
Vol:.(1234567890)

Memory & Cognition (2023) 51:1670–1682
https://doi.org/10.3758/s13421-023-01421-7

1 3

Paired‑associate versus cross‑situational: How do verbal working 
memory and word familiarity affect word learning?

Anne Neveu1   · Margarita Kaushanskaya2

Accepted: 23 March 2023 / Published online: 3 April 2023 
© The Psychonomic Society, Inc. 2023

Abstract
Word learning is one of the first steps into language, and vocabulary knowledge predicts reading, speaking, and writing ability. 
There are several pathways to word learning and little is known about how they differ. Previous research has investigated 
paired-associate (PAL) and cross-situational word learning (CSWL) separately, limiting the understanding of how the 
learning process compares across the two. In PAL, the roles of word familiarity and working memory have been thoroughly 
examined, but these same factors have received very little attention in CSWL. We randomly assigned 126 monolingual 
adults to PAL or CSWL. In each task, names of 12 novel objects were learned (six familiar words, six unfamiliar words). 
Logistic mixed-effects models examined whether word-learning paradigm, word type and working memory (measured with 
a backward digit-span task) predicted learning. Results suggest better learning performance in PAL and on familiar words. 
Working memory predicted word learning across paradigms, but no interactions were found between any of the predictors. 
This suggests that PAL is easier than CSWL, likely because of reduced ambiguity between the word and the referent, but 
that learning across both paradigms is equally enhanced by word familiarity, and similarly supported by working memory.
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Introduction

Word learning is an important aspect of discovering a new 
language in adulthood, and can also take place in the native 
language, for example with rare words (e.g., recondite, 
quotidian) or new concepts (e.g., teraflop, BEV). To 
examine the cognitive processes underlying word learning, 
researchers have developed laboratory-based word-learning 
paradigms, with paired-associate word learning (PAL) and 
cross-situational word learning (CSWL) tasks representing 
two of the most common tasks tested in laboratory settings.

In PAL, a novel word has a single referent, a translation 
(e.g., Krepel et al., 2021) or picture representing the word 
(e.g., Gupta et al., 2004). There is no ambiguity as to the 
label-referent pairing. In that paradigm, the focus has been on 
the ability to create a phonological representation of the novel 

word and to store it in long-term memory (Kazanas et al., 
2020; Litt et al., 2019; Rothkopf, 1957; Steinel et al., 2007; 
Ylinen et al., 2020). In contrast, in CSWL, there is ambiguity 
in the possible word-referent mappings, and a novel word is 
learned by aggregating word and object associations across 
trials. In an experimental setting, this ambiguity is created 
by presenting two objects on screen, while two spoken words 
are presented sequentially. Only after several trials where the 
same pool of objects is presented in different pairings can 
the learner infer which word corresponds to which object. 
Although learning might be predicted to be impeded by the 
multitude of possible pairings in the environment, evidence 
in infants (Smith & Yu, 2008, 2013) and adults (Kachergis 
et al., 2012; Smith et al., 2010; Suanda & Namy, 2012; Yu 
& Smith, 2007) shows that learning in this context can and 
does take place successfully.

The two paradigms have been examined under different 
theoretical umbrellas, limiting our understanding of the 
common processes underlying word learning. For instance, 
one of the most common manipulations in PAL is related 
to word familiarity, and the degree to which long-term 
knowledge contributes to short-term encoding and retrieval 
processes (Ellis & Beaton, 1993; Papagno et  al., 1991; 
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Papagno & Vallar, 1992; Service & Craik, 1993), but this 
topic has barely been broached in CSWL (see Escudero 
et al., 2013, for an exception). Similarly, while many studies 
have examined the role of verbal working memory as the 
system underlying PAL (e.g., Baddeley et al., 1998, 2017; 
Ellis & Beaton, 1993; Freedman & Martin, 2001; Gupta, 
2003; Kazanas et al., 2020; Litt et al., 2019; Papagno et al., 
1991; Papagno & Vallar, 1992; Rothkopf, 1957; Steinel et al., 
2007; Ylinen et al., 2020), studies on CSWL have developed 
from statistical learning theories applied to language (e.g., 
Aslin, 2017; Conway et al., 2010; Frost et al., 2015; Graf 
Estes et al., 2007; Mirman et al., 2008; Saffran et al., 1996a, 
b), and thus have paid very little attention to the memory 
systems that might underlie CSWL. Yet, although PAL 
and CSWL differ in the level of ambiguity at word-referent 
exposure, both paradigms involve associating a word form 
with a referent, and maintaining this mapping over time.

Therefore, the purpose of this study is twofold: First, to 
examine the degree to which PAL and CSWL are sensitive 
to word familiarity effects, and second, to examine the extent 
to which PAL and CSWL performance is related to verbal 
working memory in adults. The overarching goal of this 
study is to examine the degree to which mechanisms that 
underlie PAL and CSWL are similar or different, keeping 
PAL and CSWL designs and methods as comparable as 
possible.

Paired‑associate learning and verbal working 
memory

Extensive research has found an association between verbal 
memory and PAL in various populations, such as children, 
adults, and patients with brain damage (Baddeley et al., 
1998, 2017; Freedman & Martin, 2001; Gupta, 2003; 
Papagno et al., 1991; Papagno & Vallar, 1992). The verbal 
memory system is part of Baddeley and Hitch’s model of 
working memory (Baddeley, 2003; Baddeley & Hitch, 1974), 
which comprises a central executive, a phonological loop, 
a visual sketchpad, and an episodic buffer. The component 
relevant to verbal working memory is the phonological 
loop, which is a temporary memory store that supports 
the processing of verbal information through articulatory 
rehearsal (subvocal speech). According to the model, 
the central executive is the locus of control for directing 
attention to the phonological loop while learning novel 
words. The role of the phonological loop is to temporarily 
store verbal representations, to generate longer-lasting ones 
in memory. Beyond supporting memory for sequences of 
familiar words, this process has been suggested to support 
novel word learning (Baddeley et al., 1998, 2017).

