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Abstract
In recognition memory, the variance of the target distribution is almost universally found to be greater than that of the lure
distribution. However, these estimates commonly come from long-term memory paradigms where words are used as stimuli.
Two exceptions to this rule have found evidence for greater lure variability: a short-term memory task (Yotsumoto et al.,
Memory & Cognition, 36, 282–294 2008) and in an eyewitness memory paradigm (Wixted et al., Cognitive Psychology, 105,
81–114 2018). In the present work, we conducted a series of recognition memory experiments using different stimulus (faces
vs. words) along with different paradigms (long-term vs. short-term paradigms) to evaluate whether either of these conditions
would result in greater variability in lure items. Greater target variability was observed across stimulus types and memory
paradigms. This suggests that factors other than stimuli and retention interval might be responsible for cases where variability
is less for targets than lures.
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Signal detection theory (SDT) is arguably the most influ-
ential framework for modeling how decisions are made
in recognition memory tasks. According to SDT, memory
strengths of targets and lures are represented by two separated
but overlapping Gaussian distributions. A decision crite-
rion is placed somewhere along the continuum of memory
strength; an ‘old’ response is made if any test item gener-
ates a strength exceeding the criterion, otherwise a ‘new’
response is made (as illustrated in Fig. 1A). Predictions of
SDT models are commonly tested via analyses of the empir-
ical receiver operating characteristic (ROC) curve. ROCs are
constructed by plotting the hit rate (HR) against the false
alarm rate (FAR) across different levels of bias.Althoughbias
can bemanipulated in various ways such asmanipulations on
target proportions or payoffs (e.g., Dube & Rotello, 2012),
a typical way to obtain an ROC is by plotting cumulative
confidence ratings for hits and false alarms.
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Gaussian SDT models predict a curvilinear ROC, as well
as a linear z-transformed ROC (zROC). The slope of the
zROC provides an estimate for the ratio of the standard
deviation (SD) of the lure distribution to that of the tar-
get distribution (σlure/σtarget ). If equal variability between
targets and lures is assumed, a zROC slope of 1.0 is pre-
dicted; whereas if target variability exceeds lure variability,
a zROC slope less than 1.0 will be predicted. Over the past
decades, most if not all ROC studies in the field of recog-
nition memory have reported zROC slopes less than 1.0,
with a common value of approximately 0.80 (Benjamin,
Diaz, & Wee, 2009; DeCarlo, 2007; Dube & Rotello, 2012;
Glanzer & Adams, 1990; Glanzer, Hilford, Kim, & Adams,
1999; Glanzer, Kim, Hilford, & Adams, 1999; Heathcote,
2003; Hirshman & Hostetter, 2000; Kellen, Winiger, Dunn,
& Singmann, 2021; Osth, Bora, Dennis, & Heathcote, 2017;
Osth, Fox, McKague, Heathcote, & Dennis, 2018; Ratcliff,
McKoon,&Tindall, 1994; Ratcliff, Sheu,&Gronlund, 1992;
Wixted, 2007;Yonelinas, 1994). Following the SDT account,
the SD of the target distribution is therefore about 1.25
(1/0.80) times that of the lure distribution, as shown in
Fig. 1B. Such target–lure ROC asymmetry (i.e., the slope)
has generally been found to be constant across a range of
experimental manipulations that in principle should affect
accuracy – this includes presentation time, level of attention
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and the number of presentations, although words of lower
natural language frequency have generally been found to pro-
duce lower slopes than high frequencywords (e.g., Ratcliff et
al., 1992;Ratcliff et al., 1994;Glanzer et al., 1999; Spanton&
Berry, 2020). These findings have led to the proposition of the
’constancy-of-slopes’ generalization (Ratcliff et al., 1994).
Although this generalization was later overturned by work
showing that the ROC asymmetry can vary depending on
task parameters or conditions (e.g., Heathcote, 2003; Meyer-
Grant & Klauer, 2023; Dobbins, 2023; Hintzman, 2004),
most of these manipulations failed to produce estimates of
lure variability that exceed target variability.

Wixted (2007) provided the most common interpretation
of the greater variability of targets, that encoding variability
leads to different amounts of strength being added to each
item during study, resulting in greater variability in target
distribution. It is also important to note that several global
matching models of recognition memory (see Clark &Gron-
lund, 1996; Osth & Dennis, 2020, for reviews) also made the
a priori prediction of greater variability of targets, including
the Minerva 2 (Hintzman, 1988), SAM (Gillund & Shiffrin,
1984), and REM (Shiffrin & Steyvers, 1997) models. In each
of these models, the variability in memory strength scales

Fig. 1 Illustration of the equal-variance (A) and unequal-variance SDT
(B) models of recognition memory. Note. Memory strengths of targets
and lures are represented by the bell-shaped curves. Decision criterion is
represented by the vertical line. Signals exceeding the criterion generate
an ‘old’ response, otherwise a ‘new’ response is generated

with the mean memory strength. While in some cases this
has led to an incorrect prediction that the zROC slope should
decrease considerably in conditions of higher performance
(e.g., Ratcliff et al., 1992; Ratcliff et al., 1994), models such
as REM produced zROC slopes that roughly accorded with
the data (Shiffrin & Steyvers, 1997). More recently devel-
oped global matching models such as the Osth and Dennis
(2015) and Cox and Shiffrin (2017) models also make the
prediction of greater target variability for similar reasons.

However, it should be mentioned that the majority of
investigations that have found greater target variability did so
under very particular conditions, namely that they usedwords
as stimuli and employed long-term memory paradigms.
Greater target variability is not guaranteed to be general-
izable to other conditions. Indeed, a couple of exceptions to
the finding of greater target variability have been found.

The most noteworthy example of the finding of greater
lure variability comes from eyewitness memory paradigms.
Wixted et al. (2018) applied three competing SDT mod-
els to the simultaneous lineup procedure, where participants
viewed all members of a lineup including the suspect (i.e.,
photographed face of the actor from amock crime video) and
fillers (i.e., description-matched photographs of real human
faces) at once. The best-fittingmodel parameters revealed the
opposite of the usual pattern: greater lure variability. Parallel
results were also reported by Wilson, Donnelly, Christen-
feld, and Wixted (2019) and Dunn, Kaesler, and Semmler
(2022), where in a sequential lineup procedure, participants
make decisions about each lineup member individually. This
resembles the method of eliciting old-new judgments in
laboratory-based studies that have found evidence for greater
target variability with word stimuli.

Another finding of greater lure variability came from a
short-termmemory task.Yotsumoto et al. (2008) investigated
item recognition in a Sternberg recognition task (Sternberg,
1966). In this study, participants first viewed a short list of
study items (sinusoidal gratings) and thenwere tested on their
memory for a single test probe, which was either a target
or a lure. The results of their ROC analyses demonstrated
zROC slopes larger than 1.0 (1.1–1.3), which implied that
the memory strengths of the lures are more variable than that
of the targets.

