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Abstract
Making a turn while driving is simple: turn on the indicator, check for cars, then turn. Two types of information are required 
to perform this sequence of events: information about the items (e.g., the correct indicator), and the serial order of those 
items (e.g., checking before turning rather than vice-versa). Previous research has found distinct working memory capaci-
ties (WMCs) for item and serial order information in both verbal and nonverbal domains. The current study investigates 
whether the serial order WMC is shared for sequences from different content domains. One hundred and fifty-three partici-
pants performed sequence matching tasks with verbal (letters and words) and nonverbal (locations and arrows) stimuli. The 
accuracy of detecting mismatched item-identity and serial order information in sequences was used to operationalize item 
and order WMC. Using structural equation modeling analyses, we directly compared models that included either domain-
specific or domain-general serial order WMC latent variables, finding that models with domain-specific serial order WMC 
latent variables for verbal and nonverbal materials fit the data better than models with domain-general latent variables. The 
findings support the hypothesis that there are separate capacities for serial order working memory depending on the type of 
material being ordered.

Keywords Serial order · Working memory · Domain-specificity · Individual differences · Structural equation modeling

Daily life is filled with activities that require holding 
sequences of items or events in working memory (WM). 
When we get someone’s phone number or learn a new dance, 
we are faced with two separate challenges—the ability to 
remember the identity of the items (e.g., digits or dance 
moves) and the ability to remember the order in which 
those items occur. There is longstanding evidence that dif-
ferent sequence types (verbal versus nonverbal/visuospatial) 
rely on different WM systems (Hanley et al., 1991; Shah 
& Miyake, 1996; Vallar & Baddeley, 1984). Furthermore, 
there is growing evidence for a separation of item-identity 
and serial order working memory capacities (WMCs) for 
both sequences of verbal (for review, see Majerus, 2019) 
and nonverbal materials (Amiez & Petrides, 2007; Avons 
& Mason, 1999; Claessen et al., 2016; Hsieh et al., 2011; 
Saint-Aubin et al., 2007; Wansard et al., 2015).

The current study investigates the intersection of the ver-
bal-nonverbal and the item–order dissociations within WM. 
We consider two hypotheses about the structure of WM, as 
depicted in Fig. 1. The domain-general serial order hypoth-
esis (Fig. 1a) assumes that the classic verbal–nonverbal 
dissociation reflects a dissociation in item-identity WMC, 
but not in serial order WMC. The domain-specific serial 
order hypothesis (Fig. 1b) assumes that the verbal–nonverbal 
dissociation extends to both item-identity WMC and serial 
order WMC.

Previous research has been equivocal. Some support 
for the domain-general hypothesis comes from the simi-
larity of behavioral effects in serially recalling verbal and 
nonverbal sequences—for example, similar serial position 
curves are observed regardless of item content (Hurlstone 
et al., 2014). However, there are also striking differences 
across domains (Gmeindl et al., 2011)—for example, the 
accuracy benefits of free recall compared with serial recall 
are greater in the nonverbal than the verbal domain. Dual-
task studies have similarly mixed results. Some research-
ers have observed interference for embedded or concurrent 
order processing tasks both within-domain (e.g., an embed-
ded digit task with a primary letter task) and cross-domain 
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(e.g., an embedded spatial task with a primary letter task; 
Depoorter & Vandierendonck, 2009; Jones et al., 1995; Van-
dierendonck, 2016), as would be predicted by the domain-
general hypothesis; while others have reported negligible 
or asymmetric cross-domain interference that supports the 
domain-specific hypothesis (Morey & Mall, 2012; Soemer 
& Saito, 2016). Similarly, while some neuroimaging studies 
have found common neural substrates for order processing 
with verbal and nonverbal sequences (e.g., Majerus et al., 
2010), those studies also identify regions that are selective 
to order processing in only one domain. Finally, while neu-
ropsychological double dissociations have been reported 
with some patients showing difficulties on serial order pro-
cessing tasks in a domain-selective manner (Kesner et al., 
1994; McMackin et al., 1995), it is not clear whether the 
domain-wise dissociations of serial order WMCs in these 
reported patients was driven by differential demands to a 
domain-general serial order WMC, or by the spillover effects 
from differential impairments in domain-specific item-
identity WMCs. The question of whether or not there is a 
domain-general serial order WMC has received a great deal 
of attention in the literature, but previous methodological 
approaches have yet to provide clear evidence.

In the current study, we use a latent-variable approach to 
test competing hypotheses about the relationship between 
serial order capacities for sequences of different content 
domains. The latent-variable approach has provided a pow-
erful tool in understanding the relationship between inter-
playing cognitive constructs, like the structure of WMC 
constructs (Conway et al., 2003). Dissociations in domain-
generality studies are hard to interpret because they are usu-
ally confounded with task type and task difficulty. Instead 
of designing distinct but similar tasks for item–order or 
verbal–nonverbal contents, the latent-variable approach 
draws inferences about the underlying cognitive construct 
from the individual differences within the same set of data; 
we can explore the optimal cognitive architecture amongst 

competing theoretical hypotheses by loading the observed 
data on different structural models in structural equation 
modeling (SEM) analyses and directly pitting nested models 
against each other. Another advantage of the latent-variable 
approach is the locus of its inference being intraindividual. 
Compared with the mean-based analyses, the latent-variable 
approach is not affected by the average performance in dif-
ferent conditions; instead, it assesses the structure of latent 
constructs based on how corresponding manifest variables 
covary. The challenge of balancing task difficulties in dif-
ferent domains or conditions could then be circumvented. 
Using the latent-variable approach, we asked two questions. 
First, can we replicate the dissociation between item-identity 
and serial order WMC1 with this approach? Second, if we 
find an item–order dissociation in both domains, is serial 
order WMC domain-general or domain-specific? Three 
primary theoretical models were tested: (1) a two-factor 
model representing WMC only distinguishing verbal and 
nonverbal2 capacities, (2) a four-factor model representing 
dissociated item and serial order WMCs in both the verbal 
and nonverbal domains, and (3) a three-factor model dis-
tinguishing verbal and nonverbal item-identity WMCs, but 

Fig. 1  An illustration of the domain-general (a) and the domain-
specific (b)  serial order hypothesis. Ovals reflect the different types 
of representations needed to support working memory, and ⊗ is the 

binding machinery that allows us to bind representations of items in 
a specific serial order. Arrows point to the output sequences after the 
binding of representations

1 The distinction between WM and short-term memory (STM) is one 
of the major theoretical discussions in the field, and clearly identify-
ing the boundary between these memory systems has been elusive. 
However, some researchers argue that these systems are distinct from 
each other. With this ontology in mind, it is worth noting that the 
tasks used in the current study—immediate recognition of whether 
two six-item sequences are identical or not—would be considered 
more traditional STM tasks than WM tasks.
2 The current study aims to assess whether the same WMC is applied 
to support serial order information for verbal materials compared 
with other materials. Given that the nonverbal materials we used have 
differential spatial nature, we used the term nonverbal to avoid the 
implication of the spatial involvement in both material types. How-
ever, because of the vast set of nonverbal materials, we narrowed 
down the scope of our finding to visuospatial in the Discussion.
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treating the serial order WMC as domain-general. In addi-
tion, based on the results of the study, we analyzed another 
model: (4) a three-factor model derived from the four-factor 
model but treating the item-identity and serial order WMCs 
as indistinguishable in the verbal domain. Inferences about 
WMC structures were drawn by comparing the fit of nested 
models while considering the model complexity. The first 
question—whether item and order WMCs dissociate—was 
tested with a comparison of the two-factor and four-factor 
model, with a better fit for the four-factor model supporting 
a dissociation between item and order WMCs. The second 
question—how serial order WMC relates across domains—
was tested with a comparison between the four-factor 
(domain-specific) and the three-factor (domain-general) 
model. A reliably better fit of the four-factor than the three-
factor model would provide clear evidence for the domain-
specific serial order WMC hypothesis; otherwise, the result 
would support the domain-general hypothesis.

Method

Participants

We recruited 161 undergraduate students from Rice Univer-
sity. For the inclusion criteria, participants were required to 
(1) be at least 18 years old, (2) have normal or corrected-
to-normal vision, (3) have no neural abnormalities, and (4) 
have no attentional disorders. All participants received extra 
course credit or $25 for their participation. This study was 
approved by the Rice University Institutional Review Board.

