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Abstract
A fundamental component of human categorization involves learning to attend selectively to relevant dimensions and ignore 
irrelevant ones. Past research has shown that humans can learn flexible strategies in which the attended dimensions vary 
depending on the region of feature space in which classification takes place. However, region-specific selective attention 
(RSA) is often challenging to learn. Here, we test the hypothesis that RSA is facilitated when individual categories are 
embedded within single regions of stimulus space rather than dispersed across multiple regions. We conduct an experiment 
that varies across conditions whether categories are embedded within regions, but in which the same RSA strategy would 
benefit performance across the conditions. To evaluate the hypothesis, we use measures of overall performance accuracy as 
well as comparisons among formal computational models that do and do not make allowance for RSA. We find strong sup-
port for the hypothesis among the upper-median-performing participants in the tested groups. However, even in the condition 
that promotes the learning of RSA, performance is considerably worse than in comparison conditions in which a single set 
of dimensions can be attended throughout the entire stimulus space.

Keywords  Categorization

A fundamental component of human categorization involves 
the process of selective attention to relevant dimensions 
(Shepard et al., 1961). In general, observers learn to attend to 
dimensions that are relevant for solving classification prob-
lems and to ignore dimensions that are irrelevant. However, 
even within a fixed domain, the dimensions that are most 
relevant may vary depending on the specific objects that one 
is trying to classify. Consider the examples in Fig. 1 involv-
ing rock types as defined in the geologic sciences (Marshak, 
2019). The top panel contrasts the pair obsidian and anthra-
cite, both of which are shiny black rocks. However, whereas 
obsidian tends to have a smooth, glassy, scalloped surface, 
anthracite tends to have a rougher and more layered tex-
ture. Hence, dimensions related to surface texture are diag-
nostic for discriminating between obsidian and anthracite. 
Alternatively, the bottom panel contrasts the pair breccia 
and conglomerate, both of which have large-size fragments 
embedded in a fine-grained groundmass. However, whereas 
the fragments in breccia are sharp and angular, the fragments 

in conglomerate are smooth and rounded. Thus, for this pair, 
the relevant dimension is fragment shape rather than surface 
texture.

In numerous formal models of categorization, such as 
exemplar, prototype, and clustering models, the process 
of dimensional selective attention is formalized in terms 
of a set of weights that influence the psychological dis-
tances along the dimensions that compose the objects 
(e.g., Kruschke, 1992; Love et al., 2004; Minda & Smith, 
2001; Nosofsky, 1986). Selective attention to a dimension, 
reflected in terms of a high weight, results in “stretching” of 
the space along that dimension, whereas a low weight results 
in “shrinking” of the space along an unattended dimension. 
These early models of category-based attention, however, 
formalized only a single set of dimension weights for a given 
task. The same set of weights was presumed to apply for all 
stimuli and all regions of the psychological space in which 
the objects were embedded. Following Blair et al. (2009), 
we will refer to this type of implementation as task-specific 
attention.

Clearly, however, this implementation is inadequate for 
our Fig. 1 example, where the relevant dimensions change 
depending on the particular stimuli that need to be classi-
fied. Instead, a region- or stimulus-specific form of selective 
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attention seems to be involved, which requires a more flex-
ible dimensional-weighting scheme.

This need for a more flexible region-specific or stimulus-
specific attention scheme has been demonstrated in elegant 
experiments reported by previous researchers. First, in a 
study reported by Aha and Goldstone (1992), participants 
learned to classify a set of training stimuli varying along 
two dimensions into two categories. In one region of the 
space, the two categories were separated along the hori-
zontal dimension, whereas in a second region, they were 
separated along the vertical dimension. Following training, 
participants classified transfer items into the categories. 
The key result was that participants generalized along the 
horizontal dimension in the region in which the horizontal 
dimension was relevant for classifying the training stimuli, 
whereas they generalized along the vertical dimension in 
the region in which the vertical dimension was relevant. In 
addition, Aha and Goldstone (1992) demonstrated that an 
exemplar model with a stimulus-specific attention-weighting 
scheme yielded better quantitative fits to the classification 
data than did the standard version of the model with a fixed 
set of weights.

Blair et al. (2009) also provided compelling evidence for 
the operation of a region-specific or stimulus-specific form 
of selective attention. Rather than relying on patterns of gen-
eralization to transfer stimuli, these investigators used eye-
tracking methods to provide measures of attention allocation 
(Rehder & Hoffman, 2005). The category structure used in 
their Experiment 2 is shown in our Table 1. There were eight 
stimuli varying along three binary-valued dimensions. The 
stimuli were divided into four categories (A1, A2, B1, B2) 

with two stimuli in each category. As shown in the table, 
if a stimulus had Value 1 on Dimension 1, then the value 
on Dimension 2 could be used to classify the stimulus into 
Category A1 or A2 (with Dimension 3 being irrelevant). 
Alternatively, if the stimulus had Value 2 on Dimension 1, 
then the value on Dimension 3 could be used to classify the 
stimulus into Category B1 or B2 (with Dimension 2 being 
irrelevant). The results for the set of subjects who met a 
learning criterion were clear-cut: the eye movement data 
indicated that, for stimuli belonging to Categories A1 and 
A2, the least attention was allocated to the irrelevant Dimen-
sion 3; but for stimuli belonging to Categories B1 and B2, 
the least attention was allocated to irrelevant Dimension 2. 
Again, the attention devoted to the different dimensions var-
ied with the specific stimuli that were being classified.

Other related studies also provide evidence that the 
nature of category representations may be region-specific 
or stimulus-specific. For example, Yang and Lewandowsky 
(2003, 2004) and Little and Lewandowsky (2009) provided 
evidence that a context cue that is irrelevant on its own can 
“gate” the use of alternative decision-boundary strategies in 
different regions of a category space. For example, in Yang 
and Lewandowsky (2003), when provided with one context 
cue, observers learned to use a positively sloped decision 
boundary to separate members of contrasting categories, 
whereas when provided with a second context cue, observ-
ers learned to use a negatively sloped decision boundary. 
Assuming the context cue indicates different regions of the 
psychological space, these results provide another example 
of how category representations can be region specific. Like-
wise, Erickson and Kruschke (1998, 2002) provided compel-
ling evidence of stimulus-specific and region-specific cate-
gory representations. In their experiments, observers learned 
to use “rules” for partitioning large swaths of stimulus space 
but to rely on similarity to stored examples in other specific 
regions of the space.

