do) · (1 − gj) · (1 − Lgn1) · (1 − Lgn2) Miss low

New (1 − dn) · gj · Lgo1 FA high
(1 − dn) · gj · (1 − Lgo1) · Lgo2 FA medium
(1 − dn) · gj · (1 − Lgo1) · (1 − Lgo2) FA low
dn · Ldn1 + (1 − dn) · (1 − gj) · Lgn1 CR high
dn · (1 − Ldn1) · Ldn2 + (1 − dn) · (1 − gj) · (1 − Lgn1) · Lgn2 CR medium
dn · (1 − Ldn1) · (1 − Ldn2) + (1 − dn) · (1 − gj) · (1 − Lgn1) · (1 − Lgn2) CR low

Table 8  Reaction times for the two-high-threshold model

Stimulus 2HT-RT CategoryRT

Old do · Hdo1 + (1 − do) · gj · Hgo1 Hit fast
do · (1 − Hdo1) + (1 − do) · gj · (1 − Hgo1) Hit slow
(1 − do) · (1 − gj) · Hgn1 Miss fast
(1 − do) · (1 − gj) · (1 − Hgn1) Miss slow

New (1 − dn) · gj · Hgo1 FA fast
(1 − dn) · gj · (1 − Hgo1) FA slow
dn · Hdn1 + (1 − dn) · (1 − gj) · Hgn1 CR fast
dn · (1 − Hdn1) + (1 − dn) · (1 − gj) · (1 − 

Hgn1)
CR slow
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Table 9  Confidence levels and reaction times for the two-high-threshold model

Stimulus 2HT-CL-RT Category CL RT

Old do · Ldo1 · Hdo1 + (1 − do) · gj · Lgo1 · Hgo1 Hit high fast
do · Ldo1 · (1 − Hdo1) + (1 − do) · gj · Lgo1 · (1 − Hgo1) Hit high slow
do · (1 − Ldo1) · Ldo2 · Hdo2 + (1 − do) · gj · (1 − Lgo1) · Lgo2 · Hgo2 Hit medium fast
do · (1 − Ldo1) · Ldo2 · (1 − Hdo2) + (1 − do) · gj · (1 − Lgo1) · Lgo2 · (1 − Hgo2) Hit medium slow
do · (1 − Ldo1) · (1 − Ldo2) · Hdo3 + (1 − do) · gj · (1 − Lgo1) · (1 − Lgo2) · Hgo3 Hit low fast
do · (1 − Ldo1) · (1 − Ldo2) · (1 − Hdo3) + (1 − do) · gj · (1 − Lgo1) · (1 − Lgo2) · (1 − Hgo3) Hit low slow
(1 − do) · (1 − gj) · Lgn1 · Hgn1 Miss high fast
(1 − do) · (1 − gj) · Lgn1 · (1 − Hgn1) Miss high slow
(1 − do) · (1 − gj) · (1 − Lgn1) · Lgn2 · Hgn2 Miss medium fast
(1 − do) · (1 − gj) · (1 − Lgn1) · Lgn2 · (1 − Hgn2) Miss medium slow
(1 − do) · (1 − gj) · (1 − Lgn1) · (1 − Lgn2) · Hgn3 Miss low fast
(1 − do) · (1 − gj) · (1 − Lgn1) · (1 − Lgn2) · (1 − Hgn3) Miss low slow

New (1 − dn) · gj · Lgo1 · Hgo1 FA high fast
(1 − dn) · gj · Lgo1 · (1 − Hgo1) FA high slow
(1 − dn) · gj · (1 − Lgo1) · Lgo2 · Hgo2 FA medium fast
(1 − dn) · gj · (1 − Lgo1) · Lgo2 · (1 − Hgo2) FA medium slow
(1 − dn) · gj · (1 − Lgo1) · (1 − Lgo2) · Hgo3 FA low fast
(1 − dn) · gj · (1 − Lgo1) · (1 − Lgo2) · (1 − Hgo3) FA low slow
dn · Ldn1 · Hdn1 + (1 − dn) · (1 − gj) · Lgn1 · Hgn1 CR high fast
dn · Ldn1 · (1 − Hdn1) + (1 − dn) · (1 − gj) · Lgn1 · (1 − Hgn1) CR high slow
dn · (1 − Ldn1) · Ldn2 · Hdn2 + (1 − dn) · (1 − gj) · (1 − Lgn1) · Lgn2 · Hgn2 CR medium fast
dn · (1 − Ldn1) · Ldn2 · (1 − Hdn2) + (1 − dn) · (1 − gj) · (1 − Lgn1) · Lgn2 · (1 − Hgn2) CR medium slow
dn · (1 − Ldn1) · (1 − Ldn2) · Hdn3 + (1 − dn) · (1 − gj) · (1 − Lgn1) · (1 − Lgn2) · Hgn3 CR low fast
dn · (1 − Ldn1) · (1 − Ldn2) · (1 − Hdn3) + (1 − dn) · (1 − gj) · (1 − Lgn1) · (1 − Lgn2) · (1 − Hgn3) CR low slow

