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Abstract
Prospective memory (PM) describes the ability to remember to perform goal-relevant actions at an appropriate time in the 
future amid concurrent demands. A key contributor to PM performance is thought to be the effortful monitoring of the 
environment for PM-related cues, a process whose existence is typically inferred from a behavioral interference measure of 
reaction times. This measure, referred to as “PM costs,” is an informative but indirect proxy for monitoring, and it may not 
be sufficient to understand PM behaviors in all situations. In this study, we asked participants to perform a visual search task 
with arrows that varied in difficulty while concurrently performing a delayed-recognition PM task with pictures of faces and 
scenes. To gain a precise measurement of monitoring behavior, we used eye-tracking to record fixations to all task-relevant 
stimuli and related these fixation measures to both PM costs and PM accuracy. We found that PM costs reflected dissociable 
monitoring strategies: higher costs were associated with early and frequent monitoring while lower costs were associated 
with delayed and infrequent monitoring. Moreover, the link between fixations and PM costs varied with cognitive load, and 
the inclusion of fixation data yielded better predictions of PM accuracy than using PM costs alone. This study demonstrates 
the benefit of eye-tracking to disentangle the nature of PM costs and more precisely describe strategies involved in prospec-
tive remembering.
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Imagine you’re on a road trip, and you pass a billboard 
advertising a roadside stop serving “the best bar-b-que” in 
the state. You form an intention to stop and eat there, but 
how do you remember to follow through with this delicious 
plan? You likely won’t be able to continuously linger on 
the plan, because your attention will be needed to perform 
other urgent tasks, such as negotiating a patch of heavy traf-
fic, processing map instructions, or calming a child in the 
backseat. Prospective memory (PM) describes our ability 
to perform future intentions at a specific time despite con-
current demands from the environment. The multiprocess 

framework of prospective memory (Einstein & McDaniel, 
2005) describes two dissociable strategies that individuals 
use to perform prospective intentions, referred to as active 
monitoring and spontaneous retrieval. Active monitoring 
is typically characterized by two components: the alloca-
tion of attention towards effortful monitoring of the envi-
ronment for cues to perform the prospective intention and 
sustained representation of the intention (Ballhausen et al., 
2017; Guynn, 2008; McDaniel & Einstein, 2000). For exam-
ple, while driving, you may be checking road signs for an 
indication that the exit for the restaurant is ahead, while also 
keeping the name of the bar-b-que spot in mind. On the other 
hand, spontaneous retrieval is characterized by the encoding 
of cue–action associations in episodic memory and reliance 
on cues in the environment to trigger the retrieval of the 
intention when it is needed (Harrison et al., 2014; Rummel 
& Meiser, 2013; Scullin et al., 2010). For example, you may 
continue driving without thinking about your appetite and 
then happen to read a sign that suddenly makes you remem-
ber, “Don’t forget about that bar-b-que!.” While it is evident 
that there are significant individual and group differences in 
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how effectively individuals engage these two strategies (Ball 
et al., 2020; Brewer et al., 2010), precise descriptions of how 
they are implemented remain elusive.

The multiprocess theory of PM posits that active monitor-
ing, a component of proactive control, is an effortful pro-
cess that draws resources from a shared-capacity system split 
between ongoing demands and future intentions. Because 
cognitive resources must be split between a PM task and 
other ongoing demands, individuals may vary in how and 
when they allocate resources for monitoring (e.g., Scullin 
et al., 2013). For example, Marsh et al. (2006) found that 
when participants were aware that PM targets would only 
appear during a specific portion of the experiment, they only 
monitored during those times. Situational-specific monitor-
ing has also been observed when the probability of a pro-
spective intention is high (Bugg & Ball, 2017; Cohen et al., 
2017; Kuhlmann & Rummel, 2014; Smith et al., 2017), 
when the intention is deemed sufficiently important (Loft & 
Yeo, 2007; Smith & Hunt, 2014), or when the perceived dif-
ficulty of performing the intention is high (Lourenço et al., 
2015; Rummel & Meiser, 2013). When monitoring ability is 
impaired due to high ongoing cognitive load (Marsh et al., 
2002; Marsh et al., 2005; Meier & Zimmermann, 2015), PM 
performance can suffer. Thus, a bevy of previous research 
suggests that monitoring is a resource-demanding task, and 
that adapting to environmental demands involves shifting 
the amount of resources devoted towards monitoring. Con-
versely, individuals have the ability in some situations to 
stop monitoring and instead offload prospective intentions 
to episodic memory (i.e., to engage reactive control) without 
sacrificing PM performance (Anderson et al., 2019; Koslov 
et al., 2019; Lewis-Peacock et al., 2016). To capture this 
nuance, the dynamic multiprocess view of PM (DMPV; 
Scullin et al., 2013; Shelton & Scullin, 2017) updated the 
original multiprocess theory (Einstein & McDaniel, 2005) to 
specify that the use of proactive or reactive control depends 
on environmental and contextual factors. What is less clear 
to researchers, is exactly how individuals adjust these cogni-
tive resources in order to carry out PM strategies.

The most prominent method for determining when indi-
viduals are monitoring for prospective intentions, and to 
generally infer processes that may underlie monitoring, is to 
use a dual-task interference metric. This interference metric 
is called “PM costs” and is a measure of response slowing 
that occurs on an ongoing task when participants are asked 
to concurrently perform a PM task. These costs are posited 
to reflect the amount of cognitive resources that are devoted 
to actively monitor for cues related to PM intentions (Smith, 
2003). Larger costs are thought to indicate more resources 
being allocated towards the prospective intention and can 
relate to a greater ability to notice and act on prospective 
intentions (e.g., Anderson et al., 2019; Koslov et al., 2019). 
Sometimes there are no PM costs observed (Harrison et al., 

2014; Rummel & Meiser, 2013; Scullin et al., 2010), and in 
such cases it is commonly assumed that participants are rely-
ing on spontaneous retrieval or some reactive control process 
rather than active monitoring (Braver, 2012). Of course, the 
absence of evidence of PM costs does not constitute evi-
dence for the absence of active monitoring. PM costs may 
not capture all forms of monitoring behaviors, and they are 
likely influenced by other sources, including maintaining 
an intention in working memory and inhibiting ongoing 
responses. A more precise explanation of the processes that 
underlie PM costs and how they relate to both strategy and 
performance is warranted.

One approach for understanding the nature of PM costs 
has been to use data aggregation and computational mod-
eling to dissect RTs into more precise components (for 
review, see Strickland et al., 2019b). For example, research-
ers have fit RT distributions with ex-Gaussian functions in 
order to attempt to distinguish between evidence for con-
tinuous monitoring, as represented by the μ parameter, and 
sporadic monitoring, as represented by the τ parameter (Ball 
et al., 2015; Loft et al., 2014). Results indicate that PM costs 
may be related to both transient and sustained monitoring or 
“checking” processes, although PM task accuracy was found 
to be more closely linked to the continuous monitoring 
component (Ball & Brewer, 2018). Another computational 
approach has been to use evidence accumulation models to 
identify decision-making processes that likely contribute 
to PM costs. These models have been used to measure the 
relative impact of decision thresholds, indicating how much 
evidence must be collected before an individual will make a 
response, versus evidence accumulation rates that indicate 
how quickly information about the task can be collected. In 
short, it follows from the shared-capacity explanation of PM 
costs from the multiprocess views that evidence accumula-
tion rates to ongoing tasks should be slowed when individu-
als have prospective intentions to perform. However, most 
studies using evidence-accumulation modeling have found 
that ongoing task decision thresholds, not accumulation 
rates, change as a function of prospective intentions (e.g., 
Heathcote et al., 2015; Horn & Bayen, 2015; Strickland 
et al., 2017). In other words, these studies have supported the 
claim that PM costs result when individuals delay or take a 
more cautious approach to the ongoing task when also moni-
toring for prospective intentions (Loft & Remington, 2013).

