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Abstract
The effects of distraction on responses manifest in three ways: prolonged reaction times, and increased error and response 
omission rates. However, the latter effect is often ignored or assumed to be due to a separate cognitive process. We investi-
gated omissions occurring in two paradigms that manipulated distraction. One required simple stimulus detection of younger 
participants, the second required choice responses and was completed by both younger and older participants. We fit data 
from these paradigms with a model that identifies three causes of omissions: two are related to the process of accumulating 
the evidence on which a response is based: intrinsic omissions (due to between-trial variation in accumulation rates making 
it impossible to ever reach the evidence threshold) and design omissions (due to response windows that cause slow responses 
not to be recorded; a third, contaminant omissions, allows for a cause unrelated to the response process. In both data sets 
systematic differences in omission rates across conditions were accounted for by task-related omissions. Intrinsic omissions 
played a lesser role than design omissions, even though the presence of design omissions was not evident in descriptive 
analyses of the data. The model provided an accurate account of all aspects of the detection data and the choice-response 
data, but slightly underestimated overall omissions in the choice paradigm, particularly in older participants, suggesting that 
further investigation of contaminant omission effects is needed.

Keywords  Distraction · Omission rates · Evidence accumulation model

Introduction

Although the limits of cognitive capacity affect general per-
formance, they are probably most apparent under conditions 
of distraction – that is, when multiple demands are simulta-
neously placed upon a person’s attention. Distraction and its 
impact on behavioural performance is a widely studied phe-
nomenon that has been utilised to inform theoretical under-
standings of cognition and attention (e.g., Lavie, 1995, 2005, 
2010; Näätänen, 1990; Näätänen et al., 2011); functional 
aberrations in a range of psychiatric conditions (Cortiñas 
et al., 2008; Gumenyuk et al., 2005); fatigue (Lim & Dinges, 

2010); multi-tasking (Sanbonmatsu et al., 2013); and neuro-
anatomical function (Rinne et al., 2007; Sabri et al., 2006).

Empirically, distraction manifests in data in three ways: 
prolonged response times (RTs) and increased error and 
response-omission rates. Although prolonged RTs and 
increased error rates have been the subject of extensive 
investigation (e.g., Liete & Ratcliff, 2010; Luce, 1986; 
Ratcliff, 1978), increased response omissions (also known 
as ‘misses’ or ‘non-responses’) have not. In many cases 
response-omission rates are not reported, and sometimes 
they are even pooled with commission error responses and 
generically classed as errors (e.g., Mager et al., 2005; Miller 
et al., 2009).

We know of no reason, apart from potential rarity, 
that response omissions do not have the same status as a 
measure of distraction as accuracy and RT. On a practi-
cal level, step omissions, that is leaving out a necessary 
step in a task sequence but potentially still responding, 
are regarded as the most common human error, with a 
proliferation of research aimed at developing strategies 
to avoid such omissions (for reviews, see Reason, 2002, 
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Reason, 1998). On a theoretical level, ignoring response 
omissions represents a commitment to their arising from 
‘contaminant’ process, which is entirely independent from 
the task at hand, and so can be safely ignored when interest 
focuses on the process generating task-related responses.

There are often practical reasons that researchers must 
stipulate response windows outside of which responses 
are not recorded, resulting in the creation of response 
omissions by design related to slow but otherwise valid 
responses to a task. This can sometimes be justified if 
such ‘outlying’ (i.e., unusually fast or slow) responses 
are classed as being in part or whole generated by a con-
taminant process. However, to the degree that this is not 
true, there is the risk of potentially misleading impacts 
on summary statistics for RTs and error rates particularly 
when RT distributions have been cut off (Ulrich & Miller, 
1994). Although there are ways that these impacts can be 
avoided (see, Heathcote, 1996; Kendall & Stuart, 1967; 
Ulrich & Miller, 1994), response omissions that occur as 
a consequence of design can be hard to detect, particularly 
when they occur at relatively low levels, as they are not 
always apparent in visual inspections of the RT distribu-
tion (Ulrich & Miller, 1994).

In the current paper we explore the degree to which 
response omissions arise from a contaminant process ver-
sus from the same task mechanisms producing responses, 
with the latter being described as ‘task-related’ omissions. 
Note that contaminant omissions are defined by a process 
of elimination, that is, as what is not accounted for by task-
related omissions, so the processes that give rise to them 
are unspecified except that they are not the processes giving 
rise to task responses. Consequently, a defining feature of 
contaminant omissions is that they do not differ as a func-
tion of task-related manipulations, whereas (definitionally) 
task-related omissions may do so.

We use evidence-accumulation models (EAMs) to pro-
vide an explicit account of the process by which responses 
are usually produced. EAMs have long offered a comprehen-
sive solution for analysis of RT and accuracy data. EAMs 
describe the process of choice, assuming evidence favour-
ing different choice options accumulates over time until 
a threshold is reached, and an associated response is trig-
gered. EAMs provide a comprehensive account of responses, 
including the probabilities of correct and error responses 
and the shapes of the corresponding RT distributions but, 
in most cases, omissions have been ignored. An additional 
benefit of EAMs is that they also allow quantification of 
latent psychological processes involved in decision making 
and response execution (e.g., Brown & Heathcote, 2008; 
Donkin & Brown, 2018; Leite & Ratcliff, 2010; Luce, 1986). 
Exploring how different experimental manipulations modu-
late parameter estimates, or how parameter estimates differ 
between different populations is ultimately what enables 

insights into latent psychological processes and informs 
broader theoretical understandings.

By augmenting an EAM to provide an account of omis-
sions data, we leverage their explanatory ability to elucidate 
the latent psychological processes that underpin the occur-
rence of omissions. This approach also has the potential 
advantage of using any extra information available in the 
omission rate – information that has previously been con-
sidered noise. We use this modelling framework to examine 
two data sets – one from an experiment reported by Castro 
et al. (2019) where participants made a detection response 
and a new experiment requiring choice responses. In both 
experiments, factors causing distraction from the task at 
hand were manipulated. Our model is based on Brown and 
Heathcote’s (2008) Linear Ballistic Accumulator (LBA), and 
provides a unified account of the probability of omissions 
and responses, including the distribution of RTs for both 
detection and choice responses. The model also allows us to 
differentiate between two types of task-related omissions, 
design omissions occurring due to slow RT cut-offs imposed 
in the experiments we examined, and intrinsic omission 
caused by a failure of the task process to produce a response.

We aim to establish a methodology to determine the 
prevalence of the three types (contaminant, design, and 
intrinsic) of omissions. In the next section, we provide a 
brief overview of the relatively small body of research that 
has acknowledged the occurrence of omissions. We then 
propose our cognitive model of omissions and apply it to 
data. Table 1 provides an overview of our framework for 
understanding response omissions.

