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Abstract
Recently, it has been suggested that the mnemonic information that underlies recognition decisions changes when participants 
are asked to indicate whether a test stimulus is new rather than old (Brainerd et al., 2021, Journal of Experimental Psychology: 
Learning Memory, and Cognition, advance online publication). However, some observations that have been interpreted as evi-
dence for this assertion need not be due to mnemonic changes, but may instead be the result of conservative response strategies 
if the possibility of asymmetric receiver operating characteristics (ROCs) is taken into account. Conversely, recent findings in 
support of asymmetric ROCs rely on the assumption that the mnemonic information accessed by the decision-maker does not 
depend on whether an old or a new item is considered to be the target Kellen et al. (2021, Psychological Review 128[6], 1022–
1050). Here, we aim to clarify whether there is such a difference in accessibility of mnemonic information by applying signal 
detection theory. To this end, we used two versions of a simultaneous detection and identification task in which we presented 
participants with two test stimuli at a time. In one version, the old item was the target; in the other, the new item was the target. 
This allowed us to assess differences in mnemonic information retrieved in the two tasks while taking possible ROC asymmetry 
into account. Results clearly indicate that there is indeed a difference in the accessibility of mnemonic information as postulated 
by (Brainerd et al., 2021, Journal of Experimental Psychology: Learning Memory, and Cognition, advance online publication).

Keywords Recognition memory · Signal detection theory · ROC asymmetry · Simultaneous detection and identification · 
Old–new recognition

Introduction

In the context of recognition memory research, observing 
changes in the response patterns between experimental con-
ditions raises the important question of how to tease apart 
the contribution of differences in both response bias (e.g., 
as the result of certain response strategies) and mnemonic 
information retrieved by the decision-maker. To address this 
issue, cognitive models based on signal detection theory 
(SDT; Green & Swets, 1966; Macmillan & Creelman, 2005; 
Swets, Tanner, & Birdsall, 1961; Wickens, 2002) have long 
been used to unravel the processes underlying recognition 

decisions (for a recent overview, see Rotello, 2017; see also 
Kellen, Winiger, Dunn, & Singmann, 2021).

Such models generally assume that mnemonic stimulus 
information is mentally represented by a continuous latent 
memory-strength signal often called familiarity (see, e.g., 
Morrell, Gaitan, & Wixted, 2002; Delay & Wixted, 2021). 
These familiarity values are stochastic in nature, that is, they 
are modeled as real-valued random variables (RVs) follow-
ing a continuous probability distribution. If a test stimulus 
(e.g., an image) was previously encountered during study, its 
elicited familiarity value is assumed to be higher on average 
than the familiarity value of a nonstudied stimulus. There-
fore, two familiarity distributions are required: one corre-
sponding to studied (i.e., old) stimuli and the other to non-
studied (i.e., new) stimuli (Macmillan & Creelman, 2005).

Within SDT models of recognition memory, a recogni-
tion decision is determined by comparing the familiarity 
value elicited by the test stimulus with a certain response 
criterion λ. The response given by the decision-maker then 
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corresponds to whether or not the test stimulus’ familiar-
ity value exceeds the response criterion, which results in 
an “old” or “new” decision, respectively. Thus, the higher 
(lower) the value of the response criterion, the more con-
servative (liberal) the response strategy. By assuming a set 
of ordered response criteria Λ = λ1,...,λk− 1 instead of a sin-
gle response criterion, the model can, furthermore, natu-
rally account for an extended task, in which participants are 
required to respond on a k-level confidence scale (see, e.g., 
Kellen & Klauer, 2018).

The core theoretic assumption of the SDT model frame-
work, according to which continuously graded memory 
information is mapped directly onto observable responses, 
is—in principle—not dependent on any specific paramet-
ric form of the old-item and new-item familiarity distribu-
tions (Kellen & Klauer, 2018; Kellen et al., 2021; Rouder, 
Province, Swagman, & Thiele, 2014). Nevertheless, in most 
applications, such auxiliary assumptions are introduced, 
mainly for practical reasons. Arguably, the most prominent 
parametric version of the general SDT framework is the so-
called Gaussian SDT model, in which familiarity values are 
assumed to be normally distributed with {μo,σo} and {μn,σn} 
being the means and standard deviations of old-item and 
new-item familiarities, respectively, and μo > μn.1

ROC asymmetry

When plotting the predicted probabilities of a hit (“old” 
responses to old items) and a false alarm (“old” responses to 
new items) against each other for different response criteria, 
while holding the underlying old-item and new-item famili-
arity distributions constant, the resulting curve is referred 
to as the predicted receiver operating characteristic (ROC; 
Macmillan & Creelman, 2005; Kellen & Klauer, 2018; 
Yonelinas & Parks, 2007). Importantly, an equal-variance 
Gaussian model (EVGM)—a special case of the Gauss-
ian SDT model that assumes σo = σn—predicts symmetric 
ROCs (Killeen & Taylor, 2004). But a consistent finding in 
recognition memory tasks is that empirical ROCs based on 
observed relative response frequencies are asymmetric (see, 
e.g., Yonelinas, 1994; Ratcliff, Sheu, & Gronlund, 1992; 
Glanzer, Kim, Hilford, & Adams, 1999; Egan, 1958; Dubé 
& Rotello, 2012; Yonelinas & Parks, 2007). More precisely, 
relative to predictions derived from models with symmetric 
ROCs, conservative responses are associated with more hits 

than one would expect based on the relative frequency of 
false alarms and vice versa for liberal responses (see Fig. 1).

To account for this observation, the unequal-variance 
Gaussian model (UVGM) assumes not only that μo > μn, 
but also that σo > σn (see, e.g., Ratcliff et al., 1992; Rotello, 
2017; Jang, Wixted, & Huber, 2009), where we can further 
set σn = 1 and μn = 0 without loss of generality. Figure 1 
illustrates how differences between the variance of old-item 
and new-item familiarity distributions lead to differences in 
ROC asymmetry within the Gaussian SDT model.

