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Abstract
When learning, it is often necessary to identify important themes to organize key concepts into categories. In value-directed 
remembering tasks, words are paired with point values to communicate item importance, and participants prioritize high-
value words over low-value words, demonstrating selective memory. In the present study, we paired values with words 
based on category membership to examine whether being selective in this task would lead to a transfer of learning of the 
“schematic reward structure” of the lists with task experience. Participants studied lists of words paired with numeric values 
corresponding to the categories the words belonged to and were asked to assign a value to novel exemplars from the studied 
categories on a final test. In Experiment 1, instructions about the schematic structure of the lists were manipulated between 
participants to either explicitly inform participants about the list categories or to offer more general instructions about item 
importance. The presence of a visible value cue during encoding was also manipulated between participants such that par-
ticipants either studied the words paired with visible value cues or studied them alone. Results revealed a benefit of both 
explicit schema instructions and visible value cues for learning, and this persisted even after a short delay. In Experiment 
2, participants had fewer study trials and received no instructions about the schematic structure of the lists. Results showed 
that participants could learn the schematic reward structure with fewer study trials, and value cues enhanced adaptation to 
new themes with task experience.
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Introduction

As we are often exposed to large amounts of information, 
people must be selective in what they choose to remember, 
often at the cost of other information. Research has demon-
strated that participants can selectively remember important 
information when paired with a numeric value, a phenom-
enon known as value-directed remembering (VDR; Castel 
et al., 2002; see Knowlton & Castel, 2022, for a review). 
Value has a direct influence on the selective encoding of 
more important information over less important information 
(Castel et al., 2007), and the ability to succeed on a typical 
VDR task is related to the strategic control of memory pro-
cesses (Hennessee et al., 2019).

Meaningful learning occurs when a person can interpret 
new information, incorporate it with prior knowledge, and 
apply it to novel problems (Lujan & DiCarlo, 2006). One 
way to make novel information more meaningful is to incor-
porate existing schemas, or general knowledge structures 
consisting of bits of information obtained through expe-
rience that guide a person’s understanding of a particular 
concept. Schemas support learning through their influence 
on retrieval processes and memory reconstruction, and their 
role in attentional and encoding processes (Bartlett, 1932; 
Graessner & Nakamura, 1982; Webb & Dennis, 2019). 
When schemas are used during learning, they can provide 
the background knowledge necessary to make inferences 
and formulate predictions in novel situations (Norman & 
Bobrow, 1976). For example, prior knowledge (a form of 
“schematic support”; Craik & Bosman, 1992) can influence 
memory performance when learning the prices of common 
grocery items (Castel, 2005). Specifically, when grocery 
items were associated with realistic prices (market value), 
older adults showed similar memory performance for the 
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studied prices as younger adults, but when studying items 
associated with unrealistic prices (overpriced), younger 
adults outperformed older adults (Castel, 2005). Further-
more, both age groups were able to identify the general cat-
egory of the prices of each item and use prior knowledge 
to predict the new item values. Other work has shown that 
younger adults also benefit from schematic support when 
learning (Kuhns & Touron, 2020), and schemas can make 
learning easier even without employing strategic control 
processes (Whatley & Castel, 2022).

When accompanying schemas, value can communicate 
meaning beyond item importance. In VDR tasks, words are 
paired with values, and participants are instructed to prior-
itize high-value over low-value words (Castel et al., 2002). 
Typically, the words used in VDR tasks are unrelated to each 
other; however, if participants are presented with a series 
of words paired with point values based on category mem-
bership, they may notice that values repeated in the word 
list are connected to similarities between words sharing the 
same value. This process may lead to a realization of the 
existence of categories within the word lists, as categories 
are used in classifying new objects into known groups of 
distinct items that share similar properties (Markman & 
Ross, 2003). For example, when encountering words, such 
as “parrot,” “owl,” and “raven” paired with a high numeric 
value indicating their importance, one might notice similari-
ties between them, leading to a grouping of those words into 
a category of “birds,” which share similar properties, like 
the presence of feathers. One might also notice differences 
between words from the “bird” category and other words, 
like “carp,” “tuna,” and “shark” paired with a lower numeric 
value, which belong to the category “fish,” sharing similar 
properties, like the presence of fins. Therefore, by allocating 
attention towards the higher value words, one learns not only 
that high-value words are important to remember, but also 
learns which words are paired with high values.

Categories can also be used to make predictions about 
new items using previous knowledge about the category 
to which each word belongs (Anderson, 1990) and experi-
mental research has shown that people can learn categories 
without prior knowledge of category labels (Fried & Holy-
oak, 1984). Pairing numerical values with categories cre-
ates a schematic reward structure in which participants may 
learn how values are meaningfully paired with categories 
through being guided by the points they earn upon recall, 
extending the VDR paradigm to “value-directed learning 
(VDL).” Thus, if the next word “trout” is presented alone 
without a value, the participant may use their knowledge 
about this schematic reward structure combined with their 
prior knowledge about fish properties to predict the word 
to be associated with a low value, demonstrating a trans-
fer of learning (e.g., Perkins & Salomon, 2012; Salomon 
& Perkins, 1989) of the schematic reward structure of the 

word lists. Such evidence of transfer of learning would dem-
onstrate the combined effect of numerical value cues and 
schematic support on learning and memory. Specifically, 
because numerical values are often used in rewards (e.g., 
course grades, bonuses, scores in a baseball game), and 
prior research has demonstrated that rewards can be used 
to selectively guide attention (Chelazzi et al., 2013), these 
reward-dependent effects are strategic. Rewards can be used 
to allocate attention to objects, features, and locations that 
have been accompanied by rewards. This process requires 
active metacognitive processes, such as metacognitive moni-
toring of memory processes and control of future behavior 
based on this monitoring (Dunlosky & Metcalfe, 2009). If 
rewards are assigned to items based on category member-
ship, metacognition should play a role in decision-making 
about which new items will be valuable to remember based 
on experience studying the schematic reward structure of 
previously encountered items.

While metacognitive monitoring refers to self-assess-
ments of learning such as judging whether you will remem-
ber a given word on a future test, metacognitive control 
refers to the self-regulation of learning based on information 
gained from monitoring, such as choosing which informa-
tion to study in preparation for an exam (Dunlosky & Muel-
ler, 2016; Nelson & Narens, 1990; Son & Metcalfe, 2000; 
Thiede & Dunlosky, 1999). For example, after studying each 
word within a list, people may predict whether they will 
recall those words on a later test by making item-level judg-
ments of learning (JOLs; see Rhodes, 2016, for a review) 
and after receiving feedback about their performance on a 
list, people may use the feedback to adjust their studying 
and boost their performance on the later lists. Thus, learning 
through engaging in metacognitive monitoring can aid in 
identifying the association between stimuli and the reward 
associated with them. The use of rewards to facilitate selec-
tive attention in subsequent tasks requires active monitor-
ing of performance, but metacognitive monitoring during 
study may also contribute to learning. Previous work has 
demonstrated that making global JOLs before the learning 
session can result in a higher transfer of learning compared 
to making local item-level judgments after studying each 
word (Lee & Ha, 2019).

Although engaging in metacognitive judgments is poten-
tially important for recognizing patterns within trials and 
applying them in novel situations, differences in fluid intel-
ligence may also play a role. Raven’s Progressive Matrices 
(RPM; Hall, 1957) is a test of fluid intelligence, which meas-
ures the ability to reason and succeed in tests that require 
adaptation to novel situations (Cattell, 1963). Prior work 
has shown that higher fluid intelligence scores attained 
through the RPM test are related to higher selectivity in a 
typical VDR task when the study time for the word lists was 
fixed (Murphy et al., 2021). We collected measures of fluid 
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intelligence in Experiment 1 to explore whether extract-
ing a schematic reward structure from a series of word lists 
relates to abilities such as problem solving, abstract thinking, 
and reasoning. Here we aimed to investigate the following 
research questions:

1.	 Recall performance: In a value-directed remembering 
experiment using value cues associated with categories 
(as opposed to being randomly paired with individual 
items), does metacognitive monitoring and control 
impact recall performance with task experience? Does 
fluid intelligence relate to the proportion of high-value 
words recalled with task experience?

