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Abstract
Several studies have shown that blind people, including those with congenital blindness, can use raised-line drawings, 
both for “reading” tactile graphics and for drawing unassisted. However, research on drawings produced by blind people 
has mainly been qualitative. The current experimental study was designed to investigate the under-researched issue of the 
size of drawings created by people with blindness. Participants (N = 59) varied in their visual status. Adventitiously blind 
people had previous visual experience and might use visual representations (e.g., when visualising objects in imagery/
working memory). Congenitally blind people did not have any visual experience. The participant’s task was to draw 
from memory common objects that vary in size in the real world. The findings revealed that both groups of participants 
produced larger drawings of objects that have larger actual sizes. This means that the size of familiar objects is a property 
of blind people’s mental representations, regardless of their visual status. Our research also sheds light on the nature of 
the phenomenon of canonical size. Since we have found the canonical size effect in a group of people who are blind from 
birth, the assumption of the visual nature of this phenomenon – caused by the ocular-centric biases present in studies on 
drawing performance – should be revised.
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Introduction

Blind people’s ability to use drawings

There is extensive literature on the ability to use pictorial 
representations and the creation of drawings by people with 
blindness. Psychological research in this area has addressed 
topics such as the recognition of geometrical forms (Heller 
et al., 2006) or the identification of everyday objects on 
tactile drawings produced using a variety of techniques 
(Heller, 1989; Heller et al., 1996; Lederman et al., 1990; 
Mascle et al., 2022; Pathak & Pring, 1989; Picard et al., 
2013, 2014; Picard & Lebaz, 2012; Theurel et al., 2013; 

Vinter et al., 2020) by blind participants of a wide variety 
of ages. In addition, research has dealt with relationships 
between haptic exploratory strategies and the recognition of 
two-dimensional embossed pictures or drawing performance 
(D’Angiulli et al., 1998; Magee & Kennedy, 1980; Vinter 
et al., 2012).

When it comes to the production of raised-line drawings 
by participants with blindness, the analyses have mainly 
considered the recognisability and quality of the drawings 
– assessed by researchers on their own or by judges 
(D’Angiulli & Maggi, 2003; Kennedy, 1993; Millar, 
1975; Szubielska et al., 2016; Szubielska, Niestorowicz, 
& Marek, 2019b; Wu et al., 2022; see also Szubielska, 
Imbir, et al., 2020), including in particular the occurrence 
of “visual conventions” (e.g., perspective shortcuts, 
occlusion) in the drawings of people deprived of visual 
experience (Carboni et al., 2021; Kennedy, 2003; Kennedy 
& Juricevic, 2003, 2006a, 2006b, 2008). Importantly, the 
recognisability and formal features (e.g., the use of contour 
lines) of the drawings produced under haptic control seem 
to depend on practice at drawing and the severity of sight 
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impairment. Overall, the quality of drawings might increase 
with the drawing experience of participants with severe 
visual impairment, and be positively related to their ability 
to use mental visual imagery (D’Angiulli & Maggi, 2003; I 
& Shiu, 2010; Vinter et al., 2018; Wu et al., 2020). In other 
words, drawing appears to be more challenging for people 
who are blind from birth than for late blind individuals. 
Nevertheless, as Kennedy (e.g., 1993) argues, the greater 
difficulty in producing drawings encountered by people 
with congenital blindness may be due to a lack of practice 
in drawing rather than the lack of vision per se. Such a 
point of view, built on a study conducted among children 
with visual impairment, is shared by Vinter et al. (2018). 
In addition, some studies have focused on a qualitative 
analysis of the metaphoric aspects of drawings, such as 
depicting movement, sounds or mental events (Kennedy, 
2008, 2009, 2013, 2014a, 2014b; Kennedy & Merkas, 
2000; see also D’Angiulli & Maggi, 2003).

On the other hand, research on the quantitative 
characteristics of drawings produced by blind people is 
scarce. To our knowledge, only one study has so far tested 
the quantitative feature of drawing size (Wu et al., 2022) 
– but only in the context of recognising tactile drawings, 
not their creation by participants who are blind. In this 
study, congenitally blind participants needed more time 
to identify large- and medium-scale graphics than small-
scale ones, probably due to similarities between the size of 
small-scale pictures and the actual objects (hence, the size 
was familiar, and the objects were easier to identify). It is 
possible that this finding was related to the experience of 
using tactile graphics by blind participants – the standards 
for creating these types of graphics recommend designing 
hand-sized embossed pictures (e.g., Edman, 1992). Visual 
experience and familiarity with using haptic exploration for 
recognising images (sighted people lack such experience) 
possibly modify the optimal size for recognising tactile 
drawings by touch, as the opposite results were obtained 
among blindfolded sighted people – in this case, the larger 
embossed graphics were more recognisable than the 
smaller ones (Kennedy & Bai, 2002; Wijntjes et al., 2008). 
In another study involving people blind since birth, it was 
found that the recognisability of the drawings produced 
from memory under haptic control depended on the actual 
size of the physical objects – more recognisable drawings 
were created for larger objects (furniture size) than for 
smaller objects (hand size) (Szubielska, Niestorowicz, & 
Marek, 2019b). Unfortunately, this study did not explore 
the size of the drawings produced by the participants. As 
we will discuss later, looking at drawing size in cases of 
blindness is interesting for several reasons, including 
testing the presence of a canonical size effect, which was 
first discovered in the visual mode (Konkle & Oliva, 2011).