Table 10  Signal detection theory model

Stimulus SDT Category

Old
1 − ϕ

(

cj−d
�

�

)

Hit

ϕ

(

cj−d
�

�

)

Miss

New 1 − ϕ(cj) FA
ϕ(cj) CR

Table 11  Reaction times for the signal detection theory model

Stimulus SDT-RT Category RT

Old
1 − ϕ

(

ck−d
�

�

)

⋅ Hso1
Hit fast

1 − ϕ

(

ck−d
�

�

)

⋅

(

1 − Hso1
) Hit slow

ϕ

(

ck−d
�

�

)

⋅ Hsn1
Miss fast

ϕ

(

ck−d
�

�

)

⋅

(

1 − Hsn1
) Miss slow

New [1 − ϕ(ck)] · Hro1 FA fast
[1 − ϕ(ck)] · (1 − Hro1) FA slow
ϕ(ck) · Hrn1 CR fast
ϕ(ck) · (1 − Hrn1) CR slow
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Table 12  Confidence levels for the signal detection theory model

Stimulus SDT-CL Category CL

Old
1 − ϕ

(

Δc5+Δc4+Δc3+Δc2+Δc1j−d
�

�

)

Hit high

ϕ

(

Δc5+Δc4+Δc3+Δc2+Δc1j−d
�

�

)

− ϕ

(

Δc4+Δc3+Δc2+Δc1j−d
�

�

)

Hit medium

ϕ

(

Δc4+Δc3+Δc2+Δc1j−d
�

�

)

− ϕ

(

Δc3+Δc2+Δc1j−d
�

�

)

Hit low

ϕ

(

Δc1j−d
�

�

)

Miss high

ϕ

(

Δc2+Δc1j−d
�

�

)

− ϕ

(

Δc1j−d
�

�

)

Miss medium

ϕ

(

Δc3+Δc2+Δc1j−d
�

�

)

− ϕ

(

Δc2+Δc1j−d
�

�

)

Miss low

New 1 − ϕ(∆c5 + ∆c4 + ∆c3 + ∆c2 + ∆c1j) FA high
ϕ(∆c5 + ∆c4 + ∆c3 + ∆c2 + ∆c1j) − ϕ(∆c4 + ∆c3 + ∆c2 + ∆c1j) FA medium
ϕ(∆c4 + ∆c3 + ∆c2 + ∆c1j) − ϕ(∆c3 + ∆c2 + ∆c1j) FA low
ϕ(∆c1j) CR high
ϕ(∆c2 + ∆c1j) − ϕ(∆c1j) CR medium
ϕ(∆c3 + ∆c2 + ∆c1j) − ϕ(∆c2 + ∆c1j) CR low
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Appendix B. Description analysis 
for aggregated data

Table 14
Table 15

Table 13  Confidence Levels and Reaction Times for the Signal Detection Theory Model.

Stimulus SDT-CL-RT Category CL RT

Old
[

1 − ϕ

(

Δc5+Δc4+Δc3+Δc2+Δc1j−d
�

�

)]

⋅ Hso1
Hit high fast

[

1 − ϕ

(

Δc5+Δc4+Δc3+Δc2+Δc1j−d
�

�

)]

⋅

(

1 − Hso1
) Hit medium slow

[

ϕ

(

Δc5+Δc4+Δc3+Δc2+Δc1j−d
�

�

)

− ϕ

(

Δc4+Δc3+Δc2+Δc1j−d
�

�

)]

⋅

(

Hso2
) Hit low fast

[

ϕ

(

Δc5+Δc4+Δc3+Δc2+Δc1j−d
�

�

)

− ϕ

(

Δc4+Δc3+Δc2+Δc1j−d
�

�

)]

⋅

(

1 − Hso2
) Hit high slow

[

ϕ

(

Δc4+Δc3+Δc2+Δc1j−d
�

�

)

− ϕ

(

Δc3+Δc2+Δc1j−d
�

�

)]

⋅

(

Hso3
) Hit medium fast

[

ϕ

(

Δc4+Δc3+Δc2+Δc1j−d
�

�

)

− ϕ

(

Δc3+Δc2+Δc1j−d
�

�

)]

⋅

(

Hso3
) Hit low slow

ϕ

(

Δc1j−d
�

�

)

⋅

(

Hsn1
) Miss high fast

ϕ

(

Δc1j−d
�

�

)

⋅

(

1 − Hsn1
) Miss medium slow

[

ϕ

(

Δc2+Δc1j−d
�

�

)