Omissions in past distraction research

Past research using omissions as a dependent variable to 
measure attention and/or distraction has used both detec-
tion and choice tasks. Examples of detection tasks include 
the psychomotor-vigilance task (e.g., Dinges & Powell, 
1985; Lim & Dinges, 2008), the continuous-performance 
task (e.g., Rosvold et al., 1956), and the detection-response 
task (DRT, e.g., Castro et al., 2019; Howard et al., 2020). 
Examples of choice tasks include the distraction paradigm 
(e.g., Schröger & Wolff, 1998), the n-back task (Evans et al., 
2018), and dual-task perceptual choice (Howard et al., 2020). 
Our focus here is on the DRT and the distraction paradigm; 
we consider the other paradigms in the General discussion.

The DRT is an International Standards Organization 
(ISO, 2016) method of quantifying cognitive workload in 
driving (e.g., Strayer et al., 2015). In the DRT participants 
are required to respond to a target stimulus occurring ran-
domly every 3–5 s while concurrently performing a primary 
task or tasks (e.g., driving and talking on a cell phone). The 
target can be presented in the visual or tactile modalities. 
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Increased load in the primary task is found to increase the 
number of omissions (Castro et al., 2016; Castro et al., 2019; 
Cooper et al., 2016).

The distraction paradigm (e.g., Schröger & Wolff, 1998) 
is used to investigate how selective attention systems filters 
extraneous changes in stimulus features. In classic versions 
a task-irrelevant auditory odd-ball sequence accompanies a 
primary choice task (e.g., numerical parity; Andrés et al., 
2006). Participants are instructed to focus exclusively on 
the primary task. The occurrence of task-irrelevant oddballs 
has been found to increase omission rates in the primary 
task (e.g., Domínguez-Borràs et al., 2009; Gumenyuk et al., 
2005; Parmentier et al., 2010; Schröger, 1996; cf. Escera 
et al., 2002; Muller-Gass et al., 2006).

For both detection and choice tasks, there is evidence of 
changes in omission rates with response-task manipulations. 
Howard et al. (2020) studied both a DRT with a shorter 2.5-s 
response window and a modified version that required a 
choice rather than detection response, again with a 2.5-s 
response window. They manipulated the difficulty of a pri-
mary object-motion tracking task, but only reported omis-
sion results for the detection task, which increased in the 
highest load condition. Castro et al. (2019) also examined a 
choice modification of the DRT and reported substantially 
reduced omissions relative to the standard DRT.

Increased omission rates are interpreted, at least in part, 
as being indicative of inattention – an inability to sustain 
attention and inhibit distraction. However, even in the areas 
of research that occasionally feature omissions as a depend-
ent variable, very little effort has gone into their further 
exploration. Any additional information omissions might 
contain about decision making processes, particularly when 
distracted, has been underutilised. Although omissions are 
often collapsed with commission errors (e.g., Mager et al., 
2005; Miller et al., 2009), there is evidence that, at least in 
some instances, patterns of omission and commission errors 
can differ (Meule, 2016; Meule et al., 2012), suggesting that 
it is better to consider omissions separately and that there 
might be extra psychological insights to be gained by under-
standing their cause or causes.

Castro et al. (2019) incorporated an account of omissions 
into an evidence-accumulation model of the standard and 
choice versions of the DRT using a diffusion process with 
a single positive barrier (Heathcote, 2004), but they did not 
differentiate among different possible causes of omissions. 
Evans et al. (2018) and Howard et al. (2020) took account 
of design omissions associated with slow RT cut-offs in 
the data they examined by applying the approach for fit-
ting censored1 distributions proposed by Kendall and Stuart 
(1967; also Heathcote, 1996, and Ulrich & Miller, 1994) to 
modify the likelihood equations of a version of Brown and 
Heathcote’s (2008) LBA model proposed by Heathcote and 
Love (2012) that allows only positive accumulation rates. 
Ratcliff and Van Dongen (Ratcliff & Van Dongen, 2011; see 
also Ratcliff & Strayer, 2014) fit the single-barrier diffusion 
model to psychomotor-vigilance task data and accounted for 
‘lapses’ (responses slower than 0.5 s) through both censor-
ing and intrinsic omissions. Intrinsic omissions are caused 
by negative evidence-accumulation rates due to Gaussian 
trial-to-trial variability, which can result in a failure to ever 
reach the positive barrier.

In the next section we combine these approaches to pro-
vide a more comprehensive account of omissions. We use 
Brown and Heathcote’s (2008) original LBA, which allows 
negative accumulation rates due to Gaussian trial-to-trial 
variability, to account for intrinsic omissions. We use Ken-
dall and Stuart’s (1967) approach to account for design 
omissions through censoring. Finally, we use a version of 
the approach of Castro et al. (2019) to model contaminant 
omissions (see also Matzke et al., 2019).

Table 1   A taxonomy of omissions. The levels of response-task omissions are both mediated by effects on the accumulation rate parameters of 
the LBA response process, whereas non-task omissions are mediated by a parameter unrelated to the response process

Omission source Omission type Omission definition

Response-task processes Intrinsic Task process never produces a response
Design Task process produces a response that 

is too slow to be recorded because of 
the experimental design

Non-task processes Contaminant Processes outside the task, and so not 
influenced by task manipulations, 
stop a response from occurring

1  Censoring implies that the number of omissions is known, and 
this number is used in Kendall and Stuart’s likelihood modification 
(Equation 32.36, p. 523). Censoring is to be distinguished from trun-
cation, where the number of omissions is unknown, but the cut-off 
or cut-offs are known. Truncation requires a different modification 
of the likelihood, normalisation by the probability of non-omission. 
Because the number of omissions is not taken into account, the qual-
ity of estimates is reduced relative to censoring.

964 Memory & Cognition  (2022) 50:962–978



A comprehensive cognitive model 
of omissions

In the LBA parameters corresponding to different psycho-
logical processes include: the rate evidence is accumu-
lated at, which can be broken down to the average rate 
over accumulators for each response (quantifying the 
urgency with which responses are made) and the differ-
ence between the rates for the accumulators that match 
and mismatch the stimulus (quantifying the quality of the 
evidence on which the decision is based); the threshold 
(b) amount of evidence required to trigger a response, 
which can be broken down into the average over accu-
mulators (which quantifies response caution) and the dif-
ference between accumulator threshold (which quantifies 
response bias); and the non-decision time (ter) required for 
processes such as stimulus encoding and response execu-
tion. For detection tasks a single threshold and accumula-
tion process is assumed so only the rate, threshold, and 
non-decision parameters are relevant. Before we outline 
how these parameters are expressed and their underlying 
mathematical properties, it is useful to provide a review 
of the three types of omissions we have defined. The first 
two – intrinsic omissions (due to between-trial variation 
in accumulation rates making it impossible to ever reach 
the evidence threshold) and design omissions (due to a 
priori response windows that cause slow responses not to 
be recorded) – are determined by the same process that 
produces responses; and a third, contaminant omissions, 
allows for a cause unrelated to the response process.