Summing up, to date the research on the use of draw-
ings by blind people has placed much more emphasis on 
analysing qualitative rather than quantitative features. More 
specifically, when it comes to the active production of tactile 
pictures by blind people, studies focused on drawing quality 
issues – mainly their recognisability, resulting from the (im)
perfection of shape.

The canonical size phenomenon – Evidence 
from the visual and haptic domains

One of the more interesting properties of drawings by peo-
ple with blindness, to date overlooked in the literature, 
is the size of the drawings created. This feature was first 
analysed in the drawings of sighted people made under 
visual control (Konkle & Oliva, 2011), which showed that 
the size of the drawing depends on the actual size of the 
object being drawn. More precisely, the larger the actual 
object is, the larger the area of a sheet of paper is occupied 
when drawing this single object. This effect was referred 
to as the visual canonical size phenomenon. The neural 
correlates of differentiating the objects’ real-world size 
were further found in the ventral temporal cortex (Konkle 
& Oliva, 2012b).

Research investigating the phenomenon of canoni-
cal visual size has not only used the task of drawing from 
memory but also a mental imagery paradigm (the size at 
which objects were imagined within the computer monitor’s 
frame) and a perception paradigm (the participant’s task was 
to view images of real-world objects and determine the size 
at which they looked best) (Konkle & Oliva, 2011). The 
results obtained in all the research paradigms analysed show 
a preference for representing objects in the frame as having a 
larger size, the larger the objects are in reality. This finding 
suggests that size information is a property of an object’s 
mental representation. However, so far, the canonical size 
phenomenon has only been tested in adults with normal or 
corrected-to-normal vision. Interestingly, recent research by 
Chen et al. (2022) showed similar visual size preferences 
concerning hardly recognisable objects (i.e., pictures of 
so-called texforms, which maintain local texture and rough 
contour information). Participants consistently selected the 
texform presented at the canonical visual size as more aes-
thetically appealing. Furthermore, using a modified Stroop 
(1935) task, Konkle and Oliva (2012a) provided evidence 
that the objects’ familiar size is accessed automatically by 
sighted people when viewing images of objects.

Although the canonical size effect was initially assumed 
as visual (Konkle & Oliva, 2011), recent studies conducted 
in the visual and haptic domains (Szubielska et al., 2022; 
Szubielska & Wojtasiński, 2021; Szubielska, Wojtasiński 
et al., 2020) have questioned the visual character of this 
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phenomenon. In all these recent studies, the canonical 
size effect was investigated using the task of drawing from 
memory among participants without visual impairments. 
Although these studies found that larger drawings were 
produced in the visual than in the blindfolded condition 
(Szubielska et al., 2022; Szubielska, Wojtasiński et al., 
2020), they revealed the canonical size effect in both the 
visual and the haptic domains. Intriguingly, the canonical 
size effect was revealed even when blindfolded participants 
drew on ordinary paper sheets, which drastically reduced the 
possibility of haptic control of the drawing that was created 
(which in turn was possible in the case of drawing on special 
foils for raised-line drawings, where participants controlled 
the in-progress drawing with their non-dominant hand) 
(Szubielska et al., 2022). However, these aforementioned 
studies on the canonical size effect in the haptic domain were 
again conducted among normally sighted participants, thus 
revealing the phenomenon of canonical size under blind-
folded conditions is insufficient evidence for this phenom-
enon’s non-visual (abstract or multimodal) nature. After all, 
it is typical for sighted individuals to visualise spatial stim-
uli (Pantelides et al., 2016; Szubielska, 2014; Vanlierde & 
Wanet-Defalque, 2004), so the participants could have used 
visual mental images of objects placed in imagined frames 
when performing the blindfold drawing task.

The potential visual nature of the phenomenon of interest 
in this paper might be confirmed by testing people with 
blindness who (as we argued beforehand) have the ability to 
draw, but their mental representations are non-visual. If the 
phenomenon of canonical size is uniquely visual, it should 
not be manifest in congenitally blind individuals. However, 
previous studies suggest that the phenomenon may be spatial 
rather than visual (Szubielska et al., 2022; Szubielska & 
Wojtasiński, 2021; Szubielska, Wojtasiński, et al., 2020). 
Moreover, size is, by definition, a spatial property, and 
spatial cognition, being modality-independent, may occur 
via domains other than sight (e.g., touching objects and even 
verbal descriptions – for a discussion, see Loomis et al., 
2013). Therefore, spatial information and spatial mental 
representation are not unique to sighted people or reliant 
on visual imagery (for a literature review see, e.g., Cattaneo 
et  al., 2008; Ricciardi et  al., 2014). Consequently, the 
canonical size phenomenon might be manifested in people 
without visual experience.