It is therefore interesting and theoretically important to
understand what is driving the divergent outcomes in the
ratio of lure-to-target variability. A potential explanation for
the reversal of the usual observed pattern in slope could
be attributed to the differences in stimuli used across stud-
ies. Specifically, while studies that found slopes less than
1.0 almost exclusively adopted words as stimuli, studies
that reported slopes larger than 1.0 have used stimuli that
are non-linguistic (i.e., faces and sinusoidal luminance grat-
ings). While there is no obvious theoretical explanation for
why non-linguistic stimuli would elicit greater lure variabil-
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ity, a peripheral piece of evidence that supports a difference
in stimulus types comes from studies that showed different
effects of word and non-linguistic stimuli on the shape of the
zROCcurves – studies usingword stimuli generally observed
linear zROCs (e.g., Glanzer et al., 1999), whereas studies
using non-linguistic stimuli such as travel scenes and odors
found curvilinear zROCs (Onyper, Zhang, & Howard, 2010;
Howard, Bessette-Symons, Zhang,&Hoyer, 2006; Sherman,
Atri, Hasselmo, Stern, & Howard, 2003; Fortin, Wright, &
Eichenbaum, 2004). Findings like these suggest a possibility
that the difference in stimulus types may be responsible for
the divergent outcomes in previous ROC analyses of lure-to-
target variability.

Another factor that is possibly responsible is the type of
memory paradigm. Studies that have found greater target
variability have typically used a long-termmemory paradigm
with a study-test method – in addition to studying a list of
multiple items, participants are presented with a test list with
multiple targets and lures. Eyewitness memory paradigms
typically share the long-term memory component if there is
a sufficiently long study-test delay, but invoke only a single
studied item rather than a list and the test list contains a single
target and a number of lures (usually five). The Yotsumoto et
al. (2008) study used a short-term memory task with a short
study list (three items) and a single test probe. Thus, it is
possible that tests of short-term memory, short study lists, or
short test lists may result in greater lure variability.

A theoretical explanation for why short study lists may
induce greater lure variability comes from exemplar mod-
els of recognition memory (e.g., Kahana & Sekuler, 2002;
Nosofsky, 1991; Osth, Zhou, Lilburn, &Little, 2023). Exem-
plar models use a global matching retrieval mechanism
similar to the aforementionedREMandSAMmodels, but the
similarity calculation is based on an exponential transforma-
tion of distance. This similarity calculation is consequential
because the distance between a probe item and its own rep-
resentation in memory (the self-match) is always 0, meaning
there is no variability associated with it, while the distance
between a probe item and other representations in memory is
always variable. This means that in a short list of items, lure
probes have L variable matches to the memory set, whereas
target trials have L - 1 variable matches. Consequently, lures
have higher variability (Yotsumoto et al., 2008), and the dif-
ference should be more pronounced as L is decreased. The
prediction of greater lure variability does not apply tomodels
such as REM and SAM, where the match between a probe
and its own representation in memory is not only variable,
but often has greater variability than the match between a
probe and other items in memory (Osth & Dennis, 2020).

We sought to clarify the conditions under which greater
lure variability may be found. In particular, we manipulated
different types of stimuli (images of faces vs. single words)
across different memory paradigms (long-term memory

using the study-test method vs. a short-term memory Stern-
berg paradigm) to evaluate whether either of these conditions
would induce zROC slopes larger than 1.0, which are indica-
tive of greater lure variability. All experiments compared
faces and single words. A diagram of the basic procedures
for our three experiments can be found in Fig. 2. In Exper-
iment 1, a standard list memory paradigm is adopted, with
lists of 24 study items. In Experiment 2a and 2b, Sternberg-
styledprocedures (Sternberg, 1966)were employed, inwhich
a short series of study items (six and three items for Exper-
iment 2a and 2b, respectively) were briefly presented and
almost immediately followed by a single test probe item. As
word stimuli are much more memorizable than face stimuli,
especially in shorter lists, presentation time for words was
shortened to better equate the performance between words
and faces.

In the following sections, we begin by setting up the expo-
sition of each experiment, followed by detailed procedures
described in the Method section. We then outline the results
from our statistical and hierarchical Bayesian SDT analyses
of the ROC data. To foreshadow our results, we did not find
evidence for any reversal of the usual pattern, namely zROC
slopes less than 1.0 or greater target variability, with stimulus
types (faces and words) or tasks (long-term and short-term
paradigms). Instead, greater target variabilitywas found in all
cases, although the ratio of target-to-lure-variability changed
somewhat across stimuli and conditions, which also adds
to evidence rejecting Ratcliff et al. (1994) ’constancy-of-
slopes’ generalization.

Experiment 1

Experiment 1 contrasted faces andwords in a study-test long-
termmemoryparadigm.The stimuliweremanipulated across
lists such that lists were comprised entirely of one stimulus
type. To roughly equate the performance between faces and
words, we employed longer presentation times for the faces
condition than for the words condition.

Method

Participants

Eighty participants were recruited. All participants were
undergraduate students from the University of Melbourne
who participated for course credits. The number of partici-
pants was selected in accordance with previous studies (e.g.,
Heathcote, 2003; Spanton & Berry, 2022), where 64–75 par-
ticipants were recruited. It is important to note that in ROC
studies, the number of trials per participant is likely to be
more consequential than the number of participants. This is
because large numbers of observations are required to obtain
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Fig. 2 Diagram of the
experimental procedures in
Experiment 1, Experiment 2a,
and Experiment 2b

stable estimates of the zROC slope, which we are attempting
to do for each individual participant. In the present experi-
ment, each participant was tested on 768 trials per condition
that were distributed across two 1-h sessions, which should
be sufficient when comparing to 480 trials per participant
in previous studies (e.g., Spanton & Berry, 2022). The study
was approved byTheUniversity ofMelbourne Psychological
Sciences Human Ethics Advisory Group (Ethics ID: 12033).
Informed consent was obtained from all participants.

While nine out of 80 participants only completed one ses-
sion of the experiment, these participants were not excluded
as our use of the hierarchical Bayesian techniques enables a
balance between unequal amounts of individual participant
data.

Materials

The word stimuli were drawn from a word pool consist-
ing of 1608 medium-frequency words, ranging from four to
eight letters (M = 5.88, SD = 1.31), and ranged in word
frequency from 10 to 40 counts per million (M = 19.98,
SD = 8.06). Word frequency was sourced from the SUB-
TLEX corpus (Brysbaert & New, 2009).