Recently, Kellen et al. (2021, see Experiment 3) investi-
gated ROC asymmetry by means of two different recognition 
memory tasks, namely an m-alternative forced-choice task 
and what they called an m*-alternative forced-choice task. 
In the latter task, a single new stimulus is presented along m 
− 1 old stimuli and the decision-maker is tasked with iden-
tifying the new stimulus (see also Iverson & Bamber, 1997). 
In contrast, the old stimulus has to be identified among m − 1 
new stimuli in the standard m-alternative forced-choice task. 
Interestingly, if the memory-strength distributions give rise 
to asymmetric ROCs, identification performance is predicted 
to differ between the m*-alternative and the m-alternative 
forced-choice task if m > 2, whereas identification perfor-
mance is predicted to be the same in both tasks if ROCs are 
symmetric. Thus, comparing correct identification rates (see 
Kellen et al., 2021, Experiment 3) in both the m*-alternative 
and m-alternative forced-choice responses enabled them to 
conduct a distribution-free test of ROC asymmetry without 
relying on confidence judgments or selective manipulation 
of response criteria (i.e., bias manipulation). Their results 
corroborated the notion of ROC asymmetry as usually 
observed in standard recognition memory paradigms (Kel-
len et al., 2021).

This conclusion, however, critically depends on the 
assumption that the same latent memory-strength distribu-
tions underlie both tasks, but recent findings have cast some 
doubt on whether this assumption in fact holds (Brainerd, 
Bialer, Chang, & Upadhyay, 2021). Based on data obtained 
via single-item yes/no recognition tasks, Brainerd et al. 
(2021) have argued that fundamentally different mnemonic 
information may be accessed by participants when they are 
asked to decide whether or not an item is new (i.e., detect-
ing newness) instead of whether or not an item is old (i.e., 
detecting oldness).

Brainerd et al. (2021) observed, for example, that the 
relative frequency of correct responses for old items was 
greater when participants were asked to detect whether the 
current stimulus is new compared to when they were asked 
to detect whether it is old. Conversely, they also found that 
the relative frequency of correct responses for new items was 
greater when participants were asked to detect whether the 
current stimulus is old compared to when they were asked 
to detect whether it is new. Although these effects are not 

1 This parametrization also has some theoretical appeal as accumula-
tion of independent partial memory evidence—a key aspect of some 
holistic memory models, such as MINERVA 2 (Hintzman, 1984)—
leads asymptotically to a normal distribution due to the central limit 
theorem (see, e.g., Green & Swets, 1966).
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difficult to explain solely by means of certain response strat-
egies (i.e., by the placement of the response criterion)—par-
ticipants may simply tend to answer conservatively, that is, 
they try to avoid false alarms in both cases (i.e., answering 
“new” to an old item when asked whether the item is old, or 
answering “old” to a new item when asked whether the item 
is new)—the results also suggested that overall detection 
performance was better when detecting oldness than when 
detecting newness.

This was substantiated, inter alia, by fitting a Gaussian 
SDT model to their data, which revealed (along with differ-
ences in response bias) that the difference between μn and 
μo was systematically smaller in cases where participants 
were asked to detect newness compared to when they were 
asked to detect oldness. Brainerd et al. (2021) attributed 
these effects to changes in accessibility and activation of cer-
tain memory traces in terms of fuzzy-trace theory (see also 
Brainerd, Nakamura, & Lee, 2019; Brainerd & Reyna, 2005; 
Brainerd & Reyna, 2008). In other words, they hypothesized 
that the mnemonic information underlying the respective 

recognition decision differs between different situations, that 
is, between different combinations of stimulus type (i.e., old 
vs. new) and task (i.e., detecting oldness vs. newness).

Notably, however, Brainerd et al. (2021) could only esti-
mate the parameters of an EVGM, which is—as mentioned 
previously—unable to account for ROC asymmetry. This is 
unfortunate, as we will see in the following that in the case 
of asymmetric ROCs, some qualitative response patterns 
observed by Brainerd et al. (2021) are in fact also consistent 
with the absence of differences in mnemonic information 
underlying the recognition decision in both tasks.

SDAI and SDAI* tasks

In the present work, we aim to reinvestigate both ROC 
asymmetry and whether there is a difference in retrieved 
mnemonic information between detecting newness and old-
ness by combining the approaches by Kellen et al. (2021) 
and Brainerd et al. (2021) with the so-called simultaneous 

Fig. 1  The EVGM (left column of panels) with parameters μo = 1.25, 
μn = 0.00, and σo = σn = 1.00 and the UVGM (right column of pan-
els) with parameters μo = 1.25, μn = 0.00, σo = 1.30, and σn = 1.00. 
Top row of panels depicts the probability density functions of old-
item (dashed lines) and new-item (solid lines) familiarity distribu-
tions, and the bottom row of panels depicts the corresponding ROCs 

for a single-item yes/no recognition task. Note that the ROC of the 
EVGM depicted in the bottom left panel is symmetric (i.e., it con-
tains both the points {P(Hit),  P(False Alarm)} and {1 −  P(Hit),  1 
−  P(False Alarm)}; see also Kellen et  al., 2021;  Killeen & Taylor, 
2004), whereas the ROC of the UVGM depicted in the bottom right 
panel is not
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detection and identification (SDAI; Macmillan & Creel-
man, 2005) compound task. This task is well known by 
researchers of eyewitness identification, as it is akin to the 
simultaneous lineup procedure (Mickes & Gronlund, 2017; 
Gronlund & Benjamin, 2018), but it was, for instance, also 
recently used by Meyer-Grant and Klauer (2021) to evalu-
ate different models of recognition memory. In essence, it is 
comprised of two distinct—but closely related—sub-tasks 
that arise when, among a set of m stimuli, a target (usually 
an old item) is either present or not. This situation requires 
a decision-maker to decide, first, if a target is present (a 
target trial) or absent (a non-target trial; i.e., all presented 
stimuli are lures) in the current set of stimuli and, second, 
which of the currently presented stimuli is most likely to be 
the target. The first sub-task is usually referred to as 1-out-
of-m detection, while the second sub-tasks correspond to an 
m-alternative forced-choice identification task.

SDAI allows to derive ROCs from the responses in the 
detection sub-task by plotting the relative frequencies of cor-
rectly detecting the presence of a target in a target trial (i.e., 
the frequencies of hits in the detection sub-task) against the 
relative frequencies of falsely detecting the presence of target 
in a non-target trial (i.e., the frequencies of false alarms in 
the detection sub-task).2 The identification responses, on the 
other hand, give rise to the so-called identification operating 
characteristic (IOC; Macmillan & Creelman, 2005), which 
plots the relative frequency of a hit in the detection sub-task 

and a correct subsequent identification of the target against the 
relative frequency of a false alarm in the detection sub-task.