Mental imagery abilities of congenitally blind 
and adventitiously blind people

Researchers who investigated blind participants’ spatial 
abilities or mental imagery suggest that human spatial rep-
resentations and underpinned cortical organisation might 
be visually independent. Likova (2012) argues that the pri-
mary visual cortex may provide for a modality-independent 

(possibly amodal) sketchpad function of the working mem-
ory, a function that is needed to process mental images. Oth-
ers (e.g., Cattaneo et al., 2008; Ricciardi et al., 2014), based 
on the literature on the structural and the functional explo-
ration of the brain of people with normal vision and those 
blind from birth, opt for a supramodal cortical functional 
architecture (since similar cortical networks seem to subtend 
visual and non-visual cognition of spatial properties both in 
sighted and congenitally blind individuals). Supramodality 
means that spatial information is processed by distinct corti-
cal areas/networks independently from the sensory modality 
that carries information to the brain. Furthermore, the find-
ings from behavioural studies using classic mental imagery 
paradigms (in which visual imagery used to be considered to 
be critically involved) compared spatial cognition in sighted 
and congenitally blind participants and showed that the clas-
sic mental imagery effects (e.g., scanning effect: Blanco & 
Travieso, 2003; Iachini & Ruggiero, 2010; or rotation effect: 
Marmor & Zaback, 1976) are also revealed in people who 
lack visual experience (for a review, see Cattaneo et al., 
2008). To sum up, spatial mental representation in general 
and drawing processing in particular seem equally possi-
ble in people who are sighted and congenitally totally blind 
because mental imagery does not need to be visual (it may 
have a more abstract, spatial character).

Psychologists have long emphasised the relationships 
between cognition, knowledge and drawing (e.g., Freeman 
& Cox, 1985; Jolley, 2010; Kennedy, 1993; Luquet, 2001; 
Piaget, 1926, 1929; van Sommers, 1984; see also Konkle & 
Oliva, 2011). In the case of congenitally blind people, draw-
ing from memory might be treated as an indicator of an abil-
ity to produce mental imagery (Szubielska et al., 2016) or 
the operation of the modality-independent spatial sketchpad 
of working memory (as suggested by Likova, 2012).

Drawing by congenitally blind people contributes to 
involving brain areas commonly associated with vision and 
visual imagery representations (Amedi et al., 2008; Cac-
ciamani & Likova, 2017; 2021). However, of course, the 
results of these functional brain activity studies do not pro-
vide evidence that the mental representations of congenitally 
blind people are visual1 (for discussion, see Likova, 2012) 
since – as mentioned before – spatial cognition seems to be 
modality-independent and drawing abilities refer to spatial 
cognition rather than visual perception.

Thus, congenitally blind and adventitiously blind peo-
ple are similar in that they can use spatial imagery. At the 

1 Although there are opinions in the literature that the imagery of 
blind people (including those with congenital blindness) is vision-
like (e.g., Renzi et al., 2013) or that their memory representations are 
visuo-spatial (Cattaneo et al., 2008), the metaphor of the mind’s hand 
(Blanco & Travieso, 2003; Szubielska, 2021) seems more accurate in 
this case than the mind’s eye metaphor.
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same time, only adventitiously blind individuals can visual-
ize spatial stimuli (Vanlierde & Wanet-Defalque, 2004; see 
also Picard et al., 2010). Some suggest that the ability to 
visualize is related to a preference for a particular frame of 
reference when representing spatial information (e.g., Toroj 
& Szubielska, 2011). In this vein, some studies have shown 
that people who are blind from birth predominantly use ego-
centric (body-centred) reference frames and adventitiously 
blind people – allocentric ones (Pasqualotto et al., 2013; 
Pasqualotto & Proulx, 2012; Ruggiero et al., 2012, 2022; 
Toroj & Szubielska, 2011). Therefore, when constructing 
mental representations, a congenitally blind individual refers 
an object to the body, and an adventitiously blind refers an 
object to another object (e.g., the object to the imagined 
boundaries in which it is placed). However, there is also 
evidence that adults (Chiesa et al., 2017; Schmidt et al., 
2013) and children (Martolini et al., 2021) who are congeni-
tally totally blind use allocentric spatial information where 
needed and (similar to sighted participants) spontaneously 
evoke allocentric spatial frames to perform spatial tasks; 
for instance, they adopt an allocentric survey strategy when 
mentally representing a town environment (for a review, see 
Ottink et al., 2022).

To date, it has not been established whether the size of 
actual objects is a property of blind people’s mental repre-
sentations. Nevertheless, there are reports that congenitally 
blind participants find it challenging to accurately represent 
the angular size of an object at different distances from the 
observer (Arditi et al., 1988; Vanlierde & Wanet-Defalque, 
2005; for a contrary finding, see Wnuczko & Kennedy, 
2014). In turn, late blind people seem not to experience 
similar difficulties (Vanlierde & Wanet-Defalque, 2005). 
Perhaps late blind people not only estimate the angular size 
of objects imagined at varied distances more accurately than 
congenitally blind people, but they also more accurately rep-
resent the size of familiar everyday objects. However, some 
researchers argue that the imagery abilities, including those 
required to perform complex spatial tasks, of people who 
are blind from birth are underestimated (Eardley & Pring, 
2007). Due to the higher mental imagery abilities of congen-
itally blind people than is stereotypically believed, among 
other things, it is possible to effectively teach mathematics 
(including geometry) to blind students (Ostad, 1989), and 
spontaneous drawing development in congenitally blind chil-
dren is possible (D’Angiulli & Maggi, 2003).

The current study

The present study is designed to investigate whether the size 
of real-world objects is a property of the mental representa-
tions of adults with blindness, especially those blind from 
birth. In other words, we explored the canonical size effect 

(Konkle & Oliva, 2011) among adventitiously and congeni-
tally blind adults, using the task of drawing familiar objects 
from memory. Like in the most recent study conducted in the 
haptic domain in this area (Szubielska et al., 2022), we used 
two materials for drawing – plain paper and special foils for 
producing raised-line drawings. The topics of the drawings 
were real world objects of eight different sizes.