The sample size was determined jointly by common 
rules-of-thumb (Anderson & Gerbing, 1988; Arrindell & 
van der Ende, 1985; Cattell, 1978; Ding et al., 1995) and by 
previous Monte Carlo simulation studies (Wolf et al., 2013). 
Rules-of-thumb afforded several prospective sample size 
estimates. The first rule-of-thumb was the absolute values, 
which suggested that a sample of 100 (Ding et al., 1995) 
or 150 (Anderson & Gerbing, 1988) could be sufficient for 
SEMs. The second rule-of-thumb was the N:q ratio, where 
N is the expected sample size and q is the number of param-
eters being estimated. The current study had q ranged from 
49 to 54 depending on the model complexity. Cattell (1978) 
suggested that the N:q ratio larger than 3 would be suffi-
cient, and thus a sufficient sample size would be within the 
range of 147 to 162. The third rule-of-thumb was based on 
the number of latent variables. Arrindell and van der Ende 
(1985) suggested a sufficient sample size being approxi-
mately twenty times of the number of factors. The largest 
model in the current study had eight factors, and thus a suf-
ficient sample size would be 160. In a separate vein, Monte 
Carlo studies have been considered as well. Based on the 
findings in Wolf et al. (2013), when middle to strong factor 

loadings and the indicator to latent variable ratio above 6 (4 
or 8 in the current study) were expected, a sufficient sample 
size was less than 150. Taken together, we determined the 
expected sample size of 150.

Eight participants were removed from the analysis 
because they did not finish the experiment or did not respond 
with valid answers. Thus, the final sample consisted of 153 
participants.

Procedure

The consent form and demographic questionnaire (including 
age, gender, education level, and ethnicity) were acquired for 
all participants upon arrival. Participants were seated indi-
vidually in the test room and were tested for approximately 
2.5 hours. All tasks were computerized with E-Prime soft-
ware (E-Prime 2.0, Psychology Software Tools, Inc., Pitts-
burgh, PA, USA) and administered with Dell OptiPlex 9010 
touchscreen PC (23-inch) at 1,920 × 1,080 resolution. After 
being instructed with the task description, participants com-
pleted four sequence matching tasks in the preassigned order 
corresponding to their participation entries to the study. The 
order of four tasks was counterbalanced across participants.

Materials

Four stimulus types were adopted to get converging evi-
dence from two stimulus types in each domain. To form 
a sequence, six items were selected in a randomized order 
without repeated items in a sequence.

Letter Twenty consonants (excluding Y) were the stimulus 
pool for one of the verbal materials. Letters were displayed 
in capital cases in bold Courier New font at the 18-point size 
in the center of the screen. Only consonants were included 
to avoid the formation of pronounceable segments (conso-
nant–vowel–consonant structures) and the corresponding 
reduction of memory loads.

Word Twenty-five nouns were the stimulus pool for one of 
the verbal materials. Twenty-five nonrhyming nouns were 
selected from 95 monosyllabic, frequent (Kucera-Francis 
written frequency ranging from 10 to 30, average = 18.92), 
and imageable (Imageability rating above 350, average = 
528.64) five-letter nouns. The word stimuli can be found in 
Appendix 1. The presentation format was identical to letters. 
Frequent, imageable words were used in the study to avoid 
the performance being biased by vocabulary knowledge.

Spatial location Ten spatial locations in the form of white 
squares with black borders were the stimulus pool for one 
of the nonverbal materials. The squares were at the size of 
45 × 45 pixels with the border width of 1 pixel. Locations 
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were selected as a randomly distributed pattern on the screen 
with no clear verbal labels (e.g., exact position, collinear-
ity, closure) available. The location stimuli can be found in 
Appendix 2.

Arrow Sixteen arrows characterized by two features (length 
and direction) were the stimulus pool for one of the nonver-
bal materials (Kane et al., 2004). Eight directions were used, 
pointing from the central fixation to each corner and edge 
midpoints of the screen. For each direction, two lengths (a 
quarter and half of the width of the screen) were included. 
The arrow stimuli can be found in Appendix 3.

Tasks

Four sequence matching tasks, each with a different stim-
ulus type as described above, were administered. At the 
beginning of each task, instructions were given in the writ-
ten form on computers. Participants were informed of the 
stimulus type of the task and the length of each sequence, 
and they were instructed to judge if two sequences were 
identical in each trial. After four practice trials to familiar-
ize participants with the task requirements and the response 
equipment, 120 trials were tested in a fixed order in order to 
limit between-subject variance associated with the order of 
tasks (Goodhew & Edwards, 2019; Mollon et al., 2017). The 
fixed order of trials also assured that the potential proactive 
interference, if any, from previous trials would be consist-
ent across participants. Each trial consisted of the presenta-
tion of two consecutive six-item sequences and a response 
page. Each sequence was presented after a central fixation 
cross (200 ms) with the speed of 600 ms per item and a 200 
ms interstimulus interval (ISI). In the sequence of letters, 
words, and arrows, each item was presented in the center 
of the screen then disappeared, followed by a blank screen 
during ISI. In the sequence of visuospatial locations, the 
default background with ten static locations was presented 
throughout the entire presentation of a sequence, superim-
posed by one square turning to solid black for 600 ms then 
returning to the default state as the index of one item. Fol-
lowing two sequences, a response page was presented at the 
end of each trial, with the question “Are these two sequences 
identical?” and two response boxes (“Yes” and “No”). Par-
ticipants responded by touching one of the two response 
boxes on the screen.

There were three trial types for each task based on the 
congruency of two sequences: identical, item-changing, and 
order-swapping (see also Gathercole et al., 2001, who refer 
to the combination of identical and order-swapping trials as 
the serial recognition task). In each trial, the first sequence 
was generated from the stimulus pool with positions asso-
ciated with each item being counterbalanced. The second 
sequence was the variation of the first sequence according 

to the trial type. An identical trial was when the second 
sequence was identical to the first sequence (Fig. 2a); the 
corresponding correct answer would be “Yes.” An item-
changing trial was when the second sequence had five items 
in the same positions as the first sequence and one item 
was replaced by an extra-list item from the stimulus pool 
(Fig. 2b); the corresponding correct answer was “No.” The 
within-sequence position of the changed item was counter-
balanced across trials. An order-swapping trial was when 
the second sequence contained all identical items as the first 
sequence, but two adjacent items swapped their positions 
(Fig. 2c); the corresponding correct answer was “No.” The 
within-sequence positions of the swapped pair of items were 
counterbalanced across trials. Trials with “Yes” and “No” as 
correct responses were of equal amount to avoid objective 
response bias (i.e., 60 identical trials, 30 item-changing tri-
als, and 30 order-swapping trials for each task). Three trial 
types were preassigned in a randomized order for each task, 
and all participants received the same order of trials in each 
task. The randomized order of three trial types within each 
task allows participants to freely form their strategies with-
out being specified to item or order, and in turn prevents any 
differentiated performance being induced by dissociations 
embedded in the task design.

Outlier screening

Accuracy and reaction time in four tasks (collapsed across 
three trial types) were calculated for the outlier screening. 
We defined outliers at the subject level, and two task-level 
criteria were considered collectively for each task to screen 
the subject-level outliers. 

The “low” task-level outlier was defined as follows. For 
each participant, any task with an accuracy below 57.5% 
was defined as a univariate “low” task-level outlier; this 
chance level was determined as the accuracy of guessing 
performance on 120 trials regardless of trial type (i.e., with 
a binomial distribution of N = 120 and p = 0.5 at α = .05). 
There were 41 participants with one or more “low” task 
accuracy values.3 These low values could either be caused 
by hasty guessing or struggles with the task (i.e., being at 
the lower end of the distribution).

The “fast” task-level outlier was defined as follows. For 
each participant, any task with log-transformed RT (logRT) 
below the lower hinge of the logRT distribution across all 
153 participants was defined as a univariate “fast” task-
level outlier. The lower hinge of the logRT distribution was 
defined as  Q1 − 3 × IQR, where  Q1 was the first quantile of 

3 The model comparison results did not change even when low per-
formers were excluded, suggesting that the results are robust regard-
less of what data trimming method was applied.
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the logRT distribution and IQR is the third quantile of the 
distribution  (Q3) subtracted by  Q1. There was one participant 
exhibiting such “fast” task logRT value.