The face stimuli were drawn from an online database
consisting of AI-generated human faces (Generated Photos:
https://generated.photos/). Faces from four ethnicities and
two genders were selected, such that there were 148 Asian

females, 112 Asian males, 134 African females, 168 African
males, 143 Latinx females, 180 Latinx males, 117 European
females, and 149 European males. The selected photos were
all front-facing adult faces with joy expressions and a white
background (available in our OSF repository https://osf.io/
au94s).

The words and faces were tested in different pure list con-
ditions, such that in each list all stimuli were either words or
faces. For each participant, a total of two eight-word lists and
sixteen 24-word lists were drawn pseudo-randomly without
replacement from the word pool. Similarly, a total of two
eight-face lists and sixteen 24-face lists were drawn pseudo-
randomly without replacement from the selected face pool,
with each ethnicity-gender group being equally represented
in each list. Half of the ten-item and 40-item lists were
designated to be the practice and experimental study lists,
respectively, while the remaining lists served as lures in the
practice test/test lists.

Procedure

The experiment was coded using the jsPsych package in
JavaScript (de Leeuw, 2015). Each participant completed
the experiment through a unique link on their own devices.
A minimum of 24-h break was enforced between sessions
to prevent fatigue. A within-subjects design was adopted
where participants experienced two types of stimuli – words
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or faces. The order of the conditions was randomized, with
the nature of the stimuli being informed immediately prior
to the study lists.

The experiment consisted of two sessions, with each ses-
sion lasting approximately 45 min. During each session,
participants were to complete a response-key practice block,
a practice and four experimental blocks of computer-based
recognition memory tasks.

To encourage participants to use all of the confidence
ratings, we included a response key practice block where
participants were told that they would be presented with a
series of confidence options (‘def. old, ‘prob. old’, ‘maybe
old’, ‘maybe new’, ‘prob. new’, and ‘def. new’) in capital
letters one at a time, and their task was to respond as quickly
and accurately as possible using corresponding keys. Partic-
ipants were instructed to place their left-hand ring, middle,
and index fingers on the S, D, and F keys and their right-
hand index, middle, and ring fingers on the J, K, and L
keys. The order of the confidence options was randomized
within subjects such that on some sessions the S, D, F, J, K,
and L keys corresponded to options from ‘def. old’ to ‘def.
new’, respectively, while on some sessions the keys corre-
sponded to options from ‘def. new’ to ‘def. old’, respectively.
Feedback of ‘CORRECT!’ or ‘WRONG!’ were given on the
screen for 800 ms for correct/incorrect responses, while a
‘TOO SLOW! RESPOND FASTER!’ message will appear
if participants did not give a responsewithin 1500ms. Each of
the six confidence options were repeated five times, resulting
in 30 trials in total. The repetition, however, was conducted
pseudo-randomly in which immediate repeated presentation
was not allowed.

Each practice and experimental block consisted of two
study-test cycles, with each cycle corresponding to differ-
ent stimulus types (i.e., words vs. faces). Each experimental
cycle consisted of a study phase, distractor phase, and test
phase. The practice task did not include a distractor phase.
During the study phase, a list of items flashed on the com-
puter screen, one at a time. For word stimuli, the presentation
rate was 750 ms per item followed by a 150-ms interstimulus
interval, whereas each face stimulus had a longer presenta-
tion time of 1750 ms followed by a 150-ms interstimulus
interval to increase performance.

Immediately after the study phase, a message appeared
prompting participants to proceed to a simple true/falsemath-
ematical task for 45,000 ms. Each of the math problems was
displayed in the form of A + B + C = D, where A, B, C, D
were numbers. Participants were asked to determine whether
D was the true sum of the numbers on the left of the equation
by pressing corresponding keys ("1" for TRUE and "0" for
FALSE).

Following this, participants were directed to begin the test
phase in which they were asked to respond whether each

test item had appeared in the study lists or not. Meanwhile,
they had to state their level of confidence in this recollec-
tion using a six-option confidence rating scale (i.e., three
levels of confidence for two choices - old and new). Quick
and accurate responses were encouraged – if a response was
given between 280 and 8000 ms, no message would appear;
whereas if a response was given beyond 8000 ms, a ‘TOO
SLOW! RESPOND FASTER!’ message would appear on
the screen for 800 ms, while a ‘TOO FAST! THINK CARE-
FULLY!’ message would appear for responses given below
280 ms.

In order to encourage participants to spread their use
of keys among all six confidence options, a token-earning
game was implemented during the test phase. Each cor-
rect/incorrect response was worth +3/-3 points for high-
confidence, +2/-2 points for medium-confidence, and +1/-1
point for low-confidence responses. As high-confidence keys
were associated with higher penalty, the game should in
principle motivate participants into strategically using low-
confidence response keys when lacking evidence and less
assured.

Results

Data from 13 participants were excluded, for displaying bad
task performance or non-adherence to the instructions (see
SupplementaryMaterial in our OSF repository https://osf.io/
au94s). Responseswith reaction times (RTs) less than 300ms
and greater than 4000 ms were excluded as these were likely
to be guesses, resulting in a loss of 1.55% of total data. The
raw data can be found in our OSF repository (https://osf.io/
au94s).

Empirical analysis

To quantify the amount of evidence for or against an
effect, Bayesian hypothesis tests were performed using JASP
(Team, 2020). The Bayes factor presents a comparison
between two competing hypotheses (i.e., null and alterna-
tive), with its value quantifying the updates in belief from the
data for one of the hypotheses (Wagenmakers et al., 2018).
A Bayes factor (i.e., BF10) larger than 1 indicates evidence
for an effect, whereas a Bayes factor smaller than 1 sug-
gests evidence for absence of an effect. According to Lee
and Wagenmakers (2013), 1 < BF < 3 is considered as
inconclusive/anecdotal evidence; 3 ≤ BF < 10 as mod-
erate evidence; 10 ≤ BF < 30 as strong evidence; and
30 ≤ BF < 100 as extreme evidence.

The slopes and intercepts of words and faces zROCs for
all experiments can be seen in Fig. 3. For simplicity, the slope
values were directly derived from the observed zROC curves
by applying linear least-squares regressions (i.e., the raw
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Fig. 3 Mean zROC slopes and
intercepts along with posterior
means of the σlure and μtarget
for words and faces from all
experiments. Note. For mean
slopes and intercepts, error bars
represent 95% within-subjects
confidence intervals. For
posterior means, error bars
represent 95% highest density
intervals

slopes). A set of Bayesian one-sample t test (Jeffreys, 1961)
were performed to investigate whether target variance was
smaller than lure variance. There was extreme evidence sug-
gesting that the zROC slopes for words (M = 0.68, SD =
0.21) and faces (M = 0.88, SD = 0.14) were both smaller
than 1.0, t(66) = −12.75,BF10 = 5.74×10+16 for words
and t(66) = −6.92,BF10 = 9.86×10+6 for faces. To inves-
tigate whether ourmanipulation on stimulus types did induce
differences in zROCs and performance, a series of Bayesian
one-way within-subjects analyses of variance (ANOVAs;
Morey & Rouder, 2015; Rouder, Morey, Speckman, &
Province, 2012) were performed for each dependent variable
of interest. Extreme evidence was found for the slope to be
smaller for words than for faces, F(1, 66) = 66.25,BF10 =
3.32×10+9, while intercept was larger for words than for
faces, F(1, 66) = 108.60,BF10 = 1.55×10+13.