Method

Participants

Fifty-nine adult participants with blindness participated in 
the study (28 totally blind, 31 with a sense of light) (initially, 
64 blind participants were tested, but data from five individ-
uals were rejected due to their uncertain visual status regard-
ing visual memories – these participants lost their sight in 
early childhood). Two groups of people with blindness were 
tested: (a) congenitally blind (CB) (n = 30; 18 males, 12 
females; 28 right-handed; aged 21–62 years, M = 34.80, SD 
= 12.34), i.e., those who have not seen since the beginning 
of their lives and (b) adventitiously blind (AB) (n = 29; 17 
males, 12 females; 27 right-handed; aged 18–61 years, M 
= 40.83 years, SD = 12.36), i.e., those who lost their sight 
during their lives (when aged between 4 and 59 years; M 
= 20.10, SD = 13.72) and had visual memories. None of 
the participants had visual form perception. More than half 
of the participants in each group had a university degree 
(CB: 53%, AB: 52%), and the rest had, at most, a secondary 
education. None of the participants had a combination of 
disabilities. Detailed information about the participants is 
presented in Appendix 1 Table 4.

Sample size

The sample size was based on previous studies on the canon-
ical size effect in the haptic domain (Szubielska et al., 2022; 
Szubielska, Wojtasiński et al., 2020). A priori power analy-
ses using G-Power 3.1. (Faul et al., 2007) yielded the con-
clusion that, based on a significance level of p < .05 and a 
power of .95 (here and throughout) and the effect size of f 
= 1.08 (Szubielska et al., 2022), N = 8 participants would 
be needed to detect a within-participants effect of size rank 
in a repeated measures analysis of variance (ANOVA). In 
addition, the necessary sample size to detect a between-par-
ticipants effect of visual status was estimated to be N = 28 
– based on the effect size of f = 0.65, and to detect between-
within interaction between size rank and visual status was 
estimated to be N = 12 – based on the effect size of f = 0.48 
(Szubielska, Wojtasiński et al., 2020). Due to possible vari-
ations in experience of drawing within the group of people 
with blindness, we decided to test more than 28 participants.
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Materials

Like in the previous studies on the canonical size effect in 
the haptic domain (Szubielska et al., 2022; Szubielska & 
Wojtasiński, 2021; Szubielska, Wojtasiński et al., 2020), we 
used a Swedish raised-line drawing kit (i.e., a rubber mat 
with an A4 foil for producing embossed drawings), sheets 
of standard A4 paper, and sharpened pencils.

Design

We used a mixed design, with size rank (8) and material 
used (2) as within-participant variables and participants’ 
visual status (2) and order of drawing (2) as between-par-
ticipant variables.

Procedure

Participants were tested individually in two blocks – using 
foil or paper for producing drawings. The order of these 
blocks (drawing on foil first vs. on paper first) was counter-
balanced across participants. If needed, a short break was 
taken between blocks.

In the beginning, participants were familiarised with 
the Swedish raised-line drawing kit. Then, participants 
were asked to use their non-dominant hand to explore the 
embossed shapes produced during the drawing process (to 
have haptic feedback in the foil condition). Then, they were 
informed about the task, i.e., they were asked to draw from 
memory without a time limit a single object per sheet of 
paper/foil orientated horizontally (no turning of the sheet 
while drawing). Both paper and foil sheets had an A4 format. 
At no point in the experiment was it suggested what size the 
drawing should be, nor was the actual size of the objects to 
be drawn mentioned. Furthermore, none of the participants 
asked about the drawing size that we would expect in the 
study.

In each block, participants drew from memory, in ran-
dom order: (1) key, (2) apple, (3) shoe, (4) backpack, (5) 
dog, (6) floor lamp, (7) car, (8) house (the same topics 
as were used by Szubielska et al., 2022, for drawings). 
These subsequent topics (and their numbers) correspond 
to objects that can be ranked due to their increasing size in 
the real world (see Konkle & Oliva, 2011). After producing 
the drawing, participants were asked about any additional 
objects that potentially were added to the object which was 
the subject of the drawing (unless the participants spon-
taneously provided such information while producing the 
picture).

After the drawing from memory task, participants were 
asked to provide their demographic characteristics (gender, 
age, level of education), their visual impairment history and 
severity and experience in producing drawings (“How often 

have you drawn?”) and familiarity with embossed graphics 
(“How often have you used embossed graphics?”; possible 
responses for both questions: “never”, “rarely”, “some-
times”, “often”, “very often”).

The study lasted 25 min on average per participant.

Data coding

The indicator of the drawn size of the object (in mil-
limetres) was measured by the length of the diagonal 
of the rectangle bounding the drawing (like in previous 
studies in this field: Konkle & Oliva, 2011; Szubielska 
et al., 2022; Szubielska & Wojtasiński, 2021; Szubielska, 
Wojtasiński et al., 2020). In line with the previous stud-
ies, extraneous objects were ignored (e.g., a fence next to 
the house; to identify these extraneous objects, we asked 
the participants about the presence of additional objects 
after they had made the drawings – “Have you drawn any-
thing else in addition?”). Only the relevant object of inter-
est was bounded around by a rectangle. As in the study 
by Szubielska et al. (2022), all drawings were scanned at 
a fixed resolution, the rectangle boundaries were deter-
mined using the Photoshop program, and custom software 
converted the dimension of the rectangle into millimetres 
and then – into diagonals.