A participant outlier was defined when a participant had 
at least one task being both a “fast” and “low” task-level 
outlier. No participant met this conjunction criterion.

Note that we used this conjunction of criteria to detect 
near-chance performance made by participants who were 
merely guessing, instead of simply removing the effortful 
performance of individuals at the lower end of the distri-
bution. Each task-level outlier criterion was based on the 
performance for a task/stimulus type in lieu of each trial type 
to ensure that any anomalous performance level observed 
in specific types of mismatched trials (e.g., item-changing 
or order-swapping trials) in the subsequent SEM analysis 
is not driven by the general anomalous performance for a 
specific task.

Data scoring

Accuracy measures4 were used as manifest variables 
for SEM. For each task, 30 item-changing trials and 30 

order-swapping trials were aggregated into four parcels for 
the subsequent SEMs. Considering each trial as an item for 
SEM, we adopted a subset-item parcel approach to create 
parcels as manifest variables.

For each trial type, we split trials in alternation and 
assigned 15 trials to each parcel to take the advantage of 
parceling without manipulating the data too much. This way, 
for each stimulus type, the accuracy for 15 item-changing or 
order-swapping trials was calculated as a manifest variable 
of “item” or “order.” We yielded 16 parcels as manifest vari-
ables for SEM analyses, including four manifest variables 
(two “item” and two “order”) for each stimulus type.

For clarity and consistency with the tradition of experi-
mental research, we reported descriptive statistics and inter-
correlations based on eight all-item parcels (i.e., accuracy 

Fig. 2  Task schematics for (a) identical trial, (b) item-changing trial, and (c) order-swapping trial

4 An alternative approach, using d' discriminability rather than accu-
racy as manifest variables, is reported in the supplementary mate-
rial. To address issues of independence between manifest variables, 
false alarm rates used for the calculation of d's for item-changing and 
order-swapping trials were the proportion of incorrect trials from 
two independent parcels selected in alternation from identical trials, 
respectively. The choice of manifest variable had no impact on our 
model selection.
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measures aggregated from 30 item-changing and order-
swapping trials for each task, respectively).

Note that the reasons we used the parcel-based instead 
of the item-based approach were twofold. One was that the 
goal of the current study was to investigate the underlying 
structure of constructs rather than item-level properties. Two 
was that, compared with the item-based approach, parceling 
reduces model complexity, reach optimal reliability, and 
avoid violation of normality assumptions (Little et al., 2002; 
Yang et al., 2010).

Within the parcel-based approach, we chose the subset-
item parcel approach over the all-item parcel approach. 
Compared with the subset-item parcel approach, the all-item 
parcel/scale approach (i.e., aggregating all 30 trials—the 
entire scale—into one parcel) tends to yield a higher model 
fit but also is prone to inflate the estimated path coefficients 
(Bandalos, 2002). Scale-based models are susceptible to 
measurement-error-related bias even in the absence of other 
misspecifications, have low power to detect measurement 
model misspecification, and their fit indices cannot reflect 
model misspecification (Coffman & MacCallum, 2005; 
Cole & Preacher, 2014; Rhemtulla, 2016; Yang et al., 2010). 
Hence, having a set of parcels provides a better solution over 
a scale-based model.

Regarding the size of the subset-item parcel (i.e., how 
many trials to include in a parcel), although having fewer 
parcels (i.e., including more trials in each parcel) tends to 
increase the model fit (Bandalos, 2002), the extent of the 
change is minor as long as the number of parcels per fac-
tor is not excessive (Little et al., 2002; Marsh et al., 1998; 
Matsunaga, 2008; Rogers & Schmitt, 2004). Considering 
the balance between model fit improvement and coefficients 
estimation inflation, as well as the requirement of having at 
least three indicators for each latent factor in SEM (Little 
et al., 2013; Raubenheimer, 2004), we created two parcels 
for each trial type in each task, yielding at least four manifest 
variables for each latent factor.

Note that there are various schemes to create parcels 
(e.g., based on item properties, based on previous research, 
empirical approaches, systematically creating parcels in an 
isolated or distributed manner). Randomly assigning items 
to parcels could create bias favoring items with larger vari-
ances (Matsunaga, 2008), and using empirical approaches 
(e.g., factor analysis or correlational analysis between trials) 
to assign parcels might introduce unknown bias to the data 
structure. Therefore, we systematically created parcels for 
each trial type by odd–even splitting of items in a distributed 
way regardless of item content. To assure that our results do 
not depend on parcel allocation schemes, we used a boot-
strapping procedure to randomly split each trial type into two 
parcels in 1,000 simulation runs. Our results regarding the 

descriptive statistics, model fit indices, and model compari-
sons were robust to the parceling variability (see Table S7 
and Table S8 in the Supplementary Materials). Our results 
do not depend on choosing the subset-item or all-item parcel 
approach either. We have conducted the SEM analysis with 
the scaled-based manifest variables, and the model compari-
son results did not differ between the scale-based and the 
parcel-based manifest variables (see Fig. S3 and Table S9 
in the Supplementary Materials).

Statistical analysis

We report several fit indices for structural equation models. 
The absolute fit indicates how well the model reproduces 
the covariance matrix of the observed performance: chi-
square (𝜒2), relative chi-square (𝜒2:df), root-mean-square 
of error of approximation (RMSEA), and standardized 
root-mean-square residual (SRMR). A nonsignificant chi-
square suggests a well-fitted model, indicating that there 
is no identifiable discrepancy between the model-implied 
and the population covariance matrices (M. W. Browne 
& Cudeck, 1992). To control for the possible inflated chi-
square in complex models, the relative chi-square takes the 
number of free parameters into consideration and any value 
less than 2 reflects an acceptable fit (Hooper et al., 2008). 
RMSEA is calculated based on the residual matrix with a 
penalty for model complexity; SRMR is the standardized 
difference between the observed and model-implied correla-
tion matrices with no penalty for model complexity. RMSEA 
or SRMR less than .08 suggests a good fit (Hu & Bentler, 
1999). Additionally, we report the comparative fit indices 
to reflect the improvement in the fit of the model over the 
null model: normed fit index (NFI), nonnormed fit index 
(NNFI; also as Tucker-Lewis index [TLI]), and compara-
tive fit index (CFI). Any comparative fit index larger than 
.90 indicates a good fit (Hooper et al., 2008). Moreover, 
we report the parsimonious fit indices to reflect the tradeoff 
between improvement in fit and loss of degrees of freedom: 
Akaike’s information criterion (AIC) and Schwarz’s Bayes-
ian information criterion (BIC).

The model comparison was implemented by the chi-
square difference test between two nested models. If the 
𝜒2

difference is significant, the increase in the fit index (namely, 
the drop in the 𝜒2) by adding latent variable(s) is “worth” the 
loss of the degree(s) of freedom. Hence, if the comparison 
test was significant, the model with more latent variables is 
better at capturing the structure of WM constructs than the 
model with fewer latent variables. Moreover, we compare 
AIC measures between nested models, with the AICs dif-
ference less than 4 supporting the model with larger AIC 
(Burnham & Anderson, 2004).
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Statement of transparency

We report how we determined our sample size, all data 
exclusions (if any), all manipulations, and all measures in 
the study (Simmons et al., 2012).

Results

Demographic data for 153 participants were as follows: 92 
females, 60 males, and one decline to report binary gender. 
The mean age was 20 years (SD = 1.3 years). Education 
levels ranged from freshman to postbaccalaureate in college.

Average reaction times (± standard deviation) across 
three trial types were 817 (±336), 893 (±384), 749 (±341), 
966 (±448) ms for letter, word, location, and arrow tasks, 
respectively. Average accuracies (± standard deviation) 
across three trial types were 82% (±11%), 77% (±11%), 76% 
(±11%), 67% (±10%) for letter, word, location, and arrow 
tasks, respectively. Specifically, for identical trials, average 
accuracies (± standard deviation) were 78% (±19%), 78% 
(±14%), 71% (±15%), 68% (±16%) for letter, word, location, 
and arrow tasks, respectively. For a comprehensive view of 
the descriptive statistics and intercorrelations of the entire 
accuracy dataset (i.e., accuracy measures for all three trial 
types in four tasks), Table S4 and Table S5 are reported in 
the Supplementary Materials. The descriptive statistics of 
the log-transformed reaction time for all three trial types 
in four tasks are reported in Table S6 in the Supplementary 
Materials as well.