The “delay theory” interpretation of PM costs is contro-
versial, and other researchers have suggested that threshold 
adjustments do not sufficiently explain task performance in 
many circumstances. Using an extension of classic accu-
mulation models, referred to as the Prospective Memory 
Decision Control (PDMC) architecture, researchers have 
found that both delay and shared-capacity explanations can 
explain PM costs, depending on the ongoing demands of the 
environment (Boag et al., 2019; Strickland et al., 2019a). 
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Additionally, Anderson and McDaniel (2019) recently tested 
predictions from the delay theory of PM costs by compar-
ing PM performance in a condition that biased participants 
towards longer ongoing task latencies (i.e., longer delay 
periods) versus a condition that biased participants towards 
shorter latencies. Contrary to predictions from the delay 
theory, PM performance was greater in the shorter latency 
condition. At present, there is no consensus on the mecha-
nisms that drive PM costs and subsequent PM performance. 
One limitation to the modeling approach is that it requires 
aggregation of large numbers of trials, making it difficult 
to analyze processes that may be happening over short 
intervals, such as brief changes in monitoring strategies in 
response to cues or distractions in the environment. Addi-
tionally, while many accumulation models can successfully 
predict PM costs, they often struggle to explain variance in 
PM accuracy. It has been suggested that changes in ongoing 
task decision thresholds may not have a strong impact on 
PM performance (Strickland et al., 2019b). It is also possi-
ble that a link between PM costs and PM performance may 
only exist under certain conditions (Anderson et al., 2019; 
Koslov et al., 2019), and this relationship needs more careful 
observation and modeling to understand (Strickland et al., 
2018, 2019a, 2020).

One promising approach is eye-tracking, which provides 
direct measurement of the allocation of visual attention with 
excellent spatiotemporal precision, thus allowing tracking of 
monitoring during PM task performance. Whereas aggre-
gating over trials improves statistical power, eye-tracking 
affords the ability to observe precise moments in time to 
identify monitoring behaviors across different situations and 
individuals. To date, only a handful of studies have used eye-
tracking to study PM (e.g., Ballhausen et al., 2019; Bowden 
et al., 2017; Chen et al., 2013; Hartwig et al., 2013; Shel-
ton & Christopher, 2016; West et al., 2007), and these have 
provided unique insights into monitoring behavior. In gen-
eral, these studies support the idea that individuals increase 
attention allocated towards active monitoring of PM stimuli 
in response to environmental cues or contexts, and that 
increased active monitoring is related to better PM perfor-
mance. For example, Hartwig et al. (2013) measured fixation 
patterns while participants performed targeted visual search, 
viewed scenes freely, or viewed scenes with a prospective 
intention to indicate when specific objects appeared. Fixa-
tion patterns on PM misses (when participants failed to 
identify the prospective object) were most similar to those 
observed during free viewing, while on PM hits the fixation 
patterns were closer to those observed during directed visual 
search. Shelton and Christopher (2016), found that when 
individuals were reminded of a PM intention by semanti-
cally related cues, they were more likely to monitor for and 
complete that intention. Kalpouzos et al. (2010) found dif-
ferent visual search patterns before versus after performing a 

prospective intention, such that a participant’s gaze covered 
more distance while searching for a PM target than after it 
was found. Bowden et al. (2017) observed that when par-
ticipants were informed that a possible PM event was likely 
to occur soon, they increased fixations on PM-related infor-
mation. These studies provide direct evidence that active 
monitoring increases when a PM event is likely, and that 
increased monitoring can improve PM accuracy. However, 
none have attempted to link direct measures of monitoring 
from eye-tracking to the more commonly used but indirect 
measures of monitoring from PM costs.

Here, we used eye-tracking to relate monitoring behavior 
to both PM costs and PM accuracy. The standard assump-
tions are that PM costs consistently reflect active monitoring, 
and that monitoring is beneficial for PM performance. How-
ever, recent evidence shows that the link between costs and 
performance depends on the demands of the task (Koslov 
et al., 2019). This context-dependent relationship suggests 
that PM costs may not always reflect the frequency of moni-
toring but are influenced by the nature of monitoring (e.g., 
the combination of timing, duration, and frequency of fixa-
tions on PM stimuli) in a particular context. We investigated 
and characterized the association between PM costs and 
active monitoring across different levels of PM costs and 
environmental demands. We next examined whether fixa-
tion measures provided additional information, above and 
beyond PM costs, for explaining PM accuracy. To preview 
our results, we found that monitoring strategies are diverse 
and dependent on environmental demands, and that PM 
costs, while useful, only tell part of the story of monitoring 
behavior and PM performance.

Materials and methods

Participants (N = 30, 17 females, mean age = 18.8 years) 
were recruited from the University of Texas at Austin under-
graduate community to participate in the experiment. We 
collected this sample size for two reasons. Our first concern 
was ensuring that we had sufficient power to detect changes 
in PM costs that would correspond to different levels of 
ongoing task difficulty. To estimate this, we looked at data 
previously collected from our lab to determine the effect 
size of the difference in PM cost between easy and hard dif-
ficulty levels. The effect size, using a paired-sample t test, 
was 0.767. Thus, for an alpha of 0.05 and to achieve power 
(1 − beta) of at least 0.95, we would need a sample size 
of at least N = 25. Next, we referenced the PM literature 
where eye-tracking was used, which ranged between N = 
7 to 32 participants. Thus, we choose a sample size of N 
= 30, which is in line with prior published work (Koslov 
et al., 2019).
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Participants were given 2 hours of experiment credit in 
exchange for participation. After obtaining informed con-
sent, participants were asked to place their heads on a chin 
rest, sitting 18 inches from the computer screen, in a posi-
tion that may be as comfortable as possible for the duration 
of the experiment. The experiment took place in a dimly lit 
room to limit light interference. The experimenter adjusted 
the eye-tracker camera in order to get the best pupil and 
corneal reflection recognition possible. Once the camera had 
been adjusted, 5-point calibration and validation procedures 
were used to make sure that fixations in the vertical and 
horizontal directions were being accurately tracked. Auto-
matic adjustment of corneal and pupil thresholds was almost 
always sufficient for good eye-tracking, but occasionally, 
manual adjustments were made to improve the calibration. 
Once calibration was successfully performed, participants 
continued to the experiment instructions.

Eye‑tracking details

Eye-tracking data was collected using the SR Research 
EyeLink 1000 plus desktop mount and then converted to an 
ASCII file. Samples were collected at 250 Hz (N = 17) or 
500 Hz for others (N = 13) and down-sampled to 250 Hz, 
and no differences were found in dwell time measurements 
between sampling rates (p = .647). Data were recorded for 
the left eye from all participants unless calibration was not 
possible with that eye. For N = 2 participants, calibration 
was more successful for right eye than the left eye, and 
so was used for data collection instead. The left eye was 
chosen as the default simply in order to keep the eye-link 
apparatus in as similar a position as possible for all partici-
pants, to standardize easy-to-follow experiment protocols, 
and to reduce the time necessary for fixation validation and 
recalibration. Drift correction was performed throughout the 
experiment, at the rate of once every five trials. Drift cor-
rection values were not used as an automatic correction to 
fixation locations, but instead they were used as a way of 
checking the quality of the fixation calibration. If the fixa-
tion location was more than approximately 0.5° from the 
fixation target, recalibration and validation were performed. 
No further corrections were applied to the eye-tracking data. 
During data collection, calibration for three participants was 
either never successfully achieved or extremely variable over 
the course of the experiment. Data for those participants 
was collected but subsequently excluded from the final sam-
ple, and three new participants were included in the study, 
resulting in the N = 30 sample analyzed here. Default SR 
Research EyeLink parsing parameters were used to deter-
mine saccades, fixations, and blinks, and eye movements 
with a velocity exceeding 35 degrees/s and an acceleration 
exceeding 8,000 degrees/s2 were tagged as saccades.