Results

Preliminary analyses

Using Pearson’s chi-square test, we compared whether par-
ticipants who were blind from birth and adventitiously blind 
differed in their drawing experience and familiarity with 
convex graphics. Both calculations did not yield significant 
differences between congenitally and adventitiously blind 
– respectively, χ2(4) = 3.75, p = .441, χ2(4) = 7.28, p = 
.122. Overall, 46% of participants declared that they had 
never drawn (for detailed information on the drawing experi-
ence and familiarity with convex graphics of both groups of 
blind participants, see Table 1).

Investigating the canonical size effect

Table 2 presents descriptive statistics of drawn size for all 
experimental conditions. Examples of drawings made on foil 
and paper are shown in Fig. 1.

To investigate whether participants drew objects that are 
larger in the real world as larger and whether this depended 
on their visual experience, we computed an analysis of vari-
ance with the within-participant variables of size rank (1 
– key vs. 2 – apple vs. 3 – shoe vs. 4 – backpack vs. 5 – dog 
vs. 6 – floor lamp vs. 7 – car vs. 8 – house) and material used 
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(foil vs. paper), and the between-participant variables of par-
ticipants’ visual status (congenitally blind vs. adventitiously 
blind) and order of drawing (on foil first vs. on paper first). 
We used the Greenhouse-Geiser-corrected values in case of 
violations of the sphericity assumption.

This ANOVA showed a significant main effect of size rank 
– best explained by the linear function, F(1, 55) = 159.75, 
p < .001, ηp

2 = .74, a significant main effect of material (par-
ticipants produced larger drawings on foil, M = 131.31, SE 
= 7.10, than paper, M = 114.21, SE = 6.50), and a significant 
interaction between size rank and visual status (see Fig. 2; for 

all inferential statistics, see Table 3). These effects were quali-
fied by a significant four-way interaction between size rank, 
material, visual status, and drawing order (see Table 3). To 
dissect this interaction, we conducted follow-up ANOVAs for 
each visual status (congenitally blind and adventitiously blind) 
separately, with the within-participant variables of size rank and 
material used and the between-participant variable of drawing 
order.

Among congenitally blind participants, the ANOVA 
yielded a main effect of material, F(1, 28) = 16.73, 
p < .001, ηp

2 = .37 – because participants produced larger 

Table 1  Characteristics of the congenitally blind (CB) and adventitiously blind (AB) groups toward drawing experience and familiarity with 
convex graphics

“How often have you drawn?” “How often have you used embossed graph-
ics?”

CB AB CB AB

Never 50.0% (n = 15) 41.4% (n = 12) 0.0% (n = 0) 17.2% (n = 5)
Rarely 40.0% (n = 12) 31.0% (n = 9) 20.0% (n = 6) 27.6% (n = 8)
Sometimes 3.3% (n = 1) 17.2% (n = 5) 23.3% (n = 7) 13.8% (n = 4)
Often 3.3% (n = 1) 3.4% (n = 1) 43.3% (n = 13) 27.6% (n = 8)
Very often 3.3% (n = 1) 6.9% (n = 2) 13.3% (n = 4) 13.8% (n = 4)

Table 2  Mean drawn size as a function of size rank, presented for each material and participants’ visual status (congenitally blind and adventi-
tiously blind), separately for each drawing order. Standard deviations are presented in parentheses

The drawn sizes were measured as diagonals of the drawing boundaries (in mm). Size rank values refer to the following objects: 1 – key, 2 – 
apple, 3 – shoe, 4 – backpack, 5 – dog, 6 – floor lamp, 7 – car, 8 – house

Size rank Drawing order Material

Foil Paper

Visual status

CB AB CB AB

1 Foil first 70.20 (32.53) 104.04 (52.45) 61.15 (32.68) 79.86 (35.26)
Paper first 94.72 (45.07) 93.46 (57.63) 68.24 (45.72) 82.97 (63.23)

2 Foil first 94.52 (84.10) 115.71 (48.73) 60.57 (27.38) 124.91 (83.17)
Paper first 93.94 (57.66) 111.46 (70.87) 86.35 (60.36) 94.63 (53.95)

3 Foil first 93.21 (28.29) 96.28 (65.96) 77.52 (33.00) 91.44 (62.22)
Paper first 108.08 (69.15) 119.75 (79.56) 98.78 (57.93) 106.56 (67.82)

4 Foil first 132.80 (58.19) 121.54 (81.40) 101.00 (57.72) 106.99 (49.73)
Paper first 152.62 (71.84) 107.16 (77.09) 136.43 (63.75) 96.91 (58.79)

5 Foil first 129.68 (62.19) 134.31 (52.82) 118.13 (69.75) 126.16 (42.59)
Paper first 171.62 (59.83) 147.91 (88.99) 135.48 (52.78) 142.28 (85.04)

6 Foil first 110.79 (45.46) 142.36 (61.13) 103.79 (43.64) 125.98 (57.82)
Paper first 149.93 (58.39) 131.26 (66.00) 119.17 (56.37) 122.95 (52.59)

7 Foil first 133.39 (52.20) 186.73 (70.32) 128.84 (66.22) 144.94 (63.75)
Paper first 179.55 (72.36) 174.74 (87.12) 133.56 (64.80) 148.04 (79.96)

8 Foil first 156.09 (78.73) 164.67 (66.73) 140.34 (80.31) 164.70 (68.38)
Paper first 198.25 (85.52) 181.22 (87.43) 171.04 (80.91) 155.16 (75.83)
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drawings on foil (M = 129.34, SE = 9.23) than paper (M = 
108.77, SE = 8.73). The main effect of size rank was also 
significant, F(4.40, 123.13) = 32.08, p < .001, ηp

2 = .53. 
This effect was best explained by the linear function, F(1, 
28) = 99.44, p < .001, ηp

2 = .78. The size of the drawing 
increased as the size rank value increased (see Fig. 2). 
The remaining main effects and interactions did not reach 
significance (all ps > .065).