The role of the phonological loop has been established 
both in children and in adult word learning, where 
phonological memory capacity has been found to be 

positively associated with word-learning performance. For 
example, in studies with adults and children, participants 
with better ability to repeat nonwords and/or series of digits 
(two measures that typically index phonological working 
memory) tend to perform better on PAL tasks (e.g., Atkins 
& Baddeley, 1998; Baddeley et al., 1988, 2017; Gathercole 
et al., 1992, 1999; Service, 1992; Speciale et al., 2004). 
In addition, when verbal memory load is directly tapped, 
for example with phonologically similar, or long stimuli 
to learn, or in conditions of articulatory suppression (e.g., 
having to learn while repeating the word “the”), unfamiliar 
word learning is disrupted (Papagno et al., 1991; Papagno 
& Vallar, 1992).

While abundant evidence suggests that verbal working 
memory supports word learning, long-term memory 
has been found to contribute to word learning as well, 
particularly when learning involves phonologically familiar 
items in both children (Gathercole et al., 1991, 1999; Magro 
et al., 2018) and adults (e.g., Ellis & Beaton, 1993; Majerus 
et al., 2004; Papagno et al., 1991; Papagno & Vallar, 1992; 
Service & Craik, 1993). This conclusion has been drawn 
from studies demonstrating that familiar stimuli (such as 
real words, and phonologically viable nonwords) tend to be 
recalled with higher accuracy than unfamiliar stimuli (such 
as nonwords, and phonologically less viable nonwords). For 
nonwords, familiarity effects emerge when their phonotactics 
conform to that of the known language (Ellis & Beaton, 
1993; Papagno et al., 1991; Papagno & Vallar, 1992; Service 
& Craik, 1993). For example, the findings in Papagno and 
Vallar (1992) showed that only the learning of novel words 
was affected by phonological similarity and item length, 
but not the learning of associations between words already 
known. Evidence for this effect was also found in Ellis and 
Beaton (1993), where monolingual speakers of English had 
to learn German translations of English words. The authors 
showed that words that were easier to pronounce, and so 
closer to English phonology, were better remembered.

This familiarity effect suggests that prior knowledge 
of lexical and phonological features, stored in long-
term memory, is solicited at learning. In other words, the 
phonological loop relies on long-term memory during PAL 
(e.g., Ellis & Beaton, 1993; Majerus et al., 2004; Papagno 
et al., 1991; Papagno & Vallar, 1992; Service & Craik, 
1993). Because verbal working memory has limited capacity 
(e.g., Cowan et al., 2007), less familiar or unfamiliar novel 
words (which elicit less support from representations 
in long-term memory) require more involvement of the 
phonological loop to be encoded into long-term memory.

Evidence from neurophysiological studies also 
corroborates the word familiarity effect (e.g., Hanten & 
Martin, 2001; Martin & Saffran, 1999). For example, it 
has been shown that a highly educated patient (Ph.D. in 
molecular biology) who had had a verbal working memory 
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impairment was able to rely on lexical, semantic, and 
visual representations to process and retain phonologically 
familiar words. However, this patient had reduced capacity 
in processing and retaining nonwords and foreign language 
novel vocabulary.

To summarize, PAL has been examined through the 
framework of Baddeley’s working memory model, with 
verbal working memory as the primary mechanism 
underlying it. The word familiarity effect has been central 
to establishing how verbal working memory works in 
conjunction with long-term memory to support word-
learning processes. However, very little of this research has 
crossed into CSWL literature.

Cross‑situational word learning  and verbal working 
memory

The CSWL paradigm arose from the statistical learning 
literature and thus has not examined what role working 
memory might play in novel word learning. Two approaches 
to learning are posited in CSWL: associative learning (e.g., 
Yu & Smith, 2007, 2011) and hypothesis testing (Trueswell 
et al., 2013, see Yurovsky & Frank, 2015, for an integrative 
account). Associative learning relies on aggregating 
information on sets of word-referent co-occurrences 
to eventually infer word meanings. Hypothesis testing 
stipulates that hypotheses are formulated on word-referent 
mappings, evidence related to hypotheses is encoded, and 
word meanings are inferred from these hypotheses. Neither 
approach allocates a central role to working memory in 
CSWL. However, novel words have to be processed and 
retained in CSWL, therefore paired-associate and cross-
situational word learning could be supported by verbal 
working memory similarly. Moreover, there is some 
evidence for the role of working memory in CSWL, although 
this association has generally been established via a different 
approach from the one used in PAL (Mulak et al., 2019; 
Vlach & Sandhofer, 2014; Yu & Smith, 2007).

The effect of verbal working memory on CSWL 
performance has been tested indirectly by varying the level 
of ambiguity during the teaching phase of the experiment 
(Mulak et  al., 2019; Vlach & Sandhofer, 2014; Yu & 
Smith, 2007). For instance, in Mulak et al.’s study (2019), 
adults were tested in one of four conditions, differing in the 
level of ambiguity at novel word-referent exposure, from 
a 1 × 1 pairing (as in PAL), where one word is auditorily 
played while one picture is displayed on the screen, to 2 
× 2, 3 × 3, and 4 × 4 pairings. In each condition, working 
memory load increased such that one additional word and 
one additional object to learn were presented. For example, 
at the highest load in the 4 × 4 condition, phonological and 
visual encoding for four words and four objects had to be 

associated, whereas half the number of stimuli had to be 
processed in the 2 × 2 condition. Findings showed that 
while participants learned above chance in all conditions, 
learning performance was best in the 1 × 1 condition, 
providing evidence for the first time that PAL is easier 
than CSWL. Findings were similar in Vlach and Sandhofer 
(2014) and Yu and Smith (2007), who contrasted word-
learning performance in 2 × 2, 3 × 3, and 4 × 4 conditions. 
Better performance in the less ambiguous conditions was 
interpreted as reflecting a lighter load on working memory 
resources through fewer word-referent mappings to learn, 
although working memory was not directly tested in these 
studies (Mulak et al., 2019; Vlach & Sandhofer, 2014; Yu 
& Smith, 2007).