The same basic idea utilized in Kellen et al.’s (2021) 
Experiment 3 as well as in Brainerd et al.’s (2021) Experi-
ments can be implemented in an SDAI task. That is, one can 
instruct participants to detect and identify a new stimulus 
instead of an old one. Thus, a new stimulus becomes the tar-
get in this setting while old stimuli can be considered lures. 
In order to correspond to the notation of Kellen et al. (2021), 
we refer to this new compound task as SDAI* (comprised 
of both the 1-out-of-m* detection and the m*-alternative 
forced-choice identification sub-tasks) in the following.3 
This approach is interesting in that it not only provides us 
with correct identification rates, but also allows us to con-
struct empirical ROCs for both tasks by combining it, for 
example, with a confidence rating approach.

Importantly, ROC asymmetry reverses when the task is 
to detect newness instead of oldness for models that predict 
asymmetric ROCs in the first place (as, e.g., the UVGM), 
which also holds for single-item yes/no recognition tasks. 
This is illustrated in Fig. 2, which depicts the yes/no-ROCs for 
both cases.4 Assuming the type of ROC asymmetry typically 
observed in recognition memory research (see, e.g., Ratcliff 

Fig. 2  ROCs of an UVGM with parameters μo = 1.33, μn = 0.00, σo 
= 1.74, and σn = 1.00 for a single-item yes/no recognition task in 
which either the old item is the target (black) or in which the new 
item is the target (blue). Left panel: dotted lines and squares indi-
cate the predicted hit rates for either detecting oldness (0.64; black) 

or newness (0.54; blue) when the predicted false alarm rate (0.24) 
remains constant. Right panel: dotted lines and squares indicate the 
predicted false-alarm rates for either detecting oldness (0.19; black) 
or newness (0.27; blue) when the predicted hit rate (0.60) remains 
constant

2 Note that the meanings of the terms “hit” and “false alarm” differ 
from those described above in the context of single-item yes/no rec-
ognition tasks in that they specifically refer only to the responses in 
the 1-out-of-m detection sub-tasks, that is, correctly or falsely report-
ing whether or not a target (i.e., an old item) is present in the current 
set of stimuli.

3 Note that “hit” (“false alarm”) in the 1-out-of-m* detection task 
refers to correctly (falsely) reporting the presence of a new stimulus 
among old stimuli. In a similar vein, a “correct identification” in the 
m*-alternative forced-choice identification sub-task refers to an iden-
tification of the new stimulus.
4 For symmetric yes/no-ROCs, assuming that the same latent memory-
strength distribution underlies both newness and oldness detection is 
equivalent to constraining the ROCs for these two tasks to be identi-
cal. If one allows them to be asymmetric, however, this is no longer 
the case. But since detecting oldness is in fact logically equivalent to 
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et al., 1992; Wixted, 2007; Kellen et al., 2021), this implies, 
for instance, that for a given false alarm rate to the left of the 
intersection of the two ROC curves (i.e., for a more or less 
conservative response criterion), hit rates will be larger when 
detecting oldness than when detecting newness (see Fig. 2, left 
panel). For the same reason, achieving the same hit rate when 
detecting newness instead of oldness will be accompanied by 
a higher false alarm rate for relatively conservative response 
criteria (see Fig. 2, right panel). Given that a decision-maker 
tends to avoid false alarms, it is thus to be expected that per-
formance in detecting newness appears to be worse compared 
to performance in detecting oldness (i.e., a lower observed hit 
rate and/or a higher observed false alarm rate).

Interestingly, these effects seem to match certain results 
reported by Brainerd et al. (2021). Taking a look at their 
experimental data reveals, for example, that in those 
instances where the false alarm rate was approximately con-
stant between the two tasks (i.e., detecting oldness vs. new-
ness), the hit rate was lower when participants were asked 
to detect newness than when they were asked to detect old-
ness (see, e.g., data pooled over the initial tests in Experi-
ments 5–7 in Brainerd et al., 2021, p. 9, where the hit rate for 
detecting oldness and newness was reported to be 0.64 and 
0.54, respectively, whereas the false alarm rate in both cases 
was 0.24; see also Fig. 2, left panel). Hence, ROC asymme-
try appears to be a plausible alternative explanation for some 
of the findings by Brainerd et al. (2021), including decreased 
overall performance when detecting newness.

However, this raises the question of whether assuming a 
modulation of the mnemonic information underlying rec-
ognition decisions (Brainerd et al., 2021) is necessary when 
allowing for asymmetric ROCs. Moreover, addressing this 
question is critical not only for investigating mnemonic 
differences between tasks that focus on detecting oldness 
versus newness, but also—as mentioned earlier—for other 

studies investigating ROC asymmetry that have been based 
on the assumption that such differences do not exist (Kel-
len et al., 2021). Fortunately, having participants complete 
both the SDAI and the SDAI* task allows us to assess the 
mnemonic consistency of models across tasks, while taking 
potential ROC asymmetry into account.

Thus, by jointly investigating both SDAI and SDAI* we 
pursue three main research objectives that correspond to the 
three following questions:

1. Does ROC asymmetry in an SDAI* task in fact reverse 
compared to ROC asymmetry in an SDAI task?

2. Can both SDAI and SDAI* be modeled by an UVGM 
(which allows for asymmetric ROCs) with constant 
mnemonic parameters across tasks?

3. Can both SDAI and SDAI* be modeled by any model 
belonging to the general nonparametric SDT model 
framework with constant latent memory-strength dis-
tributions across tasks?

In what follows, we outline how these questions will 
be addressed and answered. To this end, however, it is 
first necessary to provide a brief overview of how both 
SDAI and SDAI* are modeled within the SDT model 
framework.

SDT models of SDAI and SDAI* tasks

SDT models for SDAI have been known for quite some time 
in the SDT literature (Starr, Metz, Lusted, & Goodenough, 
1975; Green & Birdsall, 1978; Macmillan & Creelman, 
2005; Meyer-Grant & Klauer, 2021; Wixted & Mickes, 
2014; Wixted, Vul, Mickes, & Wilson, 2018). According to 
such models, a separate familiarity value is elicited by each 
of the simultaneously presented test stimuli. Since in the 
following we will focus on situations in which the stimuli of 
a set do not resemble each other systematically, it is reason-
able to assume that these familiarity values are independent 
RVs (see Meyer-Grant & Klauer, 2022), which follow either 
the old-item or new-item familiarity distribution, depending 
on whether the corresponding stimulus is old or new.