The pattern of results was similar for the adventitiously 
blind group. The main effect of material was significant, F(1, 
27) = 6.08, p = .020, ηp

2 = .18 – due to larger drawings being 
produced on foil (M = 133.29, SE = 10.82) than on paper 
(M = 119.65, SE = 9.66). In addition, the main effect of size 

rank was also significant, F(4.87, 131.49) = 17.83, p < .001, 
ηp

2 = .40 and best explained by a linear function F(1, 27) = 
63.73, p < .001, ηp

2 = .70. Adventitiously blind participants 
produced larger drawings with increasing size rank value 
(see Figure 2). The other effects were non-significant (all 
ps > .189).

Since one may argue that the paper condition is problem-
atic from the ecological validity point of view, we calculated 
additional analysis only on foil data (see Appendix 2). These 
findings of the ANOVA are similar to those obtained for all 
data, i.e., we yielded a statistically significant size rank effect 
best described by the linear function for congenitally blind 
and adventitiously blind participants.

Fig. 1  Examples of drawings produced on foil (A) and paper (B) by the same congenitally blind participant. Drawings show key (1), apple (2), 
shoe (3), backpack (4), dog (5), floor lamp (6), car (7), and house (8). All drawings are presented trimmed to the drawing boundaries

Fig. 2  Drawn size as a function of visual status and size rank. Error bars indicate ±1 standard error. Size rank values refer to the following 
objects: 1 – key, 2 – apple, 3 – shoe, 4 – backpack, 5 – dog, 6 – floor lamp, 7 – car, 8 – house
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Discussion

In the current study, we investigated the canonical size 
phenomenon (Konkle & Oliva, 2011) in adventitiously and 
congenitally blind participants. Their task was to draw com-
mon objects (of eight different sizes in the real world) from 
memory in two conditions – on paper or foil for raised-line 
drawings.

In both groups of blind participants, we found a similar 
pattern of results, i.e., increasing drawn size for objects that 
have larger real-world sizes. Importantly, the main effect of 
size rank was best explained by a linear function. Previous 
studies have found the same pattern of results among sighted 
adult participants who performed the drawing task in the 
visual or haptic domains (Konkle & Oliva, 2011; Szubielska 
et al., 2022; Szubielska & Wojtasiński, 2021; Szubielska, 
Wojtasiński et al., 2020). That means that the size of the 
real-world objects is a property of the mental representations 
of adults with blindness, regardless of their visual status. 
This result may also suggest that object size is a defining 
property of mental representations of familiar objects and 
that knowledge of object size may be gained from different 
learning procedures, like direct sensory experience (not only 
visual but probably also haptic) or more abstract knowledge.

Moreover, this result suggests that blind adults, includ-
ing those who are blind from birth, used rather allocentric 
reference frames when performing the task, which relate the 
drawn size of the particular object to the size of the frame 
determined by the surface of the sheet of paper/foil rather 
than body-centred reference frames. If the participants had 
used egocentric strategies based on their previous experience 

in tactile graphics, all drawings of objects would have been 
similar, approximately hand size. All of the congenitally 
blind participants had (at least rare) previous experience of 
using tactile graphics, and guidelines for depicting objects 
on tactile graphics recommend hand size (Edman, 1992). If, 
on the other hand, the participants had referred to their expe-
rience of touching actual objects, the shoe should fill almost 
the entire sheet of paper, while objects like a backpack and 
larger would go beyond the A4 size sheet. Nevertheless, the 
congenitally blind participants using sheets of paper/foil of 
this size produced drawings that generally were not larger 
than the hand but varied in size according to the objects’ 
sizes in the real world. Hence, our findings contrast reports 
from previous studies, which suggested that congenitally 
blind people prefer using egocentric reference frames (Pas-
qualotto et al., 2013; Pasqualotto & Proulx, 2012; Ruggiero 
et al., 2012, 2022; Toroj & Szubielska, 2011) and are in 
line with those which showed use of an allocentric refer-
ence frame in congenitally blind individuals (Chiesa et al., 
2017; Martolini et al., 2021; Ottink et al., 2022; Schmidt 
et al., 2013).