− ϕ

(

Δc1j−d
�

�

)]

⋅

(

Hsn2
) Miss low fast

[

ϕ

(

Δc2+Δc1j−d
�

�

)

− ϕ

(

Δc1j−d
�

�

)]

⋅

(

1 − Hsn2
) Miss high slow

[

ϕ

(

Δc3+Δc2+Δc1j−d
�

�

)

− ϕ

(

Δc2+Δc1j−d
�

�

)]

⋅

(

Hsn3
) Miss medium fast

[

ϕ

(

Δc3+Δc2+Δc1j−d
�

�

)

− ϕ

(

Δc2+Δc1j−d
�

�

)]

⋅

(

1 − Hsn3
) Miss low slow

New [1 − ϕ(∆c5 + ∆c4 + ∆c3 + ∆c2 + ∆c1j)] · Hro1 FA high fast
[1 − ϕ(∆c5 + ∆c4 + ∆c3 + ∆c2 + ∆c1j)] · (1 − Hro1) FA high slow
[ϕ(∆c5 + ∆c4 + ∆c3 + ∆c2 + ∆c1j) − ϕ(∆c4 + ∆c3 + ∆c2 + ∆c1j)] · (Hro2) FA medium fast
[ϕ(∆c5 + ∆c4 + ∆c3 + ∆c2 + ∆c1j) − ϕ(∆c4 + ∆c3 + ∆c2 + ∆c1j)] · (1 − Hro2) FA medium slow
[ϕ(∆c4 + ∆c3 + ∆c2 + ∆c1j) − ϕ(∆c3 + ∆c2 + ∆c1j)] · (Hro3) FA low fast
[ϕ(∆c4 + ∆c3 + ∆c2 + ∆c1j) − ϕ(∆c3 + ∆c2 + ∆c1j)] · (1 − Hro3) FA low slow
ϕ(∆c1j) · (Hrn1) CR high fast
ϕ(∆c1j) · (1 − Hrn1) CR high slow
[ϕ(∆c2 + ∆c1j) − ϕ(∆c1j)] · (Hrn2) CR medium fast
[ϕ(∆c2 + ∆c1j) − ϕ(∆c1j)] · (1 − Hrn2) CR medium slow
[ϕ(∆c3 + ∆c2 + ∆c1j) − ϕ(∆c2 + ∆c1j)] · (Hrn3) CR low fast
[ϕ(∆c3 + ∆c2 + ∆c1j) − ϕ(∆c2 + ∆c1j)] · (1 − Hrn3) CR low slow

Table 14  Frequency by category and confidence

Note. The frequency for the all subjects, N = 47, of each category and confidence-rating, is shown for each target proportion condition (35% to 
65%).

 Target 
Ratio

Hit Miss FA CR

high medium low high medium low high medium low high medium low

35% 1802 389 78 250 434 102 320 206 62 517 453 87
50% 1210 277 48 324 408 83 383 219 79 828 723 118
65% 768 195 28 250 341 63 326 268 79 1174 1050 158
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Appendix C. Model predictions

Analysis
Statistical comparisons for each model on individual 

parameter estimates are shown below. The ĝand ĉ , respec-
tively, were analyzed with repeated-measures univariate 
ANOVAs. Since Mauchly’s sphericity test was rejected, the 
reported Fs will always refer to Greenhouse–Geisser correc-
tions. Three additional analyses were performed by means 
of a mixed general linear model with subjects as the random 
factor. To choose the variance and covariance matrix for 
each mixed model, we followed the principle of parsimony. 
Using the G2−test, we searched for the matrix with the mini-
mum number of parameters that did not cause a significant 
loss of fit with respect to the saturated model (unstructured 
matrix). The probability of each CL-bin was analyzed by 
means of a mixed general linear model with subjects as the 
random factor, with two fixed within-participant factors, 
establishing a diagonal variance-covariance matrix (G2= 
317.4, df=66, p = .999). The within-participant factors were 
the states (detect new/detect old/guess new/guess old) and 
confidence-levels (high/medium/low). The probability of fast 
RT bins was also analyzed by means of a mixed general 
linear model with participants as the random factor, states 
(detect new/detect old/guess new/guess old), and confidence-
levels (high/medium/low) as within-participant factors. 
A compound symmetry variance-covariance matrix was 
selected (G2=208.7, df=76, p = .999). Both models included 
the interaction with states × confidence-levels. For the prob-
ability of fast bins in the SDT model, the within-participant 
factors were the response-categories (CR/FA/Miss/Hit) and 

Table 15  RT sample means

Note. Aggregate mean RT (ms) and standard deviation (in parentheses) across all subjects, N = 47, are shown for each response-confidence 
combination (new-high/new-medium/new-old/new-low/old-low/old/medium/old-high) and for each target proportion condition (35% to 65%). 
Whether the outcome of the response was correct or wrong is also specified (success/failure).