We denote the probability density function (PDF) and 
cumulative distribution function (CDF) as fo(⋅) and Fo(⋅), 
respectively, for an old item and as fn(⋅) and Fn(⋅), respec-
tively, for a new item. If the maximum of all simultaneously 
elicited familiarity values exceeds the response criterion, 
a ”target presence” response is given, whereas otherwise a 
“target absence” response is given. Hence, the probability of 
a hit in the 1-out-of-m detection sub-task (H; i.e., correctly 
detecting the presence of an old item) is given by

PSDT(H) = 1 − Fo(�)[Fn(�)]
m−1,

detecting newness for a single-item yes/no recognition task (more pre-
cisely, “old” and “not-new” judgments are equivalent, as are “new” and 
“not-old” judgments; Brainerd et al., 2021), the yes/no ROCs depicted 
in Fig. 2 would overlap perfectly if one redefines a “hit” for the task 
where the new items are the targets to denote correctly reporting the 
absence of a new item, and a “false alarm” to denote incorrectly report-
ing the absence of a new item (provided that the distributions of mem-
ory-strength signals do not change as a function of whether the task is 
to detect oldness or to detect newness). However, this is not the case for 
the respective ROCs of the SDAI and SDAI* tasks, that is, the ROCs 
would not overlap in general. In essence, this is due to the fact that for 
each trial of an SDAI task, either m new items (for non-target trials) 
or m − 1 new items and one old item (for target trials) are presented, 
whereas for each trial of an SDAI* task either m old items (for non-
target trials) or m − 1 old items and one new item (for target trials) are 
presented. Hence, SDAI and SDAI* (provided that m ≥ 2) are not logi-
cally equivalent in the same sense as detecting oldness and newness in 
a single-item yes/no recognition task are.

Footnote 4 (continued)
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since the complementary event is that none of the m famili-
arity values exceeds the response criterion λ.5 Following a 
similar logic as for the probability of a hit, the probability 
of a false alarm in the 1-out-of-m detection sub-task (FA; 
i.e., incorrectly detecting the presence of an old stimulus) 
is given by

The m-alternative forced-choice identification response, on 
the other hand, is determined by which stimulus elicited the 
highest familiarity value, which is why the joint probability 
of a hit in the 1-out-of-m detection sub-task and a subsequent 
correct identification in the m-alternative forced-choice sub-
task (I; i.e., identification of the old stimulus) is given by

To get an intuition for Eq. 1, first consider that integrating 
the PDF of the old-item familiarity distribution fo(x) over 
the interval (�,∞) yields the probability that the old-item 
familiarity value exceeds λ. However, if for each potential 
old-item familiarity value x ∈ (�,∞) we additionally scale 
down fo(x) by the probability that all m − 1 simultaneously 
elicited new-item familiarity values fall below x (note that 
this probability is given by [Fn(x)]m− 1 ≤ 1; see also Footnote 
5), integrating over the interval (�,∞) instead yields the joint 
probability of the old-item familiarity exceeding both λ and 
all new-item familiarities.

In order to account for SDAI* instead of SDAI, this 
model framework can be adapted without much difficulty: 
Crucially, it is no longer the maximum (as in the 1-out-of-
m-detection sub-task) but the minimum of all familiarity 
values that determines the 1-out-of-m*-detection response. 
If it falls below the response criterion, a ”target present” 
response is given, while otherwise a ”target absence” 
response is given.6 Hence, the probability of a hit in the 
1-out-of-m* detection sub-task (H*; i.e., correctly detecting 
the presence of a new stimulus) is given by

PSDT(FA) = 1 − [Fn(�)]
m.

(1)PSDT(I,H) = ∫
∞

�

[Fn(x)]
m−1fo(x)dx.

since the complementary event is that all of the m familiar-
ity values exceed the response criterion λ.7 The probability 
of a false alarm in the 1-out-of-m* detection sub-task (FA*; 
i.e., incorrectly detecting the presence of a new stimulus) is 
in turn given by

The m*-alternative forced-choice identification response is 
then consequently determined by which stimulus elicited the 
lowest familiarity value and the joint probability of a hit in 
the 1-out-of-m* detection sub-task and a subsequent correct 
identification in the m*-alternative forced-choice sub-task 
(I*; i.e., identification of the new stimulus) is thus given by

In contrast to Eq. 1, in Eq. 2 we scale down the PDF of 
the new-item familiarity distribution fn(x) for each potential 
new-item familiarity value x that falls below the response 
criterion λ (i.e., x ∈ (−∞, �) ) according to the probability 
that all the simultaneously elicited old-item familiarity 
values exceed x (note that this probability is given by [1 
− Fo(x)]m− 1 ≤ 1; see also Footnote 5 and 7). Evaluating the 
integral in Eq. 2 thus corresponds to the joint probability that 
the new-item familiarity falls below both λ and all old-item 
familiarities.

For illustration purposes, Fig. 3 depicts the PDFs of 
the old-item and new-item familiarity distributions for the 
UVGM, as well as the respective PDFs of the maximum 
familiarity values in SDAI tasks and the minimum familiar-
ity values in SDAI* tasks (both with m = 2). Furthermore, 
Fig. 3 also depicts the corresponding ROCs and IOCs for 
both tasks.

Testing for changes in ROC asymmetry

In order to investigate ROC asymmetry, it is helpful to trans-
form the ROC space by applying the quantile function of a 
standard normal distribution Φ− 1(⋅). This gives rise to the 
so-called zROC. In a standard yes/no recognition task, where 
a single stimulus at a time is judged to be old or new, this 
leads to a linear zROC for the Gaussian SDT model. Moreo-
ver, the slope of this zROC corresponds to the ratio of stand-
ard deviations of the old-item and the new-item familiarity 
distribution. Strictly speaking, this theoretical justification 

PSDT(H
∗) = 1 −

(

[1 − Fo(�)]
m−1[1 − Fn(�)]

)

,

PSDT(FA
∗) = 1 − [1 − Fo(�)]

m.

(2)PSDT(I
∗
, H

∗) = ∫
�

−∞

[1 − Fo(x)]
m−1fn(x)dx.

7 For the same reasons outlined in Footnote 5, the joint probabil-
ity that all m familiarity values elicited during a target trial of an 
SDAI* task (i.e., m − 1 old-item familiarity values and one new-item 
familiarity value) exceed the response criterion λ is given by [1 − 
Fo(λ)]m− 1[1 − Fn(λ)].