Eight manifest variables were used for descriptive sta-
tistics and intercorrelations. The descriptive statistics for 
the eight manifest variables are displayed in Table 1. Split-
half reliability was derived for each manifest variable as an 
index of internal consistency. For each manifest variable, 

corresponding trials were split into odd and even halves, 
and the Spearman correlation was calculated between the 
proportion-correct scores in two halves, then adjusted by the 
Spearman–Brown Prophecy formula. All manifest variables 
had adequate reliability (at or above .70). The skewness was 
less than 2 and the kurtosis was less than 7 in all measures, 
indicating that manifest variables were approximately uni-
variate normally distributed (Ryu, 2011).

Note that there is no strict standard for the acceptable 
range of reliability, although the heuristics consider a reli-
ability measure above .60 or .70 acceptable. In empirical 
works, this heuristic is applied more leniently; usually, 
around .50 is considered moderate as well (e.g., Alloway 
et al., 2004; Unsworth & McMillan, 2013). Reliability being 
too high (>.95) or too low is not ideal and it could reflect 
redundancy (Hulin et al., 2001) or random error in the meas-
urement, correspondingly. For extreme values of reliability, 
they need to be interpreted with caution in the context of 
the measurement (e.g., how measurements were derived, 
the zero-order correlation of “unreliable” measure to other 
measures, how measurements are used for the research goal; 
see also Little et al., 2013, for a more in-depth discussion). 
Just like the distinction between significance and nonsignifi-
cance in null hypothesis significant tests has been criticized, 
simply using a cutoff to assess the reliability of measure-
ments is not helpful either.

Correlations among eight manifest variables were uniformly  
positive (.25 < rs < .74; see Table 2).5 The magnitudes of  
correlations were suited for the latent-variable analysis, given  
that they were not too high to reflect redundant indicators nor  

Table 1  Descriptive statistics and reliability estimates for working memory accuracy measures

Note. N = 153 for all tasks

Variable Mean SD Range Skewness Kurtosis Reliability

Letter
   Item .87 .12 [.43, 1] −1.27 1.15 .76
   Order .84 .13 [.40, 1] −0.87 0.20 .73

Word
   Item .76 .15 [.40, 1] −0.50 −0.51 .73
   Order .76 .17 [.33, 1] −0.56 −0.47 .81

Location
   Item .86 .14 [.30, 1] −1.39 1.53 .80
   Order .73 .17 [.27, 1] −0.40 −0.71 .79

Arrow
   Item .72 .16 [.20, 1] −0.56 −0.07 .73
   Order .63 .16 [.17, .97] −0.24 −0.44 .70

5 The descriptive statistics and correlation table for 16 manifest 
variables is reported in Table S2 and Table S3 in the Supplementary 
Materials.
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too low to be the mere result of a positive manifold. Moreo-
ver, intercorrelations revealed two aspects of construct valid-
ity: manifest variables were correlated moderately strongly 
within each domain (.48 < rs < .74 in verbal domain and .45 
< rs < .68 in nonverbal domain), and weakly across domains 
(.25 < rs < .40). Concomitant convergence in both domains 
and divergence across domains indicated adequate validity 
for manifest variables (Campbell & Fiske, 1959).

As shown in Table 1, the difference between item and 
serial order WM performance was smaller in the verbal 
domain compared with the nonverbal domain. Indeed, 
Gmeindl et al. (2011) reported this pattern with a similar 
design to the current study (Experiment 2; sequence match-
ing task with digits and visuospatial locations), but with a 
more traditional group-average statistical approach: they 
found that item changes and order swaps were equally dif-
ficult to detect for verbal tasks; but for visuospatial tasks, 
participants performed significantly better when detecting 
item changes than when detecting order swaps. Our experi-
ment conceptually replicated this finding: We observed a 
significant interaction on the group-average performance 
in the two-way (i.e., item–order by verbal–nonverbal) 
repeated-measures analysis of variance (ANOVA), with 
letter and word conditions combined as the verbal condi-
tion and location and arrow conditions combined as the 
nonverbal condition, F(1, 152) = 87.88, p < .001, ω2 = 
.36, with fewer correct detections for the nonverbal order 
swap trials (68.1%) than the other trial types (Verbal Item: 
81.5%, Verbal Order: 79.5%, Nonverbal Item: 78.9%). From 
the group-average performance, we could not tease apart 
whether this domain divide in item–order discrepancy was 
driven by domain-specific serial order WMCs or by differ-
ent difficulty–efficiency levels of adopting a domain-general 
serial order maintenance mechanism in two domains. How-
ever, the variation driven by the task difficulty only affects 
the mean of the performance distribution, but it does not 
pose many issues for a covariance-based analysis in the SEM 
approach. The SEM analysis draws inferences based on the 
relationship of how an individual’s performance differs 
from the mean performance in different cognitive processes; 

when the task difficulty does not induce any floor or ceiling 
effect, the discrepancy between the individual and the aver-
age performance is not affected by the absolute value of the 
average level. If the discrepancies between the individual 
and average performance in manifest indicators tend to be 
comparable in two constructs across individuals, the SEM 
results would suggest that these two constructs reflect the 
same underlying cognitive process; similarly, systematic 
incomparable discrepancies between the individual and the 
mean performance across tasks would suggest dissociated 
cognitive processes. In addition to circumventing the con-
founds created by unbalanced task difficulties in a group-
average based analysis, an SEM approach also affords the 
clarity of directly pitting two hypotheses against each other 
to elucidate the structure of latent constructs.

Is WMC a unitary construct in a sequence?

To examine whether our measures are sensitive enough to 
reveal the underlying constructs, the first analysis focused 
on a conceptual replication of the frequently reported dis-
sociation between item and serial order WMCs (Amiez & 
Petrides, 2007; Avons & Mason, 1999; Claessen et al., 2016; 
Hsieh et al., 2011; Saint-Aubin et al., 2007; Wansard et al., 
2015). This was done through a direct comparison between 
two nested competing models to determine the structure of 
the data. Specifically, two models were specified to deter-
mine how WMCs for item and serial order information in the 
verbal and nonverbal domains were related to one another. 
All structural equation models were operationalized using 
16 manifest variables for reliable model estimation without 
correlated errors.

Model 1 (i.e., the two-factor model6 in Fig. 3a) tested 
the notion that WMCs are best conceptualized as a unitary 

Table 2  Correlation matrix for working memory accuracy measures

Note. N = 153 for all tasks. All correlations are significant at the p < .01 level

Item letter Order letter Item word Order word Item location Order location Item arrow

Order letter .74
Item word .48 .54
Order word .48 .55 .73
Item location .34 .28 .30 .30
Order location .26 .25 .25 .30 .68
Item arrow .37 .37 .40 .36 .53 .60
Order arrow .36 .37 .32 .34 .45 .56 .66

6 Four task-specific factors, each with loadings for all four manifest 
indicators in each stimulus type, were included in all models to rep-
resent task-specific variance induced by the blocked experimental set-
ting and individual expertise for a certain stimulus type, and hence-
forth were not included into the count of factors for simplification. 
These four factors were not allowed to correlate with other factors.
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construct in each domain. This two-factor model included a 
unified verbal factor with loadings for all verbal indicators, 
and a unified nonverbal factor with loadings for all nonver-
bal indicators. The two factors were allowed to correlate. 
Model 2 (i.e., the four-factor model in Fig. 3b) tested the 
notion that WMC was best captured as four dissociated yet 

correlated factors representing item and serial order WMCs 
in both verbal and nonverbal domains. Thus, this four-factor 
model consisted of four WMC factors with separate loadings 
for item and serial order indicators in verbal and nonverbal 
domains. The four factors were allowed to correlate.