Often, one or more of the aforementioned parameters is 
assumed to randomly vary between trials, with extra 
parameters corresponding to the level of variation. For the 
LBA the starting points (or equivalently thresholds) of 
evidence accumulation have a uniform distribution 
(between 0 and A), rates have a normal distribution (with 
mean v and standard deviation sv), and both assumed inde-
pendent over accumulators. As the rate distribution is 
unbounded the sampled rate for a trial can be negative with 
probability Φ

(

v

sv

)

 , where Φ(x) is the integral from −∞ to 
zero of a normal distribution with mean x and a unit stand-
ard deviation. In the case of the single-accumulator model 
for detection tasks (e.g., the DRT) this means that the 
probability of an intrinsic omission is pI = Φ

(

v

sv

)

 . In the 
case of the two-accumulator model for choice tasks (e.g., 
the distraction paradigm), the probability of an intrinsic 
omission is given by the probability that both matching 
and mismatching accumulator have negative rates at the 
same time, pI = Φ

(

vT

svT

)

× Φ

(

vF

svF

)

 where the subscript T 
indicates the matching accumulator and F the mismatching 
accumulator. Brown and Heathcote (2008) noted that in 

their fits to data in which omissions were rare or unre-
ported, pIwas negligible, and so they did not take account 
of this possibility in the likelihood equations they used to 
obtain fits.

The probability of design omissions is determined by 
the response window and the LBA accumulator probabil-
ity density function, f(t | A, b, v, sv), and cumulative distri-
bution function, F(t | A, b, v, sv) (see Brown & Heathcote, 
2008, for the corresponding equations), where t is the deci-
sion time (i.e., RT – ter). In the cases we address here, the 
response window excluded only slow RTs greater than 
an upper cut-off, U. For the detection case the probabil-
ity of a design omission is pD = 1 − F(U). For the choice 
case we first require the probability densities for correct, 
fc(t) = f (t | AT, bT, vT, svT)(1 − F(t | AF, bF, vF, svF)) and error, 
fE(t) = f(t | AF, bF, vF, svF) (1 − F (t | AT, bT, vT, svT)), responses. 
The probability of a design omission is then the sum of 
the probabilities that correct and error responses exceed 
U, pD = ∫ ∞

U
fE(x) dx + ∫ ∞

U
fc(x) dx , where each probability 

is obtained by numerical integration.
Both the probability of design and intrinsic omissions, 

and hence the overall probability of a task-related omission, 
pT, have different value for each cell of the experimental 
design that differ on one or more accumulator parameters 
(i.e., A, b, v, or sv), so for design cell i, pTi = pIi + (1 − pIi) pDi. 
Note that no extra parameters need to be estimated to pro-
duce predictions about task-related omissions. The ability 
of the model to discriminate task-related from contaminant 
omissions comes from the former being constrained by 
the observed responses (i.e., having to fit response prob-
abilities and RT distributions). The contaminant component 
adds extra freedom to explain omissions that cannot eas-
ily be accommodated by the response process. We make 
the assumption that only the evidence accumulation pro-
cess is affected by the factors that constitute the experi-
mental design, and hence that the probability of omis-
sion due to contamination, pC, applies to all design cells. 
Hence, the overall probability of omission for design cell i 
is pOi = pC + (1 − pC)pTi . Therefore, differences in omission 
rates between design cells are entirely accounted for by the 
evidence accumulation process, whereas some or all of the 
overall level of omissions is accounted for by contamination 
at the cost of requiring one extra parameter estimate.

This set of assumptions helps to make it possible to iden-
tify the parameters of the model. The supplemental materials 
(available at https://​osf.​io/​hb4dw/) provide detailed methods 
and results for a series of parameter-recovery simulations. 
We evaluated the recovery of the three types of omission 
parameters on two dimensions: accuracy and the calibra-
tion of uncertainty. The detection response task performed 
well on both dimensions. Accuracy was evident in posterior 
mean estimates of omission parameters from fits to simu-
lated data falling close to the data-generating values for all 
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parameters. Calibration of uncertainty was evident in the 
proportion of times that the 95% credible intervals encom-
pass the data-generating omission parameter value being 
close to the nominal value. Estimation in the distraction 
paradigm was similarly accurate, but the uncertainty of the 
omission parameter estimates was slightly underestimated 
(i.e., the percentage of data-generating values falling in 95% 
credible intervals was slightly less than nominal, indicating 
that their width was underestimated). Given the relatively 
minor variations from ideal behavior these results indicate 
that the omission parameter estimates we report can be inter-
preted with confidence.

In the following two sections we assess the evidence for 
each of the model’s three types of omissions, first in the 
simpler case of Castro et al.’s (2019) DRT data and then in 
more complex case of our new distraction-paradigm data. In 
the General discussion we consider alternative assumptions 
about how omissions are generated.

Omissions in the detection response task

Castro et al. (2019) manipulated cognitive load by having 
20 participants count backwards by 3s in one condition and 
not in another. These conditions were crossed with four other 
conditions, three of which required participants to perform 
versions of the DRT – detecting either a lower or a higher 
intensity light in two and discriminating the lower versus 
higher intensity lights in a third choice-DRT condition. No 
extra task was performed in the fourth condition. Omissions 
were most frequent in the detection conditions, at an average 
of around 5%, so we analyse only those conditions, which 
form a 2 (stimulus: low vs. high intensity) × 2 (load: none 
vs. 3s) within-subjects design.

Omissions were more common with the secondary-task 
load (6%) than without (4.3%), χ2(1) = 19.8, p < .001. RT 
was also much slower with the load, by 0.16s, χ2(1) = 1080, 
p < .001, and slower for low- than high-intensity stimuli, by 
0.02s, χ2(1) = 37.9, p < .001. These results suggest that RT 
and omission rates are related (i.e., both RT and omissions 
increase with load) but not entirely redundant (stimulus 
intensity affects RT but not omissions). Note that throughout 
this paper tests on manifest measures were carried out using 
linear mixed models (Bates et al., 2015), assuming Gaussian 
error for the log of RT and a binomial model with a probit 
link function for binary measures, with Type III Wald test 
statistics in both cases (Fox & Weisberg, 2018).