5 Note that the CDF of a continuous real-valued RV (i.e., with sup-
port Ω ⊆ ℝ ) evaluated at λ ∈  Ω, is equivalent to the probability 
that the RV will take a value less than λ. Note also that if multiple 
events are independent (such as multiple independent RVs each being 
smaller than λ), their joint probability simply equals the product of 
their respective individual probabilities. Since—as outlined above—
all individual familiarities are assumed to be independent RVs in the 
present context, the joint probability that all m familiarity values elic-
ited during a target trial of an SDAI task (i.e., one old-item familiarity 
value and m − 1 new-item familiarity values) fall below the response 
criterion λ is given by Fo(λ)[Fn(λ)]m− 1.
6 Recall that in an SDAI* task the new stimulus is considered to be 
the target. Thus, the meaning of “hit”, “false alarm”, and “correct 
identification” changes accordingly.
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Fig. 3  Illustration of the UVGM with parameters μo = 1.25, μn 
= 0.00, σo = 1.30, σn = 1.00 for both the SDAI and SDAI* task with 
m = 2 simultaneously presented test stimuli. Dotted vertical lines 
in the left column of panels indicate the positions of the response 
criteria Λ = {− 0.5,1,1.5} and black squares in the right column 
of panels indicate the corresponding  predicted response frequen-
cies. Top left panel: PDFs of old-item (dashed line) and new-item 
(solid line) familiarity distributions. Middle left panel: PDFs of the 
maximum familiarity value (i.e., the decision variable in an SDAI 
task) for a trial with one old and one new item (i.e., an SDAI tar-

get trial; dashed line) and for a trial with two new items (i.e., an 
SDAI non-target trial; solid line). Bottom left panel: PDFs of the 
minimum familiarity value (i.e., the decision variable in an SDAI* 
task) for a trial with one new and one old item (i.e., an SDAI* tar-
get trial; dashed line) and for a trial with two old items (i.e., an 
SDAI* non-target trial;solid line). Top right panel: zROCs for both 
the SDAI (dashed lines) and the SDAI* task (solid lines). Middle 
right panel: ROC (upper line) and IOC (lower line) for the SDAI 
task. Bottom right panel: ROC (upper line) and IOC (lower line) 
for the SDAI* task
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does not apply for an SDAI and SDAI* task even if the nor-
mality assumption holds.8 However, the (approximate) slope 
of the zROC still provides a good indication for the quality 
of ROC asymmetry. For reasonable parameters, the UVGM, 
for example, consistently predicts approximate zROC slopes 
below one for the SDAI task and above one for the SDAI* 
task (see Fig. 3).9 We can therefore evaluate ROC asymme-
try by comparing empirical zROC slopes of the SDAI and 
SDAI* tasks by means of an ordinary least squares linear 
regression.

Evaluating the mnemonic consistency of the UVGM

Given that a qualitative change in ROC asymmetry can be 
observed, it should be investigated whether the UVGM can 
model both tasks without changes in the familiarity distribu-
tion of old items. It could be argued that the response criteria 
Λ are at least partially under the volitional control of the 
decision-maker and therefore may vary task-dependently. 
The difference between the means μo − μn = μo and the 
ratio of the standard deviations σo / σn = σo of the old-item 
and new-item familiarity distributions, on the other hand, 
should not differ systematically between both tasks if the 
study phases are identical and the assumption holds that the 
mnemonic information accessed by the decision-maker does 
not change depending on the task. Contrary to this, however, 
Brainerd et al. (2021) posited—as mentioned earlier—that 
the mnemonic information does in fact differ between tasks 
that ask for detecting oldness and tasks that ask for detect-
ing newness.

To test these competing accounts, we can fit the UVGM 
model using a maximum likelihood approach to both the 
SDAI and the SDAI* task twice: once by estimating the 
parameters of both tasks separately and another time by fit-
ting a joint model of both tasks, were only one μo and one σo 
parameter are estimated. If the goodness-of-fit deteriorates 
significantly for the joint modeling approach compared to 
the separate one, this indicates mnemonic inconsistencies 
within the UVGM between the SDAI and the SDAI* task. 
In particular, this would also challenge our alternative expla-
nation of some of the major results reported by Brainerd 
et al. (2021), according to which more or less conserva-
tive response criteria in combination with ROC asymmetry 
could be responsible for observed differences between the 
two tasks.

Evaluating the mnemonic consistency 
of the nonparametric SDT model

However, fundamental issues with the UVGM have long 
been known: most notably, the so-called likelihood ratio 
monotonicity does not hold for the UVGM (Kellen & Klauer, 
2018; Green & Swets, 1966; Kellen et al., 2021; Meyer-
Grant & Klauer, 2021). A critical consequence of this cir-
cumstance is that very low familiarity values are more likely 
for old than for new stimuli, which is universally considered 
implausible. The results of the UVGM-based analyses there-
fore may depend on potentially invalid auxiliary assump-
tions. Hence, should our analyses indeed reveal mnemonic 
inconsistencies within the UVGM, the question remains 
whether the observed patterns can be accounted for by any 
other task-independent SDT model (i.e., when allowing for 
arbitrarily distributed familiarity values).

In order to investigate this question, let us once more 
consider the findings of Kellen et al. (2021), who showed 
that a symmetric ROC implies that the correct identifica-
tion probabilities in the m-alternative forced-choice and 
m*-alternative forced-choice sub-tasks must be equal when 
the latent memory-strength distribution of old items remains 
unchanged between the tasks. But in contrast to this, they 
observed that m*-alternative forced-choice correct-rates 
were consistently below m-alternative forced-choice correct-
rates for m ∈{4,5,6}, which they interpreted as evidence in 
favor of ROC asymmetry. However, the same result would 
have been observed under distributions predicting symmet-
ric ROCs if those distributions had changed between tasks 
(e.g., a decline in the μo parameter of an EVGM if partici-
pants are asked to identify a new instead of an old item).