Ongoing task details (OG task)

The experiment was conducted using MATLAB with Psy-
chtoolbox (Version 3; Brainard, 1997), using a modified 
version of the dual-task PM paradigm developed in Koslov 
et al. (2019). Participants were asked to perform a visual 
search task where they indicated the absence or presence 
of a rightward-facing horizontal arrow (⇨) in an array of 
10 distractor arrows (see Fig. 1a). Participants sat approxi-
mately 18 inches away from the screen, and all 10 arrows, 
which were 1.04° by .22° in shape, were presented at 3.18° 
away from the center of the screen. This OG task was 
chosen because it allows for the ability to systematically 
and parametrically manipulate task difficulty by adjusting 
distractor parameters along a continuum (Kiyonaga et al., 
2017; Koslov et al., 2019; Sobel et al., 2007). The target 
arrow was present on only a randomly selected half of the 
trials, located in one of 10 semirandomly selected possible 
locations around the circle. Participants were instructed to 
search for the target on each display and use their left hand 
to press “1” for present and “2” for absent. Target arrow 
location was counterbalanced between the top and bottom 
halves of the screen. On “target-present” displays, nine non-
target (distractor) arrows appeared in set positions around 
the circular array (10 on “target-absent” displays), oriented 
within some distribution of angles determined by the current 
task difficulty setting. OG task difficulty was manipulated 
on each probe by adjusting two parameters that determined 
the orientation of the distractor arrows: their minimum and 
maximum similarity to the target arrow (horizontal). The 
OG task could have a difficulty level of either easy (mini-
mum 45° from horizontal, maximum 85° from horizontal), 
medium (min 25°, max 45°), or hard (min 15°, max 25°). 
On every search display, each distractor arrow had a 50% 
chance of being flipped across the horizontal plane and a 
50% chance of being flipped across the vertical plane, so that 
arrows could possibly cover the whole 360° continuum. In 
previous pilot testing, we validated that accuracy decreased 
and reaction time increased as the OG task became more 
difficult, while accuracy remained below ceiling and above 
floor (see Koslov et al., 2019).

PM task stimuli

Each probe contained both a visual search array (the OG 
task) and a single face and a single scene image (the PM 
task). PM task stimuli consisted of colored images of unfa-
miliar faces and unfamiliar scenes which were gathered from 
various in-house and online sources. These images were con-
trolled for valence and familiarity (see Lewis-Peacock et al., 
2016). For each participant, 60 faces and 60 scenes were 
randomly selected to serve as the PM targets, and 100 faces 
and 100 scenes were used as distractors. PM target images 
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did not appear as distractors and were used on one trial only. 
Distractor images never reappeared within the same trial, 
but later reappeared on subsequent trials (mean exposures 
per distractor = 14, min = 13, max = 15). Multiple repeti-
tions of distractor images across trials allowed for increased 
novelty of PM target images. PM stimuli (each of size 11.5° 
× 11.5° in visual angle) were horizontally aligned centrally 
and vertically aligned with the middle of the images placed 
11.5° above or below the OG task search array (meaning the 
nearest image edge was 5.75° away from the center of the 
screen or ~2.5° away from the center of the nearest OG task 
arrow). The proximity and size of the image targets to the 
arrow array meant that information from the face and scene 
images was peripherally available to participants, however 
not within foveal center. While salient information about 
the face and scene images could be perceived via covert or 
peripheral attention, fixations toward the images were neces-
sary to bring them into high-precision representation in the 
foveal center.

Dual‑task PM experiment design

Each trial began with the presentation of the PM target 
(“PM-trials”: a face or a scene) or a yellow null (∅) sign 
(no-PM trials) for 3 s, followed by a 1-s fixation cross. On 
PM trials, participants were informed that the PM target 
shown was only relevant for the current trial. PM trials were 
further designated as PM-present or PM-absent trials. On 

PM-present trials, the PM target reappeared once, while on 
PM-absent trials, it did not. We included PM-absent trials to 
limit the increasing expectancy of a PM target appearing as 
trial length increased. This design led to 15 total trial types 
(PM trials: face/scene × easy/medium/hard × present/absent; 
non-PM trials: easy/med/hard), which were randomly inter-
leaved so that participants had one of each trial type in each 
block.

Trials were semi-randomly designated to be between 1 
and 15 probes in length (mean = 9.3 probes). Each probe 
was on the screen for 2-s, during which one face, one 
scene, and one arrow array were presented simultaneously 
on the screen. Participants were allowed 1.9 s to respond 
to the presence or absence of the horizontal arrow in the 
OG task, or to indicate whether the PM target had reap-
peared (by pressing “3”). Participants were instructed to 
equally weight the importance of both tasks, and only one 
response (to either the OG task or the PM task) was allowed 
per probe (“task-switch” approach; Bisiacchi et al., 2009). 
Visual feedback was presented immediately following each 
response, in the form of the arrows turning green for cor-
rect OG task responses, turning red for incorrect OG task 
responses, or a yellow border surrounding the screen for 
PM false alarms. Probe feedback remained on screen for the 
remaining duration of each 2-s probe. The 1.9-s response 
deadline ensured that some time (minimum 100 ms) was 
always devoted to feedback on every probe. On PM-present 
trials, the PM target always reappeared on the last probe of 

Fig. 1   a On each trial, the ongoing task would either be easy, 
medium, or hard, depending on the similarity of the distractor arrows 
to the target arrow as depicted here. Each trial began with a unique 
face or scene target (PM trials), or a null symbol (non-PM trials). b 
Trial design. A target image was displayed for 3-s. After a 1-s delay, 
participants saw a series of 1–15 probes on the screen for 2-s each. If 

the PM-target reappeared, it did so on the last probe of the trial. Fixa-
tions were determined to fall within the PM-target ROIs if they were 
within 15 pixels (0.58°) of the boundaries of either of the PM-stimuli. 
The arrow array ROI extended in 110 pixels (4.22°) in every direction 
from the center of the screen
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that trial. Participants were given feedback on the PM task 
in the form of a green border appearing around the edge of 
the screen for correct PM responses and a red border for 
missed PM targets, or a fixation cross for PM-absent tri-
als. This feedback remained for 2-s and was followed by a 
6-s ITI with a fixation cross on the screen before the next 
trial began. On non-PM trials, participants were instructed 
to ignore the face and scene images and focus solely on the 
OG task. At the end of these trials, participants saw the fixa-
tion cross for 2 s to indicate the end of the trial, followed by 
a 6-s ITI. Feedback was provided at the end of each trial to 
ensure that participants knew that the previous PM target 
was no longer relevant.

Participants performed one trial of each of the 15 unique 
trial types on each of the 10 blocks of the experiment. Trial 
order and trial lengths were semirandomly mixed for each 
block, so that there was no predictable relationship between 
trial types or trial duration. Between three to five trials on 
each block (40 per participant across the entire experi-
ment) were semirandomly assigned to be shorter than eight 
probes in length and were considered “catch trials” and were 
excluded from analysis. These trials were included so that 
participants were aware that the PM target could reappear at 
any time. The task included 1,340 total probes, with approxi-
mately the same number of probes for each trial type. There 
were 60 total PM events, thus approximately 4.5% of probes 
contained a PM target.