Target Ratio Response-Confidence Level

new-high new-medium new-low old-low old-medium old-high

35% success 1250.9 1494.0 1847.1 1767.7 1537.1 1021.5
(585.0) (778.5) (1085.0) (676.2) (817.0) (1100.0)

failure 1254.9 1511.8 1901.7 1518.8 1549.7 1105.2
(808.3) (1026.0) (1229.6) (913.8) (920.7) (1042.7)

50% success 1215.3 1421.7 1944.3 1958.0 1531.6 1100.9
(660.8) (876.6) (1073.6) (650.8) (922.8) (1026.3)

failure 1207.5 1397.7 1736.0 1765.0 1584.9 1336.2
(1346.0) (844.4) (1030.4) (733.8) (940.6) (936.4)

65% success 1187.6 1405.7 2036.5 2126.4 1699.1 1195.5
(713.7) (1008.1) (2017.3) (958.8) (841.6) (1497.6)

failure 1186.2 1314.9 1791.1 2219.4 1812.0 1376.6
(1485.8) (1162.8) (3129.7) (734.9) (970.1) (1025.4)

confidence-levels (high/medium/low), establishing a symme-
try variance-covariance matrix (G2=212.1, df=76, p = .999). 
Partial eta squared (ηp

2) was used as a measure of effect size. 
For all significant effects, post-hoc pairwise comparisons 
Tukey’s Test with Bonferroni correction was performed. The 
significance level (alpha) was set to .05.

Results

Regarding the effect of relative target frequency blocks in 
the 2HT-CL-RT model, it is observed that ĝ (see Fig. 13) 
is different across the relative target frequency blocks, 
F(2, 84) = 18.55, p < .001, ηp

2 = .287, and that the rela-
tionship between this variables is positive and linear 
F(1, 46) = 28.86, p < .001, ηp

2 = .386.
The results of the states × confidence-levels analy-

sis (see Fig. 14) shows a rejection of the null hypothesis 
F(2, 287) = 386.8, p < .001, ηp

2 = .729. In particular, the 
hypothesis of probability equality of the different CLs is 
rejected in the states of detect new F(2, 83) = 56.55, p < .001, 
ηp

2 = .576; detect old, F(2, 77) = 928, p < .001, ηp
2 = .96; 

guess new states, F(2, 84) = 69.00, p < .001, ηp
2 = .621; 

and guess old states, F(2, 85) = 86.34, p < .001, ηp
2 = .586. 

Responses are more likely to be high confidence than 
medium confidence (p < .001) for all comparisons except 
guess new states, for which p = .158, and medium-confi-
dence responses are more likely than low-confidence ones 
(p < .001 for all above comparisons).

Regarding the RT bins (see Fig. 15), the hypothesis that 
short RTs probabilities are the same at all three CLs was 
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rejected, F(2, 506) = 23.39, p < .001, ηp
2 = .085, with a higher 

probability of short RTs in high-confidence responses than 
in medium (p < .001) or low confidence (p < .001) and no 
evidence of differences between medium and low confidence 

Fig. 12  (Inverse U-shape) relation between RT and confidence rat-
ings. Note. Mean RT (ms) for all subjects, N = 47, is shown for each 
response-confidence combination (new-high/new-medium/new-old/
new-low/old-low/old/medium/old-high), and response-confidence 
responses are ordered by familiarity, from extreme low familiarity 

(left) to extreme high familiarity (right). The different-colored lines 
allow distinguishing whether the result of the answer was correct or 
incorrect. Successes are in blue and failures in red. Each figure repre-
sents a different target proportion condition (35% to 65%). The error 
bars represent the standard errors of the mean (SEM) RTs.

Fig. 13  Effect of target proportion manipulation on guessing old probability. Note. The guessing old process probability is represented through 
three relative target frequency blocks. The error bars correspond to the 95% confidence interval (CI) of the g parameter estimate
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(p = .999). However, in guess old states, F(2, 506) = 11.51, 
p < .001, ηp

2 = .044,there are more rapid responses at low 
CLs than at medium levels (p = .014). Likewise, the speed 
difference between high and low-confidence responses is 
significantly larger in detect old than in guess new (p = .02) 
or guess old (p = .006) states, something that does not 
hold true for the detect new states (p = .6 for guess old 
and p = .53 for guess new comparisons). In short, there 
is an inverse linear relationship between CLs and RTs in 

detect new, F(1, 46) = 71.08, p < .001, ηp
2 = .607, detect 

old, F(1, 46) = 1661.3, p < .001, ηp
2 = .973, and guess new, 

F(1, 46) = 41.23, p < .001, ηp
2 = .473,state.