In summary, there is clear-cut evidence that dimen-
sional selective attention and related forms of category 

Fig. 1   Example rock pairs

Table 1   Logical codings for the category structure tested in Blair 
et al.’s (2009) Experiment 2

Category Dimension

1 2 3

A1 1 1 1
A1 1 1 2
A2 1 2 1
A2 1 2 2
B1 2 1 1
B1 2 2 1
B2 2 1 2
B2 2 2 2
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processing and representation can be region specific and 
stimulus specific. Nevertheless, our impression is that the 
evidence also suggests that the development of region-
specific attention is highly cognitively demanding and not 
nearly as psychologically “primary” as the task-specific 
selective attention formalized in the early foundational 
models. For example, in Blair et al.’s studies, 9 of 27 par-
ticipants failed to meet the learning criterion in Experiment 
1 and 16 of 38 participants failed in Experiment 2 (see Blair 
et al., 2009, pp. 1199, 1202). Similarly, in their Experiment 
1, Yang and Lewandowsky (2003, p. 667) reported that clas-
sification performance in one of the context-gated regions of 
the stimulus space was close to chance. In a recent article, 
Braunlich and Love (2022) presented a sampling emergent 
attention (SEA) model of concept learning that can produce 
the types of region-specific and stimulus-specific selective 
attention described above (see also, e.g., Kruschke, 2001; 
Jones & Love, 2006). Included among their applications 
were simulations of the Blair et al. (2009) Experiment 2 
paradigm. Although an impressive model, Braunlich and 
Love (2022, pp. 229–230) summarize the modeling out-
comes by writing: “Across the simulations considered here, 
SEA’s behavior could be characterized as somewhat ideal-
ized in comparison to human participants” (pp. 229–230). 
(We provide a much fuller discussion of the SEA model and 
region-specific attention in our General Discussion.)

The question therefore arises what factors may promote 
the successful development of region-specific selective 
attention and under what conditions is it most likely to be 
observed. Here, we propose and test the hypothesis that one 
important factor involves the correspondence between the 
category structures and the regions of the stimulus space in 
which the to-be-classified objects are embedded. In particu-
lar, as we elucidate in more detail below, we hypothesize that 
effective region-specific attention learning is more likely to 
operate when individual categories are embedded in single 
regions rather than dispersed across multiple regions. One 

basis for this hypothesis is that, under conditions in which it 
would behoove observers to adopt region-specific selective-
attention, each category would be assigned a fixed set of 
region-specific attention weights if embedded in a single 
region. By contrast, observers would need to learn multi-
ple sets of region-specific attention weights for individual 
categories if those categories are dispersed across multiple 
regions. The need to learn multiple sets of region-specific 
attention weights seems a cognitively complex requirement 
for representing individual categories. Hence, we hypothe-
size that region-specific attention learning will operate more 
effectively in conditions in which individual categories are 
embedded within single regions. As described in the next 
section, a second basis for our hypothesis is that logical rules 
for stating membership in individual categories tend to be 
cognitively simple when categories are embedded in sin-
gle regions but cognitively complex when dispersed across 
multiple regions.

Experiment

The design of our experiment is illustrated schematically 
in Figs. 2 and 3. Figure 2 illustrates the structure of the 
stimulus set used in all conditions. The stimuli were colored 
open rectangles with an embedded vertical line and they 
varied orthogonally along three dimensions: color (red or 
blue), left-right position of the line (four continuous values 
labeled 1–4), and rectangle height (four continuous values 
labeled 1–4).

The two major experimental conditions are the four-
category and two-category conditions illustrated in Fig. 3. 
(The layout of the figure corresponds to the one illustrated 
in Fig. 2.) In all conditions, there was an initial training 
phase in which participants learned to classify a set of train-
ing stimuli into categories. Following training there was a 
test phase in which participants classified both the training 

Fig. 2   Illustration of the stimulus set used in all conditions
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stimuli as well as novel transfer stimuli. The training stimuli 
are those enclosed by geometric shapes in Fig. 3, whereas 
the transfer stimuli are not enclosed by geometric shapes. As 
shown, in the four-category condition, the training stimuli of 
Category A were 2, 6, and 9; of Category B were 3, 7, 12, 
and 15; of Category C were 19, 21, and 22; and of Category 
D were 25, 26, 28, and 31. In the two-category condition, 
the training stimuli of Categories A and C were merged into 
a single Category A (indicated by solid and dashed circles); 
and the training stimuli of Categories B and D were merged 
into a single Category B (indicated by solid and dashed 
squares).

As can be seen, different dimensions are relevant depend-
ing on whether stimuli occupy the red versus the blue 
regions of the stimulus space. In the red region, the dimen-
sion of line position is most relevant for separating the train-
ing examples of the contrasting categories; but in the blue 
region, the dimension of rectangle height is most relevant. 
This same region-specific relevance of the dimensions holds 
for both the four-category and two-category conditions. To 
the extent that observers learn to adopt region-specific atten-
tion, we expect they will give greater attention weight to 
line-position in the red region, but to rectangle-height in 
the blue region.

Our hypothesis is that this form of region-specific selec-
tive attention will be learned more effectively in the four-
category condition than in the two-category condition. 
As stated in our introduction, there are multiple bases for 
this hypothesis. One basis, which we expand upon in the 
Model-based Analysis section of our article, is that the 
four-category condition affords the use of a single set of 
region-specific attention weights for each category, but such 
is not the case in the two-category condition. Another basis 
can be stated using the language of logical rules.1 In the 

four-category condition, there is a unique combination of 
color and a set of values on the contingent second relevant 
dimension that is associated with each individual category. 
For example, in the four-category condition, members of 
Category A can be described as red with left-positioned 
lines; members of B as red with right-positioned lines; 
members of C as blue and short in height; and members of 
D as blue and tall in height. By contrast, there is no single 
conjunctive combination of dimension values associated 
with individual categories in the two-category condition. 
Instead, within each category, subjects need to switch their 
attention to different dimensions depending on the color 
of the stimulus. For example, in the two-category condi-
tion, Category A is composed of stimuli that are red with 
left-positioned lines OR that are blue with short rectangle 
heights. Thus, application of region-specific selective atten-
tion for stating rules appears to be more cognitively complex 
in the two-category than in the four-category condition. This 
added complexity is likely to tax the working memory that is 
needed for constructing rules more in the two-category than 
in the four-category condition.