2.	 Transfer of learning: On a value-directed learning task 
where participants are asked to predict the values of 
items based on their experience studying related items, 
is fluid intelligence related to word-value pairing accu-
racy? Does being given specific instructions of the cat-
egories present in the word lists prior to beginning the 
experiment lead to higher accuracy? Do visible value 
cues paired with words on the studied lists result in 
higher accuracy on the transfer of learning task? Does 
the effect of value cues on transfer performance depend 
on the type of schema instructions provided?

The Current Study

In the current study, we examined the effects of value cues 
and schematic support on learning in a VDL task. Specifi-
cally, in Experiment 1, participants studied word lists in 
which each word belonged to a specific category. Within 
the lists, words from a given category were associated with 
a point value indicating their importance. Half of the par-
ticipants received specific instructions about the schematic 
reward structure of the word lists before beginning the task, 
while the other half were not made explicitly aware of the 
categories. Furthermore, half of the participants studied 
words paired with visible values during encoding while the 
other half studied words alone. We chose to scaffold support 
provided to participants to model how learning in classroom 
contexts and other realistic environments is often facilitated 
by different types of motivation. For example, some learn-
ers may benefit from the extrinsic reward of points earned 
upon recalling high-value words. This may lead them to 
notice similarities between words sharing the same value. 
Other learners may benefit from being reminded of their 
prior knowledge of a topic. For example, being told that to-
be-studied-content will contain items from categories the 
learner has prior knowledge of may make them more aware 
of the categories as they study.

After encoding each of the lists, participants provided 
global JOLs and completed a free recall test. After following 

this procedure for five lists, participants were then presented 
with novel words belonging to the studied animal catego-
ries and were asked to assign a value to each item based 
on the prior lists (immediately in Experiment 1a and after 
a short delay in Experiment 1b), measuring their transfer 
of learning. In Experiment 2, we did not provide explicit 
instructions about the schematic reward structures of the 
word lists but did manipulate the presence of value between 
participants. Furthermore, participants were presented with 
a new theme with each trial, requiring them to learn the 
schematic reward structures with fewer trials and adapt to 
new categories throughout the task.

Experiment 1a

In Experiment 1a, the type of instruction and the pres-
ence of value was manipulated between participants. Par-
ticipants were either given general or specific instructions 
about the schematic nature of the lists and either studied the 
words paired with visible values or alone. After studying 
and recalling five lists of animal words divided into three 
categories where each category was associated with a low, 
medium, or high value, participants engaged in a final trans-
fer task. Participants also completed a test of fluid intelli-
gence after the transfer task to examine whether fluid intel-
ligence is related to transfer of learning.

Hypothesis 1 (H1): When given specific schema instruc-
tions, we expected participants to demonstrate a higher 
transfer of learning than those who were given general 
instructions as participants may benefit from an explicit 
cue to activate their prior knowledge of the categories 
within the word lists (Castel, 2005).
H2: Similarly, we expected participants who studied 
words paired with visible values to demonstrate a higher 
transfer of learning than those who studied the words 
alone. Allocating attention towards words paired with 
high values may motivate participants to notice similari-
ties between words paired with the same value, activating 
their prior knowledge of the categories.
H3: Participants receiving general instructions with no 
value cues were included as a control condition, thus we 
expected them to perform at chance in both the VDR task 
and VDL task with no difference between the other condi-
tions in recall performance. Additionally, we expected all 
other conditions to perform significantly better than this 
control condition on the VDL task. Finally, we expected 
participants receiving both specific instructions and vis-
ible value cues to demonstrate a performance advantage 
on the transfer task compared to all other conditions. 
Being given information about the categories present in 
the word lists prior to beginning the task eliminates the 
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need for the participant to discover these categories as 
they study the word lists. Furthermore, being reminded of 
what points are associated with each category throughout 
the task by studying the words paired with visible value 
cues frees up space in working memory so the partici-
pant’s attention will not be divided between discovering 
the categories present in the word lists and binding the 
categories with their associated point values.
H4: Extensive prior work using the VDR paradigm has 
shown that value cues influence selectivity in recall (Cas-
tel et al., 2002; Knowlton & Castel, 2022; Middlebrooks 
& Castel, 2018). Therefore, though this application of the 
VDR paradigm is novel (binding categories of words with 
certain values), we expected participants receiving value 
cues to recall a higher proportion of high-value words 
compared to participants who did not receive value cues 
during encoding.
H5: We expected participants who made higher global 
JOLs to recall more words with task experience as meta-
cognitive monitoring can lead to metacognitive control 
when feedback is provided on performance (Lee & Ha, 
2019).
H6: Murphy et al. (2021) found that higher fluid intelli-
gence was related to recalling more high-value words in a 
VDR task. Here we explore the influence of fluid intelli-
gence on our transfer task where participants are expected 
to predict the values that are associated with each word 
based on their experience with similar items. This work 
is exploratory as there is no prior work investigating this 
specific association; however, we expect higher fluid 
intelligence to be associated with higher transfer scores.

Method

Participants

Participants were 120 undergraduate students (age: 18–38 
years, M = 20.03, SD = 2.60; gender identity: 90 women, 
27 men, one nonbinary, two prefer not to say) recruited from 
the University of California Los Angeles (UCLA) Human 
Subjects Pool who were tested online and received course 
credit for their participation.1 Because our task involves 
categorizing English nouns we asked participants whether 
they were fluent in English and how old they were when 
they began learning English. On average, participants began 
learning English at 1.83 years (SD = 2.87). The sample size 
was selected based on prior exploratory research and the 

expectation of detecting a medium effect size (Knowlton & 
Castel, 2022; Schwartz et al., 2023). A sensitivity analysis 
based on the observed sample was conducted using G*Power 
(Faul et al., 2009). For a multiple linear regression (MLR) 
with 6 predictors, assuming alpha = .05, power = .80, the 
smallest effect the design could reliably detect is η2 = .11.

Materials

Stimuli used in the experiment consisted of 90 English ani-
mal names (see Appendix 1 for word lists used in Experi-
ment 1). When schemas already exist, memory consolidation 
can happen more quickly (Tse et al., 2007), so using well-
known categories may be a more effective way to assess 
whether a schematic reward structure can be learned and 
applied in a relatively short laboratory task than using non-
words and novel categories. Because our sample consisted 
of college students who were fluent in English, we expected 
them to be familiar with English animal words and be able 
to identify common categories of animals such as mammals, 
birds, and fish. These words were submitted to the English 
Lexicon Project (ELP; Balota et al., 2007) database to gen-
erate measures of length (M = 6.02 letters per word, SD = 
1.75), frequency in the Hyperspace Analogue to Language 
corpus (HAL; Lund & Burgess, 1996; M = 6.86 occurrences 
per million, SD = 1.64), and concreteness (M = 4.76, SD = 
0.27). Each animal name belonged to one of three catego-
ries: mammals, birds, or fish. There were five animals from 
each category per list, and each word was associated with 
a value of either 1, 3, or 5, signifying the importance of the 
word (1 = low importance, 3 = medium importance, 5 = 
high importance) based on animal group. Category-value 
pairings were counterbalanced.