Interestingly, choosing m = 2 leads to conflicting 
predictions between these possible scenarios, enabling us 
to test them directly. In contrast to the cases with m > 2 (as 
investigated by Kellen et al., 2021), the probabilities for a 
correct identification in the m-alternative forced-choice and 
m*-alternative forced-choice sub-tasks (i.e., the probability 
of the old-item familiarity being larger than the maximum 
of new-item familiarities and the new-item familiarity 
being smaller than the minimum of old-item familiarities, 
respectively) must be equal in cases with m = 2 and task-
invariant distributions of familiarity values, regardless 
of whether or not there is ROC asymmetry.10 If, on the 
other hand, a change in the underlying memory-strength 
distribution between the two tasks were responsible for the 
lower m*-alternative forced-choice correct-rates compared 
to the m-alternative forced-choice correct-rates observed 
by Kellen et al. (2021) for m ∈{4,5,6}, the same pattern 

10 This follows immediately from elementary probability theory, as 
the maximum (minimum) of a single RV is clearly just the RV itself.

8 This is the case, because the distribution of the effective decision 
variable (i.e., the maximum or minimum of all m normally distributed 
familiarities) is no longer normal.
9 The same holds true for other distributional assumptions that give 
rise to asymmetric ROCs as, for example, a Gumbel (minimum) dis-
tribution (Kellen & Klauer, 2018) or a Gaussian mixture distribution 
(DeCarlo, 2002).
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should be observable for m = 2 as well. Thus, simultaneously 
presenting m = 2 stimuli during each test trial and comparing 
the m-alternative forced-choice identification performance 
in target trials of an SDAI task with the m*-alternative 
forced-choice identification performance in target trials of 
an SDAI* task provides a critical test of these conflicting 
predictions.

Methods

To investigate these issues, we conducted an experiment in 
which participants had to complete both an SDAI task and 
an SDAI* task (for both tasks, m = 2 stimuli were presented 
simultaneously in each test trial). Therefore, each participant 
took part in two sessions, which were separated by at least 
one week. One half of the participants were given the SDAI 
task on their first appointment and the SDAI* task on their 
second appointment, and vice versa for the other half of 
participants.

Participants

Forty-eight participants (39 females, 9 males) aged between 
18 and 44 (Mage = 22.79, SDage = 4.70) completed both 
experimental sessions. In exchange for their participation, 
they received either partial course credit or €6.00. Addition-
ally, each participant received a performance-based bonus of 
up to €3.00. All participants were native or fluent speakers 
of German and had normal or corrected to normal vision 
and no prosopagnosia.

Stimuli and apparatus

We used 1250 color portrait images (depicting 625 females 
and 625 males), which were all generated by a generative 
adversarial network (Karras, Laine, & Aila, 2019). All 
images were crosschecked for image artifacts and a believ-
able appearance by a human rater, who was naïve to the 
objective of the study.

Each image had a resolution of 250 px × 300 px and was 
presented on a 522 mm × 294 mm TFT-LCD screen with a 
resolution of 1920 px × 1080 px. Viewed from a distance of 
approximately 600 mm, they subtended an angle of about 
6◦29�24�� × 7◦46�48�� . The images were presented on a black 
background.

Design and procedure

Both parts of the experiment (viz., the SDAI and the 
SDAI* task) comprised a study phase and a test phase. 
The procedure of the study phase was identical for both 
parts, but different stimuli were shown in each part. Each 

study phase comprised two blocks of 154 individual 
portrait images (308 images in total per part). Partici-
pants were asked to memorize the images, which were 
presented successively for 2000 ms each with an inter-
stimulus interval of 800 ms. Between the two blocks, 
participants were allowed to take a self-paced break. The 
first and last two images shown during each block of the 
study phase (eight images in total) were not used during 
the test phase to mitigate primacy and recency effects. 
After the study phase, there was a mandatory break of 5 
min. After this break, the participants had to solve a short 
arithmetic problem before continuing with the test phase.

The test phase for both experimental parts comprised 
200 trials, respectively, which were evenly divided into 
four blocks of 50 trials. The blocks were separated by 
self-paced breaks. In each test trial, participants were 
shown m = 2 same-sex portrait images arranged horizon-
tally (side by side) in the center of the screen. For the 
SDAI task, two new stimuli were presented during half 
of the trials (i.e., non-target trials), while an old stimulus 
was presented together with a new stimulus during the 
other half of the trials (i.e., target trials). For the SDAI* 
task, on the other hand, two old stimuli were presented 
during half of the trials (i.e., non-target trials), while a 
new stimulus was presented together with an old stimu-
lus during the other half of the trials (i.e., target trials). 
This resulted in 300 new images being presented in the 
test phase of the SDAI task and 100 new images being 
presented in the test phase of the SDAI* task, in addi-
tion to the 100 old images for the SDAI task and the 300 
old images for the SDAI* task already presented in the 
respective study phase. Thus, apart from the primacy and 
recency buffers, all stimuli presented during the study 
phase reappeared during the test phase of the SDAI* task 
to serve as lures. In contrast, only one-third of all stud-
ied images were randomly selected to serve as targets in 
the SDAI task. The position of the target (left vs. right) 
was randomly determined for each target trial with the 
constraint that the frequency of targets appearing on the 
left was the same as that of targets appearing on the right 
across all trials of the same session.

For each of the two experimental parts and each partici-
pant, the stimuli—608 for the SDAI task and 408 for the 
SDAI*—were randomly drawn without replacement from 
the pool of the 1250 portrait images with the constraint that 
there was an equal proportion of male and female faces. 
Which images were presented during study (i.e., old stimuli) 
and which only appeared during test (i.e., new stimuli), was 
likewise randomized for each participant, again ensuring an 
equal proportion of male and female faces for old as well as 
new stimuli.

Participants were informed prior to the test phase that 
there would either be one or no target present in each trial 
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and that target and non-target trials would occur in equal 
frequency. They were further instructed that in the SDAI 
task, old stimuli should be considered as targets, whereas in 
the STAI* task, new stimuli should be considered as targets.

Participants were first asked to provide a four-level 
confidence rating (4 = “target definitely present”, 3 = 
“target likely present”, 2 = “target likely absent”, or 1 
= “target definitely absent”) on whether they believed a 
target to be present or not. These response options were 
presented at the bottom of the screen together with the 
images and participants responded by selecting one of 
these options with the computer mouse. Subsequently, 
they were required to identify the image which they 
believed to be most likely the target, irrespective of 
their previous confidence rating response.11 They indi-
cated their decision by clicking on one of the two images 
(again, with the computer mouse).