SDTmodeling

We complemented the analyses above by fitting the SDT
model to individual participant ROC data using hierarchi-
cal Bayesian techniques (see Rouder & Lu, 2005, for an

introduction). A major advantage of this method is that hier-
archical Bayesian models are resistant to noise and outliers –
as the group-level and the individual participant-level param-
eters are separately estimated, extreme values of parameters
are pulled toward the group estimates (a phenomenon termed
‘shrinkage’). This is advantageous, considering that the SD
parameters of SDT models are often difficult to estimate.

As the words and faces were tested in different pure
list conditions (e.g., all stimuli were either words or faces),
parameterswere separately estimated for each conditionwith
no shared information between them: (1) the SDs of the
lure distributions; (2) the means of the target distributions;
and (3) the confidence criteria (five criteria needed for six
confidence ratings). Note that as different confidence crite-
ria were applied to words and faces, there were ten criteria
estimated in total. The SDs of the target distributions were
fixed to 1.0, such that the ratio of the lure-to-target variabil-
ity (σlure/σtarget ) can be directly derived from the SDs of
lures. The means of the lure distributions were fixed to 0.0
to identify the model.

Minimally informative prior distributions were applied to
imposemild constraints on the parameter values. For estimat-
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ing the posterior distribution, a typical approach is to use the
Markov chain Monte Carlo (MCMC) algorithm. Yet, con-
sidering the possible challenges from correlated parameter
estimates in SDT models, the differential evolution MCMC
(DE-MCMC: Turner, Sederberg, Brown, & Steyvers, 2013),
which is a posterior sampling method that is more robust to
parameter correlations, was instead employed. Details of the
prior distributions andDE-MCMCprocedure are provided in
the Appendix. Model codes are available in our OSF reposi-
tory (https://osf.io/au94s).

To verify whether unequal variance and specifically
greater target variability was indeed favored, model selec-
tionwas performed,which compared the equal-varianceSDT
with three versions of unequal-variance SDT – onewith σlure
being freely estimated; onewithσlure constrained to be larger
than 1.0; and one with σlure constrained to be between 0.0
and 1.0. Asmodels can vary in their complexity and therefore
capability to account for data, the Widely Applicable Infor-
mation Criterion (WAIC: Watanabe, 2010) was adopted for
model selection for its ability to take into account the trade-
off between complexity and goodness of fit. Amore complex
model receives harsher penalty, such that for it to be pre-
ferred, larger improvement in fit is needed to outweigh the
penalty. To facilitate model comparison, we report theWAIC
difference scores, in which the winning model has a score of
zero while all other models have positive values reflecting
the differences in WAIC between them and the best model.
The model selection results for all experiments are presented
in Table 1. By convention, WAIC differences of ten or more
between models would be considered ‘large’. Model selec-
tion in Experiment 1 favored the unequal-variance SDT with
freely estimated σlure, indicating no support for equal vari-
ability between targets and lures.

Figure 4 shows the observedROCs (left panel) and zROCs
(right panel) along with the predicted curves by the best-
fitting SDT model to the data, for all experiments. The
grey diamonds and black circles joined by the dotted lines
represent the data; the orange diamonds and blue circles rep-
resent the SDT model predictions, both for words and faces
respectively. From visual inspection, the parallel zROCs of
Experiment 1 (top right panel) do not differ systematically
from linearity.

The SDT model correctly captured the curvilinear shape
of the ROCs and the linear shape of zROCs in both con-
ditions of stimulus type. The SD ratios generated by the
best-fitting models for words and faces across all experi-
ments can be seen in Fig. 3. As expected, the mean SD
ratio for words (σlure = 0.72) and faces (σlure = 0.87)
were slightly different than the observed slopes but again
smaller than 1.0, with the 95% highest density intervals
(HDIs) indicating clear differences to 1.0. The slight devia-
tion between model parameter estimates and the empirical

zROC measures reflects a correction by using the hierar-
chical Bayesian techniques in the presence of noise in the
data.

Discussion

We found zROC slopes that were smaller than 1.0 in both the
condition that usedwords and faces as stimuli. This remained
true after corrections achieved by conducting the hierarchical
Bayesian analyses. Despite a clear difference in performance
between words and faces, a reversal of the usual pattern of
greater target variability was not observed. Taken together,
these results indicate that the use of face stimuli may not be
responsible for the observation of greater variability in lure
stimuli found in eyewitness memory paradigms.

Experiment 2a & 2b

In addition to the use of non-linguistic stimuli, the tasks
in Yotsumoto et al. (2008) only involved short-term mem-
ory retrieval when study lists of only three items and single
test probe were employed. An additional possibility is thus
suggested that greater variability of lure stimuli may be
more likely to be produced under conditions with short-term
memory retrieval. To facilitate comparison with previous
studies, a short-term Sternberg paradigm (Sternberg, 1966)
was adopted for Experiment 2a and 2b. Such a paradigm was
chosen not only for a partial replication of Yotsumoto et al.
(2008) but also for their unique property shared with eye-
witness identification, that only one identification decision
is made during test. Experiment 2a utilized study lists of six
items while Experiment 2b used a shorter list of three items.
To prevent ceiling level performance,we adopted shorter pre-
sentation times for conditions of higher performance (shorter
lists and word stimuli).

A common finding in the Sternberg paradigm is bet-
ter performance for more recent items (e.g., Kahana &
Sekuler, 2002; Monsell, 1978; Osth et al., 2023; Nosofsky,
Little, Donkin, & Fific, 2011). Thus, we additionally ana-
lyzedwhether zROC slope varies systematically across serial
positions for both stimulus types.

Method

Participants

A total of 33 and 29 participants contributed to Experiment
2a and 2b, respectively. Despite the smaller sample sizes
as compared to Experiment 1, participants in Experiment
2a and 2b were expected to complete three 1-h sessions
of the experiments. This in total gave us 336 (Experiment
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Table 1 WAIC difference
scores for EVSD and three
versions of UVSD from all
experiments

Exp1 Exp2a Exp2b
Model Faces Words Faces Words Faces Words

EVSDa 310 762 106 44 59 75

UVSDb 0 0 2 0 0 1

UVSD + Greater target variabilityc 5 10 0 1 4 0

UVSD + Greater lure variabilityd 323 767 121 57 71 83

Note. The winning model is depicted in bold. aSDT model with equal variance. bSDT model with unequal
variance. cSDT model with unequal variance and σlure constrained to be smaller than 1. dSDT model with
unequal variance and σlure constrained to be larger than 1

2a) and 648 (Experiment 2b) trials per condition for each
participant (if they completed all sessions), which were com-
parable to 144 and 800 trials each participant was tested on
in studies with similar Sternberg-styled design (Sternberg,

1966; Yotsumoto et al., 2008). In Experiment 2a, two partic-
ipants did not complete the final session, while in Experiment
2b, only 14 participants managed to complete all three
sessions.