Fig. 3  Structural equation models consisting of (a) two latent factors 
(Model 1), (b) four latent factors (Model 2), (c) three latent factors 
(Model 3), and (d) another three latent factors (Model 4) for WMC in 
verbal and nonverbal domains. Numbers on the unidirectional arrows 
are standardized estimates of loadings for each manifest variable (rec-

tangle) onto its corresponding latent variable (oval). The numbers on 
the bidirectional arrow between latent variables represent the correla-
tion between two latent variables. All black solid paths are with sig-
nificance p < .05; black dashed path is with significance of .05 < p < 
.10; gray paths are not significant (p > .10)

Table 3  Fit statistics for structural equation models

Note. N = 153 for all models

Model χ2 df p χ2/df RMSEA SRMR NFI NNFI CFI AIC BIC

1 101.02 87 .15 1.16 .03 .06 .93 .99 .99 −3117.41 −2969.24
2 84.72 82 .40 1.03 .02 .04 .94 .997 .998 −3125.81 −2960.52
3 133.79 85 .001 1.57 .06 .09 .90 .95 .96 −3082.56 −2928.33
4 85.31 85 .47 1.00 .005 .04 .94 1.00 1.00 −3130.31 −2976.09
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Table 3 shows the fit of the two aforementioned models. 
Model 1 and Model 2 both had good fit to the data. Criti-
cally, Model 2, which specified four WMC factors fit sig-
nificantly better than Model 1, which specified two WMC 
factors, ∆χ2(5, N = 153) = 16.30, p = .006, ΔAIC = 8.40, 
suggesting a dissociation between item and serial order 
WMCs in both domains. Note that, although separated, the 
correlation between the item and serial order WMC factors 
was .98 (95% CI [.96, 1.00]) and .90 (95% CI [.85, .95]) in 
two domains in this model, indicating that item and serial 
order WMCs shared more than 81% of their variance. Taken 
together, the nested model comparison indicates that a par-
simonious unified WMC is not sufficient to account for the 
capacity to remember sequences in both verbal and non-
verbal domains; the structure of WM includes dissociations 
between item and serial order.

Is serial order WMC a unitary construct in different 
domains?

We next examined whether there are dissociated serial order 
WMCs for the verbal and nonverbal domains. We directly 
compared the fit of two competing models. Model 2 (i.e., 
the four-factor model in Fig. 3b) tested the notion that serial 
order WMC was best captured as two dissociated yet cor-
related factors representing domain-specific serial order 
WMCs in the verbal and nonverbal domains. Model 3 (i.e., 
the three-factor model in Fig. 3c) tested the notion that serial 
order WMC is best conceptualized as a single domain-gen-
eral construct in the verbal and nonverbal domains. This 
three-factor Model 3 included a unified serial order WMC 
factor with loadings for eight serial order indicators in two 
domains, a verbal item factor derived from four verbal item 
indicators, and a nonverbal item factor derived from four 
nonverbal item indicators. The three factors were allowed 
to correlate.

As shown in Table 3, Model 2 and Model 3 both had good 
fit to the data. Critically, Model 2, which specified domain-
specific serial order WMC factors, fit significantly better 
than Model 3, which specified a domain-general serial order 
WMC factor, ∆χ2(3, N = 153) = 49.07, p < .001, ΔAIC = 
43.25, indicating a dissociation between verbal and nonver-
bal serial order WMCs. Note that, the correlation between 
serial order WMC factors in the two domains was .49 (95% 
CI [.41, .57]) in Model 3, indicating that the serial order 
WMCs shared around 24% of their variance across domain 
and that relatively large variances were of domain-specific 
origins. Moreover, the correlations between item and cross-
domain serial order WMCs were .63 (95% CI [.55, .71]) 
and .51 (95% CI [.43, .59]), indicating that the interaction 
of item and cross-domain serial order WMC can account for 
less than 40% of the variance. This suggested that item infor-
mation for one domain does not rely predominantly on the 

serial order WMC for the other domain, and further implied 
that serial order WMCs are applied in a domain-selective 
manner. Taken together, the model comparison indicates that 
a parsimonious domain-general serial order WMC is not 
sufficient to capture the variances in WMCs among individu-
als when remembering serial order information in verbal 
and nonverbal domains; instead, our results favor domain-
specific serial order WMCs.

Additionally, since such a strong correlation was observed 
between item and serial order verbal WMC factors in the 
four-factor model (.98, CI [.96, 1.00]), we compared Model 
2 (the four-factor model) with another three-factor model 
(Model 4). Model 4 (i.e., the three-factor model in Fig. 3d) 
tested the notion that serial order WMC was best captured as 
two dissociated yet correlated factors representing domain-
specific serial order WMCs,  and in the verbal domain, the 
serial order WMC and the item WMC could be captured 
with a single factor. This model was also grounded in the 
previous literature. As Gmeindl et al. (2011) pointed out, 
item and serial order WMC appear to be more closely bound 
in the verbal than nonverbal domain. Model 4 consisted of 
three WMC factors, with a nonverbal item factor derived 
from four nonverbal item indicators, a nonverbal order factor 
derived from four nonverbal order indicators, and a verbal 
factor derived from eight verbal indicators. The three factors 
were allowed to correlate.

As shown in Table 3, Model 4 had a good fit to the data. 
Note that, in this three-factor model, the correlation between 
the verbal WMC factor and the nonverbal serial order WMC 
factor was .49 (95% CI [.33, .66]), indicating that nonverbal 
serial order WMC shared around 24% of its variance with 
the cross-domain WMC and that the relatively large variance 
in serial order WM performance was of a domain-specific 
origin. Model 2 that specified four factors did not fit the data 
significantly different from Model 4 that specified a single 
verbal WMC and two nonverbal WMC factors, ∆χ2(3, N 
= 153) = 1.61, p = .66, ΔAIC = 4.4, indicating that the 
dissociation between item and serial order WMCs was less 
distinct in the verbal domain compared with the nonverbal 
domain, but the variance in serial order WMC performance 
was still accounted for by separate latent constructs for each 
domain.

Finally, we compared Model 4 with Model 1 (which 
assumes that there is no separation between item and order 
processing in either the verbal or the nonverbal domain). 
Model 4 fit the data reliably better than Model 1, ∆χ2(2, N 
= 153) = 14.46, p < .001, ΔAIC = 10.5, which supports the 
hypothesis that item and order WMCs are dissociated at the 
latent level in the nonverbal domain.

Taken together, the primary result was the comparison 
between four models, which indicated that a parsimonious 
domain-general serial order WMC factor does a worse job 
of capturing the variance in serial order WMC performance 
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than models that assume a separation of serial order WMC 
in the verbal and the nonverbal domains. The worst model 
was Model 3 (Fig. 3c) in which a single latent construct was 
assumed for order memory performance across domains. 
Both of the best models—the four-factor Model 2 (Fig. 3b) 
that assumes a full separation between item and order in 
both the verbal and nonverbal domains, and the three-factor 
Model 4 (Fig. 3d) that assumes separated latent constructs of 
item and order in the nonverbal domain, but a single latent 
construct for both item and order in the verbal domain—sep-
arate the order capacity in the verbal from the order capac-
ity in the nonverbal domain, and show some evidence for a 
dissociation between item and order WMC, at least in the 
nonverbal domain.

A secondary result is that item and serial order WMCs 
in the verbal domain are strongly bound and the variance 
between them could be captured sufficiently by one latent 
construct. Due to the high correlation between item and 
order latent variables in the verbal domain, as well as previ-
ous studies suggesting that item and order are more closely 
bound in the verbal domain than the nonverbal domain 
(Gmeindl et al., 2011), we compared the three-factor Model 
4 (Fig. 3d) with the four-factor Model 2 (Fig. 3b) and found 
that combining or separating item and serial order WMCs 
in the verbal domain did not yield any significant difference 
in the model fit. In the absence of any other information, 
we would support the more parsimonious model including 
three latent factors (Model 4) rather than four (Model 2). 
However, there is clear evidence from other methods sug-
gesting that item and order information are dissociated in 
the verbal domain, from behavioral studies (Bjork & Healy, 
1974; Murdock & Vom Saal, 1967; Wickelgren, 1965), 
neuroimaging studies (Henson et al., 2000; Kalm & Nor-
ris, 2014; Marshuetz et al., 2000; Rajji et al., 2017), and 
neuropsychological studies (Attout et  al., 2012; Kesner 
et al., 1994; Majerus et al., 2007; Shimamura et al., 1990). 
Based on this converging evidence from other methodolo-
gies and the fact that we cannot statistically distinguish a 
model that differentiates item and order information in the 
verbal domain from one that does not, we endorse the four-
factor Model 2 (Fig. 3b) that makes a distinction between 
item and order capacity in both the verbal and the nonverbal 
domains. A similar issue arose in the nonverbal domain, 
where the correlation between the latent variables for item 
and order capacity was still extremely strong (.90). How-
ever, both the three-factor Model 4 (Fig. 3d) and the four-
factor Model 2 (Fig. 3b) had better fit compared with the 
two-factor Model 1 (Fig. 3a), indicating that despite this 
high correlation between the item and order latent variables, 
they are still statistically separable in the nonverbal domain. 
Converging evidence from other methodologies also support 
the item–order dissociation in the nonverbal domain (Adel-
stein et al., 1992; Amiez & Petrides, 2007; Avons & Mason, 

1999; Bowler et al., 2016; Claessen et al., 2016; Dale, 1987; 
Hopkins et al., 1995; Hsieh et al., 2011; Kesner et al., 1994; 
Mammarella et al., 2006; Milner et al., 1991; Saint-Aubin 
et al., 2007; Wansard et al., 2015). Therefore, even with 
the high correlation between nonverbal item and nonver-
bal order, we would endorse the three-factor or four-factor 
models (Model 4 in Fig. 3d or Model 2 in Fig. 3b) over the 
two-factor Model 1 (Fig. 3a) and suggest that item and order 
are dissociated at the latent level in the nonverbal domain. In 
sum, our results favor domain-specific serial order WMCs, 
although the serial order WMC is hard to separate from item 
WMC in the verbal domain.