During the first two blocks of the experiment, partici-
pants were encouraged to ask clarifying questions about the 
experiment. These first two blocks were treated as practice 
and were not included in the analysis. Participants then per-
formed eight more experimental blocks. At the end of each 
block, participants were given feedback on their overall PM 
task accuracy and OG task accuracy. If accuracy was low on 
either task (below chance, or 50%, on the OG task and below 
33% for the PM task), participants were verbally encour-
aged to try harder on the next block. When participants indi-
cated that they were ready to continue with the experiment, 
recalibration and validation of the eye tracker was performed 
before proceeding to the next block.

Measuring monitoring

Monitoring was quantified in two ways. First, we measured 
the total time gazing at PM stimuli and at the OG task array 
on each probe, between the start of the probe and the time 
that a response was made. These gaze times are referred to 
as the cumulative PM-dwell time and cumulative OG-dwell 
time, respectively (see Fig. 1b). Secondly, for every 4-ms 
sample, we calculated the Euclidean distance of each fixa-
tion from the center of the screen (Fig. 3a–b). The edge of 
the arrows in the OG task’s array extended to 110 pixels 

(4.22°) from the center of the screen, while the PM stimuli 
began at 150 pixels (5.75°) from the center of the screen. To 
control for variable response times across probes, we scaled 
the time-axis of these data so that 0 indicated the start of the 
probe and 1 indicated the response time on that probe. Thus, 
timepoints represent percentages of the probe period from 
onset to response.

PM costs were measured by first averaging the response 
time to correct OG task probes from non-PM trials sepa-
rately from early and late experiment blocks at each dif-
ficulty level (6 values: easy/medium/hard × early/late). As 
in previous work from our lab (Koslov et al., 2019), PM 
costs for each probe were calculated by subtracting the cor-
responding non-PM trial OG task RT (depending on time 
and difficulty) from OG task RTs on probes from PM-trials. 
The early/late designation was used to account for a decrease 
in OG task RT that occurred across early to late experimen-
tal blocks (ß = −0.073, t(29) = −6.877, 95% CI [−0.084, 
−0.062], p < .001). After controlling for time-period effects 
by baselining the OG task RT separately for early and late 
blocks, PM costs were similar across the two experimental 
time periods (ß = 0.003, 95% CI [−.017, 0.010], t(29) = 
0.248, p = .806).

In order to better describe and visualize the relationship 
between fixation patterns and PM costs, we extracted three 
PM cost bins: “no-cost,” “medium-cost,” and “high-cost” 
probes. No-cost probes were those where the PM cost was 
less than or equal to zero (~41% of probes per participant, 
mean = 260, SEM = 11). High-cost probes were those with 
a PM cost of at least 200 ms (~32% of probes per participant, 
mean = 207, SEM = 11), and probes with costs between 
the two extremes were designated as medium-cost probes 
(~27% of probes, mean = 176 probes, SEM = 6). These bins 
were selected so that we could include the meaningful cutoff 
of PM costs being ≤0 (interpreted in previous work as no 
evidence of active monitoring) as a bin, as well as having a 
high-cost bin with a similar number of probes to the no-cost 
bin and enough medium-cost probes to perform all analyses. 
Importantly, we observed probes that fell into each PM cost 
bin across all participants and difficulty levels. Addition-
ally, previous work using PM costs has demonstrated that 
individuals adjust their PM strategy gradually over time in 
response to cognitive demands (Koslov et al., 2019). Here, 
we tested whether moment-to-moment shifts in PM costs 
occurred gradually over time or were better described as 
random. To do this, we compared the PM costs surrounding 
each probe (lag −3:+3), averaged across each PM probe bin 
and collapsed across difficulty level. Consistent with previ-
ous work suggesting gradual shifts in PM costs over time, we 
found that the surrounding PM costs fluctuated along with 
the central (lag = 0) PM cost (ß = 0.066, 95% CI [0.060, 
0.071], t(29) = 12.166, p < .001).
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Statistical procedures

Unless specifically indicated in the results section, all sub-
sequent analyses were performed only on probes where 
participants were asked to perform both the PM and OG 
tasks (PM trials). Previous work from our lab (Koslov et al., 
2019), has demonstrated that OG task difficulty levels can 
be placed along a continuum from easy to hard, and so OG 

task difficulty was treated as a continuous predictor. When 
analyzing behavioral effects across task difficulty levels, we 
used standard mixed-effects statistics including relevant ran-
dom effects of participant slopes and intercepts implemented 
using the lme package (Bates et al., 2015) in R and evaluated 
further using the lmerTest package (Kuznetsova et al., 2017). 
Example formula used for the interaction and main effect 
models are below:

Terms within the inner parenthesis indicate random 
effects computed for each subject, while terms outside of 
the inner parenthesis indicate fixed effects. Exceptions to the 
above models were used when the data did not support the 
full specification of random effects included in the model. 
For PM accuracy, an intercept for each subject was used, but 
not a term for trial difficulty. For OG accuracy and cumula-
tive-OG dwell times, separate random effect terms for PM 
type and difficulty were used, but not an interaction term.

When comparing cumulative dwell time measures to 
either PM costs or PM accuracy, we used a bootstrap per-
mutation analysis (6,000 iterations) to assess population 
level reliability of effects (Efron, 1979; Kim et al., 2014; 
Lewis-Peacock et al., 2016). For the model comparisons, 
we also used the bootstrap modelling approach. We fit the 
models using all combinations of the eye-tracking measures 
(cumulative OG-dwell time, cumulative PM-dwell time, trial 
difficulty, and interactions), and then separately fit models 
with PM costs, trial direction, and the interaction. For each 
model, we extracted the weighted BIC (Vandekerckhove 
et al., 2015) and R2 values on each iteration of the boot-
strap analysis. Importantly, when using models to explain 
variance in PM accuracy, all measures were recorded from 
probes preceding the PM-target appearance, not from the 
probe where a PM-target was displayed. We did this for two 
reasons. First, we were interested in evaluating the relation-
ship between PM strategies and PM accuracy leading up to 
the noticing and acting on PM targets. Including the PM-
probe itself would add extra variability introduced by other 
factors, like bottom-up noticing of the PM-target, rather than 
how the preceding strategy relates to accuracy. Secondly, 
PM costs cannot be calculated from probes where no OG 
task RT is collected, like in cases where a PM response is 
made, making a comparison between costs and dwell times 
impossible there.

To evaluate differences in fixation location across OG 
task difficulty levels and PM cost bins, fixations were first 
identified using SR EyeLink’s default parsing parameters. 

Interaction ∶ lmer(RT ∼ pmType ∗ difficulty + (1 + pmType ∗ difficulty|Subject))

Main Effects ∶ lmer(RT ∼ pmType + difficulty + (1 + pmType + difficulty|Subject))

The average Euclidean distance from the center of the screen 
was used as the fixation distance from onset to offset of each 
fixation. Fixation onsets and offsets were scaled in the same 
manner as probe timescales and expressed as the percentage 
of probe period elapsed during that fixation. For example, 
on a probe with a response time of 1,000 ms, a fixation that 
began 200 ms after probe onset and ended at 400 ms after 
probe onset would be scaled as lasting from 20% to 40% of 
the probe period. Mixed-effect linear regression was then 
used to determine whether there was a relationship between 
fixation distance and PM costs at each timepoint. When eval-
uating fixation location differences, we used an FDR-cor-
rection method to assess statistical significance across each 
2-s probe (corrected for 100 timepoint comparisons). FDR 
correction is a process to control for an acceptable number 
of false positives out of all statistically significant tests. This 
control is carried out by first ordering the p values from 
the original statistical test from smallest to largest. Then, 
the formula pi < Alpha × (i/N) is used to determine where 
H0 should be rejected. Here, i is the ranked order of the p 
value, N is the total number of tests, and alpha = 0.01 or 
0.05. Timepoints were binned into early (the first half of the 
probe period) and late (the last quarter of the probe period). 
Mixed effect linear regression was then performed to extract 
a t score describing the relationship between PM cost and 
fixation distance in each time bin for each participant. These 
by-subject t scores were then compared across OG task dif-
ficulties. Details of all statistical procedures and preprocess-
ing steps can be found in the code provided online.