While working memory load has been indirectly tested 
in CSWL, the role of word familiarity, and thus of long-
term memory, has received very little attention in the 
CSWL literature. Like Mulak et al. (2019), Escudero et al. 
(2013) manipulated phonological overlap within the pool 
of novel words in a CSWL task. In that study, participants 
were tested in a CSWL paradigm where stimuli were non-
minimal pairs, near-minimal pairs, vowel-minimal pairs, 
or consonant-minimal pairs (bon, pon, ton, don and dit, 
dut, deet, doot). Participants were able to learn words 
above chance in all four conditions, but performance on 
the vowel minimal pairs was significantly worse than in the 
other three conditions. This suggests that the phonological 
loop was particularly taxed when encoding phonological 
detail for vowel minimal pairs in monosyllabic nonwords, 
which disrupted learning. While phonologically similar 
stimuli increased the difficulty of the learning task in that 
experiment, it is possible that familiar words, namely 
words that are already known, would facilitate novel word 
learning, in the absence of phonological overlap in the 
experimental stimuli. However, considering that CSWL 
has a higher level of ambiguity than PAL, which imparts 
a higher load on working memory and has led to decreased 
levels of learning performance (Mulak et al., 2019), it is 
possible that the phonological facilitation effect associated 
with familiarity is weaker in CSWL compared to PAL.

To summarize, robust findings in PAL suggest that 
verbal working memory is a core mechanism that supports 
novel word learning, and that familiar novel words enjoy 
a learning advantage, likely due to the involvement of 
long-term memory in verbal working memory. In CSWL, 
disruptions in learning due to phonologically similar 
stimuli suggest that the task is sensitive to phonological 
detail. Moreover, CSWL performance declines with 
increased ambiguity at learning, indirectly suggesting 
a role of working memory load. However, neither word 
familiarity nor the association between CSWL success and 
working memory has been directly studied in adults.
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Current study

In the present study, we examined the extent to which 
word-learning performance might vary as a function of 
word-learning paradigm – PAL versus CSWL, and word 
familiarity – unfamiliar (nonwords) vs. familiar (existing 
English words) words. Additionally, we examined whether 
verbal working memory would predict word learning 
similarly or differently across paradigms and word types.

Our primary prediction was that word-learning 
performance would be higher in PAL than in CSWL, in 
line with the hypothesized higher verbal working memory 
load associated with CSWL (Mulak et al., 2019; Vlach & 
Sandhofer, 2014; Yu & Smith, 2007), and consistent with a 
single prior study that has examined this question in children 
(Vlach & DeBrock, 2019). In line with Baddeley’s model 
of working memory (Baddeley, 2003; Baddeley & Hitch, 
1974), and strong findings regarding the facilitative role 
played by phonological familiarity in novel word learning 
(Baddeley et al., 1998, 2017), we also hypothesized that 
word-learning performance would be higher for familiar 
versus unfamiliar words, across both paradigms. We 
additionally hypothesized that higher verbal working 
memory performance would be associated with higher word-
learning performance across both paradigms and word types. 
Critically, we also anticipated a number of interactions 
among the variables of interest, testing the critical prediction 
that verbal working memory would be differentially involved 
in PAL versus CSWL, and in the learning of phonologically 
unfamiliar versus familiar novel words. Because CSWL is 
expected to be more taxing than PAL, it is possible that 
working memory would associate more strongly with word-
learning performance in this paradigm. However, because 
CSWL relies on unconscious statistical learning more than 
PAL, it may not tax working memory to the same extent as 
PAL, and demands on working memory may be neutralized 
for this task. Additionally, it is possible that verbal working 
memory performance would associate more strongly with 
word-learning performance when words are less familiar, 
across paradigms. Finally, learning condition and word 
familiarity could compound such that working memory 
performance would be more strongly associated with word-
learning performance on unfamiliar words in CSWL.

Method

Participants

We recruited 136 participants via the online platform Prolific 
(Palan & Schitter, 2018). This sample size was derived from 
a power analysis conducted using the function “modelPower” 
in the lmSupport package (Curtin, 2018) in R Studio (v. 

4.0.0; R Core Team, 2020) to determine the sample sizes 
needed to detect moderate effects of subject-level variable 
and interaction terms on word-learning accuracy. A meta-
analysis looking at second language word learning from 
spoken input found a large effect of vocabulary gains (g = 
1.05, equivalent to d, with the exception that g corrects for 
small-sample bias) (de Vos et al., 2018). However, this figure 
conflates studies with different populations, ages, treatments, 
and testing procedures, and does not include all the variables 
included in the present study. Therefore, we chose a more 
conservative, medium effect size of d = 0.7.

Our filters on Prolific included participant location in the 
USA, US nationality, age between 18 and 40 years, English as a 
first language, no knowledge of another language, no language 
related-disorders, and no hearing difficulties. Participants 
were compensated at a rate of US$10 per hour. Participants 
provided informed consent to voluntarily take part in the 
study through a form approved by the Institutional Review 
Board of the University of Wisconsin – Madison. Participants 
were randomly assigned to a word learning condition (PAL or 
CSWL). Participant characteristics can be found in Table 1.

Participants completed the Language Experience and 
Proficiency Questionnaire (LEAP-Q, Marian et al., 2007), 
adapted to an online format, reporting languages known, 
percentage of exposure to the language(s), and self-rated 
proficiency in each language. Participants who indicated 
exposure to a language other than English more than 5% of 
the time were excluded (six participants).

Materials

Stimuli

Novel word stimuli consisted of six disyllabic unfamiliar 
words (nonwords) chosen from the Gupta et al. database 
(2004), half with first-syllable stress, half with second-
syllable stress, and following English phonology. There were 
additionally six English words, matched to the unfamiliar 
words on stress pattern, and on biphone frequencies using 
the Clearpond database (Marian et al., 2012).