Finally, it is worth considering these results in the con-
text of other studies using the latent-variable approach to 
examine the structure of WM. Previous studies with this 
approach have favored the generality over the classic dis-
sociation between verbal and nonverbal WMCs (Ackerman 
et al., 2002; Kane et al., 2004). As reported in the Supple-
mentary Materials, we compared the four-factor Model 2 
(Fig. 3b) to two additional models: (1) a one-factor Model 
S1 representing a single WMC factor without any dissocia-
tions between either item and serial order or the verbal and 
nonverbal domains and (2) an alternative two-factor Model 
S2 with dissociated item and serial order WMCs but no dis-
sociation between verbal and nonverbal domains. The results 
of these model comparisons again showed that the four-fac-
tor Model 2 (Fig. 3b), with the verbal-nonverbal dissociation 
and the item-order dissociation, had the best fit to the data.

Discussion

The current study addressed two questions: Are item and 
serial order WMCs identifiably distinct constructs? If so, is 
serial order WMC in verbal and nonverbal domains iden-
tifiably distinct? To answer these questions, we tested 153 
young adults with college education using verbal and non-
verbal–visuospatial sequence matching tasks to probe item-
identity and serial order WMCs. We then used the SEM 
and nested model comparison to directly compare competing 
hypotheses about the nature of WMC constructs. The results 
support the item-order dissociation in WMC, although they 
support this dissociation more strongly in the nonverbal 
domain than the verbal domain. Furthermore, the results 
support a dissociation in serial order WMC between the 
verbal and the nonverbal domain, with models that include 
dissociated serial order WMCs for verbal and nonverbal 
domains clearly fitting the data better than the other models 
considered.

This experiment provides the first evidence using a latent-
variable approach to support the dissociation between item-
identity and serial order WMCs, with them being more dis-
sociable at the latent level in the nonverbal domain than in 
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the verbal domain. It is worth noting that dissociated item 
and serial order WMCs still share a substantial amount of 
variance in both domains, suggesting that at least in the 
sequence matching task, item and serial order WMCs inter-
act and covary closely when encoding and/or recalling a 
sequence. Specifically, item and serial order WMC latent 
variables correlated stronger (.98) in the verbal domain than 
the nonverbal domain (.90). Through model comparison, the 
endorsed four-factor Model 2 (Fig. 3b) was not significantly 
different from the three-factor Model 4 (with item and serial 
order WMCs loaded on a single factor in the verbal domain; 
see Fig. 3d), suggesting that verbal item and serial order 
WMCs are mostly isomorphic at the latent level in the verbal 
domain, as Gmeindl et al. (2011) suggested. On the other 
hand, this overlap in the verbal domain does not indicate that 
item and serial order WMCs are also isomorphic in the non-
verbal domain, supported by the fact that this three-factor 
Model 4 (Fig. 3d) that separates item and order capacity in 
the nonverbal domain fits the data better than the two-factor 
Model 1 (Fig. 3a) that does not separate item and order in 
either domain.

The reason for the high correlation between item and 
serial order WMCs is manifold. Empirically, neither “item” 
nor “order” manifest indicators were collected as process-
pure measures; they were selected with the attempt to capi-
talize on the WMCs to maintain item and serial order infor-
mation and to detect corresponding changes in a sequence. 
Hence, indicators extracted from the sequence matching 
tasks would have correlations between item and order 
WMCs. However, if they only measure the ability to detect 
changes in a sequence without further differentiation, “item” 
and “order” measures would not have a difference at the 
group level and may have difficulty converging in the SEM 
when loading on separate latent constructs. Theoretically, 
the high correlations between item and serial order latent 
constructs in both domains could have multiple possible rea-
sons. For example, item and order information might need 
to be closely bound to support performance in a sequence 
matching task (Gmeindl et al., 2011). An alternative reason 
is that item information might be maintained actively via 
subvocal rehearsal simultaneously as the order information 
when detecting order changes in the sequence matching 
tasks. From the literature on the order error generation (Far-
rell & Lewandowsky, 2004; Lewandowsky & Farrell, 2008; 
Oberauer et al., 2012; Page & Norris, 1998), order errors 
could either arise from the overlap of positional retrieval 
cues, or from item similarity in the memory for sequences 
(Henson et al., 1996). Hence, actively monitoring item simi-
larity in WM to detect order mismatches could create closely 
correlated performance between item and serial order WM; 
that is, people who are better at subvocal rehearsal might 
be better at both item and serial order maintenance. In a 
similar vein, Camos et al. (2017) suggested that item and 

serial order information are maintained by the combination 
of subvocal rehearsal and attentional refreshing mechanisms. 
Different levels of involvement of these two mechanisms 
might give rise to the dissociation between item and serial 
order WMCs at the latent level, but this common root of 
maintenance mechanisms could inevitably cause the high 
correlation between item and order latent constructs.

Using the latent-variable approach, we successfully repli-
cated the item-order WMC dissociation supported by other 
methodologies and validated this approach for further prob-
ing the structure of serial order WM. The key result of this 
study is the comparison between nested competing models 
that endorses the model with serial order WM performance 
loading on separate latent constructs, and thus supports 
the domain-specific serial order WMC hypothesis over the 
domain-general hypothesis. This result adds new insight into 
the literature that has been marked with inconsistent results.

The clarity of this result may reflect the benefit of tak-
ing a differential psychology approach to understanding the 
organization of the cognitive system. In general, serial order 
information may be more explicitly required when we are 
processing verbal sequences than visuospatial sequences in 
the real world, and we might be more adept at recognizing 
changes in order information for verbal sequences than non-
verbal sequences. In order to limit the domain-specific effi-
ciency/difficulty, we attempted to design six-item sequences 
with different materials equivalently challenging by varying 
pool sizes of stimulus types in the current study. However, 
this manipulation could lead to other unequated confounds 
in task difficulty in two domains, like the exhaustivity of 
the pool or the proactive interference. When the pool size 
of a stimulus type was smaller, detecting a change would be 
easier given that fewer items might need to be monitored 
in total. Contrarily, with a smaller pool size, the proactive 
interference might be stronger for a stimulus type, given that 
a higher chance for the occurrence of overlapping items in 
the current and past memoranda. On the other hand, repre-
sentational interference could also be another unintended 
confound in our current design. We had larger verbal than 
nonverbal pool in order to balance out the efficiency with 
verbal sequences from daily life. However, verbal stimuli 
differentiate at many representational levels (e.g., phonologi-
cal, semantic, orthographic levels) and nonverbal stimuli do 
not have as many explicit dimensions to differ (e.g., horizon-
tal and vertical axes for locations, length and direction for 
arrows). Hence, the verbal domain might have higher mul-
tidimension representational interference than the nonverbal 
domain and having a larger verbal pool could be detrimental 
to solving this representational interference. It is not feasi-
ble to identify and match all representation levels across 
domains to rule out the domain-specific interference. Hence, 
we encourage future work to address these potential con-
founding factors by matching the set size while identifying 
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other methods to match task difficulty across domains, for 
example by manipulating the item similarity within the 
stimulus pool or varying tasks for different domains. As dis-
cussed, various factors could affect objective task difficulty, 
and large discrepancies among individuals makes equat-
ing task difficulty across domains even more challenging. 
In approaches drawing inferences from the group-average 
performance, it is hard to compare across verbal and non-
verbal sequences given that domain-specificity could easily 
be conflated by nonequivalent task difficulty in two domains. 
Indeed, with the analysis on the group-average performance, 
our experiment replicates the finding from Gmeindl et al. 
(2011): Performance in detecting item changes was signifi-
cantly better than detecting order swaps in the visuospatial 
tasks, but not in the verbal tasks. The potential domain-wise 
difference in task difficulty poses a challenge to interpret this 
pattern: This group-average result could either be evidence 
for a separate serial order WMC for visuospatial sequences 
or evidence for a shared serial order WMC not being used 
efficiently with harder visuospatial tasks as with easier ver-
bal tasks. However, this difficulty difference is not an issue 
for individual differences studies, as it only predicts a dif-
ference in means, but not a difference in covariation. For the 
current study, the independence of covariation in serial order 
WM performance for sequences in different domains across 
individuals provides strong evidence for the domain-specific 
serial order WMC hypothesis.