Considering the SDT-CL-RT model, (see Figure 16), 
results shows that ckj varies between the J = 3 rela-
tive target frequency blocks, F(2, 80) = 22.83, p < .001, 
ηp

2 = .332, where the relationship between the proportion 
of targets and the estimated criterion is linear and nega-
tive, F(1, 46) = 38.23, p < .001, ηp

2 = .454 (see dotted line in 

Fig. 14  2HT state × confidence-levels effect. Note. The probability 
for high (left), medium (center) and low (right) CLs is shown for each 
of the 2HT discrete states (left to right bars: detect new, detect old, 

guess new, and guess old states). The error bars correspond to the 
95% CI of the L parameter estimate

Fig. 15  2HT confidence-level × short RT × state effect. Note. The 
probability for short RTs is shown for high (left), medium (center) 
and low (right) confidence ratings of each 2HT discrete state (left to 

right bars: detect new, detect old, guess new, and guess old states). 
The error bars correspond to the 95% CI of the H estimate
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Fig. 16). In addition, inside each target proportion condition, 
the criteria for different CLs increase linearly from c1j to c5j, 
F(1, 46) = 164.3, p < .001, ηp

2 = .781.
Concerning the probability of short RT in the SDT model 

(see Fig. 17), there is a significant effect of the confidence-
levels factor, F(2, 506) = 60.7, p < .001, ηp

2 = .193, but not 
of the response-category factor, F(3, 506) = 2.23, p = .084, 
ηp = .013. In the first analysis, responses for high are faster 
than those for medium (p < .001) and low CLs (p < .001). 
The response-category × confidence-level interaction effect 
is also significant, F(6,506) = 15.69, p < 0.001, ηp

2 = .15. 
Specifically, the probability of the RTs being short is higher 
at high CLs versus medium and low, for the Hit (p < .001), 
Miss (p = .004 and p = .009 for medium and low CLs com-
parisons, respectively) and CR (p = .006 and p < .001, for 
medium and low CLs comparisons, respectively), but not 
for the FA category. In FAs we do not find speed differences 
between medium and low CLs (p = .136).

Fig. 16  Effect of target proportion manipulation on decision and con-
fidence criteria. Note. The ckj parameters (c1j–c5j) are shown for each 
j  relative target frequency blocks (35%–65%). A linear regression 

between target proportion and the decision criteria is represented by a 
dotted line. The error bars correspond to the 95% CI of the ckj estimate

Fig. 17  SDT confidence x fast RT x state effect. Note. The probabil-
ity for short RTs is shown for high (left), medium (center) and low 
(right) CLs for each response category (left to right bars: detect new, 
detect old, guess new, and guess old states). The error bars corre-
spond to the 95% CI of the H estimate
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Table 16  Goodness-of-fit and AIC for classic models

2HT SDT

Id χ2 (df = 1) Critical Value AICC χ2 (df = 1) Critical Value AICC

1 0.041 4.39 10.04 0.049 5.266 10.05
2 1.14 3.51 11.14 0.564 3.444 10.56
3 1.44 5.211 11.44 1.482 3.997 11.48
4 0.191 2.829 10.19 0.143 3.66 10.14
5 0.048 3.219 10.05 0.01 2.406 10.01
6 0.029 3.172 10.03 0.002 4.254 10
7 0.765 4.78 10.76 0.83 2.905 10.83
8 0.737 3.132 10.74 0.603 2.109 10.6
9 0.119 4.679 10.12 0 3.145 10
10 0.595 4.1 10.59 0.497 5.735 10.5
11 0.015 3.93 10.02 0.004 2.628 10
12 2.271 5.149 12.27 0.018 4.412 10.02
13 0.148 3.259 10.15 0.221 3.775 10.22
14 0.066 3.953 10.07 0.068 3.437 10.07
15 0.08 4.249 10.08 0.073 1.909 10.07
16 1.423 5.86 11.42 0.261 4.193 10.26
17 3.609 4.243 13.61 2.37 4.749 12.37
18 0.742 5.581 10.74 0.724 3.885 10.72
19 0.568 4.59 10.57 0.739 3.288 10.74
20 2.014 3.845 12.01 1.883 2.964 11.88
21 0.882 3.733 10.88 0.909 2.23 10.91
22 4.902 4.454 14.9 4.026 4.961 14.03
23 0.167 3.566 10.17 0.022 3.234 10.02
24 4.021 4.24 14.02 3.291 3.974 13.29
25 0.837 5.05 10.84 0 2.529 10
26 4.334 3.375 14.33 4.595 3.095 14.59
27 0.123 4.805 10.12 0.081 3.896 10.08
28 1.32 3.509 11.32 1.024 4.65 11.02
29 0.141 4.583 10.14 0.132 1.891 10.13
30 0.214 4.915 10.21 0.294 2.874 10.29
31 0.221 3.97 10.22 0.02 3.603 10.02
32 0.987 5.152 10.99 0.845 2.566 10.84
33 0.095 5.222 10.1 0.004 4.074 10
34 1.393 3.735 11.39 1.293 2.882 11.29
35 0.518 4.261 10.52 0.496 2.316 10.5
36 0.761 2.934 10.76 0.655 2.972 10.65
37 0.232 5.316 10.23 0.232 3.992 10.23
38 0.751 5.254 10.75 0.847 2.171 10.85
39 3.1 5.268 13.1 0.671 5.199 10.67
40 0.013 4.01 10.01 0.295 4.953 10.29
41 0.036 3.608 10.04 0.004 2.599 10
42 1.209 4.891 11.21 1.469 4.224 11.47
43 3.679 5.394 13.68 3.517 2.977 13.52
44 0.299 4.314 10.3 0.008 4.232 10.01
45 0.812 6.679 10.81 0.846 3.877 10.85
46 0.042 4.239 10.04 0.035 6.256 10.03
47 0.875 4.399 10.88 0.244 3.952 10.24