Results

Behavioral performance

Ongoing (OG) task accuracy was similar across face-target 
and scene-target trials, F(1, 29) = 1.23, p = .276, so we col-
lapsed across them for all subsequent analyses. Prospective 
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memory accuracy was not impacted by the difficulty level 
(easy/medium/hard) of the OG task (ß = 0.030, 95% CI 
[−0.065, 0.005], t(29) = −1.673, p = .105). Thus, individu-
als were not sacrificing PM accuracy for the OG task as it 
became more difficult. Next, we examined OG task accuracy 
as a function of task difficulty and trial type (PM/non-PM). 
OG task accuracy decreased as difficulty increased (ß = 
−0.120, 95% CI [−0.135, −0.106], t(29) = −16.211, p < 
.001). OG task accuracy was slightly lower on PM trials than 
on non-PM trials (ß = 0.015, 95% CI [−0.001, 0.031], t(29) 
= 1.839, p = .076), but there was no interaction between 
trial type and difficulty (ß = 0.002, 95% CI [−0.016, 0.019], 
t(29) = 0.207, p = .837).

We also examined OG task reaction times (RTs) as a 
function of task difficulty and trial type. There was a main 
effect of difficulty (ß = 142.62, 95% CI [126.50, 158.74], 
t(29) = 17.341, p < .001), with participants responding 
to the OG task more slowly as difficulty increased. There 
was also a main effect of trial type (ß = −76.25, 95% CI 
[−96.90, −55.59], t(29) = 7.235, p < .001), with partici-
pants responding to the OG task more slowly on PM trials 
compared with non-PM trials—this is the canonical effect 
known as “PM cost.” Having established a difference in OG 
task RT between PM and non-PM trials, we next investigated 
PM costs across difficulty levels. PM costs increased as OG 
task difficulty became easier (ß = 37.33, 95% CI [18.98, 

55.67], t(29) = 3.988, p < .001; Fig. 2a), such that PM costs 
on average were greater than zero across all difficulty levels 
though to a greater degree for easy probes (μ = 111.19, 95% 
CI [82.15, 140.24], t(29) = 7.83, p < .001), than medium 
probes (μ = 75.45 , 95% CI [46.24, 104.66], t(29) = 5.28, 
p < .001), or hard probes (μ = 36.54, 95% CI [7.67, 65.42], 
t(29) = 2.59, p = .015). OG task RT and PM accuracy sum-
maries can be found in Table 1.

Eye‑tracking results

To quantify monitoring behaviors, we analyzed the amount 
of time individuals gazed at the stimuli relevant for the OG 
task and at stimuli relevant for the PM task. Data from non-
PM trials served as a baseline for PM trials. As expected, 
participants fixated longer on OG task stimuli as the diffi-
culty of the OG task increased (ß = 133.60, 95% CI [114.42, 
152.78], t(29) = 13.66, p < .001). However, participants 
fixated less on OG task stimuli on PM trials compared to 
non-PM trials (when the PM stimuli could be ignored; ß 
= 30.44, 95% CI [3.57, 57.32], t(29) = 2.221, p = .034), 
and this fixation deficit increased with task difficulty (i.e., 
interaction; ß = 24.76, 95% CI [6.19, 43.33], t(29) = 2.613, 
p = .014, see Fig. 2c). On the contrary, participants consist-
ently fixated longer on PM stimuli for PM trials compared to 
non-PM trials (ß = 92.45, 95% CI [65.35, 119.56], t(29) = 

Fig. 2   The difference between PM and non-PM trial types across dif-
ficulties for each measure. Big points represent the group mean, while 
smaller, faded points represent the average for individual participants 
at each difficulty level. Gray lines show the relationship for individ-
ual participants across difficulties, while the black line is the group 
average. The dashed line at zero on each plot indicates where the PM 
value of the measure was equal to the non-PM value. Positive values 

mean that the PM value was greater than the non-PM value. a Ongo-
ing task response time difference between PM and non-PM trials (i.e., 
PM cost). b The difference in cumulative dwell time on PM-stimuli 
between PM and non-PM trials. c The difference in average cumula-
tive OG-array dwell time for PM versus non-PM trials. **p < .01, *p 
< .05

Table 1   PM and OG task performance

Trial Type OG task RT (ms) PM cumulative dwell time 
(ms)

OG cumulative dwell time 
(ms)

PM accuracy

Non-PM Easy:
Med:
Hard:

885  (24)
1,086 (30)
1,224 (31)

Easy:
Med:
Hard:

52 (12)
52 (12)
60 (14)

Easy:
Med:
Hard:

738  (25)
928  (30)
1030 (33)

N/A

PM Easy:
Med:
Hard:

1,015 (24)
1,162 (27)
1,247 (27)

Easy:
Med:
Hard:

162 (15)
147 (14)
132 (13)

Easy:
Med:
Hard:

736 (22)
888 (28)
979 (31)

Easy:
Med:
Hard:

67.1% (4.0%)
63.5% (4.9%)
61.1% (4.3%)
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6.686, p < .001), although this PM-fixation surplus shrunk 
as the OG task became more difficult (ß = 19.23, 95% CI 
[8.34, 30.12], t(29) = 3.462, p = .002, see Fig. 2b). In sum, 
these eye-tracking data generally corroborate the inference 
from the PM cost data that monitoring decreases as the OG 
task becomes more difficult.

We compared these measures directly and found that the 
link between PM costs and PM fixations was positive, but 
it weakened with increasing task difficulty, from easy (R2 
= 0.169, 95% CI [0.133, 0.207]), to medium (R2 = 0.080, 
95% CI [0.052, 0.105]), to hard trials (R2 = 0.036, 95% CI 
[0.021, 0.056]). The relationship between PM costs and OG 
task fixations was also positive (p < .001), but this cou-
pling strengthened with increasing task difficulty (easy R2 
= .345, 95% CI [0.282, .0.409], medium R2 = .468, 95% CI 
[0.412, 0.526], hard R2 = .504, 95% CI [0.445, 0.564], p < 
.001). Partial regression confirmed that even though OG task 
fixations and PM fixations were negatively correlated across 
probes, these two measures explained unique variance in 

PM costs (PM-fixations: ß = 0.62, 95% CI [0.57, 0.68], p < 
.001; OG-fixations: ß = 0.89, 95% CI [0.85, 0.93], p < .001). 
Together, PM fixations and OG task fixations accounted for 
approximately 78% of the variance in PM costs. The remain-
ing variance is likely explained by differences in saccade 
timing and fixations that fell outside of either the PM or OG 
task regions.