Our design includes certain critical transfer stimuli to 
help diagnose the operation of region-specific selective 
attention. For these experimental conditions, the critical 
transfer stimuli are 14 and 24 (see Fig. 3). Transfer Stimu-
lus 14 is highly similar to Training Stimulus 15, which 
belongs to Category B. However, Stimulus 14 is red with 
a left-positioned line, which is diagnostic of Category A. 
Thus, the category into which subjects classify Stimulus 
14 will provide evidence of the type of strategy they are 
using. In particular, if they classify Stimulus 14 into Cat-
egory A, then it provides evidence that, for the red stim-
uli, they are giving greater attention to the line-position 
dimension than to rectangle height. We will perform an 
analogous analysis on Stimulus 24, which is highly similar 
to Training Stimulus 28 from Category D, but whose value 
on the relevant rectangle-height dimension matches the 
training items from Category C. If subjects tend to classify 
Stimulus 24 into Category C, it provides evidence that, for 
the blue stimuli, subjects are giving greater attention to 
rectangle height than to line position. Finally, if subjects 
tend to classify Stimulus 14 into Category A and Stimu-
lus 24 into Category C, it provides evidence that region-
specific selective attention is operating. If our hypothesis 
is correct, then subjects in the four-category condition will 

Fig. 3   Schematic illustration of the four-category and two-category 
conditions. Critical-transfer stimuli 14 and 24 are in boldface font

1  As is true of previous work that has sought evidence for the opera-
tion of region-specific selective attention, our experiment was not 
designed to develop formal contrasts between the predictions from 
selective-attention exemplar models and logical rule models. For 
previous work illustrating the difficulty of developing such contrasts, 
see, for example, Nosofsky and Johansen (2000) and Jones and Love 
(2006).
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categorize Stimulus 14 into Category A more frequently 
than in the two-category condition. Likewise, subjects in 
the four-category condition will classify Stimulus 24 into 
Category C more frequently than will subjects in the two-
category condition classify Stimulus 24 into Category A.

Finally, as a source of comparison, we also tested the 
four-category conditions illustrated in Fig. 4. In these 
conditions, participants can perform well by adopting a 
uniform task-specific set of attention weights that are not 
region specific. For the top-panel structure, we expect 
that participants will attend selectively to color and line 
position while giving little attention to rectangle height; 
whereas for the bottom-panel structure, they will attend 
selectively to color and rectangle height while giving little 
attention to line position. Thus, in the top-panel structure, 
we hypothesize that the critical Transfer Stimuli 14 and 30 
will tend to be classified in Categories A and C, respec-
tively. In the bottom-panel structure, we hypothesize that 
the critical transfer stimuli 8 and 24 will tend to be classi-
fied into Categories A and C, respectively. We expect that 
because region-specific selective attention is not required, 
performance in the Fig. 4 structures will be superior to 
performance in both the four-category and two-category 
conditions of Fig. 3. For ease of description, we will refer 
to the top-panel structure as the four-category line-position 

condition (LP4) and to the bottom-panel structure as the 
four-category rectangle height condition (RH4).

Method

Subjects

A total of 180 undergraduates from Indiana University par-
ticipated in the experiment. There was a total of 62 subjects 
randomly assigned to the two-category condition and 60 
subjects to the four-category condition. In addition, 31 and 
27 subjects were randomly assigned, respectively, to the LP4 
and RH4 conditions. The sample sizes yield power = .99 
for detecting the large-size effects that we anticipated in the 
main statistical analyses of the performance data. Subjects 
received credit toward an introductory psychology course 
requirement in exchange for their participation. A screening 
requirement was that subjects have normal or corrected-to-
normal vision and normal color vision.

Stimuli and apparatus

The stimuli were colored open-ended rectangles with a ver-
tical line within them (Fig. 2). The width of the rectangle 
was 10.47cm and the height of the line was 2.54 cm. The 
stimuli varied in color (red or blue), rectangle height (4.13, 
5.40, 6.67, or 7.94 cm), and left-right positioning of the line 
(.79, 2.06, 3.33, or 4.60 cm away from the far-left side of the 
rectangle). The stimuli were presented in the center of the 
computer screen on a white background. To assist subjects 
in completing the tasks, a numerical measuring scale was 
provided along both the horizontal and vertical axes of the 
computer display that indicated the levels (1–4) of each of 
the continuously varying dimensions. This same measuring 
scale was provided in all four conditions.

Subjects completed the experiment individually on PC 
desktop computers, with each subject tested in a private, 
soundproof booth. Subjects sat approximately 20 in. away 
from the computer screen.

Procedure

An initial instruction message described the three dimen-
sions of the stimuli and showed an example. Subjects were 
also informed of the number of categories into which they 
would be classifying the stimuli and which keys on the key-
board corresponded to which category. (Labels were placed 
on the S, D, K, and L keys to indicate the category responses 
A, B, C, and D, respectively.) Subjects were instructed that 
on each trial they would be shown an object and should clas-
sify it into one of the categories, after which they would be 
told the correct category. The instructions also clarified that 

Fig. 4   Schematic illustration of the LP4 and RH4 conditions. Critical 
transfer stimuli are shown in boldface font
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at first subjects would be guessing, but by paying attention to 
the objects and correct answers they could learn to classify 
the objects accurately.

The experiment consisted of two phases—the training 
phase and the transfer phase. The training phase consisted 
of up to 10 blocks of training. Each training block had 14 tri-
als, with each one of the 14 training stimuli shown once in a 
random order. After classifying each stimulus, subjects were 
told if their selection was correct or incorrect. If their selec-
tion was incorrect, they were also told the correct category. 
The stimulus remained onscreen during this feedback period. 
The feedback was presented for 1 s on correct trials and for 2 
s on incorrect trials. There was a .5-s intertrial interval with 
a blank computer screen. After each block, subjects were 
told their overall percentage of correct responses. Following 
this training phase there was a break period, and subjects 
were asked to press the space bar when they were ready to 
continue to the transfer phase.

During the training phase, it was possible for subjects 
to complete less than 10 training blocks if they achieved 
100% correct classifications for three training blocks in a 
row. Subjects were informed of this possibility at the start 
of the experiment to motivate them to learn the categories.