Fig. 4 Estimated and observed
ROCs (left) and zROCs (right)
for words and faces in all
experiments. Note. Black dots
and grey diamonds joined by
dotted lines represent observed
data from the faces and words
conditions, respectively. Blue
dots and orange diamonds
represent SDT model
predictions for faces and words,
respectively
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Material

The word and face stimuli were drawn from the same
word/face pool as the first experiment. For Experiment 2a,
a total of 113 six-item study lists and 113 lure items were
drawn pseudo-randomly without replacement from the word
pool, with the same number of lists/items drawn from the
face pool. For Experiment 2b, a total of 217 three-item study
lists and 217 lure items were drawn pseudo-randomly with-
out replacement from the word pool, with the same number
of lists/items drawn from the face pool. For both experiments,
one list and one lure item were randomly selected from each
stimulus type to serve at the practice stage, with the remain-
ing served at the actual experiment. Unlike Experiment 1,
each list of faces (and the corresponding lures) was focused
on a different ethnicity-race group. Yet, the eight ethnicity-
race groups were still equally represented, such that in the
actual experiment, each group occupied an equal number of
lists.

Procedure

Experiment 2a and 2b both consisted of three sessions, with
each lasting approximately 45 min. In each session, Exper-
iment 2a had one response-key practice block, one practice,
and 112 experimental blocks of computer-based recognition
memory tasks; whereas Experiment 2b had one response-key
practice block, one practice, and 216 experimental blocks.

Each practice and experimental block consisted of two
study-test cycles, with each cycle corresponding to different
stimulus types (i.e., words vs. faces). During each cycle, a
fixation cross was first presented on the screen for 1000 ms.
This is followed by presentations of six study items one at a
time (each presented for 500ms if it was aword, and 1250ms
if itwas a face), separated by a 150-ms inter-stimulus interval.
After presentation of the study lists, a 1000 ms fixation cross
appeared again, followed by a single test item. During each
test trial, a countdown timer was displayed at the top of the
screen, indicating that amount of time left before the trial
ended. Participants were to identify whether the test itemwas
one of the study items or not, using a six-option confidence
rating scale as stated in Experiment 1. The probability of
the test item being a target or lure was equally distributed
(i.e., 50% for being a target and 50% for being a lure). Serial
positions were also controlled, in that there was a roughly
equal number of targets from each serial position. Again, the
too-slow and too-fast feedback was provided if participants
responded slower than 8000 ms or faster than 280 ms. In
the practice block, additional feedback on correct/incorrect
responses was provided. Also, the token earning game was
again employed to encourage use of all response keys.

The procedure of Experiment 2b was mostly identical
to that of Experiment 2a, but with a couple of exceptions.

Firstly, participants were only presented with three study
items during the study phase. Secondly, to prevent perfor-
mance at ceiling level due to shorter lists, presentation times
were shortened such that eachwordwas presented for 250ms
and each facewas presented for 750ms, followed by a shorter
interstimulus interval of 75 ms. Finally, serial positions were
better controlled as there was a exactly equal number of tar-
gets from each position.

Results

Data from four participants were excluded for either display-
ingbad taskperformanceor non-adherence to the instructions
(two were from Experiment 2a, two were from Experiment
2b; see Supplementary Material). For some participants, the
zROC slopes and intercepts were unable to obtain and there-
fore marked as missing values when performing ANOVAs
and t tests. These participants possessed straight vertical lines
for zROCs as they only had one data point on the x-axis
(the FARs). The vertical zROCs were not caused by bad per-
formance, instead, these were due to high performance in
short lists where participants tended to use only the high-
confidence keys, thus resulting in insufficient ROC points
used to calculate slopes and intercepts (see Supplementary
Material). Responses with RTs less than 300 ms and greater
than 4000mswere excluded, resulting in losses of 3.27% and
1.89% of total data in Experiment 2a and 2b. The raw data
can be found in our OSF repository (https://osf.io/au94s).

Empirical analysis

The ROCs and zROCs for Experiment 2a and 2b are dis-
played in the middle and bottom panels of Fig. 4. From
visual inspection, the zROCs for faces do not differ system-
atically from linearity, whereas the zROCs for words deviate
mildly from linearity. The zROC slopes for words (M =
0.71, SD = 0.52 for Experiment 2a; M = 0.47, SD =
0.42 for Experiment 2b) and faces (M = 0.75, SD =
0.16; M = 0.77, SD = 0.17) in both experiments were
smaller than those from Experiment 1 in most cases, except
the slope for words in Experiment 2a. Again, all slopes
across stimulus types and experiments were smaller than
1.0, which was supported by strong and extreme evidence,
t(25) = −2.94,BF10 = 12.69 for words in Experiment 2a,
t(20) = −5.71,BF10 = 3280.20 for words in Experiment
2b, t(30) = −7.75,BF10 = 2.16×10+6 for faces in Exper-
iment 2a, and t(26) = −5.67,BF10 = 7109.34 for faces in
Experiment 2b.

A series of Bayesian two-way within-subject ANOVAs
(as we manipulated both stimulus types and serial posi-
tions)were performed for each dependent variable of interest.
Anecdotal evidence suggested no effect of stimulus type on
slopes in Experiment 2a, F(1, 125) = 3.50,BF10 = 0.31,
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whereas strong evidence was found for slopes being smaller
for words than for faces in Experiment 2b, F(1, 40) =
16.94,BF10 = 23.79. Very strong and extreme evidence
supported intercepts to be increased for words than for
faces in the two experiments respectively, F(1, 125) =
85.99,BF10 = 1.83×10+7; F(1, 40) = 42.27, BF10 =
3644.34.

Consistent with previous literature, decreased error rates
for items in more recent study positions was observed (see
Fig. 5, top panel). This, however, raises one concern that
averaging slopes across serial positions may obscure any
different patterns occurring among the positions. Consider
a case where there could be a reversal of the pattern – if
long-term and short-term memory retrieval indeed differ in
the direction of evidence variability, with tasks that requires
long-term memory retrieval displaying greater target vari-
ability while tasks that require short-term memory retrieval
displaying greater lure variability, the average of slopes from
older serial positions (i.e., likely reflects long-term mem-
ory retrieval) and from later serial positions (i.e., short-term
memory retrieval) might be pushed more toward greater tar-
get variability. A simple way to test this is to obtain zROC
slopes for each serial position and see whether the slopes are
smaller than 1.0 for any position.