We first fit seven different versions of the LBA-Omission 
(LBAO) model that differed in the parameters that were 
affected by the load factor (i.e., separate parameter values 
were estimated for each level of the load factor), constitut-
ing all possible combinations in the power set of one or 
more of the three mean rate, rate standard deviation, and 

non-decision time parameter types (23−1 = 7, omitting the 
model with no effect of any of the three parameters). We 
then report analyses based on two additional follow-up mod-
els that enable us to follow up on results obtained with the 
power-set models.2

All models assumed a common A parameter across all 
conditions, and we assumed different mean rate and rate 
standard deviation parameters for high and low stimuli. In 
order for the standard LBA model to be identifiable either a 
rate mean or standard deviation or threshold parameter must 
be fixed, with the choice of which being arbitrary as a simple 
re-parametrization makes the effect of fixing one exactly 
equivalent to fixing another (see Donkin et al., 2009), and a 
common choice being a rate standard deviation parameter. 
However, in the LBAO model both rate parameters can affect 
intrinsic omissions, whereas the threshold does not, and so 
the equivalence does not hold. Hence, we choose to fix the 
threshold for identifiability. As low and high stimulus condi-
tions had almost entirely separate parameters, we fixed the 
threshold at 1 in both. We fit the models using the software 
and Bayesian methods described in Heathcote et al. (2019) 
with relatively non-informative priors (see Online Supple-
mentary Materials (OSM) for details, and files at https://​osf.​
io/​hb4dw/ for all of the data and R code for all of the model 
fits described in this paper).

Detection response task modeling results

Table 2 reports model-selection results based on the Devi-
ance Information Criterion (DIC; Spiegelhalter et  al., 
2002), where smaller values indicate a better trade-off 
between goodness-of-fit and a penalty for additional model 
complexity. However, DIC alone does not provide an abso-
lute indication of the best model, and should be considered 
only as a guide, especially when models differ by a rela-
tively small margin (see Spiegelhalter et al., 2014, for fur-
ther discussion). Hence, we also consider other evidence, 
particularly posterior predictions (i.e., the distribution of 
data outcomes predicted by the fitted model), to assess 
whether a model adequately captures key features related 
to our focus here, omission probability (see Morey et al., 
2012, for a discussion of the importance of such model 

2  A reviewer questioned why we did not compare a ‘standard’ LBA 
that ignores omissions to the LBAO to assess whether the latter’s 
mechanisms for accounting for omissions are required. However, an 
LBA that is unable to account for omissions is immediately ruled out 
when omissions are not neglected and so it is impossible to compare 
the two models in this way. The model testing we report does par-
tially address this issue by examining the effect of removing some 
mechanisms that can account for omissions while keeping others.
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checks). Open availability of our data and modelling code 
enables readers to reach independent conclusions based on 
the types of evidence and assumptions they favour.

The full model is selected with the largest load effect 
being on mean rates and the least on non-decision time 
(i.e., the increase in DIC caused by dropping a single 
parameter from the full model is least for non-decision 
time). This pattern is consistent with Castro et al.'s (2019) 
DIC model-selection results, except that they fixed the 
moment-to-moment variability parameter of the single-
barrier diffusion model (which does not include a trial-
to-trial variability parameter) to make it identifiable, and  
found that load affected the threshold parameter.

Figure 1 plots average omissions and mean RT along with 
fits of the selected model. In the Bayesian framework, uncer-
tainty (indicated by 95% credible intervals) is indicated for 
the model rather than the data. The model provides a good 
account of the positively skewed RT distributions and the 
increase in RT with load as well as the percentage of omis-
sions, although there is slight underestimation for low load 
stimuli.

Figure 1 also plots individual omissions, showing that 
three participants had particularly high omission rates, and 
that these were almost entirely accounted for by the model’s 
contaminant omission parameter. However, the figure makes 
it clear that for most other participants the task-related 

Table 2   DIC model selection results (better models have smaller val-
ues) for seven models constituting all possible combinations of load 
effects on Linear Ballistic Accumulator (LBA) rate means (v) and 

standard deviations (sv) and non-decision time (ter) parameters with 
the DIC for the best model, min(DIC) = - 1515, subtracted

Model v, sv, ter v, sv v, ter sv, ter v sv ter

DIC - min(DIC) 0 50 241 1150 373 2243 1389

Fig. 1   Top row: Response time (RT) distributions (lower, middle and 
upper lines and points are 10th, 50th and 90th percentiles, respec-
tively). Bottom left panel: Omission percentages data (open sym-
bols), with model fits of the selected model in Table  2 as posterior 
predictive medians (solid points) and 95% credible intervals. Bottom 

right panel: Individual participant omission percentages against the 
posterior median of the contaminant omission parameters estimated 
by the model. Load conditions: none and 3s (i.e., count backwards by 
3s)
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omissions are necessary. This is also clear from the fact that 
omissions vary as a function of the experimental manipula-
tions, which cannot be explained by the contaminant param-
eter as it is assumed fixed across these conditions.

Figure 2 shows how the two types of task-related omis-
sion were estimated to vary over experimental conditions 
by the selected model. In every case, omissions appear to 
increase with load, consistent with the effect of load on the 
observed omission rates. To provide a test we calculated 
task-related omission rates for every posterior parameter 
sample and computed medians and Bayesian 95% credible 
intervals  on the posterior predictive distributions of differ-
ences over manipulations. Credible intervals (provided in 
square brackets below) were estimated by the range between 
the 2.5th and 97.5th percentiles of the resulting distribution. 
There was a main effect of load with both stimuli for intrin-
sic (low: 0.74% [0.42, 1.04]; high: 0.71% [0.48, 0.99]) and 
design (low: 1.18% [0.9, 1.41]; high: 1.24% [1.02, 1.24]) 
omissions. No main effects or interactions with the stimulus 
factor were supported except a slightly higher rate of design 
omissions for low than high stimuli with no load (0.21%, 

[0.04, 0.42]). Intrinsic omissions were less common than 
design omissions both without load (low: 0.26% [0.16, 
0.34]; high: 0.18% [0.08, 0.25]) and more so with load (low: 
0.69% [0.53, 0.84]; high: 0.7% [0.56, 0.83]).

We also examined posterior difference distributions to test 
effects on model parameters. As expected from the model 
selection results, and consistent with the idea that a secondary 
task drains cognitive capacity as reflected in accumulation 
rates (Castro et al., 2019), increased load decreased mean rates 
from 5.96 to 4.06 (a difference of 1.89 [1.78, 2.02]). Also 
consistent with their being allowed to vary with stimulus in 
the models and the standard interpretation of rates reflecting 
stimulus strength, mean rates were greater for high than low 
intensity stimuli (0.26 [0.18, 0.34]). Although there was no 
support for a main effect of stimulus on rate standard devia-
tions, there was a bigger load effect for low than high stimuli 
(0.18 [0.05, 0.32]). The main effect of load was caused by 
a decrease in rate standard deviations with load from 2.1 to 
1.58 (0.52 [0.43, 0.61]), but the decrease was largely propor-
tional to the mean, so the ratio of mean to standard deviation 
decreased only slightly with load (0.13 [-0.02, 0.27]).