Unique profiles of monitoring across PM costs

The presence of PM costs is commonly taken as evidence 
of proactive control, whereas the absence of PM costs is 
often interpreted as evidence of reactive control. We lever-
aged the temporal specificity of eye-tracking to evaluate the 
relationship between PM costs and fixation patterns across 
trials. To compare fixation patterns across trials with vari-
able response times, we scaled the temporal axis of each 
probe as the percentage of time elapsed between the onset 
of the probe stimuli and the participant’s response. When 

Fig. 3   Fixations were tracked over time on each probe. a Fixation 
pattern for an example probe. Yellow circles represent individual 
fixations. b Fixation distance from center for this example. Yellow 
circles correspond to the start of fixations labelled in (a). c Fixa-
tion distances split by PM cost observed on a few sample probes. d 
Group-averaged fixation distances for easy probes split by PM cost, 
with a normalized x-axis to account for variable response times. Fixa-
tions that occurred less than 110 pixels from the center of the screen 
were within the OG arrow array, while fixations that occurred over 

150 pixels from the center of the screen were towards PM-stimuli. 
The dashed lines in d represent these distance boundaries. The pur-
ple line indicates timepoints where there was a significantly positive 
relationship between PM cost and fixation distance from the center of 
the screen. The green line indicates where the relationship between 
fixation distance and PM cost was significantly negative. FDR correc-
tion for 100 timepoint comparisons was employed for calculation of p 
values. (Color figure online)
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PM costs were high (Fig. 3d, red), participants demonstrated 
early and prolonged fixations on the PM stimuli, followed by 
later OG task fixations. There was a main effect of PM costs 
over the first half of each probe, with fixations being further 
away from the center of the screen as PM costs increased 
(FDR corrected p < .01; significant time points for easy dif-
ficulty probes shown in Fig. 3d in purple). This result was 
similar for each OG task difficulty level where there was 
a main effect of PM cost bin over the first portion of each 
probe (negative ps < .01; easy: 2%–61% of trial, medium: 
2%–56%, hard: 2%–27%). While fixation patterns during the 
first half of PM probes were similar across OG task difficulty 
levels, the average distance of fixations from the center of 
the screen decreased with increasing OG task difficulty (ß 
= −3.013, 95% CI [−5.063, −0.962], t(29) = −2.88, p = 
.007). Correspondingly, the main effect of PM cost on aver-
age fixation distance measured during the first half of probes 
decreased in magnitude as difficulty increased (ß = −29.778, 
95% CI [−35.822, −23.734], t(29) = −9.657, p < .001).

When no PM costs were observed (Fig. 3d, blue), there 
was as expected no evidence for PM monitoring, at first. 
However, during the final quartile of the response period, 
participants shifted their gaze towards the PM stimuli. The 
average fixation distance during this fourth quartile was 
further from the center of the screen on probes where no 
PM costs were observed compared to probes with medium 
or high PM costs (FDR-corrected p < .01; significant time 
points for easy probes shown in green in Fig. 3d). This 
relationship was observed across all OG task difficulty lev-
els (negative ps < .01; easy: 84%–100% of trial, medium: 
74%–100%, hard: 79%–100%), and the magnitude of the 
relationship did not change as a function of task difficulty (ß 
= 0.544, 95% CI [−4.204, 5.291], t(29) = 0.224, p = .824). 
Although it is worth noting that PM fixations were not made 
on all probes. In particular, on probes where no PM costs 
were observed, participants were less likely to ever fixate on 
PM stimuli than on probes with medium or high PM costs 
(ß = 0.102, 95% CI [−0.122, −0.080], t(29) = −9.768, p < 
.001; no-cost: 57% SE = 4%; medium-cost = 47%, SE = 4%; 
high-cost = 37%, SE = 4%).

The above analyses highlight how fixation patterns 
towards PM and OG stimuli differ across PM cost bins on 
PM-trials. In order to more fully characterize differences in 
attention allocation across PM costs, we compared cumula-
tive OG-dwell times on PM versus non-PM trials for each 
PM cost bin. As shown in Fig. 2, we found that participants 
overall spent less time fixating on the OG-array on PM com-
pared to non-PM probes. However, this decrease in OG task 
engagement was only true for no-cost probes (μ = −174 ms, 
95% CI [−201 ms, −146ms], t(29) = −12.913, p < .001). 
For medium-cost probes, there was no significant difference 
in time spent fixating on the OG task array between PM and 
non-PM probes (μ = −16ms, 95% CI [−44 ms, 12 ms], t(29) 

= −1.152, p = .259). Conversely, on high-cost probes, 
cumulative OG-dwell times were significantly greater for 
PM than non-PM probes (μ = 169 ms, 95% CI [132 ms, 206 
ms]) t(29) = 9.366, p < .001). Thus, we observed signifi-
cant differences in both PM target monitoring and OG-task 
engagement across levels of observed PM costs.

PM accuracy is best explained 
by including eye‑tracking

One discrepancy in previous research using PM costs is that 
this measure does not always relate to general PM perfor-
mance. Here, we hypothesized that collecting eye tracking 
data to measure explicit monitoring behavior could help to 
bridge the gap between PM costs and PM accuracy. We eval-
uated different explanatory models to determine which fac-
tors best explained variance in PM task accuracy (see Meth-
ods). The best fitting model, as determined by weighted BIC, 
was the fixation model that included the main effects of OG 
fixations, PM fixations, and trial difficulty (wBIC median 
= 0.608, median R2 = .123, Fig. 4a). This model provided 
a significantly better fit than the model including only PM 
costs, trial difficulty, and their interaction (wBIC difference 
Wilcoxon pseudo-median: 0.586, 95% CI [0.576, 0.595], p 
< .001) and explained approximately triple the variance in 
PM accuracy than PM costs alone (R2 difference Wilcoxon 
pseudo-median: 0.079, 95% CI [0.078, 0.080], p < .001). 
Furthermore, adding PM costs to the best fitting model of 
fixations did not improve model performance (mean BIC 
difference: 47.064, 95% CI [46.725, 47.403], p < .001).

We found a positive relationship between PM costs 
and PM performance when the OG task was easy (mean 
β = 3.99×10-4, 95% CI [1.95*10-4, 6.33×10-4], p < .001, 
Fig. 4b), but this relationship disappeared when the OG 
task was hard (mean β = 0.16×10-4, 95% CI [−1.52×10-4, 
1.75×10-4], p = .416), and the interaction between PM costs 
and these two difficulties was significant (mean ß = −1.87 , 
95% CI [−3.26, -0.56], p = .003). The relationship between 
PM cost and PM accuracy on medium difficulty trials resem-
bled the relationship that was observed on easy difficulty 
trials (mean β = 1.81×10-4, 95% CI [−0.12×10-4, 3.89×10-

4], p = .034, not shown in figure). The relationship between 
PM accuracy and PM costs stands in stark contrast to what 
we found for cumulative PM-dwell times, which were posi-
tively correlated with PM accuracy across easy, medium, 
and hard difficulty trials (mean β easy = 5.66×10-4, mean 
β medium = 5.84×10-4, mean β hard = 5.00×10-4, all ps < 
.01, Fig. 4c). When modeled in isolation, OG fixations did 
not reliably predict PM performance at any difficulty level 
(all ps > .139). However, as noted above, the best model for 
explaining variance in PM accuracy included OG fixations 
as well as PM fixations and trial difficulty. Thus, it appears 
OG fixations provide subthreshold, but useful, information 
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for explaining PM accuracy when included in addition to PM 
fixations and trial difficulty.