Procedure

A 2 (Value: No Value Cue, Value Cue) × 2 (Schema: Gen-
eral Instructions, Specific Instructions) design was used, 
with all factors manipulated between participants. All par-
ticipants were told that they would study six lists of words 
that they would later be asked to recall and that each word 
was associated with a value of either 1, 3, or 5. They were 
also told that their goal was to maximize their scores which 
would be based on the sum of the points associated with the 
words they recalled and to try to remember as many words 
as they could. Additional instructions were provided to par-
ticipants based on their randomly assigned conditions (see 
Table 1): No Support, Value Support, Schema Support, and 
Dual Support. Value cues during encoding were either pre-
sent or absent. If value cues were present, participants were 
instructed that each word would be paired with a value of 1, 
3, or 5 and that words paired with 5 were most important. If 
value cues were absent, participants were told they would 

1  Exclusion criteria in all studies included removing participants 
from the final sample who admitted to
  cheating on a post-task questionnaire. No participants were excluded 
in Experiment 1a.
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not be able to see the values paired with each word but were 
aware that some words were worth more points than others. 
Instructions about the schematic reward structure were either 
specific or general. Participants receiving specific schema 
instructions were informed that each word belonged to one 
of three categories: animals, birds, or fish. They were also 
told that how many points each word was worth depended 
on its category and were given the category-value pairings 
(e.g., “mammals are worth 5 points”). Participants receiv-
ing general schema instructions were not informed of the 
animal categories.

The procedure for Experiment 1a is illustrated in Fig. 1. 
After studying all 15 words within a list, participants were 
asked to make a global JOL: “What percentage of words 
do you think you will be able to recall in a few minutes?” 
Immediately following the JOL, participants completed a 
30-s distractor task where they had to reorder randomly 
generated sets of three numbers from largest to smallest 

(Unsworth, 2007). Following the distractor task, participants 
had 1 min to complete a free recall test by typing as many 
words as they could remember from the previously studied 
list. Participants were then presented with their score out of 
a possible 45 points (five 5-point, 3-point, and 1-point words 
per list). We used a real-time textual similarity algorithm to 
account for typographical errors in participants’ responses 
on the free recall tests for all experiments presented in this 
paper. Responses with at least 75% similarity to the studied 
word were counted as correct (Garcia & Kornell, 2014). Par-
ticipants followed the same procedure for a total of five lists.

After List 5, the encoding phase ended and participants 
received additional instructions for the transfer task: “In this 
final list, you will see a series of words, each paired with an 
empty box. Your goal is to predict which value belongs with 
each word based on the five previous lists you studied. You 
will have 5 seconds to type your value prediction into the 
empty box. You should assign each word a value of either 

Table 1   Instructions for the 
study phase of the value-
directed learning task for each 
condition

Condition Additional Instructions

No Support No Value Cue and General Schema Instructions:

You will not be able to see the value that each word is associated with. 
Some words are more important than other words.

Value Support Value Cue and General Schema Instructions:

Words paired with the value 5 are most important. Words paired with the 
value 3 are of medium importance. Words paired with the value 1 are least 
important.

elephant 

elephant 5

Schema Support No Value Cue and Specific Schema Instructions:

Each word fits into one of the three categories: mammals, birds, or fish. 
Words in the mammal category are worth 5 points. Mammals are animals 
that have hair on their bodies and drink milk when they are young 
(examples: rhinoceros, guinea pig, chimpanzee). Words in the bird category 
are worth 3 points. Birds are animals that have feathers and are born out of 
hard-shell eggs (examples: robin, puffin, seagull). Words in the fish 
category are worth 1 point. Fish are animals that live in water and have 
gills, scales, and fins on their bodies (examples: piranha, goldfish, tilapia). 

Dual Support Value Cue and Specific Schema Instructions:

Each word fits into one of the three categories: mammals, birds, or fish. 
Words in the mammal category are worth 5 points. Mammals are animals 
that have hair on their bodies and drink milk when they are young 
(examples: rhinoceros, guinea pig, chimpanzee). Words in the bird category 
are worth 3 points. Birds are animals that have feathers and are born out of 
hard-shell eggs (examples: robin, puffin, seagull). Words in the fish 
category are worth 1 point. Fish are animals that live in water and have 
gills, scales, and fins on their bodies (examples: piranha, goldfish, tilapia). 

elephant 

elephant 5
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1, 3, or 5.” Participants had 5 s to type their prediction into 
the box next to each new exemplar to demonstrate transfer of 
learning. If participants failed to type a prediction in the box 
within 5 s, the trial was scored as incorrect and they moved 
on to the next item (on average, participants failed to type 
a prediction on 3.56% of trials in Experiment 1a, 5.39% of 
trials in Experiment 1b, and 4.89% of trials in Experiment 
2). They then made a global JOL, completed the distractor 
task, free recall test, and lastly were presented with their 
recall score. Participants were never told how many values 
they correctly paired on the final list. After the transfer task, 
to measure their fluid intelligence, participants completed 
the RPM test (e.g., Jarosz et al., 2019; Staff et al., 2014) 
consisting of 12 patterns of varying difficulty, each of which 
had a piece missing. Participants were instructed to select 
the correct missing piece from eight multiple-choice options, 
and the timing was self-paced such that participants could 
spend as much time on each item as they liked.

Results

We collected several measurements across Experiment 1a 
including global JOLs to measure metacognitive monitor-
ing after studying each list. On the final list (i.e., the transfer 
test), participants were presented with novel animal exem-
plars falling into one of the same three categories present 
on the five studied lists: mammals, birds, and fish. For each 
presented item, participants were asked to type a value of 
either 1, 3, or 5 into the box next to the word to demonstrate 
a transfer of learning of the schematic reward structure of the 
lists. Scores on this task used in the following analyses are 
presented as the proportion of correct word-value pairings 
as a function of associated value (out of five trials per value). 
Finally, we also included fluid intelligence scores in some of 
the analyses which were calculated as the proportion correct 
(out of 12 trials) on the RPM task.

Fig. 1   Procedure for the encoding and transfer phases of the value-directed learning task in Experiments 1a and 1b
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Recall

First, we sought to examine recall performance as a func-
tion of value cue, schema instructions, global JOL, list, and 
point value. We fit a MLR to model recall scores with value 
cue condition (no value cue = 0, value cue = 1), schema 
instruction condition (general instructions = 0, specific 
instructions = 1), point value, list, and global JOL. We also 
included interaction terms to examine both how value cue 
impacts the relationship between point value and recall 
and how metacognition impacts performance across lists. 
The model’s explanatory power (R2) was .23. The model’s 
intercept was at .34, t(1792) = 10.10, p < .001. The effect 
of schema instructions, b = .002, t(1792) = .19, p = .85, 
was non-significant, suggesting that those receiving spe-
cific instructions performed similarly to those receiving 
general instructions. All other predictors were significant: 
The effect of value cue was significant and negative, b = 
-.12, t(1792) = -5.30, p < .001, the effect of point value 
was significant and positive, b = .01, t(1792) = 2.87, p = 
.004, and the interaction between value cue and point value 
was significant and positive, b = .04, t(1792) = 6.49, p 
< .001. Therefore, while those receiving value cues dur-
ing encoding recalled significantly fewer words on aver-
age, a one-point increase in point value resulted in a .01 
increase in recall score and this effect was dependent on 
whether value cue was present during encoding (see Fig. 2). 
A simple slopes analysis revealed the effect of point value 
on recall was dependent on value cue condition such that 
those receiving value cues at encoding showed an increase 
of .06 in words recalled on average with each increase in 
point value, b = .06, t(1792) = -12.05, p < .001, and those 
studying the words alone still showed an increase in recall 
for higher-value words, but with a smaller slope, b = .01, 
t(1792) = 2.87, p = .004. Furthermore, the effect of average 
JOL was significant and positive, b = 0.34, t(1792) = 5.53, 
p < .001, the effect of list was significant and negative, b = 
-.03, t(1792) = -3.70, p < .001, and the interaction between 
JOL and list was significant and positive, b = .05, t(1792) = 
2.62, p = .01. These findings suggest that holding all other 
predictors constant, on average, a one-unit increase in aver-
age JOL on the studied lists predicted a .34 unit increase in 
recall performance, and recall performance decreased by 
.03 units with each additional list. A simple slopes analysis 
revealed the effect of list on recall was dependent on JOL 
such that those with average JOLs at the mean (M = .39, SD 
= .18), b = -.01, t(1792) = -3.14, p = .002, and 1 standard 
deviation below the mean, b = -.02, t(1792) = -3.93, p < 
.001, recalled fewer words with each additional list, while 
those with average JOLs 1 standard deviation above the 
mean recalled a similar number of words across lists, b = 
-.002, t(1792) = -.45, p = .65 (see Fig. 2).