In the transfer phase, subjects were tested on all 32 stim-
uli. They were tested for two blocks with a total of 52 trials 
per block. Within each block, each of the original 14 training 
stimuli was shown twice; each of the two critical transfer 
stimuli was shown four times; and each of the other 16 trans-
fer stimuli was shown once. The order of presentation was 
randomized in each block. The critical transfer stimuli were 
shown more often than the other transfer stimuli because of 
their high diagnostic value for assessing subjects’ classifi-
cation strategies. Subjects continued to receive corrective 
feedback on the training stimuli. However, no feedback was 
given for the transfer stimuli; instead, subjects were simply 
informed that their response had been recorded.

Results

Based on findings from previous research on region-specific 
attention and category representations, as well as pilot work 
involving the present experiment, we expected the four-cat-
egory and two-category conditions to be highly challeng-
ing for numerous participants to learn. Indeed, given the 
difficulty of the tasks, we expected many subjects to fail 
to solve completely the classification problems and/or to 
resort to random guessing. Therefore, rather than analyzing 
all participants en masse, we decided that a more coherent 
presentation would arise if we focused our main analyses on 
the top-performing subjects in each condition, and analyzed 
separately the results for poor-performing subjects.

Accordingly, in the present Results section and the ensu-
ing Formal Modeling Analyses section, we conducted 
median splits on the accuracy achieved by subjects for the 
training stimuli that were presented during the test phase. 
Using this performance measure as a basis for forming sub-
groups, we report separately the results for the upper-median 
and lower-median in each of the conditions.2

Note that there are objective correct and incorrect answers 
associated with the old training stimuli, because subjects 
received feedback of category assignments for these stimuli. 
However, no objective feedback was ever presented for the 
new transfer stimuli. Here we define “accuracy” for the new 
transfer stimuli as the proportion of a subject’s answers that 
were in accord with the region-specific selective-attention 
hypothesis. Thus, making reference to Fig. 3, in the four-
category condition, the “correct answer” for transfer stimuli 
that are red with Line Positions 1 and 2 is Category A; for 
transfer stimuli that are red with Line Positions 3 and 4 is 
B; for transfer stimuli that are blue with Heights 1 and 2 is 
C; and for transfer stimuli that are blue with Heights 3 and 
4 is D. Analogous definitions of “correct answers” for the 
new transfer stimuli arise for the two-category condition. In 
Conditions LP4 and RH4, “correct answers” are defined in 
terms of consistency with the task-specific selective-atten-
tion hypothesis: attention to color and line position for all 
regions in the LP4 condition; and to color and rectangle 
height in all regions in the RH4 condition.

For the upper-median subjects, the mean proportions of 
correct responses to the training stimuli, critical-transfer 
stimuli, and other-transfer stimuli are shown for each of the 
four conditions in Fig. 5. The most important result is that, 
as hypothesized, mean accuracy for the critical-transfer stim-
uli was significantly higher in the four-category-condition 
(M = .706) than in the two-category condition (M = .335), 
t(59) = 3.99, p < .001. Indeed, this contrast in results for the 
critical-transfer stimuli is quite dramatic, with the four-cate-
gory proportion being substantially greater than .50 and the 
two-category proportion being substantially less than .50. 
The mean accuracies for the other-transfer stimuli provide 
converging evidence that region-specific selective-attention 
process operated more effectively in the four-category con-
dition (M = .903) than in the two-category condition (M 
= .786), t(59) = 3.78, p < .001. Finally, mean accuracy on 
the training items themselves was significantly higher in the 
four-category condition (M = .943) than in the two-category 
condition (M = .883), t(59) = 3.82, p < .001. There are 

2  Because our focus is on performance at time of transfer, we use 
transfer-phase performance as our criterion for forming subgroups 
rather than learning-phase performance. For a variety of reasons, it 
is possible that some participants who perform well in the training 
phase may stop performing well on the training stimuli during trans-
fer.
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various potential routes to achieving accuracy on the training 
items. However, a reasonable possibility is that learning the 
region-specific selective-attention strategy was easier in the 
four-category condition than in the two-category one and 
this allowed for higher performance on the training stimuli 
as well.

The result that accuracy was higher in the four-category 
than in the two-category condition for all three stimulus 
types is an impressive finding: Because there are only two 
response options in the two-category condition but four 
response options in the four-category condition, chance 
responding would yield higher accuracy in the two-category 
condition. The finding that accuracy was higher in the four-
category condition is based on a conservative performance 
measure that does not even involve a correction for guessing.

Despite this evidence that region-specific selective atten-
tion operated more effectively in the four-category than in the 
two-category condition, a comparison with performance in the 
LP4 and RH4 conditions suggests that, even in the four-cate-
gory condition, learning of region-specific selective attention 
is much more cognitively demanding than learning of task-
specific selective attention. In the LP4 and RH4 conditions, 
subjects need attend to only the same two dimensions across 
all regions of the stimulus space. In the four-category condi-
tion, subjects need attend to only two dimensions for any given 
region, but the relevant dimensions change across regions. As 
can be seen in Fig. 5, this requirement of learning region-
specific selective attention led to much worse performance in 
the four-category condition compared with the LP4 and RH4 
conditions, for all three stimulus types. Combining the data 
across the LP4 and RH4 conditions, accuracy was significantly 
higher in these conditions than in the four-category condition 

for the training items (M = .980), t(58) = 3.69, p < .001; the 
other-transfer items (M = .985), t(58) = 3.84, p < .001; and 
the critical-transfer items (M = .938), t(58) = 3.34, p = .001.

The results for the lower-median subjects in all four condi-
tions are reported in the Appendix Fig. 8. In brief, mean per-
formance in the four-category condition tended to be slightly 
worse than in the two-category condition for all three stimulus 
types. However, included in the lower median are significant 
numbers of subjects who performed at near-chance or chance 
levels, and chance responding is greater in the two-category 
condition than in the four-category one. This poor performance 
in the lower median may reflect numerous factors, including 
failure to understand instructions, insufficient motivation, and 
the difficulty of learning region-specific selective attention. 
Excluding the at-chance subjects, we were unable to discover 
a general performance pattern that characterized a large num-
ber of subjects in the lower-median groups and it appears to 
involve a mix of highly idiosyncratic classification-learning 
strategies. As expected, even for the lower-median subjects, 
performance was significantly better in the LP4 and RH4 
conditions than in both conditions requiring region-specific 
selective attention. The individual-subject trial-by-trial learn-
ing and transfer data for all participants in this study are avail-
able online (https://​osf.​io/​ysb9w/).