Fig. 2   Median and 95% credible intervals for the posterior predic-
tive distribution of task-related omissions computed for the model 
selected in Table 2. The left column displays intrinsic omissions and 

the right column design omissions with the upper row containing 
results for low stimulus and the lower row for high stimuli
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In light of the results just reported we fit two extra mod-
els. Because of the relatively weak intrinsic omission rates, 
we fit a model in which they are absent as the rate distribu-
tion is truncated to be positive (Heathcote & Love, 2012). 
Consistent with the observed small effects, this model, which 
was parameterized as for the winning model in Table 2, was 
preferred by the DIC by a small margin (32). However, as 
shown in the OSM (Fig. S1), this model had an exagger-
ated under-prediction of omissions for low-intensity stimuli. 
Given this, we conclude that the inclusion of intrinsic omis-
sions is warranted but that its effect is smaller than that for 
design omissions.

Second, because three participants had much higher 
omission rates (15%, 26% and 32%) whose overall level 
was largely explained by the contaminant parameter (see 
Fig. 1), we fit a model without the contaminant parameter 
(but otherwise the same as the model selected in Table 2) 
to see if it was necessary in the remaining participants. 
The support for the model with the contaminant parameter 
remained, with the model selected in Table 2 winning on 
DIC by 55, but the DIC difference was much smaller than 
for the fit including all participants (369). Further, without 
contaminant omissions the misfit to observed omission rates 
was very marked (see OSM Fig. S1) suggesting that it was 
impossible to increase the level of task-based omissions suf-
ficiently to compensate for contaminant omissions. Hence, 
we conclude that contaminant omissions are necessary, at 
least for a subset of participants.

Detection response task discussion

The LBAO model was able to provide a quite accurate 
representation of all aspects of performance in the DRT, 
ranging from RT distribution to omission rates. The model 
even accurately captured participants with high omission 
rates who might ordinarily be excluded from analyses due 
to being deemed non-compliant with experimental instruc-
tions. Given that participants had to simultaneously perform 
the tracking task and counting backwards in one condition, 
higher omission rates do not seem unreasonable, and may 
simply represent part of the normal continuum of methods 
for coping with an attention demanding task. The LBAO 
model was able to provide a good fit to data from these par-
ticipants (see OSM Fig. S2 for individual plots), including 
the RT data for the responses they made. This provides evi-
dence that the LBAO was able to successfully separate out 
the effects of the contaminant process.

The LBAO model suggested that omissions related to the 
primary task were increased by the distraction caused by a 
secondary-task load (counting backward by 3s). This was 
true of both intrinsic omissions, occurring because the stimu-
lus did not cause any positive evidence accumulation towards 

the response threshold, and of design omissions, where the 
positive accumulation was so weak that it did not result in 
threshold crossing in under the 3-s time limit dictated by the 
ISO standard. This result is striking because even the slow 
90th percentile of RT was little more than 1 s on average 
(see Fig. 1), indicating that the LBAO produced distribu-
tions with a long thin slow tail that contains non-negligible 
probability mass at quite long RTs.

The incidence of intrinsic omissions was much less, and 
indeed there was some evidence that they were not a neces-
sary part of a parsimonious model, although their exclusion 
led to some noticeable misfit in omission rates for low-inten-
sity stimuli. Note that we did not allow contaminant omis-
sions to vary with load in order to determine if task-related 
omissions alone could account for its effect. Given the good 
fit we obtained this seems to be the case here.

In the next section we investigate whether the LBAO 
model can also provide a good description of choice behav-
iour in the distraction paradigm and how the relative levels 
of all three types of omissions differ in this case.

Omissions in the distraction paradigm

In the distraction paradigm, as well as examining the effect 
of distraction, we also explored differences in omission 
behaviour due to aging, comparing the performance of a 
young and healthy older groups. Participants made a choice 
response classifying tones as long (0.25 s) or short (0.1 s). 
On a minority of ‘deviant’ trials the task irrelevant tone pitch 
could either be higher or lower than on the majority of tri-
als, causing an oddball distraction effect. As reviewed in the 
opening section of this paper, the occurrence of a deviant 
can increase omission rates, and is known to prolong RT 
and decrease accuracy rates (Schröger & Wolff, 1998) in 
the primary task.3

In light of evidence that distraction also affects perfor-
mance on the trial after a deviant occurs, we conducted a 
2 × 2 × 5 mixed model analysis with the between subject 
factor of age (young vs. old), and the within-subject factors 
of stimulus (long vs. short) and deviance (S = standard after 
standard, HD = high deviant after standard, LD = low devi-
ant after standard, SAHD = standard after high deviant, and 
SALD = standard after low deviant). Before reviewing our 
EAM results, below we provide an overview of the method-
ology used and results from traditional analysis techniques.

3  Note that these data were collected to provide control data for a 
larger study focusing on the effects of schizophrenia, with the sample 
size chosen to match the number of subjects who were obtained in the 
clinical group.
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Method

Participants

Participants were 34 younger (18−38 years, M = 23 
years, SD = 4.85 years; 22 females) volunteer commu-
nity members and undergraduate students from the Uni-
versity of Newcastle, and 23 older (59−74 years, M = 67 
years, SD = 4.02 years; 12 females) volunteer community 
members.

Apparatus

Assessments of hearing thresholds were conducted using 
an Earscan 3 ES3S pure tone audiometer in line with 
the American Speech-Language-Hearing Association 
Guidelines for Manual Pure-Tone Threshold Audiom-
etry (2005). Experiments were delivered using Presenta-
tion© version X by a standard PC running Windows XP, 
on a 27-in. LED monitor (60 Hz). Sound stimuli were 
delivered binaurally via Sennheiser HD 280 professional 
headphones.

Stimuli

Sounds were equiprobable short (0.1s) and long (0.25s) 
pure tones with .005s rise/fall times. Tone frequency (i.e., 
pitch) was manipulated to produce an auditory oddball 
sequence. Regular tones had a frequency of 700 Hz (p 
= .75), while rare tones were either of a lower (613 Hz; 
p = .125) or higher (1,560 Hz; p = .125) frequency. All 
frequencies were presented equiprobably across short and 
long tones. All tones were delivered at an intensity of 75 
dB SPL.