Transfer of Learning

Next, we sought to examine transfer performance as a func-
tion of value cues, schema instructions, point value, and fluid 
intelligence. We fit a MLR to predict transfer of learning 
scores with value cues, schema instructions, point value, 
and fluid intelligence. We added interaction terms between 
schema instructions and value cues to evaluate whether the 
effect of value cues on transfer performance was depend-
ent on the type of schema instructions participants received 
before beginning the task. We also added an interaction 
term between value cues and point value to test whether the 
effect of value cue on transfer performance was dependent 
on whether value cues were present during encoding. The 
model’s explanatory power (R2) was .33. The model’s inter-
cept was at 0.29, t(323) = 6.05, p < .001. The effect of point 
value, b = -.01, t(323) = -.41, p = .69, fluid intelligence, b 
= .002, t(323) = 1.24, p = .22, and the interaction between 
value cue and point value, b = .004, t(323) = .23, p = .82, 
were not significant. Therefore, transfer performance was 

Fig. 2   Recall performance in Experiment 1a. Top graph: Average 
recall as a function of point value and value cue condition. Bottom 
graph: Average recall as a function of list and average global judg-
ment of learning. Confidence bands represent 95% confidence inter-
vals for the predicted values of the mean
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not significantly influenced by fluid intelligence, how many 
points each word was worth upon recall, and the effect of 
point value did not depend on the presence of value cues 
during encoding. All other predictors were significant: value 
cues, b = .27, t(323) = 3.76, p < .001, schema instructions, b 
= .43, t(323) = 10.19, p < .001, and the interaction between 
value cues and schema instructions, b = -.25, t(323) = -4.08, 
p < .001. On average, participants receiving value cues dur-
ing encoding performed significantly better on the trans-
fer task than those who studied the words alone. Similarly, 
participants receiving specific schema instructions had sig-
nificantly higher transfer scores than those receiving general 
instructions. Furthermore, the effect of value cues on trans-
fer performance depended on the type of schema instruc-
tions that were provided at the beginning of the experiment. 
Specifically, a simple slopes analysis revealed that when 
the schema instructions were specific, there was no addi-
tional effect of value cues on transfer performance, b = .03, 
t(1792) = .67, p = .50. However, when schema instructions 
were general, the presence of value cues during encoding 
resulted in significantly higher transfer performance com-
pared to studying the words alone, b = .28, t(1792) = 6.45, 
p < .001 (see Fig. 3).

Because there were three possible point values partici-
pants were instructed to use as predictions of items on the 
transfer task, performing at chance on this task would be 
.33, or five items correctly paired with the appropriate point 
values. We conducted within-condition one-sample t-tests to 
examine whether each group performed better than chance 
and found that all groups receiving some form of support 
performed significantly better than chance on this task: 
Value Support (M = .56, SD = .28), t(89) = 7.42, p < .001, 
d = .78, Schema Support (M = .65, SD = .34), t(89) = 8.96, 
p < .001, d = .94, and Dual Support (M = .76, SD = .29), 
t(89) = 13.65, p < .001, d = 1.44. However, the No Support 
group who studied the words alone with general instructions 

performed below chance (M = .28, SD = .22), t(89) = -2.28, 
p = .03, d = -.24.

Discussion

In Experiment 1a, we aimed to extend the VDR paradigm to 
category learning to investigate whether participants could 
learn the assignment of values to words based on category 
membership and could transfer their learning of the sche-
matic reward structure of the lists on a final transfer task. 
We scaffolded instructions about the schematic nature of 
the word lists to either explicitly inform participants about 
the existence of categories and values within the lists or to 
provide general instructions about how some words were 
more important to remember than others. Results revealed 
that on average, participants who studied the words paired 
with visible value cues performed better on the transfer task 
than those who studied the words alone, confirming H2 that 
value cues would direct attention to the schematic structure 
of the word lists. However, those receiving value support 
recalled fewer words overall, but more high-value words 
compared to those studying the words alone. Thus, while 
value cues resulted in better value-based learning (H4), it 
is unclear specifically through what mechanisms these cues 
facilitated performance on the transfer task. Additionally, 
specific schema instructions at the beginning of the task sup-
ported performance on the transfer task compared to having 
general instructions (H1). Furthermore, it seems that the 
effect of value cues on transfer performance depended on 
the type of schema instructions participants received at the 
beginning of the task (H3). Those receiving both value cues 
and specific schema instructions performed significantly 
better than those receiving value cues and general schema 
instructions, but similar to those studying the words alone 
with specific schema instructions.

We also examined whether measures of metacognition 
during encoding influenced recall performance and found 
that overall, those with higher average JOLs also recalled 
more words. Furthermore, though recall decreased with 
each list, this was only the case for participants with low to 
average JOLs whereas those with higher JOLs maintained 
similar recall scores across lists. This result was not in line 
with H5 that higher JOLs would lead to higher recall with 
task experience, though metacognitive processes do seem 
to play a role in maintaining recall performance across lists. 
Finally, we were interested in how individual differences in 
fluid intelligence may relate to learning in our VDL task. 
Contrary to our prediction in H6, results showed that on 
average, fluid intelligence did not significantly impact trans-
fer of learning. Thus, surprisingly, differences in the ability 
to think abstractly and solve problems in novel situations as 
measured by RPM was not related to the ability to succeed 
in learning the schematic reward structure and applying it 

Fig. 3   Average transfer scores as a function of value cue and schema 
instructions in Experiment 1a. Error bars represent the standard error 
of the mean
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in novel settings. Based on our findings, in Experiment 1b, 
we moved the RPM test between the encoding and transfer 
phases of our task to act as a distractor task as opposed to 
using it to measure fluid intelligence.

Experiment 1b

Experiment 1b used the same materials and procedure as 
Experiment 1a except for two main changes: (1) Participants 
took the fluid intelligence test after completing the study 
phase (Lists 1–5). Then, after completing the fluid intelli-
gence test, they completed the transfer task, creating a delay 
between the study and test phases of the experiment. (2) The 
pacing of the fluid intelligence test was fixed at 15 min to 
examine keep the delay between study and test constant for 
all participants.

H7: In line with our results from Experiment 1a, we 
expected both value cues and specific schema instruc-
tions to support accuracy in the transfer task. We again 
expected a significant interaction between value and 
schema support such that value cues would provide a 
performance advantage when general instructions were 
given more so than when specific instructions were pro-
vided. We expected all conditions receiving some type 
of support to perform better than our control condition.
H8: Like in other VDR experiments (Castel et al., 2002; 
Knowlton & Castel, 2022; Middlebrooks & Castel, 2018) 
and Experiment 1a, we expected to observe an effect of 
value on recall when value cues were present during 
encoding demonstrating value-directed remembering.
H9: In line with our results in Experiment 1a, we expected 
higher JOLs to contribute to maintenance of recall perfor-
mance across lists, whereas lower JOLs would be related 
to recalling fewer words with task experience.

Method

Participants

Participants were 120 undergraduate students (age: 18–30 
years, M = 20.08, SD = 1.61; gender identity: 91 women, 23 
men, one nonbinary, one transgender, four prefer not to say) 
recruited from the UCLA Human Subjects Pool who were 
tested online and received course credit for their participa-
tion.2 On average, participants began learning English at 
1.89 years (SD = 3.02). A sensitivity analysis based on the 
observed sample was conducted using G*Power (Faul et al., 
2009). For a MLR with five predictors, assuming alpha = 

.05, power = .80, the smallest effect the design could reliably 
detect is η2 = .10.

Materials and Procedure

The design in Experiment 1b was identical to Experiment 
1a. The materials and procedure in Experiment 1b were 
like those in Experiment 1a. However, all participants com-
pleted the RPM task after list 5 and before the final transfer 
task. On the RPM task, which served as the distractor task, 
instead of having unlimited time for completion, participants 
had a time limit of 15 min to complete the RPM task.