Model‑based analysis

Overview

To provide converging evidence to support our conclu-
sion that region-specific selective attention operated more 

Fig. 5   Mean proportion correct for each item type in each of the conditions

https://osf.io/ysb9w/
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effectively in the four-category (Cat-4) condition than in 
the two-category (Cat-2) condition, we fit a set of formal 
models to the classification data. Following Aha and Gold-
stone (1992), we used Nosofsky’s (1986) generalized context 
model (GCM) as an analytic device, using distance func-
tions with different attention-weighting schemes to assess 
the hypotheses.

The standard model

According to the standard GCM, the evidence in favor of 
each category is found by summing the similarity of a test 
item to all training items in each category; the test item is 
most likely to be classified into the category that yields the 
greatest summed similarity. Specifically, the probability that 
item i is classified in category J is found by summing its 
similarity to all members of Category J and dividing by the 
summed similarity of the item to all members of all catego-
ries K:

where sij denotes the similarity of test item i to training 
item j.3

The similarities between test and training items are 
derived from the distances between the items in the Fig. 3 
configuration. We assumed for simplicity that the psycho-
logical coordinates of the stimuli on the line-position and 
rectangle-height dimensions matched the logical codings 
(1–4) of the physical-dimensions layout depicted in the fig-
ure. In addition, we assumed arbitrarily that red stimuli had 
coordinate value 1 on the color dimension and blue stimuli 
had coordinate value 4. (Because dimension-weight parame-
ters will be included in the distance function, the assignment 
of these magnitudes is made without loss of generality.) Fol-
lowing Shepard (1964), in the baseline GCM that assumes 
task-specific selective attention, we assumed for these highly 
separable-dimension stimuli that the psychological distance 
between test item i and training example j was given by a 
weighted city-block metric:

(1)Pr (J�i) =
∑

j∈J Sij∑
K

∑
k∈K Sik

,

(2)dij = w1
|||xi1 − xj1

||| + w2
|||xi2 − xj2

||| + w3
|||xi3 − xj3

|||,

where xim denotes the value of item i on dimension m (m 
= 1, Color; m = 2, Line Position; m = 3, Rectangle Height); 
and the attention-weight parameters wm (0 < wm < 1, ∑wm 
= 1) represent the relative attention given to the dimensions 
when making classification responses.

Finally, the similarity between test-item i and training-
example j was assumed to be an exponential decay function 
of their distance (Shepard, 1987):

where the sensitivity parameter c describes the rate at 
which similarity declines with distance. Conceptually, 
the sensitivity parameter provides a measure of overall 
discriminability among items in the feature space. This 
“standard” GCM with task-specific selective attention 
(Eq. 2) makes use of three free parameters: the sensitivity 
parameter c (Eq. 3) and attention weights w1 and w2 (with 
w3 = 1 - w1 – w2) (Eq. 2).

GCM with region‑specific attention (GCM‑RSA)

The version of GCM with region-specific attention (GCM-
RSA) that we test here is a straightforward extension of 
the standard baseline model just described (see also Aha 
& Goldstone, 1992; Jones & Love, 2006). In particular, 
GCM-RSA uses a generalized distance function in which 
the values of the attention weights are now allowed to vary 
with the color region of the space that is occupied by test-
item i. The specific formalization adopted here assumed that 
the distance between test-item i and exemplar j is given by

where wim = wm, red if item i occupies the red region; and 
wim = wm, blue if item i occupies the blue region. Within each 
color region, the attention weights are still constrained to 
sum to one.

More specifically, we assumed for simplicity that the atten-
tion weight given to the values on the color dimension itself 
(m = 1) were region-invariant, w1, red = w1, blue = w1. In other 
words, the attention weight given to the color dimension itself 
does not depend on whether the test item occupies the red 
region or the blue region. However, the attention devoted to 
the line-position dimension (m = 2) is region specific. Presum-
ably, greater attention weight is given to line position when the 
stimulus is red rather than blue (see Fig. 3): w2, red > w2, blue. 
Because the attention weights across the dimensions in each 
region are constrained to sum to 1, the region-specific attention 
weights on the rectangle-height dimension (m = 3) do not enter 
into the count of the number of free parameters. However, it is 
expected that the estimated attention weight given to rectangle 
height will be greater when the stimulus is blue rather than 

(3)sij = e−cdij ,

(4)dij = wi1
|||xi1 − xj1

||| + wi2
|||xi2 − xj2

||| + wi3
|||xi3 − xj3

|||,

3  To make allowance for deterministic response strategies, appli-
cations of the GCM often include a response-scaling parameter in 
which the individual category summed similarities are raised to the 
power γ (Ashby & Maddox, 1993). For the present type of paradigm, 
however, it is difficult to obtain separate estimates of the response-
scaling parameter γ and a sensitivity parameter c used for transform-
ing distance into similarity (Nosofsky & Zaki, 2002). For simplicity 
in the present analyses and to reduce the number of free parameters, 
the response-scaling parameter is held fixed at γ = 1.
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red (see Fig. 3): w3, blue > w3, red. This region-specific version 
of the GCM adds only one extra free parameter to the stand-
ard version. The free parameters are the sensitivity parameter 
c (Eq. 3); the attention weight given to the color dimension, 
w1; and the region-specific attention weights given to the line-
position dimension, w2, red and w2, blue (Eq. 4). [Note: w3, red = 
1 - w1 - w2, red; and w3, blue = 1 - w1 - w2, blue.]

Standard GCM with response bias

An alternative hypothesis regarding the patterns of classi-
fication is that the tendency for participants to classify the 
critical-transfer stimuli into Categories A and C in the Cat-4 
condition may simply reflect a response bias. According to 
a response-bias explanation, regardless of the stimulus that 
is presented, there might be an overall bias to respond with 
Categories A and C, perhaps because there are fewer training 
examples from these categories than from Categories B and 
D (see Fig. 3). Although positing such a response bias could 
account for the patterns of classification for the individual 
critical-transfer stimuli, such a model predicts global effects 
on the response probabilities for all stimuli in all categories, 
which places strong constraints on the model. To test the 
response-bias hypothesis, we again fitted the standard GCM 
to the data, except we extended its response rule with a set 
of response bias parameters:

where bK (0 < bK < 1) is the response bias associated with 
Category K. Without loss of generality, the response biases 
associated with the categories can be constrained to sum to 
one. Thus, extending the standard model with response bias 
adds 3 free parameters to the standard model for the Cat-4, 
LP4 and RH4 conditions, and adds one free parameter to the 
standard GCM for the Cat-2 condition.