Task

Participants completed an auditory duration discrimina-
tion task. Specifically, they were asked to indicate whether 
presented tones were short or long in duration by press-
ing a left or right button on a custom built two-button 
response terminal. Response mapping was counterbal-
anced between participants with the hand-to-button-press 
requirements (i.e., left index finger to left button and right 
index finger to right button) explained and demonstrated 
to participants prior to task onset. Participants completed 
800 duration discrimination trials, split equally across four 
blocks. Blocks were separated by a 1-min rest break. Tones 
had an inter-stimulus interval of 1.6 s. Participants were 
instructed to respond as quickly and accurately to tones 
as possible.

Procedure

Participants attended two testing sessions, each approxi-
mately 2 h in duration. In session one, participants com-
pleted assessment of suitability for inclusion based on 
mental health history, as well as several other psycho-
metric measures for use in another study (Todd et al., in 
preparation). In session two, participants completed the 
duration discrimination task. Prior to the beginning of the 
task participants were fitted with a 64-channel ActiveTwo 
Biosemi EEG system to record continuous electroenceph-
alogram (EEG) data during completion of the duration 
discrimination task, also for use in another study (Todd 
et al., in preparation). Finally, participants were fitted with 
headphones and asked to stay as still as possible while they 
followed instructions presented on the screen and com-
pleted the duration discrimination task.

Results

The first three trials of every block were removed from 
analysis as is standard with most distraction paradigm tasks 
so that the pattern is established that makes deviant tones 
distracting. Responses faster than 0.2 s were then removed 
from analysis, which reflected 0.78% of responses by old 
and 0.075% of responses by young participants. The pro-
grammed response window closed at 1.45 s; however, due to 
computer timing jitter, eight responses slightly greater than 
1.45-s duration were identified and removed from analy-
sis. Of these, five were for old (0.03%) and three for young 
(0.01%) participants. See Figs. 3 and 4 for plots of the results 
for which inferential results are reported next.

Mean RT was faster for short than long stimuli (0.616 s 
vs. 0.633 s), χ2(1) = 96, p < .001, and was clearly shorter 
for standard trials than other trials (S: 0.601 s, HD: 0.645 s, 
LD: 0.651 s, SAHD: 0.656 s, SALD: 0.635 s), χ2(4) = 925, 
p < .001. Although the main effect of age just failed con-
ventional significance, the interaction of age and stimulus 
was significant; older participants responded 0.044 s slower 
to short stimuli and 0.035 s slower to long stimuli, χ2(1) = 
13.4, p < .001.

Accuracy was greater for short than long stimuli (90% 
vs. 88%), χ2(1) = 41, p < .001, highest in the standard con-
dition, and slightly lower in the other deviance conditions 
except in the standard-after-high-deviant condition, where 
it was markedly lower (S = 91%, HD = 78%, LD = 90%, 
SAHD = 89%, SALD = 90%), χ2(4) = 937, p < .001. The 
latter effect was driven by an interaction between tone length 
and frequency whereby long-duration high deviants were 
perceived as short-duration tones (accuracy 61%), χ2(3) = 
899, p < .001. Older participants were less accurate on aver-
age than younger participants (82% vs. 93%), χ2(1) = 19.7, 
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Fig. 3   Fit of the most flexible intrinsic and contaminant model in 
Table 3. The three lines in the left column are the 10th, 50th and 90th 
percentiles of response time (RT) distributions. Data are open circles 

joined by lines. Fits are shown with 95% credible intervals. HighD = 
High Deviant, LowD = Low Deviant, SAHD = Standard After High 
Deviant, SALD = Standard After Low Deviant
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p < .001. The misperception effect was also stronger, with 
accuracy for long-duration high deviants less than chance for 
older participants (45%) but better for younger participants 
(72%), χ2(1) = 49.6, p < .001.

Omissions were more common for older than younger 
participants (6.4% vs. 2.2%), χ2(1) = 7.3, p = .007, and for 
short than long stimuli (4.2% vs. 3.6%), χ2(1) = 15.7, p < 
.001. They were most common following the misperceived 
high-deviant in the standard-after-high-deviant condition, 
χ2(4) = 49.7, p < .001, particularly for young participants, 
χ2(4) = 23.8, p < .001. Detailed patterns are shown along 
with model fits below.

Distraction paradigm modeling results

We fit young and old participants separately, and as with 
the DRT we fixed threshold parameters in order to make the 
LBAO model identifiable. We reasoned that thresholds could 
mediate a response bias (i.e., long and short response accu-
mulators could have different thresholds) and that thresholds 
might differ on trials after deviants relative to other trials (as 
participants could easily detect the occurrence of a deviant 

and then had sufficient time before the next trial to adjust 
their threshold). As the most complex model we considered 
had different rate parameters for all stimuli, we fixed the 
threshold at 1 for the short accumulator for all conditions 
and estimated separate long accumulator thresholds for trials 
after a deviant and after a standard trial to allow for differ-
ential response bias.

In light of the strong differences among the ten stimu-
lus and deviance conditions we allowed separate mean rate 
parameters for each, resulting in a total of 20 estimated 
parameters, ten for matching accumulators and ten for mis-
matching accumulators. Given their critical role in deter-
mining both design and intrinsic omissions, we explored 
three models with progressively more complex rate stand-
ard deviations, either only differing between matching and 
mismatching accumulators (two estimated parameters), also 
differing with the deviance factor (ten estimated parameters), 
or also differing with deviance and stimulus factors (20 esti-
mated parameters). We fully crossed these three cases with 
three types of omission model: the full omissions model 
allowing for contaminant and task-related (design and intrin-
sic) omissions and models removing one mechanism, a sec-
ond with only contaminant and design mechanisms to test 

Fig. 4   Parameters and fit of the most flexible intrinsic and contami-
nant model in Table 3. The left column shows individual participant 
omission percentages against the posterior median of the contaminant 
omission parameters estimated by the model. The middle and right 
columns show differences between the standard and deviant condi-

tions omission percentages for the data (solid symbols) and the model 
(open symbols with 95% credible intervals). HighD = High Deviant, 
LowD = Low Deviant, SAHD = Standard After High Deviant, SALD 
= Standard After Low Deviant
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the necessity of our new proposal of an intrinsic mechanism, 
and a third removing the contaminant mechanism to test the 
efficacy of the task-related mechanisms in isolation. All nine 
resulting models we assumed the same value of non-decision 
time and start-point noise for each condition.

Table 3 shows that for every combination of contaminant 
mechanism, the most complex model of rate standard devi-
ations was preferred. Older participants showed the same 
pattern of results as for the DRT, with support for design 
and contaminant omissions but not for intrinsic omissions, 
whereas younger participants displayed support for design 
and intrinsic but not contaminant omissions.