Results

Recall

First, we sought to examine recall performance as a func-
tion of value cues, schema instructions, global JOL, list, 
and point value. We fit a MLR to model recall scores with 
value cues, schema instructions, point value, list, and global 
JOLs. We also included interaction terms to examine both 
how value cues impact the relationship between point value 
and recall and how metacognition impacts performance 
across lists. The model's explanatory power (R2) was .14. 
The model's intercept was at .49, t(1792) = 8.08, p < .001. 
The effect of point value, b = .01, t(1792) = 1.16, p = .25, 
was non-significant, suggesting that on average recall per-
formance did not depend on the point value associated with 
each word. All other predictors were significant: The effect 
of specific schema instructions (coded as 1) was significant 
and negative, b = -.09, t(1792) = -4.81, p < .001, the effect 
of value cues (coded as 1) was significant and negative, b = 
-.24, t(1792) = -6.24, p < .001, and the interaction between 
value cues and point value was significant and positive, b = 
.06, t(1792) = 4.93, p < .001. Therefore, those receiving spe-
cific schema instructions recalled significantly fewer words 
on average compared to those receiving general instruc-
tions. Similarly, those receiving value cues during encod-
ing recalled significantly less words on average, but they 
recalled significantly more high-value words compared to 
low-value words, b = 0.07, t(1792) = 8.13, p < .001, while 
recall did not depend on point value for those studying the 
words alone, b = 0.01, t(1792) = 1.16, p = .25 (see Fig. 4). 
Furthermore, the effect of average JOL was significant and 
positive, b = 0.24, t(1792) = 1.98, p = .048, the effect of list 
was significant and negative, b = -.07, t(1792) = -4.27, p < 
.001, and the interaction between JOL and list was signifi-
cant and positive, b = .14, t(1792) = 3.95, p < .001. These 
findings suggest that holding all other predictors constant, 
on average, a one-unit increase in average JOL on the studied 
lists predicted a .24 unit increase in recall performance, and 
recall performance decreased by .07 with each additional 2  No participants were excluded in Experiment 1b.
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list. However a simple slopes analysis revealed that the effect 
of list on recall was dependent on JOL such that those with 
average JOLs at the mean (M = .36, SD = .15), b = -.01, 
t(1792) = -1.93, p = .05 and 1 standard deviation below the 
mean, b = -.04, t(1792) = -3.98, p < .001, recalled fewer 
words with each additional list, while those with average 
JOLs 1 standard deviation above the mean recalled a similar 
number of words across lists, b = .01, t(1792) = 1.39, p = 
.16 (see Fig. 4).

Transfer of Learning

Next, we sought to examine transfer performance as a func-
tion of value cues, schema instructions, and point value. 
We fit a MLR to predict transfer of learning scores with 
value cues, schema instructions, and point value. We added 

an interaction term between schema instructions and value 
cue to test whether the effect of value cues on transfer per-
formance was dependent on the type of schema instructions 
participants received prior to beginning the task. We also 
added an interaction term between value cues and point 
value to test whether the effect of value cues on transfer 
performance was dependent on whether value cues were 
present during encoding. The model's explanatory power 
(R2) was .17. The model's intercept was at 0.28, t(354) = 
4.77, p < .001. The effect of point value, b = -.01, t(354) 
= -.64, p = .52, and the interaction between value cues 
and point value, b = .003, t(354) = .11, p = .91, were not 
significant. Therefore, transfer performance was not signifi-
cantly influenced by how many points each word was worth 
upon recall, and the effect of point value did not depend on 
the presence of value cues during encoding. All other pre-
dictors were significant: value cues, b = .37, t(354) = 4.43, 
p < .001, schema instructions, b = .24, t(354) = 4.73, p < 
.001, and the interaction between value cues and schema 
instructions, b = -.26, t(354) = -3.53, p < .001. On aver-
age, participants receiving value cues during encoding per-
formed significantly better on the transfer task than those 
who studied the words alone. Similarly, participants receiv-
ing specific schema instructions had significantly higher 
transfer scores than those receiving general instructions. 
Furthermore, the effect of value cues on transfer perfor-
mance depended on the type of schema instructions that 
were provided at the beginning of the experiment. A simple 
slopes analysis revealed that when the schema instructions 
were specific, there was an effect of value cues on transfer 
performance, b = .12, t(354) = 2.43, p = .02; however, 
this effect was larger than when schema instructions were 
general, b = .38, t(354) = 7.41, p < .001 (see Fig. 5).

Fig. 4   Recall performance in Experiment 1b. Top graph: Average 
recall as a function of list and average global judgment of learning. 
Bottom graph: Average recall as a function of point value and value 
cue condition. Confidence bands represent 95% confidence intervals 
for the predicted values of the mean

Fig. 5   Average transfer scores as a function of value cue and schema 
instructions in Experiment 1b. Error bars represent the standard error 
of the mean
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As in Experiment 1a, there were three possible point 
values participants were instructed to use as predictions of 
items on the transfer task, performing at chance on this task 
would be .33, or five items correctly paired with the appro-
priate point values. We conducted within-condition one-
sample t-tests to examine whether each group performed 
better than chance and found that all groups receiving some 
form of support performed significantly better than chance 
on this task: Value Support (M = .63, SD = .33), t(89) = 
8.69, p < .001, d = .92, Schema Support (M = .50, SD = 
.38), t(89) = 4.04, p < .001, d = .43, and Dual Support (M = 
.62, SD = .38), t(89) = 7.17, p < .001, d = .76. However, the 
No Support group who studied the words alone with general 
instructions performed below chance (M = .25, SD = .27), 
t(89) = -2.77, p = .007, d = -.29.

Discussion

In Experiment 1b, we sought to replicate the findings from 
Experiment 1a and demonstrate that both schema instruc-
tions and value cues enhance learning in our novel VDL 
task even after a short delay between the study and the test. 
Consistent with Experiment 1a, results revealed that having 
specific schema instructions at the beginning of the task pre-
dicted higher transfer on the final test compared to receiving 
only general instructions (H7). We also replicated the finding 
that studying the words paired with values predicted higher 
rates of transfer on the final test (H7). Therefore, even after 
a short delay, participants were able to successfully demon-
strate learning from the schematic reward structure when 
provided with either value or schema support (or both). In 
other words, the ability to learn the schematic reward struc-
ture and apply it in a novel test is preserved even when a 
short delay is introduced between learning and applying the 
new knowledge.

We also found that receiving specific schema instructions 
resulted in lower recall performance than receiving general 
instructions and that studying the words paired with value 
cues also was associated with lower recall performance. 
However, consistent with Experiment 1a, participants 
receiving value cues during encoding recalled significantly 
more high-value words, demonstrating strategic encoding 
and recall of words that would maximize their gains (H8). 
Furthermore, having higher JOLs was associated with higher 
recall performance suggesting that metacognitive monitor-
ing plays a role in recall performance (H9).

Experiment 2

In Experiment 1, participants receiving value cues and/
or specific schema instructions were able to learn the 
schematic reward structure within the five word lists and 

applied their knowledge in the final transfer task. Given 
that one can learn the values of the studied categories 
through the schematic reward structure and apply them in 
a novel task, it is unknown whether one can speed up the 
learning process. In Experiment 2, to investigate whether 
participants could learn the schematic reward structure 
with fewer study trials and generalize the results of Exper-
iments 1a and 1b to other categories beyond types of ani-
mals, we exposed participants to a new theme with each 
list. Specifically, participants studied six lists with each list 
having a unique theme (e.g., plants) with three categories 
(e.g., flowers, trees, herbs) and completed a transfer task 
after each list allowing us to investigate whether partici-
pants could adapt to a new theme with each list and learn 
its schematic reward structure.