Target data and method of model fitting

The target data for our modeling were the complete clas-
sification-confusion matrices observed in each of the four 
conditions obtained by aggregating across the upper-
median subjects in each condition (available at https://​osf.​
io/​ysb9w/). The entry in each cell iJ of each classification 
matrix gives the frequency with which observers classi-
fied each item i into each Category J. Our criterion of fit 
for the models was to find the free parameters that maxi-
mized the likelihood (L) of the observed classification-
confusion data in each condition. For the present case, the 
maximum-likelihood criterion is equivalent to minimizing 
the quantity

(5)Pr (J�i) =
bJ

∑
j∈J Sij∑

K bK
∑

k∈K Sik
,

where fiJ is the observed frequency in cell iJ; piJ is the pre-
dicted probability from the model that item i is classified in 
category J; and the sum is across all cells of the classifica-
tion matrix.4 Because the alternative models have differing 
numbers of free parameters, methods are needed to assess 
the comparative model fits that correct for the number of free 
parameters. Here we use the Bayesian information criterion 
(BIC; Schwarz, 1978), given by

where L is the (maximum) likelihood of the data, P is 
the number of free parameters in the model, and N is the 
total number of observations forming the data set. The 
term Pln(N) is a penalty term that penalizes a model for 
its number of free parameters; the model that achieves a 
smaller BIC is considered to provide a more parsimonious 
account of the data. As an auxiliary measure, we also report 
the sum of squared deviations (SSD) between the predicted 
and observed classification probabilities for each model in 
each condition. We fitted the models to the data using the 
Hooke and Jeeves (1961) parameter-search algorithm, using 
10 different random starting configurations for each search. 
Essentially all parameter searches converged to identical sets 
of best-fitting parameters for each model.

Model‑fitting results

Overview  The summary fits of the models to the data in 
each condition are reported in Table 2, with best-fitting 
parameters reported in Table 3. To provide insight into the 
reasons for the patterns of summary-fit results, Figs. 6 and 
7 show scatterplots of observed against predicted classifica-
tion probabilities in the Cat-4 and Cat-2 conditions for the 
different model versions.

Cat‑4 condition  As reported in Table 2 (top panel), in the 
Cat-4 condition, the version of the GCM with region-specific 
attention (GCM-RSA) yields an enormously better BIC fit 
than does the standard version of the model without region-
specific selection attention. Inspection of the top two panels 
of Fig. 6 reveals the basis for this result. In the Cat-4 condi-
tion, the GCM-RSA yields a reasonably good fit to the entire 
matrix of classification probabilities (top panel). By com-
parison, the standard GCM (middle panel) fails on qualita-
tive grounds to account for the results involving the critical-
transfer stimuli: It predicts that the critical transfer stimuli 

(6)−lnL = −ΣΣiJ fiJ ln
(
piJ

)
,

(7)BIC = −2 ln (L) + Pln(N),

4  This likelihood function assumes that that responses for each stimu-
lus are multinomially distributed into the categories and that the indi-
vidual distributions are independent.

https://osf.io/ysb9w/
https://osf.io/ysb9w/
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will tend to be classified into the “incorrect” Categories B 
and D with probability substantially greater than .50, whereas 
in the observed data they are classified into those categories 
with probabilities substantially less than .50. Instead, they 
are classified into the “region-specific attention” Catego-
ries A and C. In addition, inspection of the middle panel of 
Fig. 6 reveals that the standard GCM tends to substantially 
underpredict accuracy for many of the other transfer stimuli. 
Although there is a slight tendency for the GCM-RSA to 
also underpredict accuracy for the other transfer stimuli, it 
is far less pronounced than for the standard GCM. Finally, 
as can be seen in the bottom panel of Fig. 6, although adding 
response-bias parameters improves the ability of the standard 
GCM to account for the classification probabilities involving 
the critical-transfer stimuli, it comes at the expense of worse 
predictions for many of the remaining stimuli. Overall, the 
standard GCM with bias still yields a substantially worse fit to 
the classification data than does the GCM-RSA (see Table 2).

Inspection of the best-fitting parameters for the GCM-
RSA in Table 3 indicates that, as hypothesized, in the Cat-4 
condition participants gave greater attention weight to the 
line-position dimension (m = 2) in the red region, but to 
the rectangle-height dimension (m = 3) in the blue region. 
This region-specific switch in attention is what allows the 
model to capture reasonably well the overall structure of the 

Table 2   Summary fits of the models to the classification-confusion 
matrices of the Cat-4, Cat-2, line-position, and rectangle-height con-
ditions

P = # free parameters

Cat-4 condition
Model -lnL BIC SSD P

   GCM-RSA 1054.4 2141.0 0.327 4
   Standard GCM 1253.0 2530.2 1.163 3
   Standard GCM with Bias 1193.4 2435.0 1.046 6

Cat-2 Condition
Model -lnL BIC SSD P

   GCM-RSA 1242.8 2517.9 0.392 4
   Standard GCM 1266.7 2557.6 0.381 3
   Standard GCM with Bias 1257.0 2546.2 0.424 4

Line-Position Condition
Model -lnL BIC SSD P

   GCM-RSA 239.6 508.8 0.040 4
   Standard GCM 239.6 501.4 0.040 3
   Standard GCM with Bias 233.8 512.1 0.030 6

Rectangle-Height Condition
Model -lnL BIC SSD P

   GCM-RSA 166.3 361.7 0.018 4
   Standard GCM 166.3 354.4 0.018 3
   Standard GCM with Bias 165.6 374.9 0.017 6

Table 3   Best-fitting parameters for the models in each condition

Parameter values in parentheses are not free to vary. Cell entries with dashes indicate that the parameters do not exist for that model and condi-
tion. Bold-faced cell entries are for region-specific or task-specific dimensions that have low diagnosticity for that condition. Dimension 1 = 
color, Dimension 2 = line position, Dimension 3 = rectangle height.