These 12 words were each paired with a novel object. 
The pictures for the novel objects were chosen from the 
Novel Object and Unusual Name (NOUN) Database (Horst 
& Hout, 2016). The objects were chosen such that they 
had average high novelty ratings and were comparable in 
saliency. We selected 12 novel object pictures that we paired 
with the 12 words to create the teaching list. To control for 
variability in word-object pairing due to any subjective 
saliency in the pictures, we changed the word-object 
pairings and created a second list, using the same pool of 
stimuli, such that the pictures that were paired with familiar 
words in the first list were paired with the unfamiliar words 
in the second list, and vice versa. Assignment of lists to 
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participants was randomized across participants. Word and 
object stimuli are presented in Appendix B.

Learning conditions

Paired‑associate word learning  The PAL task contained 
three teaching cycles, in which the 12 novel word-object 
pairings were presented three times, across three blocks. 
Presentation was randomized within blocks and block order 
was randomized across participants. Participants first saw 
instructions (see Appendix A1-i) describing the word-
learning task. Then, a black fixation cross appeared in the 
center of the white screen for 1,000 ms. The novel object 
picture appeared on the screen, and its name was spoken 
with a 400-ms delay. The object remained visible on the 
screen for 3,400 ms longer before the software automatically 
moved on to show the next object. The teaching cycle 
contained one attention check, placed after the first block 
for all participants. The check consisted of a sentence and 
solicited a response: “We’re checking that you’re still here. 
Press “next” to continue learning.”

Once the teaching cycle was completed, the experiment 
moved to the testing cycle. Each novel word was tested three 
times in a four-alternative forced-choice task. Participants 
were presented with instructions to choose the picture that 
matched the word played, among the four options presented 
(see instructions in Appendix A1-ii). A fixation cross appeared 
for 1,500 ms, then the four pictures appeared on the screen 
but were not yet clickable as there was a 700-ms delay until 
the target word was spoken. Pictures became clickable (a thin 
black frame around them appeared) at the target word offset. 

The next testing trial appeared after the participant clicked 
on the picture chosen. Order of presentation across trials was 
randomized within and across blocks for all participants. 
There were always four different objects presented on the 
screen, and pairings were pseudorandomized such that two 
words within the four never appeared together more than six 
times. Each picture appeared between 10 and 14 times on 
screen, in all four zones (top left/right, bottom left/right). 
Responses were scored as 1 or 0 depending on whether the 
participant’s answer matched the correct answer.

Cross‑situational word learning  The design of the CSWL 
task followed the same structure as the PAL when applicable, 
to enhance comparability between paradigms. Participants 
first saw instructions that did not give away that they were 
going to learn novel words (see Appendix A2-i). Next, a 
black fixation cross appeared in the center of the white 
screen for 1,000 ms. The 12 novel word-object parings were 
presented three times, in blocks. Presentation was similarly 
randomized within and across blocks. Two novel objects 
were presented on-screen and two novel words were spoken 
one after the other, after a 400-ms delay from picture onset. 
To keep the same timing per trial as in PAL, one object was 
named between 400 ms and 1,700 ms, and the second object 
was named between 1,700 ms and 3,400 ms. The screen 
automatically moved to the next set of stimuli at 3,400 ms. 
As in PAL, a single attention check was placed after the first 
block. Presentation and naming of the novel objects was 
counterbalanced left and right, such that in each block, each 
of the 12 words appeared once on the left and once on the 
right. Each novel word was heard twice in one block and six 
times overall. The left-right pairings were always different. 

Table 1   Participant characteristics

a Females (F), Males (M), Non-binary (N-B), no reply (NR)
b Coded 1 through 8, from "Less than High School" to "Ph.D./M.D./J.D."
c Percent correct
d For the variable of gender, Pearson’s Chi-squared test was run instead as the data are categorical
* p < .05. **p < .01. ***p < .001

PAL CSWL Overall
Mean (SD)
N = 62

Mean (SD)
N = 64

Welch’s t-test
td

Mean (SD)
N = 126

Age (years) 29.73 (6.83) 30.23 (6.09) -0.44 29.98 (6.44)
Gendera 33 (F) 24 (M) 3 (N-B) 

2(NR)
31 (F) 30 (M) 3 (N-B) 0.60d 64 (F) 54 (M) 

6 (N-B) 2 
(NR)

Years of educationb 4.65 (1.24) 4.50 (1.28) 0.64 4.57 (1.26)
Nonverbal IQc 62.14 (14.49) 63.92 (17.74) -0.62 63.04 (16.18)
English vocabularyc 52.12 (18.85) 50.98 (20.10) 0.31 51.54 (19.43)
Backward digit-spanc 58.57 (16.68) 58.98 (17.88) -0.14 58.78 (17.23)
Nonword repetitionc 51.47 (22.04) 51.19 (18.88) 0.07 51.33 (20.38)
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Half of the unfamiliar words and half of the familiar words 
were named on their matching side four times out of the six 
(i.e., the picture presented on the left matched the first word 
uttered, and the picture on the right matched the second 
word uttered). The remaining half were named twice on their 
matching side and four times on their non-matching side. 
The six unfamiliar words were presented twice with another 
unfamiliar word and four times with a familiar word. The six 
familiar words were presented twice with another familiar 
word and four times with an unfamiliar word.

The testing phase was the same as in PAL, except for 
the instructions that asked to pick the picture that matched 
the sound played (see instructions in Appendix A2-ii), and 
the pseudorandomization in creating the three testing blocks 
additionally ensured that the pairings seen in the teaching 
cycle were not systematically reproduced at test.

Procedure

Participants completed the experiment independently and 
asynchronously on the Gorilla Experiment Builder platform 
(Anwyl-Irvine et al., 2020). The experiment began with the 
consent form. If participants did not consent to audio, they 
were redirected to a version of the experiment without the 
tasks requiring audio recording (the Woodcock Johnson test 
of English vocabulary and the non-word repetition task), 
such that all their other data could still be included in the 
dataset for analysis. A sound check was included to ensure 
participants adjusted their volume to a comfortable level, 
and that auto play worked. Participants were encouraged 
to wear headphones or to move to a quiet area. In both 
versions, the word-learning experiment was next, and set to 
randomly assign participants to either the PAL list A or B, 
or the CSWL list A or B, in equal ratios.