To characterize the relationship between PM accuracy 
and fixation patterns in more depth, we performed a median 
split analysis, separating participants into high and low per-
formers on the PM task (median accuracy = 67%, group Ns 
=15). The high performers had greater PM accuracy than the 

low performers across all difficulty levels (ß = 0.354, 95% 
CI [0.272, 0.437], t(28) = 8.407, p < .001, see Fig. 5a), with 
no interaction between difficulty and group (ß = 0.027, 95% 
CI [−0.098, 0.043], t(28) = −0.760 p = .454). Additionally, 
there were no differences between groups in OG task RTs (ß 
= 0.022, 95% CI [−0.084, 0.127], t(28) = 0.406, p = .688), 
or OG task accuracy (ß = 0.022, 95% CI [−0.037, 0.081], 

Fig. 4   a The R2 value from each bootstrap iteration plotted for the 
best fixation model and the best PM cost model. The median R2 value 
(white lines) for the fixation model is approximately triple that of the 
PM cost model. b Depicts the relationship between PM cost (ms) and 
PM accuracy (predicted probability of a correct response) on each 
iteration for easy (green) and hard (blue) difficulty trials. Medium dif-

ficulty trials are not shown here but tended to have a relationship that 
fell between that of the easy and hard trials. c Plots the relationship 
between average cumulative PM-dwell times on each trial and subse-
quent PM accuracy (predicted probability of a correct response) from 
each bootstrap iteration. **p < .01. (Color figure online)

Fig. 5   a Participants were median split by PM accuracy. High per-
formers are depicted in dark gray; low performers are depicted in 
light gray. b PM costs were similar across both groups (small dots = 
individual subjects, big dots = group averages, and lines = 95% CI). 

c Cumulative PM dwell times differed between groups (*p = .005). d 
Fixation distance across time for high performers and low perform-
ers on probes where no PM costs were observed. *p < .05 (FDR cor-
rected)
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t(28) = 0.741, p = .465), nor differences in PM costs (ß = 
10.24, 95% CI [−32.69, 53.18], t(28) = 0.468, p = .644, see 
Fig. 5b). There were no differences in cumulative OG-dwell 
times between groups (ß = 41.37, 95% CI [−58.78, 141.51], 
t(28) = 0.81, p = .425), but the high performers did have 
longer cumulative PM-dwell times (ß = −65.69, 95% CI 
[23.17, 108.21], t(28) = −3.028, p = .005, see Fig. 5c). Both 
groups had quite similar patterns of fixations. However, on 
no-cost probes, the high performers made more PM fixations 
immediately before making a response (p < .05, FDR cor-
rected 80%–100% of probes, Fig. 5d).

Discussion

We used eye-tracking to characterize active monitoring strat-
egies for prospective memory and to evaluate how monitor-
ing relates to the widely used measurement of PM costs. In 
general, high PM costs reflect a prioritization of the prospec-
tive intention with early, frequent, and prolonged monitor-
ing of PM stimuli. Low PM costs are associated with less 
monitoring overall with an increase in late, brief checks of 
the PM stimuli. Our results suggest that PM costs do not 
reflect a monolithic measure of overt monitoring for PM 
stimuli. Rather, PM costs reflect different profiles of moni-
toring behaviors depending on task demands. PM costs were 
most tightly coupled with monitoring when the OG task was 
easy. As the task became harder, PM costs decoupled from 
monitoring and instead increasingly reflected fixations on 
the OG stimuli. This suggests that PM costs are driven by 
different sources—the level of monitoring for PM stimuli or 
engagement with the OG task—depending on the demands 
of the task. Together, this set of results supports the idea 
suggested by Ball and Brewer (2018), that individuals adjust 
the nature of monitoring in order to respond to the demands 
of the environment, rather than simply the frequency of 
monitoring. Returning to our question from the beginning 
of this paper, our findings suggest that remembering to stop 
at a delicious roadside stop for “the best bar-b-que” in the 
state will be accomplished by different mnemonic strategies, 
and that the degree to which individuals rely on these strate-
gies is linked to cognitive load (e.g., the density of highway 
traffic and the intensity of backseat tantrums).

We also found that fixation measures explained a signifi-
cant portion of variance in PM accuracy. More time spent 
fixating on PM stimuli was related to better PM accuracy, 
and high-performing participants demonstrated more moni-
toring, especially when there were no observable PM costs. 
Measurements of PM fixations were also better predictors of 
PM accuracy than were PM costs. When OG task demands 
were low, eye-tracking confirmed that the link between PM 
costs and PM monitoring was strongest and, in these situ-
ations, that PM costs were also positively correlated with 

PM accuracy. Strikingly, when OG task demands were high, 
there was no relationship between PM costs and PM accu-
racy. As OG task difficulty increased, eye-tracking revealed 
that PM costs corresponded less to monitoring of PM stimuli 
and more to greater engagement in the OG task, which is 
less diagnostic of performance on the PM task. These results 
suggest that the ubiquitous and useful measurement of PM 
costs may be inadequate to understand PM performance in 
more demanding (i.e., ecologically valid) environments in 
the real world, and they highlight the advantage of including 
spatiotemporally precise methods like eye-tracking.

According to the DMPV theory of PM, the absence of 
PM costs without an accompanying drop in PM performance 
is typically interpreted as an indication that participants are 
using a spontaneous retrieval strategy (e.g., McDaniel & 
Einstein, 2007). The pattern of fixations observed during 
periods without PM costs in the present study (prolonged 
early fixations on the OG task stimuli and brief late fixations 
on the PM stimuli) could be consistent with this interpreta-
tion. Individuals may have been using a strategy called “dis-
crepancy plus search” (Lee & McDaniel, 2013; McDaniel 
et al., 2004), in which one perceives some discrepancy in 
the environment (or in memory) that automatically triggers 
an effortful search to find the source of that discrepancy. As 
the PM stimuli were peripherally available to individuals 
while they performed the OG task, they may have been able 
to rely on this strategy. Additionally, probes where no cost 
was observed were likely to contain no overt fixation on the 
PM stimuli. However, there was also evidence for a decrease 
in cumulative OG dwell times on no-cost probes, suggesting 
that individuals may have sometimes been implementing an 
effortful tradeoff between OG and PM attention allocation. 
It is likely that reactive and proactive strategies underlie sub-
sets of no-cost probes in this and previous experiments, and 
by using time-sensitive eye-tracking measures we can move 
towards more precisely identifying when each strategy may 
be engaged at any given moment.

Previous PM studies using eye-tracking have consistently 
found that monitoring for PM stimuli is positively corre-
lated with PM success. Shelton and Christopher (2016) 
found that when individuals were reminded of a PM inten-
tion by semantically related cues, they were more likely 
to monitor for and complete that intention. Bowden et al. 
(2017) found that participants who were informed about the 
temporal proximity of a PM event increased monitoring as 
time approached, and this improved memory. In line with 
these findings, we observed that the more time individu-
als spent monitoring for PM stimuli prior to an event, the 
more likely they were to accomplish the PM task. Further 
analysis also revealed that high performers spent more 
time monitoring than low performers, but critically the PM 
costs observed for these groups did not differ. It is unclear 
whether the increase in late monitoring for high-performing 
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individuals was related to increased proactive ‘checking’ 
or an increased influence from peripheral stimuli to drive 
attention allocation. Nonetheless, these results highlight the 
benefit of collecting direct measures of monitoring, rather 
than relying solely on indirect PM costs, to begin gaining a 
better understanding of the link between strategy and per-
formance in PM and potential sources of group differences 
in PM performance.

Incidentally, fixating on PM stimuli does not guarantee 
that the PM target will be identified. The target was missed 
on 26% (SEM = 4%) of trials when the PM stimuli were fix-
ated, though misses were characterized by shorter cumula-
tive PM-dwell times than hits (mean difference = 103 ms, 
95% CI [4 ms, 202 ms], p = .043). This result is in line with 
previous work that observed participants fixated on the PM 
target stimulus on up to half of trials in which they failed to 
perform the prospective intention (Hartwig et al., 2013; West 
et al., 2007). While participants did make occasional cor-
rect PM responses on probes where no fixation fell on PM-
stimuli (μ = 1.47/participant), the low frequency of these 
PM responses makes it difficult to draw strong conclusions 
about no-fixation PM responses. The fixation tracking meth-
ods used here are useful but limited, as they are incapable of 
differentiating the quantity of monitoring (indicated by dwell 
times) from the quality of monitoring (related to capacity for 
processing the OG task and PM stimuli). However, despite 
the rate of no-fixation correct PM responses being low, it 
was significantly greater than the average rate of false alarm 
responses (μ rate difference = 3.29), t(29) = 2.67, 95% CI 
[0.77, 5.82], p = .01.