It is worth noting that the model endorsement decision 
was made based on the combination of the result of nested 
model comparisons and converging evidence from previous 
studies. This decision rule we adopted does not weaken the 
clarity of the SEM approach. Based solely on SEM results, 
models with serial order WM indicators loading on separate 
latent constructs (Model 2 in Fig. 3b and Model 4 in Fig. 3d) 
had significantly better fit compared with the rest of theo-
retical models, and combining or separating item and order 
constructs in the verbal domain did not have any significant 
difference. A common decision rule in SEM studies (espe-
cially in exploratory factor analysis studies) is parsimony, 
in which a model with fewer parameters being estimated is 
considered more sufficient in accounting for the observed 
data compared with a larger model. However, whether the 
parsimony decision rule is always optimal is debatable. It 
has been suggested that generalizability, parsimony, and pre-
cision need to be balanced when formulating the optimal 
model to account for the observed data (Blalock, 1986; Chin 
et al., 2008). Sometimes overemphasizing  the parsimony 
decision rule can lead to the endorsement of misspecified 
but parsimonious models (Marsh & Hau, 1996; West et al., 
2012). As Bollen and Long (1993) suggested, “These deci-
sion rules cannot replace sound judgment and substantive 
knowledge of the data.” Therefore, when no significant dif-
ference was observed between the two theoretical-driven 

models, we chose to incorporate converging evidence from 
other methodologies rather than the parsimony as our deci-
sion rule for the current study.

There are three concerns that might be raised about our 
interpretation of the domain-specificity from the results. 
First, as with any study contrasting verbal and nonverbal 
WM, there are concerns that a verbal strategy could still be 
used in the nonverbal WM tasks. That is, nonverbal WM 
tasks are actually engaging the verbal WM system. However, 
we think that this is unlikely in our current study. To limit 
the confounding involvement of verbal WM, we selected 
stimuli that are hard to be verbalized with a simple label. 
For example, “top middle” is not sufficient to accurately 
describe a location. Moreover, a fine-grained description of 
six consecutive items would exceed the limit of verbal WMC 
(Cowan, 2001) and make the nonverbal tasks extremely dif-
ficult to complete, which is not our observation from the 
data. Even if it was possible for participants to use this ver-
bal strategy, it would be hard to explain why we found that 
models with separated verbal and nonverbal WMC factors 
significantly outperformed those that assumed domain-free 
item and order WMC, as shown in the supplementary mate-
rials. We did conduct a follow-up questionnaire within a 
subset of our sample (N = 53), giving participants multi-
ple-choice options and open-ended questions regarding the 
strategy they adopted to complete each task. The multiple-
choice options included sequential encoding without any 
mental operations, within-domain chunking, within-domain 
mnemonics (e.g., expanding words to sentences or stories, 
remembering only the location of arrow tips to form a loca-
tion sequence), and cross-domain mnemonics (e.g., associat-
ing each letter with a picture, labeling locations as number 
1 to 10). Overall, only one participant solely and seven par-
ticipants partially adopted verbal strategies in both nonverbal 
tasks, indicating that verbal strategy is not used dominantly 
for nonverbal WM tasks.

Second, an alternative interpretation of the domain-spec-
ificity in our results could be that there is a domain-general 
serial order WM, with domain-specific variability induced 
by individual expertise for different contents. Researchers 
have argued that item similarity could affect serial order 
maintenance (Henson et al., 1996), with it being more diffi-
cult to detect order swap errors when items are very similar. 
Besides from the average level of representational similari-
ties across domains as we discussed previously, the extent 
to which items are mentally represented as similar might be 
influenced by individual’s experience and expertise in that 
domain. We addressed this concern by including four task-
specific factors to model performance for a given item type.

Third, it might be argued that the domain-specificity was 
introduced by the specific task type. The tasks used in the 
current study were more similar to simple span short-term 
memory tasks than complex span tasks (e.g., operation 

953Memory & Cognition (2022) 50:941–961



1 3

span). Previous latent-variable research has revealed the 
verbal–nonverbal distinctions with simple but not complex 
span tasks (Alloway et al., 2006; Kane et al., 2004), although 
the domain-specificity has been reported with complex span 
as well (Dang et al., 2012; Shipstead & Yonehiro, 2016). 
Also, Uittenhove et al. (2019) found the presence of domain-
specificity in WM with probe-recognition tasks when it was 
negligible with recall tasks, but there have been some con-
tradictive findings with recognition tasks for the domain-
specificity in WM as well (Ricker et al., 2010; Ricker & 
Cowan, 2010). Provided that the complexity of the sequence 
matching paradigm used in the current study lands between 
simple–complex span and recognition–recall tasks, and the 
patterns of whether simple span and recognition tasks are 
prone to domain-specificity findings are mixed, future stud-
ies are encouraged to systematically gauge the task effect on 
the domain-specificity of serial order WM. It is also critical 
to tease apart whether a domain-general pattern emerges 
solely because of the nature of serial order WM or because 
executive control and other higher-level cognitive functions 
are tapped in complex, difficult tasks. Note that in some ver-
sions of WM conceptualization, the spectrum of task com-
plexity coincides with the STM–WM distinction. Without a 
consensus view of the definition of WM, the current study 
adopted a broad working definition of WM as the capac-
ity to temporarily maintain and process information. Most 
WM research does not differentiate WM and STM explicitly, 
using STM or short-term store to emphasize the storage por-
tion of the WM concept (e.g., Baddeley, 2017; Cowan, 2008; 
Oberauer et al., 2018). However, sometimes the term WM 
is reserved for the processing portion of the concept or only 
for attention-related processes (e.g., Engle, 2002); under 
this restriction, WM and STM are usually operationalized 
as complex and simple span tasks, respectively (e.g., Kail 
& Hall, 2001; Unsworth & Engle, 2007). Although opera-
tionalized as distinct tasks, some studies still find that WM 
and STM reflect the same cognitive process (e.g., Cowan 
et al., 2003; Hutton & Towse, 2001; for opposite results sup-
porting distinct WM and STM, see also Swanson & Kim, 
2007). Given that the distinction between WM and STM 
could still be ambiguous even under the strict definition of 
WM, we chose to use WM as a broader term to describe the 
current study. However, we wanted to note that the tasks in 
the current study were close to STM tasks and our results on 
the domain-specificity of serial order processing might only 
hold for the organization of STM under the strict definition 
of WM.

In a similar vein, it might also be argued that the sequence 
matching paradigm taps episodic LTM above and beyond 
WM. The capacity limit of WM has been argued to be 
approximately four items (Cowan, 2001), whereas the cur-
rent study required participants to maintain six or twelve 
items in memory. Some individual-differences-based WM 

models (e.g., Unsworth & Engle, 2007) also suggested that 
the WMC depends on the capacity of cue-dependent search 
in LTM. Hence, we encourage future work to further disen-
tangle the involvement of episodic LTM from WM, which 
could be achieved by varying lengths of sequences or using 
varying tasks to assess whether the distinct characteristics of 
LTM (e.g., differential involvement of familiarity and recol-
lection) would be present in retrieval.