Figure 3 shows the fit of the full omission model. 
Although its account of responses (i.e., accuracy and 
RT distributions) is good, it underestimates omissions 
by a constant amount across all conditions, particularly 
for older participants and short stimuli. We speculated 
that the perceptual interaction between tone length 
and frequency might be the cause, and so fit a model 
in which the probability of contaminant omissions, 
which modulates the overall level of omissions across 
the different deviance conditions, differed for long 
and short stimuli. This model was preferred by DIC, 
with the same type of models winning by an extra 192 
and 128 units for old and young participants, respec-
tively. Although the fit to omissions was better mis-
fit remained (see OSM Fig. S3). Given the fact that 
allowing contaminant omissions to differ as a func-
tion of experimental manipulations blurs the boundary 
between them and decision-process related omissions, 
we chose to focus further analysis on the model with 
fits depicted in Fig. 3.

The left column of Fig. 4 plots the individual participant 
omission percentages against the model’s contaminant esti-
mates. In contrast to the DRT data, although one of the higher 
omission-rate cases was predominantly explained by contami-
nation, two were not. The remaining columns of Fig. 4 focus 
on the model’s ability to fit the pattern of omission differ-
ences across deviant conditions by subtracting out the standard 
condition. As the contaminant process adds a constant to all 
conditions it does not play a role in this explanation. The figure 

shows that the model’s task-related omission components are 
generally quite good at accommodating the pattern of differ-
ences, with the exception of the underestimation for old par-
ticipants with long stimuli in the high deviant condition and 
for young participants for short stimuli in the standard after 
high deviant condition.

Figure 5 plots a breakdown of task-related omission esti-
mates for correct and error responses. Intrinsic omissions are 
notably rare for older participants, and although generally low 
for younger participants there are noticeable elevations in some 
deviant conditions. This is consistent with the DIC support for 
the inclusion of intrinsic omissions in Table 3. However, the 
large credible intervals indicate that the elevation in intrinsic 
omissions applies to only some participants. Design omissions 
are elevated for older participants, consistent with their gener-
ally slower responses.

Detailed parameter estimates are found in the OSM (see 
Figs. S4, S5, and S6) and we summarize the most relevant 
aspects here. On average over accumulators mean rates 
were higher for short than long stimuli but did not vary 
greatly over deviance conditions. The difference between 
mean rates for the matching and mismatching accumula-
tors also did not vary much over stimulus and deviance 
conditions. The only exception to this trend is for a sharp 
decrease in the high deviant condition for long stimuli, 
particularly for older participants. This reflects the marked 
tendency for old participants to classify long high deviant 
stimuli as short. Rate standard deviations averaged over 
accumulators did not differ much between conditions. As 
is usually found with the LBA, the mismatch accumula-
tor had a greater standard deviation than the match accu-
mulator, with this difference being greater for short than 
long stimuli. Again, for the difficult high-deviant condition 
things differed, with no difference for short stimuli and a 
reversal for long stimuli. As also shown in the OSM, par-
ticipants were generally biased towards short responses. 
Consistent with all models allowing thresholds for each 
accumulator to differ on trials following a standard and 
following a deviant, the bias for young participants was 
greater after a deviant, whereas for old participants it was 
greater after a standard.

Table 3   DIC minus minimum DIC separately for young (minimum 
DIC = -19156) and old (minimum DIC = 2744) participants for the 
nine models crossing the three combinations of omission mechanisms 

with the three parameterizations of rate standard deviations (M = 
match vs. mismatch, D = deviance and S = stimulus factors). N = 
number of estimated parameters

Omissions Full omission model Design and intrinsic Design and contaminant

Rate SD M M,D M,D,S M M,D M,D,S M M,D M,D,S

N 27 35 45 26 34 44 27 35 45
Old 1102 606 44 1320 832 243 1025 505 0
Young 1047 496 76 952 438 0 1065 651 214
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General discussion

We proposed a variant of Brown and Heathcote’s (2008) 
LBA evidence-accumulation model in which participants 
fail to make a response due to factors related to the deci-
sion process or to a contamination process. We defined three 
types of omission: the first two – intrinsic omissions (due 
to between-trial variation in accumulation rates making it 
impossible to ever reach the evidence threshold) and design 
omissions (due to a priori response windows that cause slow 
responses not to be recorded) – are determined by the same 
process that produces responses; the third – contaminant 
omissions – allows for a cause unrelated to the response 
process. Because of the latter stipulation, contaminant omis-
sions were assumed to be unrelated to the factors affect-
ing task-related omissions, and so were fixed to be constant 
across experimental condition that we examined.

We fit this LBA Omission (LBAO) model to both detec-
tion data from a DRT task (Castro et al., 2019) and to 

new choice response data from a distraction paradigm task 
(Schröger & Wolff, 1998). Both paradigms manipulated 
experimental factors that were likely to cause omissions 
through causing distraction. In Castro et al. this was the 
load from other tasks that had to be performed in parallel 
with the detection responses. In the distraction paradigm 
this was relatively rare (and so attention attracting but 
response-task-irrelevant) variations in an otherwise repeti-
tive auditory stream. In both data sets RT for responses 
longer than a slow cut off (3s in the DRT and 1.45 s in 
the distraction paradigm) was not recorded. Also in both 
paradigms, a few participants had unusually high omission 
rates, including cases in which almost half of the response 
were omitted. Commonly, the latter participants are classi-
fied as non-compliant with experimental instructions and 
excluded from analysis. However, in the present study we 
included these participants in our analysis in order to see 
if the LBAO model was able to accommodate such a wide 
variation of omission rates.

Fig. 5   Task-related omissions with 95% credible intervals for the 
most flexible intrinsic and contaminant model in Table 3 for correct 
and error responses in each condition. HighD = High Deviant, LowD 

= Low Deviant, SAHD = Standard After High Deviant, SALD = 
Standard After Low Deviant
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We found that the LBAO model displayed varying 
degrees of success. It provided a quite accurate account of 
the detection data, both in terms of the distribution of RTs 
and the probability of omissions, with both being elevated 
under conditions of increased load. Although the unusually 
large omission rates displayed by three participants were 
predominantly accounted for by the contaminant process, 
variation in omissions rates for the remaining 17 participants 
was related to task-related omissions. Design omissions 
played a more prominent role than intrinsic omissions; how-
ever, both were necessary to provide an accurate account. 
Both were also elevated under load, consistent with their 
common cause lying in the rate of evidence accumulation. 
The effect of design omissions is perhaps surprising – the 
associated slow cut off was more than twice as long as the 
90th percentile of observed RTs (see Fig. 1) and histograms 
of individual participants’ RT distributions did not reveal 
any obvious signs of slow responses being cut off. This 
result suggests that it can be hard to detect design omissions 
by a simple visual inspection of the RT distribution (Ulrich 
& Miller, 1994), particularly when they occur at relatively 
low levels.