The means and 95% within-subject confidence intervals
of the slopes for each serial position from both experiments
are displayed in the middle panel of Fig. 5. As suggested
by Bayesian t test results, most but not all slopes received
very strong to extreme evidence for displaying greater tar-
get variability (BF10 = 20287.61; 0.70; 0.30; 0.44; 179.81;
4.38×10+10 for words, BF10 = 163.82; 34.96;
0.12; 125.96; 4835.82; 7.99×10+10 for faces in Experiment
2a; BF10 = 46.65; 1670.71; 32261.18 for words, BF10 =
30.28; 1.45; 31428.58 for faces in Experiment 2b). However,
as theremight be insufficient data per serial position, the slope
values were vulnerable to noise and outliers in the data. For
example, for the only slope that had amean value greater than
1.0 (i.e., the slope for the third position of faces condition),
the group average value was predominantly influenced by an
outlier who had a slope of 5.42. The reason why this partici-
pant had such a large slope is because he/she had a very tiny
variation in FARs (FARmax − FARmin = 0.007), making it
extremely easy for theHRs to have a larger variation than that
of the FARs, which resulted in an exceptionally large slope.
Excluding this outlier resulted in an average slope of 0.98 for
the third serial potion in faces condition. These issues thus
motivated further investigation using hierarchical Bayesian
analyses.

Fig. 5 Error rates, mean zROC
slopes and posterior means of
σlure for words and faces across
serial positions in Experiment
2a and 2b. Note. The top and
middle panels depict the error
rates across study positions and
lures, along with mean zROC
slopes across study positions
from Experiment 2a and 2b.
Error bars represent 95%
within-subjects confidence
interval. The bottom panel
shows the posterior means of the
σlure for words and faces across
serial positions from Experiment
2a and 2b. Error bars represent
95% highest density intervals
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SDTmodeling

A equal-variance and three versions of unequal-variance
SDT models were again fitted to check whether overall,
the target variance exceeded lure variance in both words
and faces. No preference for the equal-variability or greater
lure variability model was found in model selections of
both experiments (see Table 1). The predicted ROCs and
zROCs generated by the best-fitting model are displayed
in the middle and bottom panels of Fig. 4 for Experiment
2a and 2b, respectively. The best-fitting SDT models fitted
well to the curvilinear ROCs in words and faces as well
as the linear zROCs for faces in both experiments. How-
ever, it failed to capture the nonlinear zROCs of words in
either experiment. The SD ratios again differed slightly com-
pared to the observed slope values (1/σtarget = 0.66 for
words and 1/σtarget = 0.81 for faces in Experiment 2a;
1/σtarget = 0.48 for words and 1/σtarget = 0.83 for faces
in Experiment 2b). The SD ratios for words were smaller
than that for faces, but again all smaller than 1.0, as indi-
cated by the 95% HDIs in the middle and bottom panels of
Fig. 3. Improved performance for words (μtarget = 2.68 for
Experiment 2a; μtarget = 2.76 for Experiment 2b) than for
faces (μtarget = 1.05;μtarget = 1.71) was again demon-
strated by the differences between distribution means (i.e.,
d’). Better task performance was also observed as compared
to Experiment 1, which was reflected in SD ratios further
away from 1.0 and larger separation between target and lure
distributions.

Following the empirical analysis, we fitted another ver-
sion of SDT that allowed the SD and mean parameters of the
target distribution to vary across serial positions (hereinafter
referred to as the serial-position SDTmodel). Themeans and
SDs of the lure distributionswere fixed to 0.0 and 1.0, respec-
tively. Note that the confidence criteria were not separately
estimated for each serial position. Model codes are available
in ourOSF repository (https://osf.io/au94s). Again, an equal-
variance version and three unequal-variance versions of the
serial-position SDT were fitted to the data. Parameter esti-
mates of the best-fitting model would demonstrate whether

serial position effect as well as greater target variability for
all serial positions were found.

Model selection again indicated no preference for equal-
variability in both experiments (see Table 2). The observed
ROCs and zROCs alongwith the predicted curves by the best-
fitting serial-position SDT models are displayed in Fig. 6A
for Experiment 2a and Fig. 6B for Experiment 2b. Separate
ROCs and zROCs are plotted for each serial position. Sim-
ilar to the basic SDT model, the serial-position SDT model
fitted well to curvilinear ROCs and linear zROCs in faces,
but slightly misfitted the curvilinear zROCs in words. The
SD ratios for words and faces across study positions for both
experiments are displayed in Fig. 5, bottom panel. As sug-
gested by the 95% HDIs, the SD ratios in most positions
were clearly smaller than 1.0, with the only exception in the
second study position of the faces conditions in Experiment
2b. Yet, the most important message here is that there was
no evidence for greater lure variability for any study position
and stimulus type. The serial-position curves again showed
some recency and mild primacy effects, although the curve
for words in Experiment 2b remained an exception.

General discussion

Greater target variability has been found in the vast majority
of recognition memory studies, which typically used word
stimuli and long-term memory paradigms. However, this
finding is not guaranteed to generalize to other conditions.
Some rare exceptions have come from eyewitness memory
and short-term memory literature (Wixted et al., 2018; Wil-
son et al., 2019; Yotsumoto et al., 2008), in which greater
variability of lure stimuli has been reported. A possibility is
therefore suggested that either using non-linguistic stimuli or
short-term memory tasks might be responsible for the rever-
sals. The present investigation aimed to evaluate whether
either of these conditions would result in greater lure vari-
ability.

However, in the current study, greater variability in the
target stimuli was found in all conditions and experiments.

Table 2 WAIC difference
scores for an equal-variance and
three versions of
unequal-variance serial-position
SDT from experiment 2a and 2b

Exp2a Exp2b
Model Faces Words Faces Words

EVSDa 74 62 72 82

UVSDb 1 3 0 0

UVSD + Greater target variabilityc 0 0 5 .02

UVSD + Greater lure variabilityd 111 99 95 106

Note.Thewinningmodel is depicted in bold. aSerial-position SDTmodelwith equal variance. bSerial-position
SDTmodel with unequal variance. cSerial-position SDTmodel with unequal variance and σtarget constrained
to be larger than 1. dSerial-position SDT model with unequal variance and σtarget constrained to be smaller
than 1
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A

B

Fig. 6 The predicted and observed ROCs and zROCs for words and
faces across serial positions in Experiment 2a (A) and 2b (B). Note.
Black dots and grey diamonds joined by dotted lines represent observed

data from the faces and words conditions, respectively. Blue dots and
orange diamonds represent SDTmodel predictions for faces andwords,
respectively

In Experiment 1 where words and faces were compared
within a study-test long-term memory paradigm, zROC
slopes smaller than 1.0 were found in both types of stim-
ulus, indicating no reversal of the usual pattern when using
non-linguistic stimuli. In Experiment 2a and 2b, where short-
term Sternberg tasks were adopted, zROC slopes larger than
1.0 were again not found, regardless of stimulus types. Such
findings were also held across serial positions in both experi-
ments (despite one exception in Exp. 2b, evidence for greater
lure variability was however never suggested). These results
further confirmed that neither short-term memory retrieval
nor the use of non-linguistic stimuli were associated with the
observation of lure variance exceeding that of targets.