The results obtained in the present study also provide 
evidence that people who are blind from birth can correctly 
estimate angular size when drawing (other paradigms of 
testing angular size representation revealed opposite results, 
Arditi et al., 1988; Vanlierde & Wanet-Defalque, 2005) and 
scale sizes (for similar findings in the task of the spatial scal-
ing of maps, see Szubielska, Möhring, & Szewczyk, 2019a). 
Hence, our research also shows that people who are blind 
from birth do not ignore the size of the objects they imagine, 
as has been suggested in studies on mental majorization of 

Table 3  Results of the ANOVA (main effects and interactions) for drawn size as a dependent variable

Significant effects are indicated in bold. The samples included in this analysis vary by visual status and drawing order (CB: n = 14 in the “foil 
first” condition, n = 16 in the “paper first” condition; AB: n = 15 in the “foil first” condition, n = 14 in the “paper first” condition)

ANOVA effects

Size rank F(4.98, 273.98) = 44.80, p < .001, ηp2 = .45
Material F(1, 55) = 20.99, p < .001, ηp2 = .28
Visual status F(1, 55) = 0.32, p = .573, ηp

2 = .01
Drawing order F(1, 55) = 0.79, p = .379, ηp

2 = .01
Size rank × Material F(5.02, 275.88) = 1.14, p = .336, ηp

2 = .02
Size rank × Visual status F(4.98, 273.98) = 3.15, p = .009, ηp2 = .05
Size rank × Drawing order F(4.98, 273.98) = 0.89, p = .486, ηp

2 = .02
Material × Visual status F(1, 55) = 0.86, p = .357, ηp

2 = .02
Material × Drawing order F(1, 55) = 0.53, p = .469, ηp

2 = .01
Visual status × Drawing order F(1, 55) = 0.91, p = .344, ηp

2 = .02
Size rank × Material × Visual status F(5.02, 275.88) = 0.66, p = .653, ηp

2 = .01
Size rank × Material × Drawing order F(5.02, 275.88) = 0.72, p = .612, ηp

2 = .01
Size rank × Visual status × Drawing order F(4.98, 273.98) = 0.58, p = .715, ηp

2 = .01
Material × Visual status × Drawing order F(1, 55) = 0.20, p = .656, ηp

2 = .00
Size rank × Material × Visual status × Drawing order F(5.02, 275.88) = 2.75, p = .019, ηp2 = .05
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abstract shapes (the process of majorization is defined as 
mental transformation requiring enlargement of the object 
of imagery representation) (Szubielska, 2015). However, 
perhaps there are differences between blind participants in 
representing the size in the case of real and abstract objects. 
Intriguingly, we found the canonical size phenomenon in 
participants with congenital blindness even though only half 
of them declared some drawing experience and that their 
drawings were hardly recognisable (see Fig. 1). This may 
mean that angular size is represented more accurately in the 
congenitally blind person’s mind than the two-dimensional 
shape of three-dimensional objects.

The results also revealed that both congenitally and 
adventitiously blind participants produced larger drawings 
on foil than paper. Previous research, in which the type of 
material (film vs. paper) was manipulated, did not reveal 
a similar finding (Szubielska et al., 2022). This may mean 
that the ability to have perceptual control during the drawing 
process is vital for the size of the drawing. Smaller drawings 
are created when perceptual feedback (haptic or visual – in 
Szubielska et al.’s (2022) study, sighted participants pro-
duced larger drawings in the visual than blindfolded condi-
tion) is limited.

In addition to revealing that blind people represent the 
size of familiar objects in imagery, our research also brings 
novel findings on the nature of the phenomenon of canonical 
size. This phenomenon was initially claimed to be visual due 
to being tested in the visual domain and linked to visual per-
ception (Konkle & Oliva, 2011, see also Chen et al., 2022; 
Konkle & Oliva, 2012b). However, in this study, we found 
a canonical size effect in participants with congenital blind-
ness who cannot use visual representations at all (Blanco & 
Travieso, 2003; Likova, 2012; Picard et al., 2010; Szubiel-
ska, 2014; Vanlierde & Wanet-Defalque, 2004). Therefore, 
our study negates the assumption of the phenomenon’s 
purely visual nature.

Consequently, it can be argued that the canonical size 
phenomenon itself is spatial, not visual. This conclusion 
is in line with the concept of a supramodal spatial system 
and an amodal spatial function (e.g., Cattaneo et al., 2008; 
Likova, 2012; Ricciardi et al., 2014; Wolbers et al., 2011). 
Furthermore, our findings support the concept of functional 
equivalence of spatial representations from touch and vision 
(Giudice et al., 2011; Ottink et al., 2021) in the sense that 
touch, in a similar way to vision, allows the acquisition and 
use of implicit knowledge of the sizes of everyday objects.

Limitations

We consider the main limitation of our study to be that the 
canonical size effect was tested using only one task – draw-
ing from memory. To further confirm and generalise the 

amodal character of the canonical size phenomenon, it 
would be helpful to investigate it among congenitally blind 
participants performing other tasks – the imagery and per-
ceptual tasks used by Konkle and Oliva (2011) – but adapted 
to the haptic domain.

Another limitation is that a floor lamp (which refers 
to size rank 6) might have been more challenging to draw 
by blind participants than the other objects considered in 
this study. Although lamps seem useless for blind people 
in everyday life, at the same time, none of the partici-
pants mentioned to us that they did not know what such 
a lamp is or looked like. Moreover, the participants were 
not instructed to draw a lamp when switched on, and the 
spatial properties of a lamp (shape, size) can be learned 
as much through sight as through touch. However, for 
better control of familiarity, this variable might have been 
measured by asking the participants to rate familiarity 
with an object drawn in the study after the drawing phase 
– concerning the floor lamp and all other objects included 
in the study.