In Experiment 2, participants did not receive specific 
schema instructions as we were interested in how they 
might learn the schematic reward structure with task expe-
rience with visible value cues compared to a control condi-
tion where no value support is provided. Prior research has 
shown that multiple tests can enhance learning, a phenom-
enon known as “the testing effect” (e.g., Karpicke & Aue, 
2015; Storm et al., 2010). VDR research has shown that, 
with task experience, people learn to be more strategic 
and selective in their memory (Knowlton & Castel, 2022). 
Therefore, we expected participants to show an increase in 
transfer scores with task experience with the aid of visible 
value cues during encoding (H10). Because there was only 
one transfer trial in Experiment 1, we could not examine 
how well participants could perform once they were aware 
of the type of test to be expected.

Additionally, we further explored the relationship 
between metacognition and the transfer of learning. In 
Experiment 1 we found that making higher global JOLs 
during encoding the maintenance of recall performance 
with task experience. However, we did not have item-
level measures of metacognition for either the encoding 
or transfer task. In Experiment 2, Participants provided 
item-level JOLs during the encoding phase and item-
level confidence judgments after each transfer trial. We 
expected higher metacognitive judgments to be related 
to higher recall and transfer scores (H11). Finally, we 
expected participants studying words paired with value 
cues to recall more high-value words compared to the 
control group (H12).

Method

Participants

Participants were 66 undergraduate students (age: 18–31 
years, M = 20.64, SD = 2.43; gender identity: 60 women, 
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six men) recruited from the UCLA Human Subjects Pool 
who were tested online and received course credit for their 
participation.3 On average, participants began learning 
English at 1.85 years (SD = 2.74). A sensitivity analy-
sis based on the observed sample was conducted using 
G*Power (Faul et al., 2009). For a MLR with six pre-
dictors, assuming alpha = .05, power = .80, the smallest 
effect the design could reliably detect is η2 = .19.

Materials

Stimuli used in Experiment 2 consisted of 180 English nouns 
submitted to the ELP (Balota et al., 2007) database to gen-
erate measures of length (M = 5.80 letters per word, SD = 
1.66), frequency in the HAL corpus (Lund & Burgess, 1996, 
M = 7.32 occurrences per million, SD = 1.60), and concrete-
ness (M = 4.74, SD = 0.26). Participants were exposed to 
12 lists and six themes, with one list of each theme used for 
the encoding phase and one used for the transfer task. The 
six themes used were animal names (categories: mammals, 
birds, and fish), food items (categories: fruit, vegetables, 
and meat), fashion items (categories: clothing, shoes, and 
jewelry), household items (categories: bedroom items, bath-
room items, and kitchen items), vehicles (categories: air, 
land, and water), and plants (categories: flowers, trees, and 
herbs). See Appendix 2 for a complete list of materials.

Procedure

A 2 (Value: No Value Cue, Value Cue) × 6 (Category 
Theme: Animal names, Food items, Fashion items, House-
hold items, Vehicles, Plants) design was used, with value 
being manipulated between participants and category theme 
manipulated within participants. Participants were informed 
that there were low-value (1 point), medium-value (3 points), 
and high-value (5 points) words and that their goal was to 
maximize their scores, the sum of values associated with 
the words they recall. During encoding, some participants 
viewed only the words (No Support) while others viewed the 
words paired with values of either 1, 3, or 5 (Value Support). 
These values were assigned based on category membership 
and value-category pairings were counterbalanced between 
participants. There were five items from each category on 
each list. Participants in the No Support condition were 
informed that they would not be able to see the values on 
the screen with the words. Additionally, participants made 
local JOLs after viewing each word, indicating how likely 
they would recall that item on a later recall test from 0 (not 
at all likely) to 100 (very likely). Immediately following 

the encoding phase for each list, participants completed 
the same distractor task used in Experiment 1 where they 
reordered number sequences. Following the distractor task, 
participants had 1 min to complete a free recall test by typing 
as many words as they could remember from the previously 
studied list and were given feedback in a form of their score 
out of a possible 45 points.

Participants then proceeded to complete the transfer task 
for that list and were exposed to a set of new words belong-
ing to the previous list’s categories. Each word appeared 
next to an empty box and participants were prompted to 
predict which value belonged with each word to measure 
their transfer of learning. Participants had 5 s to enter their 
value predictions into the box for each item. After predicting 
a value for each item, they were asked to rate how confident 
they were in their answers from 0 (not at all confident) to 
100 (very confident). Participants followed this procedure 
for a total of six encoding-transfer phases. The complete 
procedure for Experiment 2 is illustrated in Fig. 6.

Results

Measures used in the following analyses include local JOLs 
and confidence judgments, recall performance, and transfer 
of learning scores. All measurements were averaged across 
lists by associated point value before being entered into the 
analyses.

Recall

First, we sought to examine recall performance as a func-
tion of value cues, local JOLs, list, and point value. We fit 
a MLR to model average recall scores with value cues con-
dition, point value, list, and local JOLs. We also included 
interaction terms to examine both how value cues impact 
the relationship between point value and recall and how 
local JOLs impact performance across lists. The model's 
explanatory power (R2) was .15. The model's intercept was 
at .59, t(1177) = 13.37, p < .001. The effects of value cue 
condition, b = .06, t(1177) = 1.82, p = .07, point value, b = 
-0.002, t(1177) = -0.30, p = .76, and JOL, b = .02, t(1177) = 
.23, p = .82, were non-significant, suggesting that receiving 
value cues at encoding did not significantly enhance recall. 
On average, recall performance did not change with the point 
value associated with each item. Furthermore, local JOLs 
did not significantly influence average recall. Additionally, 
the effect of point value on recall did not depend on whether 
value cues were present during encoding, b = .02, t(1177) 
= 1.91, p = .06. Because we had expected an effect of value 
on recall for the value support condition due to prior work 
in VDR and our results from Experiment 1, and this interac-
tion was of theoretical interest, we probed the interaction by 
conducting a post-hoc simple slopes analysis which revealed 

3  One participant was excluded from analyses for admitting to cheat-
ing on a post-task questionnaire.
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that there was a significant effect of value on recall for the 
Value Support condition, b = .02, t(1177) = 2.39, p = .02, 
but not for the control condition, b = -.002, t(1177) = -.30, 
p = .76 (See Table 2 for descriptive statistics). However, 
recall did decrease with each additional list, b = -.05, t(1177) 
= -5.22, p < .001, and the effect of list on recall was influ-
enced by local JOLs, b = .09, t(1177) = 5.13, p < .001. A 
simple slopes analysis revealed that those with JOLs at the 

sample mean (M = .48, SD = .26) recalled a similar number 
of words across lists, b = -.01, t(1177) = -1.39, p = .17. 
In contrast, those with JOLs 1 SD above the mean showed 
better recall performance with each additional list, b = .02, 
t(1177) = 2.63, p = .01 and those with JOLs 1 SD below the 
mean showed worse recall performance with each additional 
list, b = -.03, t(1177) = -4.66, p < .001 (see Fig. 7).

Transfer of learning

To examine average transfer performance as a function of 
condition (no value cue = 0, value cue = 1), local confidence 
judgment, list, and point value, we fit a MLR to model trans-
fer scores with value cue condition, point value, list, and 
local confidence judgments. We also included interaction 
terms to examine both how local confidence judgments and 
value cue condition impacted transfer performance across 

Fig. 6   Procedure for the value-directed learning task in Experiment 2

Table 2   Means presented as proportion correct (with standard devia-
tion in parentheses) for recall performance as a function of point 
value and condition in Experiment 2

Condition 1-point items 3-point items 5-point item

No Support .57 (.31) .59 (.30) .57 (.29)
Value Support .63 (.28) .67 (.26) .72 (.26)
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lists. The model's explanatory power (R2) was .35. The mod-
el's intercept was at .10, t(1181) = 2.32, p = .02. The effects 
of list, b = -.01, t(1181) = -1.11, p = .27, and point value, b 
= .01, t(1181) = 1.90, p = .06, were non-significant, suggest-
ing that on average, transfer performance did not increase 
with task experience and was not significantly impacted by 
the point value associated with each word. Furthermore, 
the effect of list did not depend on value cue condition, b 
= .02, t(1181) = 1.81, p = .07. As expected, studying the 
words paired with visible value cues resulted in significantly 
higher transfer performance, b = .24, t(1181) = 6.35, p < 
.001. Having higher average confidence judgments did sig-
nificantly influence average transfer performance, b = .24, 
t(1181) = 3.73, p < .001 and the effect of list on transfer per-
formance was dependent on average confidence judgments, 
b = .05, t(1181) = 3.01, p = .003. A simple slopes analysis 
revealed that those with confidence judgments 1 SD below 
the mean performed similarly  across lists, b = .01, t(1181) = 
1.08, p = .28. In contrast, those with confidence judgments 
at the mean (M = .50, SD = .30) showed better transfer per-
formance with each additional list, b = .02, t(1181) = 4.50, 
p < .001, and as did those with JOLs 1 SD above the mean, 
b = .04, t(1181) = 5.16, p < .001 (see Fig. 8).