GCM-RSA
Parameters

Condition c w1 w2,red w3,red w2,blue w3,blue

    Cat-4 4.405 0.390 0.474 (0.136) 0.177 (0.433)
    Cat-2 4.261 0.063 0.635 (0.302) 0.435 (0.502)
    Line Position 5.324 0.294 0.683 (0.022) 0.683 (0.022)
    Rect. Height 6.440 0.269 0.114 (0.616) 0.117 (0.613)

Standard GCM
Parameters

Condition c w1 w2 w3

    Cat-4 4.591 0.373 0.331 (0.295)
    Cat-2 4.099 0.097 0.538 (0.365)
    Line Position 5.327 0.294 0.683 (0.023)
    Rect. Height 6.445 0.269 0.116 (0.615)

Standard GCM with Bias
Parameters

Condition c w1 w2 w3 b1 b2 b3 b4

    Cat-4 4.862 0.352 0.345 (0.303) 0.336 0.209 0.301 (0.153)
    Cat-2 4.255 0.087 0.541 (0.372) 0.558 (0.442) --- ---
    Line Position 5.396 0.299 0.661 (0.040) 0.347 0.270 0.255 (0.128)
    Rect. Height 6.548 0.266 0.132 (0.602) 0.245 0.191 0.316 (0.248)
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Fig. 6   Observed-against predicted classification probabilities for 
each model in the Cat-4 condition. Solid = correct, open = incorrect. 
Squares = training, circles = other-transfer, triangles = critical-transfer

Fig. 7   Observed-against predicted classification probabilities for each 
model in the Cat-2 condition. Solid = correct, open = incorrect. Squares 
= training, circles = other-transfer, triangles = critical-transfer
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complete classification-confusion matrix in the Cat-4 condi-
tion. (In interpreting the parameter estimates, the reader is 
reminded that the magnitude of the weight on Dimension 
1 [color] cannot be meaningfully compared with the mag-
nitude of the weights on the other dimensions because the 
dimensions have not been psychologically scaled.)

Cat‑2 condition  The model-fitting results from the Cat-2 
condition are reported in the second panel of Table 2 and 
in the scatterplots in Fig. 7. Although these Cat-2 results 
show some similarities with those from the Cat-4 condi-
tion, they mainly show dramatic differences. In our view, the 
main take-home message is that comparison of the model 
scatterplots in Fig. 7 suggests that the overall quantitative 
fit of the three versions of the GCM is roughly the same 
in the Cat-2 condition. Although the BIC fit of the GCM-
RSA continues to be better than that of the standard GCM 
and biased-GCM in the Cat-2 condition (see Table 2), the 
fit differences are vastly reduced compared with the Cat-4 
condition. Inspection of the best-fitting parameter estimates 
for the GCM-RSA in the Cat-2 condition (see Table 3) indi-
cates that, overall, subjects continued to give greater atten-
tion weight to line position than to rectangle height in the 
red region, but greater attention to rectangle height than to 
line position in the blue region. However, the magnitude 
of the switch in attention is much less in the Cat-2 condi-
tion than in the Cat-4 condition. Overall, the outcomes from 
the model-fitting analyses converge with those reported in 
our Results section in suggesting that the degree to which 
region-specific selection attention operated in the Cat-2 con-
dition was far less than in the Cat-4 condition.

Line‑position and rectangle‑height conditions  The model-
fitting results from the LP4 and RH4 conditions are easy 
to summarize: Because most of the correct-classification 
probabilities were near ceiling in those conditions (and most 
of the error-classification probabilities were near floor), all 
models provided nearly perfect accounts of the classifica-
tion data in those conditions (see Table 2). The standard 
GCM yields the lowest BIC because it uses the fewest free 
parameters, and the extra free parameters afforded the GCM-
RSA are superfluous for those conditions. According to all 
three versions of the GCM (see Table 3), in the line-position 
condition, participants devoted little attention to rectangle 
height; whereas in the rectangle-height condition, partici-
pants devoted little attention to line position. For the GCM-
RSA, these attention-weight parameter estimates were nearly 
invariant across the red and blue regions of the space, which 
is a sensible result because the relevant dimensions in each 
condition are no longer region dependent.

Modeling guided by cluster analysis  A limitation of the 
modeling analyses reported in this section is that they were 

applied to data that were aggregated across individual 
observers, and the presence of individual differences may be 
obscured by averaging. Therefore, in an attempt to identify 
homogeneous subgroups, we conducted a variety of addi-
tional modeling analyses that made use of different forms 
of cluster analysis. In one approach, we defined idealized 
response vectors that would be produced by use of the opti-
mal attention strategies in each condition (RSA in the Cat-4 
and Cat-2 conditions, and task-specific attention in the LP4 
and RH4 conditions). We then clustered together those par-
ticipants in each condition whose empirical response vectors 
were close in distance to the idealized vectors. As it turned 
out, in the Cat-4, LP4 and RH4 conditions, there was high 
overlap between the upper-median-performing participants 
and the clusters of participants who were chosen by this 
clustering method. Hence, the patterns of upper-median 
individual-participant classification behavior were appar-
ently relatively homogeneous in these conditions and the 
aggregated data were representative of the performance 
patterns at the individual-participant level. By contrast, 
in the Cat-2 condition, the clustering analysis identified a 
small group of participants with empirical response vectors 
close to the idealized RSA response vector but with the vast 
majority of participants having response vectors relatively 
far away. Recall that the best-fitting parameter estimates 
from the GCM-RSA in the Cat-2 condition suggested a ten-
dency toward use of RSA, but one that was much reduced in 
magnitude compared with the Cat-4 condition. These param-
eter estimates were most likely reflecting the behavior of this 
small subgroup of participants in the Cat-2 condition who 
had learned to use the RSA strategy. Future research might 
attempt to identify specific strategies applied by individual 
participants through use of model fitting conducted at the 
individual-participant level (e.g., Donkin et al., 2015).

General discussion

Consideration of the structure of various real-world catego-
ries suggests that effective category learning may sometimes 
require observers to learn to use region-specific selective 
attention (RSA). In RSA, observers attend selectively to cer-
tain dimensions in some regions of a stimulus space but to 
other dimensions in other regions of that space. Past research 
has provided convincing evidence that at least some partici-
pants can learn to use RSA (as well as closely related forms 
of region-specific category representation).