One potential limitation of the current study is that it 
was carried out in a rather restricted high-ability sample of 
students at Rice University, a highly selective private uni-
versity. Previous work has suggested that individual differ-
ences studies that focus on these high-ability samples exhibit 
patterns prone to domain-specificity (Jensen, 1998; Kane 
et al., 2004). Due to the sample limitation, it is possible 
that the domain-generality of serial order WMCs has been 
underestimated in the current study. Furthermore, given the 
length of each testing session (approximately 2.5 hours per 
participant), we recruited a sample of approximately 160 
participants. While this sample size is in line with some 
recent SEM studies in WM (e.g., Unsworth, 2016; Unsworth 
& Robison, 2017), it is somewhat small given the complex-
ity of the models. It remains an open question for future 
research as to whether the same tasks with a different popu-
lation would yield different results and whether the results 
would replicate with a larger sample.

Even with these limitations, the results indicate that 
individual differences in maintaining serial order in WM 
have domain-specific components of variance, and thus 
serial order WMC is not identical between the verbal and 
visuospatial domains. This finding suggests that there are 
domain-specific components in the mechanism of serial 
order in WM, but the exact manner of how the domain-
specificity plays a role is unclear. Certainly, the domain-spe-
cific variance in individual differences in serial order WM 
performance does not rule out the possible domain-general 
component in serial order mechanism. For example, it is 
possible that there is a common set of serial order repre-
sentations shared across domains (Farrell & Lewandowsky, 
2004; Hurlstone & Hitch, 2015, 2018), but the mechanism 
for binding items and order is domain-specific (Hurlstone 
et al., 2014). It is also possible in the opposite direction: 
There could be a domain-general mechanism controlling 
the efficiency of two separate domain-specific order mecha-
nisms in WM, with its capacity varying between individuals. 
Alternatively, another fine-grained alternative hypothesis is 
that cognitive processes required for verbal and visuospatial 
serial order WMCs are partially overlapping and partially 
distinct. For example, there could be multiple mechanisms 
for serial order WM (Camos, 2015) with only some of those 
mechanisms shared between domains. Some have argued 
that spatial processing plays a critical role in maintaining 
order information in verbal sequences (Abrahamse et al., 
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2017), but this same spatial mechanism does not appear to 
contribute to serial order information processing for visu-
ospatial sequences (Ginsburg et al., 2017). Therefore, using 
space to represent serial order might be a domain-specific 
serial order process only in the verbal domain, but not in 
the visuospatial domain, while other serial order processes 
might be shared across domains. These alternative hypoth-
eses would be consistent with the pattern that we report here, 
and further follow-up is needed to test them.

Finally, it is worth considering the current study in light 
of debates about different WM models. Besides the WM 
models that explicitly proposed a mechanism to account for 
serial order maintenance (Botvinick & Plaut, 2006; Botvin-
ick & Watanabe, 2007; G. D. A.Brown et al., 2000, 2007; 
Burgess & Hitch, 1999; Farrell & Lewandowsky, 2002; Hen-
son, 1998; Page & Norris, 1998), most WM models do not 
have such specification but could account for serial order 
maintenance with the premise of the model. One strand 
of WM models is the multiple-component model (Badde-
ley & Hitch, 1974), in which the WM system is divided 
into two slave systems including the phonological loop 
for verbal information and the visuospatial sketchpad for 
visuospatial information. There are also a central execu-
tive and an episodic buffer to allocate attention and perform 
multi-modal computations; both constructs could operate in 
both domains. Another strand of WM models assumes no 
explicit domain-specific processes. These models include 
the embedded-processes model (Cowan, 1999, 2008, 2019) 
and the concentric model (Oberauer, 2002), in which WM is 
the activated portion of long-term memory (LTM) system, 
as well as the executive attention model (Engle, 2002) and 
the time-based resource-sharing model (Barrouillet et al., 
2004), in which WM is the capacity to control or refresh 
attention. Our results suggest that there are independent pro-
cesses for maintaining the serial order in sequences in two 
domains. The dissociation reported here is best accounted 
for in the framework of the multiple-component model (Bad-
deley & Hitch, 1974), which divides WM processing into 

dedicated systems for verbal and nonverbal information. In 
the context of this model, serial order information could be 
maintained as an independent buffer from item information 
in each slave system, or as separate mechanisms in the cen-
tral executive or episodic buffer. As different computational 
models suggest, this serial order information could exhibit 
domain-specificity by the context signal being applied sep-
arately to verbal and nonverbal items, in the form of the 
start-based gradient (Page & Norris, 1998), the end-based 
gradient (G. D. A.Brown et al., 2007), the both-edge gradi-
ent (Henson, 1998), or the distributed pattern of dynamic 
context (G. D. A.Brown et al., 2000; Burgess & Hitch, 1999; 
Macken et al., 2015). The domain-specificity could also be 
achieved by having distinct signals in two domains, as sug-
gested by the perceptual-motor model (Hughes et al., 2016). 
In contrast, the current study might pose a challenge for 
attention- and activation-based WM models that assume no 
explicit domain-specificity (Barrouillet et al., 2004; Cowan, 
1999; Engle, 2002; Oberauer, 2002). For these models, the 
verbal–visuospatial dissociation in item WMCs can be 
explained by differences in the LTM representations for 
different materials. However, they do not explicitly address 
how serial order information is maintained in WM; serial 
order is usually considered as one feature of items (e.g., Bar-
rouillet & Camos, 2014). Given that these models treat WM 
as a unitary system across domains, they are hard to recon-
cile with the domain-specific serial order WMC hypothesis 
supported by the current study.

Appendix 1. Word stimuli

BLADE BRICK COACH CROWN DOUGH
DRAIN FENCE FLOCK GLOBE GRAPH
JUICE LAUGH LODGE MOUSE NERVE
PLATE PRIZE QUEST RIDGE SAINT
STORM THEFT TREAT VERSE WOUND
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Table 4

Table 4  Properties of word stimuli

Note. NSYL number of syllables, NPHN number of phonemes, K-F-FREQ Kucera-Francis written frequency, IMG imageability rating, FAM 
familiarity rating, CNC Concreteness rating (100–700). Imageability, familiarity, and concreteness are merged from three sets of norms: Pavio 
(unpublished), Toglia and Battig (1978), and Gilhooly and Logie (1980) as described in Appendix 2 of the MRC Psycholinguistic Database User 
Manual (Coltheart, 1981)

WORD NSYL NPHN K-F-FREQ IMG FAM CNC

BLADE 1 4 13 568 517 584
BRICK 1 4 18 574 529 610
COACH 1 4 24 560 509 561
CROWN 1 4 19 602 531 586
DOUGH 1 2 13 558 474 627
DRAIN 1 4 18 540 510 591
FENCE 1 4 30 611 526 597
FLOCK 1 4 10 516 434 477
GLOBE 1 4 13 583 477 535
GRAPH 1 4 17 535 524 553
JUICE 1 3 11 593 567 599
LAUGH 1 3 28 528 594 433
LODGE 1 3 19 464 429 538
MOUSE 1 3 10 615 520 624
NERVE 1 3 12 486 554 488
PLATE 1 4 22 527 556 595
PRIZE 1 4 28 517 508 474
QUEST 1 5 16 460 413 316
RIDGE 1 3 18 543 430 547
SAINT 1 4 16 394 463 458
STORM 1 4 26 587 555 527
THEFT 1 4 10 436 499 361
TREAT 1 4 26 360 534 399
VERSE 1 3 28 489 483 500
WOUND 1 4 28 570 474 561

956 Memory & Cognition (2022) 50:941–961



1 3

Appendix 2. Location stimuli

Fig. 4

Appendix 3. Arrow stimuli

Fig. 5

Fig. 4  Location stimuli were presented on a white background, and 
the coordinate is the position of the center of each location. The loca-
tion materials consisted of ten randomly selected locations and were 
at a minimal distance (~4 cm) from one another. The display size was 

38.6 cm × 57.4 cm and all items had a visual angle of approximately 
3.4 degrees, based on a distance of 42 cm between the participant and 
the screen

Fig. 5  Arrow stimuli were presented on a white background, start-
ing from the center with varying lengths and directions. The arrow 
materials consisted of sixteen randomly selected locations. The dis-

play size was 38.6 cm × 57.4 cm and all items had a visual angle 
of approximately 2.7 to 5.4 degrees, based on a distance of 42 cm 
between the participant and the screen
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Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13421- 021- 01260-4.
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