Appendix D. Goodness‑of‑fit χ2 bootstrap 
test and AICc

Table 16
Table 17
Table 18
Table 19
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Table 17  Goodness-of-fit & AIC for CL models

2HT-CL SDT-CL

Id χ2 (df=17) Critical Value AICC χ2 (df = 21) Critical Value AICC

1 27.004 28.346 53 35.511 32.817 53.51
2 16.885 29.262 42.89 28.111 36.486 46.11
3 8.306 19.213 34.31 9.811 23.591 27.81
4 22.306 29.269 48.31 21.433 32.347 39.43
5 33.537 20.485 59.54 23.126 24.173 41.13
6 33.953 27.94 59.95 17.124 33.166 35.12
7 32.77 22.016 58.77 22.612 33.259 40.61
8 14.166 23.581 40.17 22.378 29.381 40.38
9 34.745 28.712 60.75 27.726 33.6 45.73
10 12.67 18.155 38.67 14.145 20.356 32.15
11 67.691 32.494 93.69 52.038 39.118 70.04
12 32.4 31.703 58.4 48.925 30.053 66.93
13 52.241 25.569 78.24 57.715 28.392 75.72
14 15.4 24.455 41.4 20.813 28.589 38.81
15 17.521 34.85 43.52 14.71 33.198 32.71
16 46.845 28.69 72.85 44.849 32.034 62.85
17 41.479 27.803 67.48 30.295 38.175 48.29
18 27.693 30.509 53.69 35.263 38.949 53.26
19 12.366 30.029 38.37 11.832 35.259 29.83
20 30.864 27.011 56.86 32.431 26.554 50.43
21 19.208 31.832 45.21 22.077 32.8 40.08
22 79.367 26.336 105.37 87.963 32.788 105.96
23 34.301 19.363 60.3 33.259 23.207 51.26
24 24.158 18.735 50.16 34.105 22.699 52.11
25 34.88 30.878 60.88 40.875 34.376 58.88
26 37.122 24.854 63.12 42.531 29.189 60.53
27 36.331 33.504 62.33 47.468 31.64 65.47
28 71.929 31.509 97.93 85.479 39.434 103.48
29 19.029 33.128 45.03 23.03 35.307 41.03
30 9.101 30.816 35.1 11.033 36.056 29.03
31 32.142 27.707 58.14 42.415 34.841 60.41
32 25.936 29.323 51.94 28.541 38.562 46.54
33 13.841 23.903 39.84 16.719 27.854 34.72
34 22.779 30.956 48.78 30.144 31.719 48.14
35 41.754 22.469 67.75 47.91 24.393 65.91
36 33.227 27.404 59.23 39.097 29.929 57.1
37 46.629 27.287 72.63 33.465 30.287 51.47
38 29.015 32.073 55.02 34.473 28.572 52.47
39 44.705 30.298 70.71 47.485 30.416 65.48
40 5.787 8.926 31.79 7.775 10.983 25.78
41 25.618 29.304 51.62 27.555 30.822 45.55
42 28.858 30.551 54.86 22.089 30.987 40.09
43 31.839 21.228 57.84 34.385 22.351 52.39
44 22.941 28.765 48.94 23.2 34.766 41.2
45 21.797 31.225 47.8 28.926 36.494 46.93
46 35.722 34.445 61.72 21.955 33.406 39.95
47 104.663 23.639 130.66 104.792 23.45 122.79
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Table 18  Goodness-of-fit & AIC for RT models