Participants then completed two working memory tasks: 
a backward digit-span task (van den Noort et al., 2006; 
Wechsler, 1997) and a nonword repetition task (Lado, 2017), 
in this order. Previous research on individual differences in 
verbal working memory suggests that the two tasks load 
onto separate factors within the construct of verbal working 
memory, with the nonword repetition task corresponding 
to its phonological component (Gathercole et al., 2004; 
Warmington et al., 2019), and the backward digit-span task 
corresponding to its executive component (Warmington 
et  al., 2019). Both aspects of verbal working memory 
have been linked to vocabulary acquisition (Baddeley 
et al., 1998), with the more robust relationship observed 
for nonword repetition than for backward digit-span tasks 
(Baddeley et al., 1998). Therefore, both tasks were included 
to examine whether they would differentially predict 
learning across existing words and nonwords. The backward 
digit-span contained 16 trials, from 2 to 9 digits, with two 

trials per level. Digit sequences were recorded by a native 
American English speaker and stimuli were normalized at 
70 dB. Participants were instructed to listen carefully to 
the digit sequences and retype them in reverse order (see 
Appendix A3 for full instructions). There was one practice 
trial. The box to type in the response only appeared after the 
audio finished playing, to limit the possibility of typing the 
numbers as they were being spoken. There was no time limit 
per trial. The task was designed to be automatically scored 
and individual sum scores were converted to percent correct.

For the nonword repetition task, only stimuli between 
three and five syllables (three pairs per level for a total of 
nine trials) were retained after piloting revealed ceiling 
effects beyond this threshold. The original recordings from 
Lado (2017) were used and normalized at 70 dB. Participants 
were instructed to listen to the pairs of nonsense words and 
then record themselves repeating them (see Appendix A4 
for full instructions). Participant recordings were scored for 
accuracy by two research assistants (with each RA scoring 
about 50% of the data) and 10% of these data were double-
scored for reliability by a third research assistant. Research 
assistants were instructed to score following an “all-or-none” 
principle, such that if there was any error in repeating at least 
one phoneme, a score of 0 was recorded for that nonword, 
otherwise a score of 1 was recorded to indicate an accurate 
production. An intraclass correlation coefficient using two-way 
random effects and a single-rater unit was computed between 
the main scorers and the second scorer for total score per item. 
Results showed good agreement between the double-scorer 
and the combined data of the initial two scorers (ICC = .86, p 
< .001). 110 cases had to be removed due to lack of response 
or poor audio quality that prevented scoring (9.86% of the 
data). Individual sum scores were converted to percent correct.

Participants were allowed to opt out of the nonword 
repetition task if they did not consent to audio recordings. 
For the participants who provided both the nonword 
repetition data and the backward digit-span data (n = 109), 
the two tasks positively correlated (t(107) = 3.79, r = .34, 
p < .0001). However, because only a subset of participants 
provided data for both measures, only the backward digit-
span was used in models as it had no missing data.

Participants also completed the Woodcock Johnson 
Picture Vocabulary (English – Woodcock-Johnson III 
– Tests of Achievement; Mather & Woodcock, 2001), to 
test their vocabulary knowledge in English. They were also 
allowed to opt-out of this task if they did not consent to 
audio recordings. This test was adapted to an online format 
and shortened, so that participants started at the adult 
starting point as indicated in the test manual. Participants 
saw six pictures on the screen and had to record themselves 
naming the pictures (see Appendix A5 for full instructions). 
Recordings were scored for accuracy by two research 
assistants (with each RA scoring about 50% of the data), and 
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10% of this data was double-scored for reliability by a third 
research assistant. Research assistants were instructed to give 
1 point for each accurate word, and 0 points for inaccurate 
productions. A list of accurate and inaccurate word options 
was provided to help scoring. An intraclass correlation 
coefficient using two-way random effects and a single-rater 
unit was computed between the main scorers and the second 
scorer for total score per item. Results showed excellent 
agreement between the double-scorer and the combined data 
of the initial two scorers (ICC = .99, p < .001). In the initial 
consent form, participants ticked a box to indicate whether 
they consented to audio recordings – five participants not 
previously excluded did not consent. Additionally, 45 items 
had to be removed due to lack of a response or poor audio 
quality that prevented scoring (8.82% of the data). Individual 
sum scores were converted to percent correct.

Finally, participants completed a measure of non-
verbal intelligence, the Visual Matrices of the Kaufman 
Brief Intelligence Test (KBIT-2) (Kaufman & Kaufman, 
2004), which was also designed to be automatically scored. 
Participants were instructed to choose the picture that would 
best complete a relationship or rule in a set of pictures or 
patterns (see Appendix A6 for full instructions). Time per 
trial was limited to 30 s. Feedback was provided on the 
first three trials, as in the test manual: a green tick mark 
was shown if the answer was correct, otherwise a red cross 
appeared. There was no opportunity for self-correction 
during trials with feedback, and trials did not drop back to 
an earlier level if an incorrect response was given. Individual 
sum scores were converted to percent correct.

Participants who did not consent to audio recordings 
completed the backward digit-span after the word-learning task, 
and then the KBIT-2. The experiment was set to take ~ 25 min.

Analyses

As the first step, we excluded participants who took longer 
than average to respond to an attention check inserted after 
the first teaching cycle of the word learning experiment. The 
varPlot function of the lmSupport package in R (Curtin, 
2018) helped determine these data points based on reaction 
time and frequency data (four participants).

Similarly, we removed testing trials where reaction times 
were over three standard deviations above a participant’s 
mean (83 cases excluded, 1.83% of the data), and below 
150 ms, to discard any automatic responses (e.g., that would 
indicate clicking without looking at or considering the 
options for response) (85 cases excluded, 1.91% of the data).

