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Abstract
Humans are highly sensitive to the statistical relationships between features and objects within visual scenes. Inconsistent objects
within scenes (e.g., a mailbox in a bedroom) instantly jump out to us and are known to catch our attention. However, it is debated
whether such semantic inconsistencies result in boosted memory for the scene, impaired memory, or have no influence on
memory. Here, we examined the relationship of scene–object consistencies on memory representations measured through
drawings made during recall. Participants (N = 30) were eye-tracked while studying 12 real-world scene images with an added
object that was either semantically consistent or inconsistent. After a 6-minute distractor task, they drew the scenes frommemory
while pen movements were tracked electronically. Online scorers (N = 1,725) rated each drawing for diagnosticity, object detail,
spatial detail, and memory errors. Inconsistent scenes were recalled more frequently, but contained less object detail. Further,
inconsistent objects elicited more errors reflecting looser memory binding (e.g., migration across images). These results point to a
dual effect in memory of boosted global (scene) but diminished local (object) information. Finally, we observed that participants
fixate longest on inconsistent objects, but these fixations during study were not correlated with recall performance, time, or
drawing order. In sum, these results show a nuanced effect of scene inconsistencies on memory detail during recall.

Keywords Saliency . Binding errors . Global scene processing . Local scene processing

When we view a scene, we automatically parse many aspects
of that scene—its overall gist, constituent objects, and their
relations to each other and the greater scene layout (Fei-Fei
et al., 2007; Oliva & Torralba, 2006). In exploring and under-
standing that scene, we are guided not only by its visually
salient aspects (Zhao & Koch, 2013) but also by its
interpretations—or meaning (Henderson & Hayes, 2017).
Unsurprisingly, we parse a scene based on our expectations
of that scene and its objects, utilizing what can be considered a
“scene grammar” (Võ et al., 2019) that guides what types of

objects go in what types of scenes. Thus, when we see scenes
containing violations of this grammar—for example, when a
beach ball is unexpectedly in a laboratory—they catch our
attention. Such inconsistencies in object–scene semantics
cause disruptions in our ability to process these images
(Greene et al., 2015), and we tend to fixate on these inconsis-
tencies during perceptual and visual search tasks (Henderson
et al., 1999; Loftus &Mackworth, 1978; DeGraef et al., 1990;
Malcolm & Henderson, 2010), even when performing an ir-
relevant task (Cornelissen & Võ, 2017).

However, even though observers fixate longer on inconsis-
tent objects, it is unclear how scene consistency influences the
later memory for that scene and its objects. Some research has
reported no memory differences between inconsistent and
consistent objects in scenes when encoded incidentally
(Cornelissen & Võ, 2017). Other work has reported boosted
recognition and recall memory for inconsistent objects across
both incidental and intentional memory tasks, along different
time scales (Friedman, 1979; Hollingworth et al., 2001;
Pezdek et al., 1989). Yet other work studying memory for
object-location associations has reported an opposite effect
of boosted memory for consistent objects (Draschkow &
Võ, 2017). Given the varied results and divergent methods
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across these various studies, there is still a large open question
of how object–scene semantics shape the memory representa-
tions for a scene. More broadly, beyond asking whethermem-
ory is impacted by scene semantics, little work has specifically
asked how that memory is impacted: what specific aspects of a
scene’s memory are altered—memory for the entire image,
the manipulated object, or the background scene?