2HT-RT SDT-RT
Id χ2 (df = 9) Critical Value AICC χ2 (df = 9) Critical Value AICC

1 14.574 16.769 32.57 15.88 16.712 33.88
2 22.933 14.783 40.93 24.664 17.239 42.66
3 16.188 17.472 34.19 14.981 15.387 32.98
4 8.243 17.977 26.24 8.247 19.986 26.25
5 41.081 16.002 59.08 38.013 14.291 56.01
6 24.328 18.591 42.33 25.058 14.92 43.06
7 11.009 19.446 29.01 10.74 17.71 28.74
8 11.879 14.953 29.88 12.167 18.179 30.17
9 13.083 20.701 31.08 10.745 20.545 28.74
10 7.778 15.461 25.78 6.752 15.171 24.75
11 12.681 17.996 30.68 12.641 18.071 30.64
12 28.7 18.75 46.7 27.949 16.89 45.95
13 9.488 18.673 27.49 9.711 17.911 27.71
14 19.475 18.823 37.47 19.013 17.947 37.01
15 4.006 19.538 22.01 3.67 19.102 21.67
16 56.581 20.214 74.58 55.282 15.447 73.28
17 45.822 20.433 63.82 44.979 18.346 62.98
18 20.612 17.784 38.61 20.45 15.449 38.45
19 20.444 21.606 38.44 19.294 19.002 37.29
20 18.903 13.815 36.9 19.281 17.266 37.28
21 14.84 16.428 32.84 14.283 18.753 32.28
22 74.113 16.928 92.11 72.145 19.266 90.14
23 38.14 16.188 56.14 37.44 16.198 55.44
24 13.215 19.566 31.21 12.929 18.742 30.93
25 23.655 19.602 41.65 23.389 19.28 41.39
26 41.851 15.941 59.85 42.03 16.829 60.03
27 12.849 20.451 30.85 13.307 15.765 31.31
28 43.51 17.806 61.51 48.242 15.732 66.24
29 29.198 16.805 47.2 28.944 16.626 46.94
30 29.645 16.321 47.64 28.182 16.555 46.18
31 45.641 17.744 63.64 52.084 16.23 70.08
32 12.886 18.56 30.89 12.46 14.884 30.46
33 24.733 16.552 42.73 22.906 15.932 40.91
34 6.956 18.796 24.96 5.927 17.362 23.93
35 5.021 16.699 23.02 5.184 15.667 23.18
36 10.458 23.566 28.46 9.784 16.482 27.78
37 22.554 18.825 40.55 21.604 17.904 39.6
38 5.587 21.116 23.59 4.851 16.514 22.85
39 15.264 20.514 33.26 12.795 21.019 30.79
40 31.669 15.955 49.67 34.855 17.107 52.85
41 5.5 19.525 23.5 5.414 21.64 23.41
42 29.736 16.147 47.74 30.213 16.073 48.21
43 27.996 15.764 46 26.389 18.382 44.39
44 8.863 16.547 26.86 8.286 17.875 26.29
45 7.59 14.817 25.59 7.333 16.586 25.33
46 25.092 19.494 43.09 22.175 17.287 40.17
47 38.208 17.827 56.21 37.038 18.623 55.04
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Table 19  Goodness-of-fit & AIC for CL+RT models

2HT-CL-RT SDT-CL-RT

Id χ2 (df = 41) Critical Value AICC χ2 (df = 45) Critical Value AICC

1 45.245 52.604 95.25 51.314 57.225 93.31
2 51.183 51.727 101.18 62.686 56.899 104.69
3 40.375 42.294 90.38 40.708 44.148 82.71
4 33.624 49.393 83.62 32.584 51.181 74.58
5 81.282 42.74 131.28 69.009 44.061 111.01
6 67.057 52.638 117.06 49.999 50.439 92
7 51.352 53.784 101.35 38.796 52.841 80.8
8 37.325 45.773 87.32 44.822 50.65 86.82
9 65.901 61.419 115.9 60.202 60.133 102.2
10 29.05 37.274 79.05 30.267 37.031 72.27
11 105.045 53.784 155.04 89.643 54.954 131.64
12 65.837 46.417 115.84 85.199 54.841 127.2
13 78.106 49.809 128.11 83.771 54.607 125.77
14 37.827 43.954 87.83 42.475 57.01 84.47
15 46.278 56.378 96.28 41.578 61.856 83.58
16 116.582 48.011 166.58 108.769 52.094 150.77
17 109.748 65.408 159.75 99.077 64.897 141.08
18 68.329 60.74 118.33 75.686 62.027 117.69
19 52.318 70.697 102.32 49.706 67.955 91.71
20 51.208 41.142 101.21 54.426 45.037 96.43
21 48.382 66.251 98.38 51.171 62.326 93.17
22 130.831 48.137 180.83 137.604 50.658 179.6
23 73.171 33.979 123.17 71.981 36.667 113.98
24 43.367 40.688 93.37 52.751 47.849 94.75
25 82.571 58.365 132.57 89.118 62.917 131.12
26 75.445 50.38 125.45 80.688 45.687 122.69
27 61.31 61.888 111.31 71.165 64.577 113.17
28 126.757 58.324 176.76 138.514 59.647 180.51
29 65.774 67.466 115.77 64.486 58.068 106.49
30 60.358 63.645 110.36 58.322 61.862 100.32
31 87.442 51.261 137.44 101.879 51.89 143.88
32 61.594 67.303 111.59 60.978 64.801 102.98
33 39.875 42.263 89.88 39.606 45.279 81.61
34 42.727 51.925 92.73 49.838 52.99 91.84
35 55.057 39.366 105.06 59.539 41.557 101.54
36 53.859 49.516 103.86 57.036 53.518 99.04
37 82.433 54.103 132.43 64.72 50.667 106.72
38 62.926 62.854 112.93 67.32 66.263 109.32
39 68.612 53.15 118.61 67.998 54.935 110
40 36.028 22.686 86.03 40.548 26.342 82.55
41 47.78 57.133 97.78 47.039 52.523 89.04
42 82.753 55.159 132.75 71.691 47.541 113.69
43 57.046 38.499 107.05 57.126 41.048 99.13
44 61.276 64.828 111.28 61.294 66.495 103.29
45 59.939 60.101 109.94 60.368 66.955 102.37
46 76.106 60.959 126.11 60.78 63.189 102.78
47 135.158 41.21 185.16 135.394 48.086 177.39
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Appendix E. Simulation details and results