The results that the short-term memory paradigm yielded
similar ROC data to those from long-term memory recog-
nition tasks were consistent with a recent study where
short-term memory performance was tested using an n-back
task and found zROC slopes less than 1.0. Such a finding
not only has implications for factors affecting the variabil-
ity ratio, but also blurs the distinction between short- and
long-term memory. A number of researchers have suggested

a single storemodel ofmemory, whichwould similarly claim
that the same asymmetry in zROC slopes should be observed
in both short- and long-term recognition (e.g., Howard &
Kahana, 1999; Brown, Neath, & Chater, 2007; Sederberg,
Howard, & Kahana, 2008; Greene, 1986; Surprenant &
Neath, 2009).

It is worth noting that the variation in the SD parameters
across serial positions was large in Experiment 2a and 2b,
with target variance increased for initially studied and more
recent items. This potentially adds to a growing list of vari-
ables that do affect target item variance (Spanton & Berry,
2022), with further research needed to validate such findings.
One explanation for such variation is that discriminabil-
ity has been found to be significantly positively correlated
with target variance, in contrast to the constancy-of-slopes
hypothesis (Spanton & Berry, 2022). Thus, conditions of
improved memory performance would be expected to show
lower zROC slopes. In the data from Experiment 2, we found
exactly this pattern, as more recent serial positions, which
show greatly improved performance, also show considerably
reduced zROC slopes. The positive relationship between dis-
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criminability and target variability is also naturally predicted
by global matching models like Minerva 2 and REM. The
same reasoning applies when considering the more uneven
variability ratio for words than for faces (see Fig. 3), as face
stimuli are usually less discriminable than words. One might
also note that while previous research reported U-shaped
zROCs for non-linguistic stimuli such as travel scenes (e.g.,
Onyper et al., 2010; Howard et al., 2006), the current results
with linear zROCs for faces do not seem to uphold such find-
ings.

The reason why the finding of greater target variabil-
ity is of particular theoretical importance is because it
explains the stronger confidence–accuracy relationship for
‘old’ responses than ‘new’ responses. Namely, greater accu-
racy has been found to be associated with higher confidence,
and this is especially true for old responses (Mickes, Wixted,
& Wais, 2007). Greater target variability also potentially
explains the poorer resolution of confidence for negative
decisions (i.e., non-choosers) than positive decision (i.e.,
choosers) observed in eyewitness identification literature
(e.g., N. Weber & N. Brewer, 2004; N. Weber & N.
Brewer, 2006).

The SDT framework is typically used to explain how a
stronger confidence–accuracy relationship in ‘old’ responses
can be accounted for by greater target variability. Refer-
ring back to the illustration of SDT in Fig. 1, in order
to account for confidence responses, additional criteria are
added to partition the distributions into more bins, with each
bin corresponding to each confidence option. The accuracy
for each confidence option is thus determined by the relative
proportion of area under each distribution curve within the
corresponding bin. Increasing the variance of the target distri-
bution results in a greater target area for the high-confidence
old response bin, producing a stronger relationship between
confidence and accuracy.

However, it is not proposed here that previous observa-
tions of greater lure variability were due to chance. Instead,
it may be that theremay be something else specific to the eye-
witness identification and short-termmemory paradigms that
is responsible for the discrepancy. For instance, it is possible
that the lineup procedure itself produces such findings. In
the eyewitness memory paradigm, there is typically a single
study item (i.e., the suspect) along with a test list consisting
of one target (i.e., the suspect) and usually five lures (i.e.,
the fillers). The present study did not closely replicate the
eyewitness identification lineups but used Sternberg-styled
tasks as an approximation. It thus remains possible that the
origin of difference may lie in the procedures that were not
manipulated by our experiments.

A methodological explanation for the absence of the
expected asymmetry (i.e., greater target variability) in lineup
procedures is as follows: while the same innocent or guilty
suspect is viewed by all once-tested participants, the fillers

are randomly drawn from a large pool of photos that match
the description of the suspect. Thus, only the fillers (i.e., the
lures) but not the suspects (i.e., the targets) are testedwith dif-
ferent items, thus potentially allowing stimulus variability for
lures to exceed that of the targets (Shen, Colloff, Vul,Wilson,
&Wixted, 2023). By contrast, in designs where the suspects
and the fillers are fixed across participants, item variability
is no longer differentially added to each distribution and an
equal-variance model typically fits the best (Wixted et al.,
2018; Shen et al., 2023). It therefore seems plausible that the
random selection process might be what contributes to the
greater variance of lures in eyewitness paradigms. Nonethe-
less, it remains an open question as to why there are no cases
of greater target variability in eyewitnessmemory paradigms.
In addition, many of the existing explanations – such as the
encoding variability hypothesis, as well as the global match-
ing models such as Minerva 2 and REM – would still predict
greater target variability even with a single study item, since
it is assumed that target variance is induced by a range of vari-
ables that affect encoding strength during the study phase.

Alternatively, it is possible that high similarity in items
is responsible for the observation of greater lure variabil-
ity. In the current study, lure items only matched the target
items on some basic characteristics (i.e., word frequency for
words; race, gender, and age for faces). This is in contrast
to eyewitness lineups that usually involve fillers that physi-
cally resembles the suspect, and to Yotsumoto et al. (2008)
where even the targets were perceptually highly similar to
each other. It is theoretically possible that having shared fea-
tures between targets and lures could affect the estimates
of lure variability because any variability in the encoding
of targets would affect lures in the same manner, reduc-
ing the differences in variability between targets and lures.
However, it remains unclear as to why greater lure variabil-
ity would sometimes be observed. Meanwhile, empirically,
there have been several studies that investigated the effects
of semantic and orthographic similarity of lures to targets
on word recognition memory (Ratcliff et al., 1994; Heath-
cote, 2003;Neely&Tse, 2009; Cho&Neely, 2013;Dopkins,
Varner, & Hoyer, 2017; Shiffrin, Huber, & Marinelli, 1995).
While a tendency for lure variance to increase for similar
items was sometimes reported (e.g., Ratcliff et al., 1994;
Heathcote, 2003), lure variance exceeding that of targets was
otherwise never found. However, an important caveat here is
that lure similarity can vary considerably across materials
and studies. This might be especially true when the com-
parison is made with non-linguistic stimuli such as faces or
sinusoidal gratings that are not easily rehearsable as words. It
is therefore unclear whether the level of similarity between
lures in the aforementioned word recognition studies was
sufficient or comparable to the level of similarity in eyewit-
ness paradigms or the study of Yotsumoto et al. (2008). The
possibility remains that it was the sufficiently high level of
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similarity in non-linguistic stimuli that prompted the reversal
of the usually observed greater variance of targets.