We examined the extent to which learning condition and 
word type increased or decreased the likelihood of learning 
a word. The unit of analysis is a binary outcome variable 
corresponding to each response for each test item treated (1 

for correct, or 0 for incorrect), for each of the three testing 
cycles. We constructed logistic mixed-effects models in R 
Studio, version 4.0.0 (lme4 package, Bates et al., 2015). 
Logistic regression (or the generalized linear model) is 
used when the assumptions of normality, constant variance, 
and linearity of the general linear model are violated, as is 
the case when the dependent variable is binary (Judd et al., 
2017). Moreover, mixed-effects models allow researchers 
to analyze data that is nested (e.g., repeated measures on 
a participant within a condition) and crossed (e.g., items 
used in more than one condition) (Boisgontier & Cheval, 
2016; Clark, 1973). Our dependent variable was item-level 
dichotomous accuracy data (0, 1) from the testing cycles, 
aggregated over the three testing blocks. Each model 
examined whether predictors increased or decreased the 
likelihood (log-odds) of making a correct response during 
testing. Model assumptions were tested using the DHARMa 
package (Hartig, 2022), and were satisfied.

We included Learning Condition (coded -0.5 for PAL, 
and 0.5 for CSWL), Word Type (coded -0.5 for nonwords, 
and 0.5 for existing words) and the backward digit-span 
score centered around each participant’s mean as fixed 
effects, and their interaction. Singularity issues emerged 
when adding a slope for the backward digit-span in the 
by-item random effects structure, therefore we resolved this 
issue by simplifying the random effects structure following 
recommendations of Brauer and Curtin (2018), with 
by-subject and by-item random intercepts, a by-subject slope 
for Word Type, and a by-item slope for Learning Condition.

Results

Analyses were conducted on 126 participants (4,368 
observations). Word learning performance was significantly 
above chance (at 25%, testing was a four-alternative forced-
choice task) in PAL (M = 92%, SD = 27%; range: 39–100%; 
t(2121) = 112.13, p < .0001) and in CSWL (M = 71%, SD 
= 45%; range: 17–100%; t(2245) = 48.26, p < .0001). 
See Table 2 for mean learning proportions by Learning 
Condition and Word Type.

We interpret all main effects and interactions in terms 
of odds ratios, used in logistic regression where residuals 
are binomial, to describe a change in odds in the dependent 

Table 2   Average accuracy per word type (familiar or unfamiliar) and 
learning condition (PAL or CSWL)

PAL
Mean (SD)

CSWL
Mean (SD)

Familiar words 0.94 (0.24) 0.73 (0.44)
Unfamiliar words 0.90 (0.30) 0.69 (0.46)
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variable as the result of the change in the independent 
variable of a magnitude of one. The odds ratio is the 
exponential of the parameter estimate.

The logistic mixed-effects model revealed a significant 
main effect of Learning Condition such that the odds of 
participants in the PAL condition accurately identifying the 
novel words increased by a factor of 6.05 compared to the 
CSWL condition (b = -1.80, SE = 0.33, z = -5.41, OR = 
6.05, p < .0001). Results also revealed a significant main 
effect of Word Type such that the odds of identifying familiar 
words more accurately than unfamiliar words increased by a 
factor of 1.67 (b = 0.51, SE = 0.22, z = 2.30, OR = 1.67, p 
< .05). The main effect of the backward digit-span task was 
significant (b = 0.03, SE = 0.01, z = 2.96, OR = 1.03, p < 
.01), such that as backward digit-span score increased, the 
odds of accurately identifying novel words increased by a 
factor of 1.03, averaged across learning conditions and word 
types. None of the two-way and three-way interactions were 
significant. See Table 3 for full model results and Fig. 1 to 
view graphed results.

Additionally, an exploratory model on a smaller dataset, 
with the nonword repetition task scores used instead of the 
backward digit-span scores was run, and the findings were 
largely similar. However, in contrast to the analyses where 
the backward digit-span was used, these analyses yielded 
a significant three-way interaction of Learning Condition, 
Word Type, and nonword repetition (b = -0.02, SE = 0.01, 
z = -2.06, OR = 0.98, p < .05). We followed up on the 
three-way interaction by examining the simple effects of 
the nonword repetition task for familiar and unfamiliar 
words, and in the PAL and the CSWL conditions. Only 
one finding approached significance: higher nonword 

repetition task scores for participants in the PAL condition 
increased the odds of learning familiar words by a factor 
of 1.02 compared to learning unfamiliar words (b = 0.02, 
SE = 0.01, z = 1.77, OR = 1.02, p = 0.08). However, given 
the marginal nature of this effect, and the smaller dataset 
that included nonword repetition data, we would not over-
interpret this finding.

We also ran a logistic mixed-effects model on the first testing 
block data, to mitigate the possibility that ceiling effects in the 
testing data diminished the interactions in the model. The 
results were highly consistent with the results of the analyses 
that included all three testing blocks. The model revealed a 
significant main effect of Learning Condition such that the 
odds of participants in the PAL condition accurately identifying 
the novel words compared to those in the CSWL condition 
increased by a factor of 6.30 (b = -1.84, SE = 0.31, z = -6.01, 
OR = 6.30, p < .0001). Results also revealed a significant main 
effect of Word Type such that the odds of learning familiar 
words more accurately than unfamiliar words increased by a 
factor of 1.95 (b = 0.67, SE = 0.19, z = 3.48, OR = 1.95, p < 
.001). The main effect of the backward digit-span task was also 
significant, such that as backward digit-span score increased, 
the odds of novel word-learning performance increased by a 
factor of 1.03, averaged across learning conditions and word 
types (b = 0.03, SE = 0.01, z = 3.13, OR = 1.03, p < .01). The 
interaction of Learning Condition by Word Type was marginal 
(b = -0.72, SE = 0.39, z = -1.88, OR = 0.49, p = 0.06), such 
that the odds of learning familiar words more accurately than 
unfamiliar words in PAL significantly increased by a factor of 
2.80 (b = 1.03, SD = 0.34, z = 3.03, OR = 2.80, p < .01). In 

Table 3   Word learning accuracy by learning condition, word type, 
and backward digit-span performance