To disentangle model selection patterns in real data, we 
performed a model comparison analysis for simulated data. 
For 2,000 replicates, data were generated for each version 
of the 2HT and SDT model (Classic, CL, RT, and CL+RT 
versions) with parameter values based on each model esti-
mates when fitted to data from Juola et al. (2019). The 2HT 
(Table 20) and SDT (Table 21) estimated parameters for 
the aggregate data of the 47 subjects that are shown below.

To test the impact of the variables included in the estima-
tion models on the correct selection of discrete or continuous 
models, 2HT and SDT models that include CLs and RTs, 
only one of these variables or even none of them, were fitted 
to both 2HT and SDT simulated data. Model selection was 
also based on AIC. The simulation and model fitting were 
performed in R with the MPTinR library. Simulation data 
and code are available at https:// osf. io/ ezb3g.

Table 22 shows the frequency and percentage of dis-
crete and continuous model selections as best fit models 
to the simulated data that follows the 2HT model. Includ-
ing CLs results in a true model selection of 81.8% while 
only including RTs or no other variables reduces that per-
centage to 65.2 and 67.6, respectively. More remarkably, 
86.0% of the best fit models are correct when both CLs 
and RTs are included. Thus, there is a considerably higher 
percentage of correct model selections when CLs or CLs 
and RTs are included.

When the data-generating model is the SDT model 
(Table 23), the classical SDT and 2HT models are selected 
as the best model in 66.1% and 33.9% of the cases, respec-
tively. As for the models incorporating RT, we find similar 
percentages, namely 66.5% and 33.5% for the SDT and 
2HT models, respectively. This shows that, although there 
is a higher percentage of correct selections, there is still 
about 1 out of 3 model comparisons that produce incor-
rect selections. But again, we find that when CLs or both 
CLs and RTs are taken into account, the percentages of 
correct selections are much higher (96.2% and 97.2%, 
respectively).
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Table 22  Model selection for 2HT simulated data

Note. SDT vs. 2HT model selection for data generated by the 2HT 
model simulated data is presented for classic (Classic rows), confi-
dence levels (CL rows), reaction time (RT row) confidence level and 
reaction time (CL-RT row) model versions. The frequency and per-
centage of each model (SDT vs. 2HT) selection appears in the AIC.
best columns.

Model n.par AIC.best %AIC.best

Classic SDT 5 650 32.5
2HT 5 1352 67.6

CL SDT 9 363 18.15
2HT 13 1637 81.85

RT SDT 9 697 34.85
2HT 9 1303 65.15

CL-RT SDT 21 281 14.05
2HT 25 1719 85.95

Table 23  Model selection for SDT simulated data

Note. SDT vs. 2HT model selection for data generated by the SDT 
model simulated data are presented for classic (Classic rows), confi-
dence levels (CL rows), reaction time (RT row) confidence level and 
reaction time (CL-RT row) model versions. The frequency and per-
centage of each model (SDT vs. 2HT) selection appears in the AIC.
best columns.

 Model n.par AIC.best %AIC.best

Classic SDT 5 1322 66.1
2HT 5 678 33.9

CL SDT 9 1925 96.25
2HT 13 75 3.75

RT SDT 9 1330 66.5
2HT 9 670 33.5

CL-RT SDT 21 1944 97.2
2HT 25 56 2.8
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