However, the process seems considerably more cogni-
tively demanding than learning of a single, fixed selective-
attention strategy across an entire stimulus space. Thus, 
an important question concerns factors that may facilitate 
the learning of this challenging form of selective atten-
tion. In the present research, we investigated one such 
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factor—namely, the relation between individual categories 
and the regions in which they are embedded. Our hypothesis 
was that effective region-specific attention is more likely 
to be learned when individual categories are embedded in 
single regions rather than dispersed across multiple regions. 
When embedded in single regions, observers can learn a 
single fixed set of region-specific attention weights for each 
individual category; but if the individual categories are dis-
persed across multiple regions—each defined by differing 
diagnostic dimensions—then observers would need to learn 
multiple sets of region-specific weights for each individual 
category. The latter seems a considerably more challenging 
cognitive task than the former.

The present research provided evidence in support of 
our hypothesis, at least for the upper-median-performing 
participants in each condition. In particular, for these par-
ticipants, learning of region-specific attention took place 
more effectively in the four-category condition (in which 
each category was embedded in a single region) than in the 
two-category condition (in which each category was dis-
persed across separate regions). We reported two lines of 
evidence supporting this conclusion. First, participants in 
the four-category condition achieved higher “accuracy” on 
the critical transfer stimuli and the other transfer stimuli 
than did participants in the two-category condition (where 
“accuracy” was defined in terms of consistency with the 
hypothesized region-specific selective-attention strategy). 
Second, in the four-category condition, the version of the 
exemplar model with region-specific attention weights pro-
vided dramatically better quantitative accounts of the com-
plete matrix of classification data than did the comparison 
standard exemplar model (without region-specific attention 
weights). By comparison, the RSA-exemplar model showed 
only a small advantage compared with the standard model 
in fitting the complete matrix of classification data from the 
two-category condition, suggesting that the operation of 
RSA was greatly diminished in that condition. An additional 
result was that performance in both the LP4 and RH4 condi-
tions—which did not require RSA—was dramatically better 
than performance in both the region-specific Cat-4 and Cat-2 
conditions, suggesting that learning of RSA is indeed more 
cognitively demanding than learning of a single, fixed set 
of task-specific attention weights across an entire stimulus 
space.

In the present research, our representative from the 
class of RSA-exemplar models was highly parsimonious 
as it involved the addition of just a single free parameter 
(a region-specific attention weight) to the standard exem-
plar model. This analytic device was sufficient to provide 
convincing evidence of the operation of RSA in the Cat-4 
condition. Future research, however, should examine the 
extent to which even more stimulus-specific forms of 
selective attention may be operating in these paradigms. 

For example, Aha and Goldstone (1992) described the 
use of a trial-by-trial learning model that produced 
unique attention weights associated with each individual 
stimulus in the space. Indeed, future work is needed that 
can specify in more rigorous terms what constitutes a 
“region” of a stimulus space. Here we have proceeded 
with what seems to us an intuitively compelling assump-
tion that the regions are defined in terms of the color of 
the stimulus (see Figs. 2 and 3), but we acknowledge 
that deeper and more rigorous formalizations are needed. 
Depending on how one defines “regions,” the distinction 
between “region-specific” and “stimulus-specific” forms 
of selective attention may become blurred.

Although the present research provided evidence con-
cerning certain experimental factors that may promote RSA, 
it was silent with respect to specifying the dynamic cognitive 
processes that underlie RSA. In particular, as an analytic 
device for measuring the operation of RSA, we endowed 
the GCM with a set of region-specific selective-attention-
weight parameters and used the best-fitting parameter esti-
mates from the model to draw inferences about the operation 
of RSA. By comparison, modern theories of attention in 
categorization instead specify dynamic processes in which 
category decisions unfold in time based on different pat-
terns of information sampling (Braunlich & Love, 2022; 
Weichart et al., 2022). For example, Braunlich and Love’s 
(2022) sampling emergent attention (SEA) model combines 
two interacting components. The first reflects an observer’s 
beliefs about the structure of the environment, and the sec-
ond estimates the value of different knowledge states that 
would arise by sequentially sampling alternative informa-
tion sources. Within a trial in which a specific stimulus is 
presented, SEA tends to sample dimensions in orders that 
are expected to give rise to gains in utility. Thus, consider 
again the Blair et al. (2009) category structure shown in 
Table 1. Here, the value on Dimension 1 (D1) acts as an 
“indicator” for whether Dimension 2 (D2) or Dimension 3 
(D3) is relevant and should be sampled. SEA predicts that 
observers will first sample D1; then, if D1 = 1, they will 
sample D2, whereas if D1 = 2, they will sample D3. Using 
eye-tracking methods, Blair et  al. (2009) demonstrated 
precisely this predicted pattern of information sampling 
behavior. Analogously, for the category structure tested in 
the present experiment, one would expect observers to first 
sample color and then to sample either vertical-line loca-
tion or rectangle height depending on the sampled color 
value. Future work might be aimed at testing this prediction 
involving the dynamics of sampling. Nevertheless, although 
the dynamic attention models developed by Braunlich and 
Love (2022) and by Weichart et al. (2022) provide elegant 
accounts of such forms of within-trial information sampling, 
it remains an open question whether they predict the fun-
damental phenomenon reported in this article: RSA was 



928	 Memory & Cognition (2023) 51:915–929

1 3

learned more effectively when individual categories were 
embedded within single regions rather than dispersed across 
multiple regions of psychological space.

There are a number of other limitations of the present 
research that need to be pursued in future work. For exam-
ple, we have investigated only a single stimulus type and task 
configuration in testing our hypothesis, so the generality of 
our findings remains to be demonstrated. Likewise, other 
factors beyond whether individual categories are embed-
ded in single regions may also promote RSA. For example, 
observers may be more prone to adopt RSA in paradigms 
that explicitly encourage sequential information sampling 
strategies. Finally, although we have analyzed our data 
within the framework of an exemplar-similarity model, we 
have acknowledged that logical-rule-based models can likely 
provide an equally viable account of the data. To distinguish 
between such models, one might test alternative category 
structures in which rule-based horizontal or vertical decision 
boundaries fail to perfectly classify all the training items in 
the space, but in which graded use of RSA would still lead to 
benefits in classification performance. Through adjustment 
of RSA weights, exemplar models might provide reasonable 
accounts of such data that logical-rule-based models might 
struggle to handle.
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