Model: Accuracy ~ Condition * Word Type * Digit Span + (1+ Word 
Type | Participant) + (1+ Condition |Target Word)
*** p < .001, ** p < .01, * p < .05

Accuracy

b (SE) z

Intercept 2.39 (0.17) 12.85***

Condition -1.80 (0.33) -5.41***

Word Type 0.51 (0.22) 2.30*

Digit Span 0.03 (0.01) 2.96**

Condition × Word Type -0.29 (0.29) -1.00
Condition × Digit Span -0.002 (0.02) -0.09
Word Type × Digit Span 0.004 (0.01) 0.59
Condition × Word Type × Digit 

Span
-0.01 (0.01) -0.74

Fig. 1   Word learning probability as a function of Learning Condition 
and Word Type. Standard error bars represent error at the item level 
on word learning probability, across learning conditions and word 
types
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CSWL, these odds were only marginally better (b = 0.31, SD = 
0.18, z = 1.72, OR = 1.36, p = 0.09). See Table 4 for full model 
results and Fig. 2 to view graphed results.

Discussion

Previous research has examined PAL and CSWL separately, 
limiting the ability to identify similarities or differences 
between the processes that support different types of word 

learning. While research suggests that more familiar words 
are learned better and that verbal working memory is 
positively associated with word learning in PAL (e.g., see 
Baddeley et al., 1998, 2017, for a review, but see Service 
& Craik, 1993), a limited number of studies has examined 
these effects in CSWL (Escudero et al., 2013; Mulak et al., 
2019). Therefore, we examined novel word learning in 
PAL and CSWL, varying word familiarity and measuring 
participants’ verbal working memory. Our findings confirm 
our hypotheses that word learning in PAL would be more 
successful than in CSWL, that familiar novel words would 
be easier to learn than unfamiliar nonwords, and that verbal 
working memory would be positively associated with word 
learning across both learning conditions. However, contrary 
to our hypotheses, no interaction between word type and 
condition was found, and no interaction was observed among 
verbal working memory, condition, and word type.

These findings suggest that PAL is an easier learning 
paradigm, likely due to its lack of ambiguity between word 
and object compared to CSWL, and in line with Mulak et al. 
(2019). However, while novel word learning was overall 
lower in CSWL, our hypothesis as to the compounded 
effect of learning unfamiliar words in CSWL resulting 
in worst learning performance was not verified. Instead, 
while learning of unfamiliar words was significantly worse 
than learning of familiar words in each paradigm taken 
separately, the size of the learning gap did not significantly 
differ across paradigms. Furthermore, this effect was 
independent of working memory performance, for both 
paradigms and both word types. The working memory 
literature and PAL studies suggest that the familiarity effect 
supporting novel word-object mappings of familiar words 
emerges from the interaction between long-term memory 
and working-memory (e.g., Ellis & Beaton, 1993; Majerus 
et al., 2004; Papagno et al., 1991; Papagno & Vallar, 1992; 
Service & Craik, 1993). Our findings are consistent with this 
literature, and extend it to CSWL. However, contrary to the 
evidence in this body of literature, we did not find a stronger 
association between verbal working memory and unfamiliar 
word learning in this study.

This lack of association could be explained by the fact 
that some interference may have emerged from the existing 
meanings of the familiar words, where the known meanings 
would have had to be inhibited in the novel word learning 
process, compared to that of the nonwords, possibly leveling 
the need to rely on verbal working memory across word 
types. In addition, it is also possible that some interference 
took place within the nonwords, which may have been more 
similar among each other than the familiar words, making it 
difficult to disentangle the role of verbal working memory 
in learning both types of words.

Another possibility, related to subjects-level effects, is 
that participants in this age group (18–40 years old) were 

Table 4   Word learning accuracy by learning condition, word type, 
and backward digit-span performance on the first testing block

Model: Accuracy ~ Condition * Word Type * Digit Span + (1| Par-
ticipant) + (1|Target Word)
Due to the removal of two-thirds of the data, the model converged but 
remained singular after maximizing the simplification of the random-
effects structure and setting the adaptive Gauss-Hermite approxima-
tion to the log-likelihood to 0 (nAGQ = 0)
*** p < .001, ** p < .01, * p < .05

Accuracy

b (SE) z

Intercept 1.93 (0.15) 12.58***

Condition -1.84 (0.31) -6.01***

Word Type 0.67 (0.19) 3.48***

Digit Span 0.03 (0.01) 3.13**

Condition × Word Type -0.72 (0.39) -1.88 .
Condition × Digit Span -0.01 (0.02) -0.56
Word Type × Digit Span 0.01 (0.01) 0.49
Condition × Word Type × Digit 

Span
-0.01 (0.02) -0.64

Fig. 2   Word learning probability as a function of Learning Condition 
and Word Type, on the first block of testing data. Standard error bars 
represent error at the item level on word learning probability, across 
learning conditions and word types
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at peak cognitive performance, as suggested by Service and 
Craik (1993), which may have masked any extra-reliance 
on the working memory system for unfamiliar items in 
the present experiment. In Service and Craik’s study 
(1993), correlational analyses revealed that while more 
phonologically familiar items were learned better across 
groups, only participants in the older group showed an 
association between verbal working memory and learning 
of phonologically unfamiliar novel words. However, the 
interpretation of this study should be made with caution as it 
may have been underpowered (Gupta, 2003). In our study, the 
spread in the backward digit-span performance ranged from 
12.5 to 100, with a mean of 58.67, median at 56.25 and mode 
at 50, suggesting a relatively normal distribution of scores in 
this sample, and thus making us question this interpretation.

Alternatively, it could be that a role of verbal memory 
may not have emerged because the stimuli, whether familiar 
or unfamiliar, conformed to participants’ native language 
phonotactics (Speciale et  al., 2004). Unfamiliar words 
may not have been unfamiliar enough to trigger the “word 
unfamiliarity effect,” such that the unfamiliar words may still 
have been supported by long-term phonological knowledge, 
similarly to the familiar words. To test this hypothesis, an 
additional condition with unfamiliar words conforming to 
the phonotactics of a language unknown to participants and 
different enough from English could be added to examine 
whether the phonological loop would be further taxed in this 
context, and whether the two learning paradigms might be 
differentially sensitive to the unfamiliar phonology.