Conclusion

While recognition memory studies using words as stimuli
along with long-term memory paradigms have found greater
variance for the target distribution than for the lure distri-
bution, a couple of exceptions that reported evidence for
greater lure variability have come from eyewitness mem-
ory paradigms (Wixted et al., 2018; Dunn et al., 2022) and
short-term memory tasks (Yotsumoto et al., 2008). Com-
paring stimulus types (faces vs. words) as well as memory
paradigms (long-term list-memory paradigm vs. short-term
Sternberg-styled paradigm), we attempted to investigate
whether one of these factors was responsible for the obser-
vation of greater lure variability. Our results showed that lure
variance did not exceed that of targets either for face stim-
uli or in tasks associated with short-term memory retrieval.
Yet, it remains possible that some other manipulations such
as the lineup procedure or high lure similarity that were
not replicated by our experiments were the origin of the
discrepancy.

Appendix

Prior distributions onmodel parameters

Participant parameters were sampled from group-level distri-
butions with mean M and standard deviation ς . Unbounded
parameters were sampled from normal distributions, while
several bounded parameters were sampled from truncated
normal distribution with a lower bound of zero:

μ ∼ TN(Mμ, ςμ, 0,∞). (1)

C ∼ TN(MC, ςC, 0,∞). (2)

Ccentral ∼ Normal(MCcentral, ςCcentral). (3)

σt ∼ Normal(Mσ t, ςσ t). (4)

σl ∼ Normal(Mσ l, ςσ l). (5)

σ ∼ TN(Mσ , ςσ , 0,∞). (6)

σst ∼ Normal(Mσ st, ςσ st). (7)

σsl ∼ Normal(Mσ sl, ςσ sl). (8)

σs ∼ TN(Mσ s, ςσ s, 0,∞). (9)

Minimally informative prior distributions were imposed
for all group parameters:

Mμtarget ∼ TN(1.5, 1.5, 0,∞). (10)

Mμlure ∼ TN(0, 1, 0,∞). (11)

MC ∼ TN(0.5, 1, 0,∞). (12)

MCcentral ∼ Normal(0, 1). (13)

Mσ ,Mσ s ∼ TN(1, 1, 0,∞). (14)

Mσ t,Mσ l,Mσ st,Mσ sl ∼ TN(0, 1). (15)

Details onMCMC estimation procedure

For each model, the number of chains was set equal to three
times the number of participant parameters. To reduce auto-
correlation, chains were heavily thinned such that only one
in every 20 MCMC iterations was recorded. This process
occurred after 5000 burn-in iterations were discarded and
continued until 1000 samples were collected.

For a model to be considered converged, its Gelman–
Rubin (GR) statistic should be below 1.20 for all parameters.

Excluson Criteria

A list of exclusion criteria were shared between Experiment
1, 2a and 2b, covering both task performance and adherence
to instructions.

Task Performance

Participants who were likely not paying attention to the
tasks were candidates for exclusion. Histograms of the per-
formance measure d’ from all participants are displayed
in Figs. 7, 8 and 9. Cutoffs of d’ were separately evalu-
ated across conditions and experiments. In Experiment 1,
as word stimuli are generally easier for recognition, partic-
ipants who displayed d’ < 0.2 in faces as well as d’ < 0.5
in words were excluded. Participants who displayed d’ <
0.2 in faces but d’ >= 0.5 in words were not excluded as
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Fig. 7 Histogram of
participants’ mean
discriminability (d’) on words
and faces in Experiment 1, Note.
The top and bottom panel shows
participants’ mean d’ on words
and faces respectively, with the
black dashed lines representing
the 0.5 and 0.2 cutoffs in
corresponding condition

they were at least trying at the tasks. In experiment 2a and
2b, as the overall performance was more ideal, participants
who displayed d’ < 0.5 in any one of the conditions were
excluded.

As a results, eight participants in Experiment 1 (subject
103, 111, 118, 127, 145, 169, 171, and 186: see Fig. 10) ;
one participant in Experiment 2a (subject 101: see Fig. 11);
and two participants in Experiment 2b (subject 108 and 111:
see Fig. 12) were excluded.

Adherence to Instructions

Participants who only used one response key within a
6-option confidence rating scale did not adhere to the
instructions and were therefore excluded. As a result, five
participants in Experiment 1 (subject 105, 140, 150, 160 and
166: see Fig. 13); one participant in Experiment 2a (subject
106: see Fig. 14) were further excluded, while none of the
participants was excluded from Experiment 2b (see Fig. 15).

Fig. 8 Histogram of
participants’ mean
discriminability (d’) on words
and faces in Experiment 2a,
Note. The top and bottom panel
shows participants’ mean d’ on
words and faces respectively,
with the black dashed lines
representing the 0.5 and 0.2
cutoffs in corresponding
condition
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Fig. 9 Histogram of
participants’ mean
discriminability (d’) on words
and faces in Experiment 2b,
Note. The top and bottom panel
shows participants’ mean d’ on
words and faces respectively,
with the black dashed lines
representing the 0.5 and 0.2
cutoffs in corresponding
condition

Fig. 10 Participants’ mean
discriminability (d’) on words
and faces in Experiment 1, Note.
The blue and orange bars
represent participants’ mean d’,
the blue and orange horizontal
lines represent the mean d’
across all participants, the black
and grey dashed line represents
the 0.5 and 0.2 cutoffs, for
words and faces respectively

Fig. 11 Participants’ mean
discriminability (d’) on words
and faces in Experiment 2a,
Note. The blue and orange bars
represent participants’ mean d’,
the blue and orange horizontal
lines represent the mean d’
across all participants, the black
and grey dashed line represents
the 0.5 and 0.2 cutoffs, for
words and faces respectively
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Fig. 12 Participants’ mean
discriminability (d’) on words
and faces in Experiment 2b,
Note. The blue and orange bars
represent participants’ mean d’,
the blue and orange horizontal
lines represent the mean d’
across all participants, the black
and grey dashed line represents
the 0.5 and 0.2 cutoffs, for
words and faces respectively

Fig. 13 Participants’ usage of the six confidence options for words and faces in Experiment 1,
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Fig. 14 Participants’ usage of the six confidence options for words and faces in Experiment 2a

Fig. 15 Participants’ usage of the six confidence options for words and faces in Experiment 2b
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