In the current study, we compare the underlying visual
memory representations for inconsistent and consistent scenes
using a visual recall drawing task. Previous work assessing the
influences of scene semantics on memory have relied on ver-
bal recall or visual recognition tasks (Cornelissen &Võ, 2017;
Friedman, 1979; Hollingworth & Henderson, 1998; Pezdek
et al., 1989). However, these types of measures may provide
limited information about the nature of a memory—only re-
vealing whether an item is remembered or not, but not what
specific visual content of that memory drives its recollection.
Recent work has discovered that using drawing-based recall to
quantify memory can reveal more fine-grained information
than verbal recollection, and requires no assumptions about
matched foil images, often necessary for visual recognition
tasks (Bainbridge et al., 2019). Drawings have also been
known to reveal valuable insight about the memories of chil-
dren (e.g., Bruck et al., 2000; Otgaar et al., 2016), artists (e.g.,
Perdreau & Cavanagh, 2015; Vogt & Magnussen, 2016), and
patient groups (e.g., Corkin, 2002; Rey, 1941). Thus, a draw-
ing task may reveal subtler differences between memories for
consistent and inconsistent scenes than was possible to cap-
ture in previous work utilizing verbal-based or recognition-
based tasks. Further, drawings can be objectively quantified
through online crowd-sourced scoring to reveal a wide range
of information, including object detail, spatial accuracy, and
inclusion of false additional objects (Bainbridge et al., 2019).
With such a task, we can thus examine not only whether an
inconsistent object is remembered better than a consistent ob-
ject, but how inconsistency impacts memory for other objects
in the scenes, their spatial relations, and the scene overall.

With these measures, we examined several questions for
how scene semantics might influence memory representa-
tions. First, we consider how consistency affects recall of the
manipulated object in the scene. One possibility is that incon-
sistent objects are distinctive and easier to remember
(Friedman, 1979; Hollingworth et al., 2001; Pezdek et al.,
1989). Conversely, we might instead find that consistent ob-
jects better fit our scene schemas and thus are easier to remem-
ber, as has been found in work analyzing the role of consis-
tency on scene construction (Draschkow&Võ, 2017). A third
possibility is that we may observe no memory difference be-
tween inconsistent and consistent objects (Cornelissen & Võ,
2017). Second, we consider how consistency affects memory
for the overarching image—do participants tend to draw in-
consistent or consistent images more frequently from memo-
ry, regardless of their memory for the manipulated object?

Finally, beyond memory for the inconsistent/consistent object
or its encompassing image, we ask whether there is a differ-
ence in memory for the other objects in the scene (what we
will hereby refer to as the “background scene”). On one hand,
the heightened distinctiveness of an image owing to the pres-
ence of an inconsistent object could boost memory for the
entire scene, including surrounding objects. On the other
hand, these inconsistent objects could create a “spotlight” ef-
fect, capturing attention away from surrounding objects
(Cornelissen & Võ, 2017) and reducing recognition for ob-
jects semantically unrelated to the inconsistent object
(Auckland et al., 2007; Davenport, 2007). With this spotlight
effect, we might also observe transpositions of objects that are
semantically unrelated to their overarching image (Hannigan
& Reinitz, 2003). Thus, by analyzing drawings made from
memory, we can examine memory performance for the image,
the manipulated object, as well as the background scene.
Further, using both eye-tracking and computer-vision-based
saliency models during image encoding as well as pen-
tracking during drawing recall, we can see whether we can
replicate previous findings on increased fixations to inconsis-
tent objects (e.g., Cornelissen & Võ, 2017), and whether fix-
ation patterns during perception predict recall performance.

To preview our results, we find an interesting trade-off in
memory, in which semantically inconsistent images are
recalled more frequently, but with less detail, and with weaker
binding between the inconsistent object and the scene,
resulting in transpositions of that object across images.
Further, while we replicate the observation that individuals
fixate inconsistent objects during encoding, we find that recall
patterns cannot be explained by fixation patterns or image
saliency during encoding.

Methods

Participants

Thirty adults (9 males, 21 females; age M = 24.8 years, SD =
4.5) were recruited from the local Washington, DC, area for
participation in this within-subjects experiment. This sample
size was determined a priori, to match the same sample size
collected in a previous, similar drawing-based experiment that
measured high detail from memory drawings with only 15
participants drawing any given image (Bainbridge et al.,
2019). The current study also includes far fewer images to
hold in memory (12 vs. 30)—thus, we anticipate more draw-
ings will be produced from memory per image, resulting in
higher power per image than Bainbridge et al. (2019).
However, as this drawing recall methodology is very new,
we hope the current study will serve as a basis upon which
to conduct power analyses for future drawing studies.
Participants were healthy native English speakers with
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corrected or normal vision, with the exception of participants
with high-prescription glasses, who were not recruited, to
avoid calibration issues with the head-mounted eye tracker.
No participants or trials were excluded. All participants
consented following the guidelines of the National Institutes
of Health (NIH) Institutional Review Board (NCT00001360,
93M-0170) and were compensated for their participation.