The marginal three-way interaction among word type, 
learning condition, and nonword repetition in the nonword 
repetition analysis suggests that a higher nonword repetition 
score was associated with more successful learning of familiar 
words compared to nonwords. However, this finding should 
be interpreted with caution as its significance was marginal 
and derived from a smaller dataset. Future studies would need 
to examine nonword repetition as a predictor of novel word 
learning, ensuring that all data can be retained, and using 
a task that involves a broader range of difficulty, to better 
capture its association in learning familiar and unfamiliar 
words across word learning conditions. Another method to 
further examine the hypothesis that a higher working memory 
load might affect the performance of the phonological loop 
in word learning, especially on unfamiliar words, would be 
to increase working memory load during teaching cycles for 
both tasks. This could be achieved with a concurrent task such 
as including items between learning trials that must be kept in 
memory for the short-term (akin to the process of a reading 
span task; Daneman & Carpenter, 1980).

Regarding the observation that learning condition and 
word type did not interact, it is possible that the similar 
effect of word familiarity across paradigms emerges in this 
specific experimental design, where number of words and 

exposures, and word length and phonology led to learning 
at high to very high rates (ranging between 69% and 94% 
across paradigms and word type). The level of task difficulty 
was calibrated through piloting to avoid ceiling and floor 
effects that would have obscured effects of learning condition 
and word type. However, it is possible that if complexity of 
both tasks were increased, or if CSWL level of ambiguity at 
exposure was expanded, differences could emerge between 
learning familiar and unfamiliar words across word-learning 
paradigms. To examine whether a different pattern of results 
would be observed during the initial stages of learning, we 
took advantage of our design that involved three blocks of 
testing trials. We re-analyzed the data on the first testing 
block only, hypothesizing that should the interactive effect of 
learning condition and phonological familiarity be obscured by 
repeated testing, it would be more likely to be revealed in the 
first testing block. Indeed, unlike the analyses collapsing across 
the three testing blocks, analyses of the first testing block data 
revealed a marginal interaction of learning condition by word 
type, such that existing words were learned significantly better 
than nonwords in PAL but only marginally better in CSWL. 
However, these analyses should be interpreted cautiously, 
given their marginal nature.

A potential limitation of the present experimental design 
lies in the fact that we did not include a post-awareness test to 
examine whether participants became aware that the CSWL 
task was indeed a word-learning task. Given the repeated-
testing design, participants completing the CSWL should have 
become aware of the nature of the task by the second testing 
block even if they were not during the first testing block; 
however, analyses of the first-block data were highly similar 
to analyses collapsing across the three testing blocks, revealing 
largely identical effects of phonological working memory 
across tasks. This may indeed be because participants treated 
the two tasks similarly, consciously learning the novel words in 
both PAL and CSWL, despite not being instructed to do so for 
the CSWL task. Future studies would benefit from attempting 
to reduce intentional learning during the CSWL task, although 
our findings indicate that even during the first testing block 
(when participants’ intent to learn and the realization that they 
will be tested was minimized), phonological working memory 
was similarly involved in CSWL and PAL.

One additional aspect of our design may have influenced 
the pattern of findings, specifically, the difference between 
number of exposures to words and objects within teaching 
trials across the two paradigms. CSWL requires ambiguity 
by design: we presented two objects at a time on the screen 
at learning, which means that participants in this paradigm 
saw the pictures twice as many times as in PAL, as we 
kept the number of teaching trials per block at 12 across 
both paradigms. However, as mean learning performance 
scores show, performance difference was still clearly found 
between the paradigms in the expected direction.
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Another aspect of the design that could have affected 
results is time per stimulus at teaching, although we do not 
know whether it did or not in the present study. Individuals 
were exposed to stimuli for half the time per trial in CSWL 
compared to PAL because in CSWL, two words and two 
objects were presented per trial, but the overall time per trial 
was the same as in PAL. Further research is warranted to 
understand how time per trial could affect learning in PAL 
versus CSWL. On the one hand, a longer time at exposure 
could support more detailed encoding of the information 
in memory such that recognition is enhanced at immediate 
testing. However, it could be that longer times during 
exposure trials lead to increased forgetting rates within 
trials. The effect could be different across PAL and CSWL, 
however, considering that in PAL, participants are explicitly 
instructed that they need to learn, which is not the case in 
CSWL, and any difference in “forgetting” rates might be 
obscured by different encoding rates. We note that in Mulak 
et al. (2019), while presentation of each pairing was kept 
constant across learning condition, time per trial increased as 
the ambiguity at learning increased. However, learning rates 
in the same condition as in the present study (2 × 2) were at 
an average of 50%, which is lower than in the present study, 
but not drastically so considering the stimuli in Mulak et al. 
(2019) had the additional difficulty of phonological overlap.

To conclude, paired-associate and cross-situational word-
learning paradigms have rarely been examined in parallel, 
which limits the understanding of the processes underlying 
these paradigms. Notably, word familiarity and phonological 
working memory have been crucial to understanding the 
mechanisms that underlie word-learning performance in 
paired-associate paradigms, but have been rarely considered 
in the CSWL literature. In this study, we tested monolingual 
adults on PAL and CSWL, varying word familiarity and 
measuring the extent to which phonological working 
memory might associate with word-learning performance. 
Findings suggest that word learning is easier in PAL than 
in CSWL, and that the role of word familiarity and higher 
levels of phonological working memory are both associated 
with better learning performance across both paradigms. 
This means that the roles of working memory and long-term 
memory in supporting novel word learning is similar across 
the two paradigms. The overall pattern of results observed in 
this study indicates that despite drastically distinct theoretical 
approaches that have been applied to PAL and CSWL, the two 
paradigms are remarkably similar in the memory systems that 
they rely on.
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