The LBAO model was less successful with the choice 
data from the distraction paradigm. It did provide a good 
account of choice accuracy and RT distributions in all condi-
tions. This is the first demonstration that EAMs in general, 
and an LBA-type model in particular, can be successful 
and informative with data from the distraction paradigm. 
The LBAO model also captured the high error rates and 
slowing apparent when long stimuli were accompanied by 
a high deviant. This was apparently due to a tendency for 
higher frequency deviants with a long duration to be per-
ceived as shorter than they really were. Interactions between 
tone length and frequency, and a greater susceptibility to 
this effect with increasing age has been observed in a prior 
distraction paradigm study (Mager et al., 2005). This type 
of effect has previously gone unexplained, and so our results 
point to new avenues for further applications of EAM analy-
sis within distraction paradigm data.

The LBAO model, did, however, have a tendency to 
underestimate overall omission rates by a small amount 
that was approximately the same amount for all levels of 
the deviance factor. This global tendency was most marked 
for older participants with short choice stimuli. In contrast, 
the model’s account of differences in omission rates among 
the different levels of the deviance factor was quite good. 
The latter account, which relies only on omissions related 
to the evidence-accumulation process, suggests that intrinsic 
omissions were essentially absent for older participants, and 
played a predominant role only for some younger partici-
pants that were susceptible to misperception of long high 
deviant stimuli. Design omissions played a more generally 
prominent role, being present in all conditions. These were 

most pronounced in older participants, perhaps less surpris-
ingly, given that the slow cut off was less than twice the 
90th RT percentile (see Fig. 3) and older participants had 
comparatively slower RTs.

Omissions in other paradigms

Omissions are a common occurrence in many experimental 
paradigms. For example, the psychomotor-vigilance task is 
typically used to study fatigue due to sleep loss. Partici-
pants are required to monitor a blank computer screen and 
respond to a target that occurs at randomly spaced intervals. 
Omissions in the psychomotor-vigilance task, also referred 
to as ‘sleep attacks’ or ‘lapses’, are typically the dependent 
variable most impacted by fatigue (Lim & Dinges, 2010).

The N-back task is used to study sustained attention and 
working memory (Kirchner, 1958). In N-back task, omis-
sions are found to be more common than commission error 
responses (Meule, 2017), increase with increasing task dif-
ficulty (Meule, 2017), and have a strong genetic basis (Evans 
et al., 2018).

In the continuous-performance task (e.g., Beale et al., 
1987) participants are required to respond to a rare target 
that appears in a continuous stream of non-targets that are 
presented at a fixed rate. Increased omission rates in the con-
tinuous-performance task occur with longer task durations, 
low signal-to-noise ratio between targets and non-targets, 
and in participants with clinical diagnoses such as attention 
deficit hyperactivity disorder, traumatic brain injury, and a 
history of cerebrovascular accidents (for reviews, see Bal-
lard, 2001; Riccio et al., 2002).

In each of these paradigms, the LBAO has the potential 
to provide novel insights into the nature of these omissions. 
That said, we do not think that the scope of the LBAO is 
limited to these paradigms. Rather we suggest that wher-
ever omission rates are elevated, researchers should consider 
making use of a model such as the LBAO that can account 
for omissions to leverage any extra information they might 
provide. Importantly, using the LBAO can make it possible 
to avoid excluding participants and trials, potentially avoid-
ing biases caused by such exclusions.

Conclusions and future directions

Overall, our results suggest that omission rates can provide 
information relevant to the psychological processes related 
to distraction. Further, we have demonstrated that it is pos-
sible to integrate the information provided by omissions with 
the information provided by accuracy and RT through an 
EAM approach. It is important to note, however, that not all 
of the potential causes of omission my vary among experi-
mental settings. Of the two types of task-related omission in 
our experiments, support for intrinsic omissions was weaker, 
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suggesting that further work is required to extend investiga-
tion into the factors that determine their occurrence with 
detection responses (see Ratcliff & Strayer, 2014; Ratcliff 
& Van Dongen, 2011) versus choice responses. Our results 
clearly support consideration of design omissions through 
determining the proportion of responses that fall outside 
of response windows (see also Evans et al., 2018; Howard 
et al., 2020). An interesting avenue to further understand 
design omissions is to examine the effect of manipulating the 
response window. Importantly, the results of our parameter-
recovery studies indicate that these two types of task-related 
omission can be separately identified by the LBAO model.

The role played by contaminant omissions is less clear, in 
large part because they are defined as what is not explained 
by task-specific omissions, with no specific underlying 
process model. However, our work suggests that they are 
certainly necessary to explain the occurrence of high omis-
sion rates in some participants, at least given our assump-
tions about task-related omission processes. Our parameter-
recovery studies also show that the LBAO model is able to 
differentiate contaminant from task-related omissions, likely 
because the latter are also constrained by RTs for responses.

Further empirical and modelling work might investigate 
our assumption that contaminant processes occur entirely 
independently of the decision process and experimental 
manipulations of distraction. For example, a manipulation 
like load might plausibly have a broad effect, including on 
processes leading to contaminant omissions. The accuracy 
of our account suggests that extra freedom was not needed 
for Castro et al.’s (2019) data, but that may not hold in other 
cases. Finding ways to differentiate contaminant from task-
related omissions on a trial-by-trial basis, perhaps using 
extra constraint from physiological measures, is another 
interesting avenue for future research.

On the theoretical front, an intriguing possibility is that 
the passage of time itself plays some role in contaminant 
processes. Recently, Hawkins and Heathcote (2021) pro-
posed the addition of a ‘timing’ accumulator (Simen et al., 
2016) to an evidence-accumulation race architecture, so that 
responses can be based on the passage of time as well as on 
the accumulation of evidence. In their proposal, this enables 
a time-out criterion with an associated guessed response. A 
possible extension of Hawkins and Heathcote’s proposition 
to omissions is that a time-out might also sometimes result 
in a failure to respond.

Finally, the LBAO is a novel addition to the body of 
research that seeks to further constrain EAMs (Evans et al., 
2018; Evans et al., 2020; Howard et al., 2020; Ratcliff & 
Rouder, 1998) by including omissions data. We conclude 
that omissions provide a theoretically sensible constraint, 
particularly in paradigms that examine distraction. Future 
studies might refine the methods we have developed here, 
and even potentially combine them with other approaches 

to providing extra constraint, such as taking account of the 
effects of the passage of time.
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