Prior to the start of the experiment, participants were 
also informed that their final payment would be partly 
based on their performance in the test phase. That is, 
participants received a point for a correct detection 
response (i.e., a “target definitely present” or “target 
likely present” response in target trials or a “target likely 
absent” or “target definitely absent” response in a non-
target trials). They received an additional point for each 
correct identification response (i.e., clicking on a target 
image). Participants were awarded €0.01 for each point 
they scored above the 300-point mark, up to a maximum 
of €3.00. No feedback was given during the experiment, 
but the final point score for each experimental part was 
presented after their respective completion.

Results

Differences in ROC asymmetry

We first computed empirical zROC points for the data 
aggregated across participants separately for the SDAI 
as well as the SDAI* task. The ordinary least squares 
linear fit for the SDAI tasks (regressing Φ−1(P̂(H)) on 
Φ−1(P̂(FA)) ) revealed an approximate zROC slope of 
0.86, while the ordinary least squares linear fit for the 
SDAI* tasks (regressing Φ−1(P̂(H∗)) on Φ−1(P̂(FA∗)) ) 
revealed an approximate zROC slope of 1.06 (for a 

pictorial representation see Fig. 4). We then repeated 
this analysis for each participant individually (note that 
one participant’s data did not permit estimating the 
zROC slope for the SDAI* task due to empty cells). The 
mean of the approximate individual zROC slopes was 
0.86 (95% CI [0.81, 0.91]) for the SDAI task and 1.07 
(95% CI [1.02, 1.12]) for the SDAI* task. A paired t 
test revealed that the mean difference of 0.21 (95% CI 
[0.15, 0.28]) between the approximate zROC slopes of 
the SDAI task and the SDAI* task is significant (t(46) 
= 7.01, p < .001).

Mnemonic consistency of the UVGM

Next, we fitted two specific UVGM models to the data. One 
model was essentially equivalent to two separate UVGMs 
which were fitted to the data of one of the two tasks, respec-
tively, whereas the other model restricted the parameters 
μo and σo to be identical for both tasks, while the response 
criteria Λ were allowed to vary between them. Since these 
models are clearly nested—the restricted model being 
a special case of the unrestricted model—we can simply 
compare them by means of a likelihood-ratio test. Doing so 
revealed a clear impairment of goodness-of-fit if μo and σo 
are restricted to be identical for both SDAI and SDAI* tasks 
( �2

LR
(2) = 46.64 , p < .001). If left unrestricted, μo and σo are 

both estimated to be larger in the SDAI task (μo = 0.61 and 
σo = 1.24) compared to the SDAI* task (μo = 0.46 and σo 
= 1.05), as depicted in Fig. 5.

However, it is well known that aggregating data across 
participants can be problematic, as this practice relies 
on the unrealistic assumption that the model parameters 
are identical for all participants. We therefore fitted both 
variants of the UVGM to the data of each participant 
separately. Since the likelihood-ratio test statistic is 
assumed to be asymptotically χ2 distributed, we aggre-
gated the individual test statistics to obtain a measure for 
overall goodness-of-fit. Results coincide with the analy-
sis of aggregated data in that they reveal a significantly 
worse fit of the restricted model compared to the unre-
stricted one ( �2

LR
(96) = 321.45 , p < .001). Moreover, two 

paired t tests corroborate the systematic nature of differ-
ences in the parameter estimates of μo ( Mdif f .(�o)

= 0.13 , 
95% CI [0.02, 0.24], t(47) = 2.36, p = .022) and σo 
( Mdiff.(�o)

= 0.20 , 95% CI [0.09, 0.32], t(47) = 3.60, p < 
.001) between the SDAI and the SDAI* task.

Mnemonic consistency of the nonparametric SDT 
model

Lastly, we compared the identification performance 
between the tasks by first aggregating data over par-
ticipants. The rate of correct identifications was clearly 

11 Note that this procedure entails that participants are required to 
always give an identification response, even when they indicated that 
they believe a target to be absent (i.e., by responding ”target likely 
absent” or ”target definitely absent”). The reason for taking this 
approach was that it ensured identification responses were available 
for every target trial, which was necessary for the  above-mentioned 
critical test.
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lower in the m*-alternative forced-choice sub-tasks 
(61.10%) compared to the m-alternative forced-choice 
sub-tasks (64.92%), which was affirmed by a χ2 test 
(χ2(1) = 14.80, p < .001).12 To further test this effect, 
we also performed a generalized linear mixed model 
analysis of differences in identification performance 
between m-alternative forced-choice and m*-alternative 
forced-choice sub-tasks (using a logistic link function) 
where we included participants as a random-effects fac-
tor (including both by-participant random intercepts and 
by-participant random slopes). The result ( �2

LR
(1) = 5.50 , 

p = .019; see also Fig. 6) is consistent with the result 
obtained from the analysis of the aggregated data.

Discussion

The results of our investigation provide various interesting 
insights into the processes underlying recognition decisions. 
First and foremost, we see that ROC asymmetry indeed 
changes qualitatively when participants are tasked with 
detecting and identifying a new stimulus instead of an old 
stimulus. However, ROC asymmetry appears to be more pro-
nounced in the SDAI task compared to the SDAI* task. This 
was not only indicated by the approximate zROC slopes (see 
Fig. 4), but also by the differences in the estimates for the 
old-item variance (σo) between SDAI and SDAI* when fitting 
two separate UVGMs to the respective tasks (see Fig. 5).13

Fig. 4  Relative response frequencies (crosses) in the data aggregated 
across participants. The length of the cross lines correspond to 95% 
bootstrap CIs. Top panel: empirical zROCs and the corresponding 
ordinary least squares linear regression lines (dashed lines) for both 

the SDAI (black) and the SDAI* (blue) tasks. Bottom row of panels: 
empirical ROCs (upper line) and IOCs (lower line) for both the SDAI 
(left panel, black) and the SDAI* (right panel, blue) tasks

12 Note that the performance level and the size of the difference are 
similar to the ones reported by Kellen et  al. (2021, Fig.  12) for m 
∈{4, 5, 6}.

13 An interesting side note is that these results also add to a body 
of evidence (Koen & Yonelinas, 2010; Koen & Yonelinas, 2013; 
Rouder, Pratte, & Morey, 2007; Spanton & Berry, 2020; Rabe, 
Lindsay, & Kliegl, 2021)  that questions one popular theoretical jus-
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This observation is closely related to the finding that, if 
left unrestricted, the mnemonic parameters of the UVGM 
differed systematically between both tasks. Furthermore, 
restricting the mnemonic parameters of the UVGM to be 
independent of the task considerably degraded the model’s 
goodness-of-fit. This clearly indicates that even when a 
model is used that takes asymmetric ROCs into account, 
the mnemonic information underlying recognition deci-
sions indeed changes depending on whether the tasks ask for 
detection and identification of an old or a new stimulus—at 
least when assuming normally distributed familiarity values.