In addition to increasing our understanding of PM perfor-
mance across different levels of cognitive demands, the use 
of eye-tracking can also increase our understanding of the 
processes that underlie the commonly used PM costs meas-
ure. Currently, there are two primary theories describing 
the mechanisms that lead to PM costs. The DMPV (Scullin 
et al., 2013; Shelton & Scullin, 2017) describes attentional 
resources as shared between the PM and OG tasks. Accord-
ing to this view, it is the sharing of resources between the 
two tasks that produces either PM costs (when the PM task 
receives relatively more resources) or PM forgetting (when 
the OG task receives relatively more resources). In contrast, 
the delay theory of PM (Heathcote et al., 2015) posits that 
PM costs primarily stem from a shift in the OG task decision 
threshold rather than shared-resource constraints. This the-
ory, derived primarily from evidence-accumulation modeling 
of aggregate RTs, predicts that PM costs arise not because 
processing capacities for OG tasks differ between PM and 
non-PM contexts (as would be predicted by shared-resource 
accounts), but because individuals act more conservatively 
when they perform both tasks (Strickland et al., 2018).

The patterns of fixations that we observed suggest that 
both theories may be related to PM costs, but in different 

situations. Previous work in decision making has demon-
strated that fixation durations are related to evidence accu-
mulation rates (Armel et al., 2008; Krajbich et al., 2010). In 
support of the shared-resource DMPV account, PM costs 
were best described by both PM-fixation and OG-fixation 
measures, indicating that an explanation of costs relying 
entirely on more time spent accumulating evidence (because 
of increased thresholds) for the OG task is insufficient. Addi-
tionally, on no-cost probes, there was an observed sacrifice 
in OG task dwell times to accommodate PM task monitor-
ing. These observations point to a shared attentional capacity 
mechanism being used during PM-task performance.

However, there were also patterns that could be inter-
preted as supporting a delay theory to PM costs. First, on 
high-cost probes, individuals most often fixated on the 
PM-stimuli before switching to the OG task. This pattern 
of fixations could be described as an early delay or non-
decision process, though the duration of the early fixations 
observed here is significantly longer than suggested in delay 
modeling work (Strickland et al., 2019b). Additional sup-
port for a delay model is that on no-cost probes, fixations 
to OG task stimuli were dominant, and only sometimes 
accompanied by brief checks of the PM stimuli near the 
end of the response window. This could be consistent with 
the delay theory of PM as it possibly reflects a process by 
which participants accumulated evidence for an OG task 
decision, but then delayed their response until they had 
glanced at the PM stimuli. The mixed evidence in support 
of both theories of PM costs may be because the task design 
used here requires greater levels of cognitive control than 
other paradigms. For example, both Boag et al. (2019) and 
Strickland et al. (2019a) found that PM costs were related 
to both changes in evidence accumulation rates and decision 
thresholds when the OG task was performed in cognitively 
demanding or time-sensitive environments. Additionally, we 
observed that the relationship between PM costs and OG and 
PM cumulative gaze times shifted in response to different 
levels of ongoing demands. This suggests that the underlying 
mechanics that contribute to PM costs also shift as individu-
als adapt to environmental demands.

Prospective remembering is a complex and multifaceted 
process. Individual differences in working memory capacity, 
updating, task switching, and inhibitory control can factor 
into PM performance (Ball & Brewer, 2018; Ballhausen, 
et al., 2019; Koslov et al., 2019; Rose et al., 2010; Zuber 
et al., 2016; Zuber et al., 2019). Unexplained variance in 
prospective remembering can likely be attributed to some 
combination of these processes. Models of multitasking have 
attempted to formalize the underlying mechanisms neces-
sary to accomplish such behavior (e.g., Broeker et al., 2018; 
Salvucci & Taatgen, 2008; Wickens, 2008). It is possible 
that the fixation patterns observed here represent individu-
als balancing focal versus peripheral attentional resources in 
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an attempt to maximize multitasking ability (e.g., Wickens, 
2008), or that shifts in the timing of PM fixations relate to 
changes in multithreading policies individuals adopt (e.g., 
Salvucci & Taatgen, 2008). While an in-depth discussion 
of the relationship between theories of multitasking and 
the overlap with prospective remembering is beyond the 
scope of this manuscript, we believe that eye-tracking is 
a promising avenue for differentiating between the ways 
individuals adjust attention allocation strategies in support 
of performing prospective and ongoing intentions simulta-
neously. In addition to individual differences in cognitive 
control and multitasking abilities, differences in how pro-
spective intentions are encoded vary across individuals and 
can have substantial impacts on PM strategies and perfor-
mance (McDaniel & Scullin, 2010; McFarland & Glisky, 
2012; Scullin et al., 2018). The current experiment did not 
differentiate between attentional and retrieval components 
of prospective remembering that most likely operate as con-
nected, but distinct, processes (e.g., Meier & Zimmermann, 
2015). Our findings add to a growing body of literature that 
suggests that additional factors beyond PM costs should be 
considered when evaluating PM performance. While the use 
of eye-tracking can provide a time-sensitive measure of overt 
monitoring, future work would benefit from larger samples 
and the measurement of individual differences in cognitive 
control abilities that contribute to PM (e.g., Zuber et al., 
2019). Additionally, research on working memory (Mathôt, 
2020) and prospective memory (Moyes et al., 2019) suggests 
that pupil size is responsive to cognitive load. Future eye-
tracking work could greatly benefit from the combination 
of both pupillometry and fixation tracking to better describe 
how the maintenance of and monitoring for prospective 
intentions are carried out in different environments.

Prospective memory tasks are generally characterized by 
the formation, retention, and subsequent execution of a pro-
spective intention (Kliegel et al., 2011; Rummel & McDan-
iel, 2019). In the real world, delays between the formation 
and execution of prospective intentions vary from seconds 
to many days or even weeks long. The delay intervals in the 
present experiment ranged from 2 to 30 s, which are shorter 
than in many other prospective memory experiments. Pre-
vious research has suggested that PM costs and PM perfor-
mance may decrease after an initial brief (~2 min) period 
(Brandimonte & Passolunghi, 1994; McBride et al., 2011), 
and this could limit the generalizability of our results. The 
monitoring strategies described here may most aptly apply 
to specific periods of monitoring that occur after PM inter-
ruptions (Dismukes, 2012; Dodhia & Dismukes, 2009) or 
after external reminders (e.g., Scullin et al., 2013; Shelton & 
Christopher, 2016). However, it is unclear whether the length 
of the retention interval influences how individuals refresh 
thoughts about PM intentions (Mahy et al., 2018; Scullin 
et al., 2018). An important direction of future research will 

be to test how the mechanisms associated with monitoring, 
including measurements of fixation patterns and PM costs, 
may change over increasingly long delay periods.

Concluding remarks

In summary, we used eye-tracking to measure monitoring 
behaviors in a PM experiment with varying cognitive loads. 
We found that PM costs do not reflect a monolithic moni-
toring process, but rather they are influenced by variations 
in timing, duration, and order of overt monitoring of task-
relevant information. The work presented here represents a 
promising step forward in identifying the characteristics of 
cognitive control supporting PM and how the engagement 
of these processes change as individuals orient themselves 
to external demands.
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