One may also consider the lack of the ecological 
validity of the paper condition as a limitation. On the 
one hand, perceptual control in this condition is mini-
mal (since haptic feedback is unavailable, but proprio-
ceptive information still is available – for a discussion, 
see Szubielska et al., 2022). On the other hand, similar 
procedures (i.e., drawing without haptic feedback) were 
adopted in other studies on drawing among blind partici-
pants (e.g., Likova, 2012), and one of the participants in 
our study spontaneously declared that she often drew on 
paper for her child. In addition, and most importantly, 
the analysis performed excluding the data collected in 
the paper condition yielded similar results to the analysis 
performed on all the data. Notably, the canonical size 
effect was confirmed in both analyses.

Conclusions

Our quantitative study on the drawn size of familiar 
objects drawn from memory has shown that size is a 
feature of mental representations of real-world objects 
among blind people, including those with congenital 
blindness. More precisely, our findings suggest that 
late and congenitally blind people mentally represent 
objects as larger when they have larger actual physical 
sizes. From a theoretical perspective, our study contrib-
utes to correcting the ocular-centric bias underpinning 
conclusions about the visual nature of the canonical size 
phenomenon. The findings obtained among congenitally 
blind participants allow us to assume that the nature of 
this phenomenon is spatial, not visual.
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Appendix 1

Table 4  Details of the congenitally blind and adventitiously blind participants

Participant Age* Gender* Blindness aetiology* Onset of blindness (years living 
without sight)*

Diffuse light 
perception*

Congenitally blind (CB)
CB1 36 M Retinoblastoma Birth No
CB2 48 M Birth injury Birth No
CB3 25 F Retinopathy of prematurity Birth Yes
CB4 29 M Unknown Birth Yes
CB5 29 M Retinoblastoma Birth No
CB6 62 M Congenital defect Birth No
CB7 30 M Retinopathy of prematurity Birth Yes
CB8 25 F Retinopathy of prematurity Birth No
CB9 26 M Retinopathy of prematurity Birth No
CB10 42 M Toxoplasmosis Birth Yes
CB11 21 F Eyeball underdevelopment Birth Yes
CB12 24 F Optic nerve hypoplasia Birth Yes
CB13 21 F Optic nerve hypoplasia Birth Yes
CB14 21 F Retinal degeneration Birth No
CB15 56 F Retinal degeneration Birth Yes
CB16 60 M Optic nerve hypoplasia Birth No
CB17 27 M Retinopathy of prematurity Birth Yes
CB18 35 M Genetic disease Birth No
CB19 31 F Optic nerve atrophy Birth No
CB20 60 F Retinopathy of prematurity Birth No
CB21 36 M Retinopathy of prematurity Birth No
CB22 27 M Congenital defect Birth Yes
CB23 22 F Congenital defect Birth Yes
CB24 39 M Retinopathy of prematurity Birth Yes
CB25 30 M Retinopathy of prematurity Birth Yes
CB26 43 M Retinopathy of prematurity Birth No
CB27 36 F Unknown Birth No
CB28 24 M Retinopathy of prematurity Birth Yes
CB29 32 F Retinopathy of prematurity Birth Yes
CB30 47 M Congenital defect Birth Yes
Adventitiously blind (AB)
AB1 48 M Disease 6 No
AB2 28 M Toxoplasmosis 12 No
AB3 61 M Injury 10 No
AB4 61 M Optic nerve atrophy 15 No
AB5 36 M Injury 13 No
AB6 50 F Disease 39 No
AB7 36 F Injury 11 Yes
AB8 47 M Injury 36 No
AB9 52 M Retinal degeneration 35 No
AB10 41 F Unknown 9 No
AB11 34 F Disease 10 Yes
AB12 47 M Optic nerve atrophy 30 Yes
AB13 29 F Optic nerve tumour 7 Yes
AB14 50 F Retinal degeneration 30 Yes
AB15 55 F Disease 19 No
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Appendix 2

Additional analyses on drawing size exclusively considering 
the drawings produced on foils.

The ANOVA with the within-participant variables of size 
rank (1 – key vs. 2 – apple vs. 3 – shoe vs. 4 – backpack 
vs. 5 – dog vs. 6 – floor lamp vs. 7 – car vs. 8 – house) 
and the between-participant variables of participants’ vis-
ual status (congenitally blind vs. adventitiously blind) and 
order of drawing (on foil first vs. on paper first) showed a 
significant main effect of size rank, F(4.88, 268.58) = 33.33, 
p < .001, ηp

2 = .38 – best explained by the linear function, F(1, 
55) = 119.15, p < .001, ηp

2 = .68, and a significant interaction 
between size rank and visual status, F(4.88, 268.58) = 2.64, 
p = .025, ηp

2 = .05. The remaining main effects and interac-
tions did not reach significance (all ps > .317). To dissect 
the interaction obtained, we calculated follow-up ANOVAs 
for each visual status (congenitally blind and adventitiously 
blind) separately with the within-participant variables of 
size rank. Among congenitally blind participants, the main 
effect of size rank was significant, F(4.59, 128.42) = 21.66, 
p < .001, ηp

2 = .44, and best explained by the linear function, 
F(1, 28) = 83.96, p < .001, ηp

2 = .75. Similarly, in the adventi-
tiously blind group, the main effect of size rank was also sig-
nificant, F(4.19, 113.02) = 14.83, p < .001, ηp

2 = .35, and best 
explained by a linear function F(1, 27) = 43.63, p < .001, ηp

2 
= .62. In both groups of participants, the size of the drawing 
increased as the size rank value increased (see Table 2).
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