However, our results allow us to draw an even stronger 
conclusion that does not depend on the auxiliary assump-
tion of normally distributed familiarity values. More pre-
cisely, the fact that we observed systematic differences in 
correct identification rates between both the SDAI and 
the SDAI* task clearly speaks against the notion that the 
distribution of old-item familiarities remains unchanged 
between the two tasks. Importantly, this corroborates the 
idea that there is a fundamental change in the mnemonic 
information that is accessed by the decision-maker when 
the task asks for the detection of newness instead of old-
ness (Brainerd et al., 2021).

Taken together, these results indeed support an interpre-
tation along the lines of fuzzy-trace theory (Brainerd et al., 
2021) and defend them against a simple alternative account 
in terms of ROC asymmetry. In particular, uniquely iden-
tifying memory information (the so-called verbatim trace, 
which is stored only for old items) may be easier to access 
during the SDAI than the SDAI* task. To see why this is 
the case, suppose that access to verbatim traces can be mod-
eled as a threshold process, that is, those memory traces 

Fig. 5  PDFs of old-item (solid lines) and new-item (dashed line) 
familiarity distributions according to two separate UVGMs, which 
were fitted to the data (aggregated across participants) from both the 

SDAI task (μo = 0.61 and σo = 1.24; black solid line) and the SDAI* 
task (μo = 0.46 and σo = 1.05; blue solid line), respectively

Fig. 6  Mean relative frequencies (black dots) of a correct identifica-
tion of an old item in the SDAI task (I) and a new item in the SDAI* 
task (I*). Error bars depict ± 1SE (generalized linear mixed model 
based), gray dots and lines depict individual responses (i.e., relative 
response frequencies of each participant)

Footnote 13 (continued)
tification for the variance difference between old-item and new-item 
familiarity distributions of the UVGM, namely old-item encoding 
variability (Jang, Mickes, & Wixted, 2012; Mickes, Wixted, & Wais, 
2007; Starns, Rotello, & Ratcliff, 2010; Wixted, 2007): If processes 
during encoding were solely responsible for a higher variance of old-
item familiarity values (compared to new-item familiarity values), 
this difference between variances should not depend on the type of 
task performed during test, as long as the conditions during encod-
ing were identical. Contrary to this prediction, however, we observed 
such a dependency in the present study.

171Memory & Cognition  (2023) 51:160–174

1 3



are either accessed by the decision-maker with a certain 
probability, which in turn leads to a correct detection and 
identification response, or they are not accessed with the 
respective complementary probability. Let us further cap-
ture the contribution of other partial-identifying informa-
tion (the so-called gist trace) by an EVGM. When combin-
ing both retrieval mechanisms, the resulting hybrid model 
is essentially equivalent to the dual-process SDT model of 
recognition memory (see, e.g., Yonelinas, 1994). In this 
hybrid model, ROC asymmetry increases with the prob-
ability of retrieving the verbatim trace (see also Pratte & 
Rouder, 2011). Thus, the differences between the SDAI and 
the SDAI* task in both the magnitude of the observed ROC 
asymmetry and in the identification performance can be 
accounted for by an impaired ability to access the verba-
tim traces in the SDAI* task compared to the SDAI task 
(i.e., when participants were asked to detect and identify 
the new instead of the old item), as proposed by Brainerd 
et al. (2021).

Yet, the description in terms of a dual-process SDT model 
also highlights the fact that while fuzzy trace theory may 
be one possible theoretical explanation of our findings, it 
is certainly not the only theoretical framework that is able 
to account for them. In essence, a simple interpretation can 
be provided in terms of any theory that views the unidi-
mensional decision variable in a recognition memory task 
to be a joint function of multidimensional attributes. Most 
dual-process theories, for example, assume that a recogni-
tion decision is determined by both a familiarity-driven pro-
cess and a recollection-driven process (see, e.g., Wixted & 
Mickes, 2010; Yonelinas, Dobbins, Szymanski, Dhaliwal, & 
King, 1996; Yonelinas, 1994), representing distinct contri-
butions of item and associative/source information, respec-
tively. Importantly, both processes may provide (partially) 
independent evidence regarding a prior encounter with the 
respective stimulus. Provided that this evidence is diagnos-
tic, integrating it would consequently increase discriminabil-
ity compared to relying on either process alone. However, 
decision-makers may also be able to deliberately place more 
weight on one dimension than the other (e.g., Migo, Mont-
aldi, Norman, Quamme, & Mayes, 2009; Migo et al., 2014). 
With that in mind, it is easy to imagine that participants 
combine item and associative/source information when old 
items are defined to be the target but place more weight on 
item information alone when new items are defined to be the 
target (e.g., because low familiarity alone might be sufficient 
for making a detection decision for a new item, whereas the 
absence of recollection is not).

These theoretical considerations also have important 
practical implications, as they suggest that—especially 
in situations in which a conservative response strategy is 
adopted—memory performance deteriorates when par-
ticipants are asked to detect newness instead of oldness. 

However, for situations in which erroneous decisions are 
particularly momentous (e.g., in the context of real-life eye-
witness identification for forensic purposes), decision-mak-
ers usually tend to employ conservative response strategies. 
Therefore, focusing on detecting newness instead of detect-
ing oldness should be avoided in such situations.

Lastly, the results of the present work also question the 
foundational evidence for ROC asymmetry provided by Kel-
len et al. (2021). In particular, our finding that the distribu-
tion of old-item familiarities is altered in tasks in which the 
new item instead of the old item is the target removes the 
experimentum-crucis status from Experiment 3 in Kellen 
et al. (2021). Unfortunately, this means that there is still 
no clear evidence for ROC asymmetry that does not rely 
on either confidence ratings or bias manipulations, which 
were critically discussed by Kellen et al. (2021). However, 
our results do not imply that, conversely, there is no ROC 
asymmetry. In fact, it is still entirely possible that the effects 
observed by Kellen et al. (2021) were caused by a combina-
tion of ROC asymmetry and changes in the accessibility of 
mnemonic information. These considerations clearly high-
light the need for further investigations of the mechanisms 
responsible for ROC asymmetry.
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