As in Experiment 1, chance performance on the trans-
fer task would be 5 out of 15 correct (33%) as participants 
had three options for predicted values of each item. To test 
whether each group performed above chance, we conducted 
one-sample t-tests, which revealed that the group receiv-
ing value cues performed significantly better than chance, 
t(593) = 17.94, p < .001, d = .74, while the group studying 
the words alone performed significantly worse than chance, 
t(593) = -4.30, p < .001, d = -.18.

Discussion

In Experiment 2, we expected transfer performance to 
increase with each list for participants in the value support 
condition as their prior knowledge of the semantic relation-
ships between category items (McGillivray & Castel, 2017) 
paired with the value cues studied during encoding would 
enhance performance with task experience (Knowlton & 
Castel, 2022) (H10). As expected, participants were only 
able to learn the schematic reward structure when the words 
were paired with a visible value cue.

Additionally, the value category (i.e., low, medium, high) 
paired with each word did not significantly influence transfer 
of learning scores on average, suggesting that performance 
on the value-pairing task did not depend on the value cat-
egory (H12). One difference between our design and typical 
VDR tasks is that we only used three values and these val-
ues each repeated five times on each list, while VDR tasks 
often use values ranging from 1 to 20 or 1 to 12 that do not 
repeat values within lists (Stefanidi et al., 2018). Therefore, 
participants in our new paradigm are learning a gist category 
associated with the word as opposed to an item-level value. 
Therefore, with this more discrete range of values compared 
to the continuous values in typical VDR tasks, we may have 
been underpowered to detect the value-directed remember-
ing effect in this study. Even though we did not observe a 
significant interaction between value cue and condition in 
Experiment 2, we did probe the interaction post hoc using a 
simple slopes analysis and found that value did impact recall 
for the value support condition. We also found that average 
confidence judgments significantly impacted average trans-
fer of learning scores such that having average to high con-
fidence resulted in better performance with task experience 

Fig. 7   Recall performance in Experiment 2 as a function of average 
local judgment of learning and list. Confidence bands represent 95% 
confidence intervals for the predicted values of the mean

Fig. 8   Transfer performance in Experiment 2 as a function of average 
confidence judgment and list. Confidence bands represent 95% confi-
dence intervals for the predicted values of the mean
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while having lower confidence was related to no increase in 
performance with task experience (H11). Similarly, higher 
local JOLs were related to recalling more words with each 
list whereas having lower local JOLs were related to recall-
ing fewer words with each list (H11).

General discussion

The current study aimed to examine whether making par-
ticipants aware of categories present within a series of word 
lists would facilitate a transfer of learning of the category-
value pairings across lists. Prior work has shown that numer-
ical values paired with words (Castel et al., 2002; Hennessee 
et al., 2019), item-location pairs (Siegel & Castel, 2018), and 
even faces (DeLozier & Rhodes, 2015) can enhance memory 
for important information. In Value-Directed Remember-
ing (VDR), values paired with words facilitate the strate-
gic control of memory, while in Value-Directed Learning 
(VDL) the value cues direct the learner’s attention to how 
the words on each list are related to one another. As we used 
well-known semantic categories, participants could learn the 
schematic reward structure of the lists when provided with 
either schema or value support, but not when provided with 
no support at all. As we discuss the results of the present 
experiments, we compare some findings across experiments 
when appropriate. As a supplement to these comparisons see 
Appendix 3, which contains summaries of the regression 
coefficients for predictors in our models by experiment and 
outcome variable.

The results of Experiment 1 suggest that both being 
aware of the schematic reward structure before encoding 
and receiving value support during encoding contributed to 
higher transfer of learning (H1 and H2) both with and with-
out a short delay before encoding and transfer. However, in 
Experiment 1a, the effect of value cues on transfer was only 
beneficial when schema instructions were general (H3). On 
the other hand, when tested after a short delay in Experi-
ment 1b, the effect of value cues on transfer was beneficial 
for both types of schema instructions, but this effect was 
stronger for general instructions (H7). In our transfer task, 
participants must make two decisions within the 5-second 
limit to properly predict each item’s value. First, they must 
categorize the word within the theme of the list, and then 
they must recall the value belonging to each item’s category. 
This process may utilize some form of working memory 
capacity (WMC), and relevant research has shown that per-
formance in VDR tasks may be influenced by WMC (Griffin 
et al., 2019; Hayes et al., 2013; Knowlton & Castel, 2022) 
though other studies have reported little to no relationship 
(Castel et al., 2009;Cohen et al., 2014 ; Knowlton & Castel, 
2022). It has been shown that people with high WMC dem-
onstrate superior recall (Unsworth, 2007; Unsworth, 2016). 

Such individual differences in recall performance between 
people varying in WMC could be partially explained by the 
notion that individuals with low WMC are searching through 
a larger set of items than individuals with high WMC. Other 
work has looked at strategy use as a potential candidate for 
understanding the relationship between recall and WM and 
results revealed that people with high WMC reported using 
more effective strategies, such as grouping or sentence 
generation, than people with low WMC (Unsworth, 2016). 
Decision-making in our transfer task may require a heavier 
cognitive load than selectivity in a free recall test and hav-
ing a measure of WMC could help determine the additional 
benefit of value when also receiving specific schema instruc-
tions after engaging in an unrelated task as this distraction 
may lead to some forgetting of the category-value pairings, 
especially when relying on knowledge of the schematic 
structure alone without value cues.

We also examined recall performance and found that 
studying words paired with values led to lower recall overall, 
but higher rates of high-value words recalled demonstrating 
selectivity (H4 and H8). Other work in VDR has shown that 
point values may cue the learner to engage in differential 
encoding strategies (Cohen et al., 2014; Knowlton & Cas-
tel, 2022). Additionally, having higher global JOLs resulted 
in stable recall across lists while having lower global JOLs 
resulted in a decrease in recall with task experience (H5 
and H9). These findings suggest that value cues provide 
support in determining what is important to remember and 
participants are metacognitively aware of their performance. 
The act of selectively recalling words may be a mechanism 
through which participants can notice how the words are 
related, which could support performance on the transfer 
task. This strategy may become more conscious and explicit 
with task experience, consistent with current models of 
human reward pursuit (Bijleveld et al., 2012), and suggests 
a metacognitive mechanism that may help guide learning.

In Experiment 2, we tested participants after each stud-
ied list and the theme of the list changed after each study-
test phase. We found that receiving value support resulted 
in significantly higher transfer of learning scores compared 
to studying the words alone (H10). Therefore, not only 
were participants in the Value Support condition able to 
learn and apply the schematic reward structures with only 
one study trial (compared to five trials in Experiments 1a 
and 1b), but they were also able to learn schematic reward 
structures of multiple lists each with a different theme, cat-
egories, and items.

Students are exposed to copious amounts of information 
and must be selective about what to study to be successful on 
assessments. Often, students struggle to decide what is most 
important to remember, though schemas and prior knowl-
edge may guide what people tend to remember (McGil-
livray & Castel, 2017; Murphy & Castel, 2020, 2021). In 
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Experiment 2, participants receiving value cues were able to 
adapt to new themes with each list and use both their prior 
semantic knowledge of the words and their task experience 
with the transfer test to learn not only which items were most 
important, but also what made an item important (i.e., cat-
egory membership). Furthermore, as in Experiment 1, hav-
ing higher Judgements of Learning facilitated recall during 
the encoding phase, suggesting metacognitive awareness of 
performance (H11). Additionally, because participants made 
confidence judgments after each item on the transfer tests, 
we also observed that confidence was positively related to 
transfer performance (H11). To achieve long-term learning 
in a domain, one must not only remember important facts 
and details but must understand how important concepts and 
themes are connected resulting in transferable knowledge 
(Bransford & Schwartz, 1999; Fries et al., 2020; Greeno 
et al., 1993; Renkl et al., 1996). Though this deep learning 
occurs over a long period, we can see in our experiments 
that assigning items point values based on categorical fea-
tures facilitated predictions of novel items’ importance and 
metacognitive monitoring and control played an important 
role in this process.

A limitation of our stimuli is that some items were more 
prototypical of the categories they belong to than others 
(e.g., mammals: “giraffe” vs. “whale”). Natural prototypical 
stimuli are typically learned more quickly than their non-
prototypical counterparts (Rosch, 1973). Additionally, we 
did not collect data on how familiar participants were with 
each item, which could be a factor in categorizing the words. 
Thus, we assumed prior knowledge of the words used in the 
study based on the demographics of our sample of fluent 
English speakers. Furthermore, while we conducted Experi-
ment 2 in part to see whether participants could learn the 
schematic reward structure for categories other than types 
of animals, our results may not be generalizable beyond the 
specific well-known types of categories we chose for our 
experiments.

Numerous studies have found age-related differences in 
memory capacity; however, work using the VDR paradigm 
has demonstrated that older adults can be just as selective 
as younger adults and more selective than adolescents and 
children (Castel et al., 2011). However, our novel transfer 
task involves the binding of values to specific categories 
present on the word lists. The associative deficit hypoth-
esis posits that older adults struggle with processing asso-
ciative information (Naveh-Benjamin, 2000), thus future 
work should explore whether there are age-related differ-
ences in VDL tasks. Furthermore, Castel and colleagues 
(2011) demonstrated that children with Attention-Deficit/
Hyperactivity Disorder (ADHD) Combined type display 
deficits in the strategic and efficient encoding and recall 
of important information in a VDR task. Attention to 
the value-category pairings in VDL may be important in 

facilitating performance on the word-value pairing transfer 
task. Future research could examine how individual differ-
ences may contribute to performance on the value-directed 
learning task, as well as how performance on this task 
may relate to performance on more standard value-directed 
remembering tasks in younger and older adults, to deter-
mine if similar attentional mechanisms and reward-based 
value-directed remembering mechanisms may contribute 
to performance.

Value-directed learning extends the VDR paradigm to 
category learning and demonstrates that the effect of value 
on recall persists even when there are more discrete value 
categories as opposed to continuous sets of values arbitrar-
ily paired with words. We also explored how scaffolding 
instructions about to-be-studied items impacts the effec-
tiveness of using value cues to identify a schematic reward 
structure across word lists. Using point values to group 
items may help learners identify what is most important 
to pay attention to and facilitate learning. Future work 
should explore how schematic reward structures could be 
applied to more realistic stimuli to aid in learning novel 
information.

Summary

In the present study, we found that participants demon-
strated the ability to learn the schematic reward structures 
of word lists designed around well-known categories rely-
ing on their prior knowledge of the relationships between 
the words and on value cues provided during encoding. 
We suspect that strategic control of memory motivated by 
value cues may direct the learner’s attention to the similar-
ities between words associated with the same values. We 
have extended value-directed remembering mechanisms to 
a context in which strategic control of memory may lead 
to transfer of learning across lists. This work shows that 
using values to guide attention, promote strategic control 
of memory, and facilitate transfer of learning of the sche-
matic reward structure with task experience may be an 
effective strategy to promote learning.

Appendix 1: Items used in the word lists 
in Experiments 1a and 1b

Birds Fish Mammals

bluejay anchovy aardvark
dove angelfish alpaca
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Birds Fish Mammals

eagle barracuda baboon
emu bass badger
falcon carp buffalo
ferret catfish camel
flamingo clownfish dingo
goose cod donkey
gull dory elephant
hawk eel elk
kookaburra flounder gazelle
loon guppy giraffe
macaw halibut gopher
mockingbird koi hedgehog
owl marlin human
panot minnow hyena
partridge perch jaguar
peacock roughy koala
pelican salmon lion
penguin sardine mongoose
pigeon seahorse muskrat
quail shark otter
raven snapper puma
rooster sole raccoon
sparrow stingray reindeer
stork sturgeon squirrel
swallow sunfish turkey
swan swordfish whale
vulture trout wolf
woodpecker tuna zebra

Appendix 2: Items used in the word lists 
in Experiment 2

Birds Fish Mammals

Parrot
flamingo
penguin
emu
hawk
owl
dove
eagle
raven
vulture

shark
tuna
carp
eel
flounder
halibut
cod
trout
perch
bass

aardvark
baboon
whale
camel
donkey
badger
muskrat
mongoose
lion
koala

Fruit Vegetables Meat

apples
oranges
lemons
grapes
bananas
pineapples
plums
cherries
apricots
peaches

corn
broccoli
celery
peas
spinach
beets
kale
cabbage
onions
carrots

salami
chicken
turkey
pork
ham
veal
pepperoni
beef
quail
bologna

Clothing Shoes Jewelry

pants
dress
coat
skirt
shorts
jacket
shirt
jumpsuit
jumper
jeans

flip-flops
sneakers
boots
loafers
socks
sandals
slippers
moccasins
espadrilles
heels

earrings
necklace
ring
bracelet
anklet
choker
brooch
pins
cufflink
armlet

Bedroom Bathroom Kitchen

bed
drawers
wardrobe
armchair
sheets
quilt
hanger
nightstand
pillow
mattress

toilet
shower
bathtub
toothbrush
shampoo
razor
urinal
floss
loofah
mouthwash

fork
strainer
tupperware
plate
saucepan
kettle
cooker
toaster
fridge
mixer

Air Land Water

spaceship
rocket
plane
hovercraft
jet
balloon
blimp
helicopter
drone
glider

truck
van
wagon
bus
excavator
pickup
tractor
taxi
sedan
motorcycle

jetski
cruise
lifeboat
canoe
boat
kayak
ferry
sailboat
yacht
submarine

Herbs Trees Flowers

cilantro
parsley
dill
chive
rosemary
sage
thyme
oregano
basil
mint

palm
cedar
birch
sequoia
redwood
pine
oak
maple
elm
bamboo

tulip
orchid
peony
violet
rose
poppy
lily
iris
lilac
daisy
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Appendix 3: Comparing findings 
across experiments

Regression coefficients in models predicting recall by 
experiment.

Predictor Experiment 1a Experiment 1b Experiment 2

Specific Instructions .002 -.09*** NA
Value Cue -.12*** -.24*** .06
Point Value .01** .01 -.002
JOL .34*** .24* .02
List -.03*** -.07*** -.05***
Point Value x Value 

Cue
.04*** .06*** .02

JOL x List .05** .14*** .09***

* p < .05, ** p < .01, *** p < .001

Regression coefficients in models predicting transfer by 
experiment.

Predictor Experiment 1a Experiment 1b Experiment 2

Specific Instructions .43*** .24*** NA
Value Cue .27*** .37*** .24***
Point Value -.01 -.01 .01
Fluid Intelligence .002 NA NA
List NA NA -.01
Confidence Judge-

ments
NA NA .24***

Point Value x Value 
Cue

.004 .003 NA

Specific Instructions 
x Value Cue

-.25*** -.26*** NA

Confidence Judge-
ments x List

NA NA .05**

Value Cue x List NA NA .02

* p < .05, ** p < .01, *** p < .001
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