A total of 1,725 online scorers were recruited from online
crowd-sourcing task platform Amazon Mechanical Turk
(AMT), acknowledging their participation following the
guidelines of the NIH Office of Human Subjects Research
Protections (OHSRP), and were also compensated for their
participation. The number of online scorers per task was se-
lected to be identical to prior online scoring studies of draw-
ings (Bainbridge et al., 2019; Bainbridge et al., 2021).

Stimuli

Stimulus images were created from 12 distinctive scene im-
ages from different scene categories, half indoor (bathroom,
bedroom, classroom, kitchen, laboratory, laundry room) and
half outdoor (campsite, construction site, neighborhood street,
playground, swimming pool, backyard). The original object
and scene images came from publicly available photographs
on Google Images, found by searches of the scene category
and object names. Adobe Photoshopwas used to naturally add
an object to each image (referred to throughout as the “manip-
ulated object”) that was either consistent or inconsistent with
the scene semantics (see Fig. 1). The scene images were
paired, and these object manipulations were conducted within
the pairs, so that the consistent object in a given image was
also used as the inconsistent object in its paired image, and
vice versa. For example, in the consistent condition, a lab
scene contained a microscope and a pool scene contained a
beach ball (see Fig. 1). In the inconsistent condition, the lab
scene had a beach ball and the pool scene had a microscope.
The consistent and inconsistent object were placed at the same
size and in the same location within a given scene, and

shadowing and lighting were added to each object to integrate
it naturally with the surrounding scene. This resulted in a set of
24 stimuli, comprising of a consistent and inconsistent version
of each of the 12 scenes (and, similarly, each of 12 objects had
a consistent image and an inconsistent image). To confirm that
we successfully manipulated scene consistency, all images
were rated online by Amazon Mechanical Turk (AMT)
workers (N = 15 per image; N = 67 total) on a 5-point Likert
Scale on how typical (“normal”) it was for that object to be in
the scene (1 = very abnormal, 5 = very normal). As expected,
consistent objects were rated to be significantly more normal
than inconsistent objects (Consistent: M = 4.4, SD = 1.1;
Inconsistent: M = 1.6, SD = 1.1; Wilcoxon signed rank test:
Z = 2.20, p = .028, effect size r = .64). During the main
experiment, each participant saw 12 images (one of each
background scene), with half consistent images and half in-
consistent images. Which images were consistent or inconsis-
tent was counterbalanced across participants, so each of the 24
images was seen by 15 participants, akin to Bainbridge et al.
(2019).

All 24 stimuli were annotated with outlines for every object
by the authors in advance of the experiments, using online tool
LabelMe (Russell et al., 2008). These annotations allow us to
create object-based online scoring experiments, and compare
drawings to ground-truth information of object size and loca-
tion. Objects were defined as nameable, separable, visually
distinct items, larger than a 50-pixel diameter. Visually uni-
form object parts were not labeled (e.g., the leg of a chair), but
detachable components were (e.g., windows on a house).
While the manipulated object was intentionally inserted to
be a key object in the foreground, each scene contained mul-
tiple other foreground and background objects (M = 39.3 ob-
jects, SD = 20.5, Min = 13, Max = 77).

Experimental procedures

At the beginning of the experiment, participants were told to
carefully examine each image as they would be later tested on

Fig. 1 Two example sets of consistent and inconsistent scenes. (Left) A toy car or mop bucket in a bathroom or playground. (Right) A beach ball or a
microscope on a swimming pool deck or in a laboratory
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their memory. Participants were informed that this was a
memory task, so that they were motivated to actively encode
the image details for long-term memory. However, partici-
pants were unaware of the nature of the memory task, and
were unlikely to expect a drawing task, so they could not
employ strategies specifically honed for drawing as a task.
The experiment was split into four phases (see Fig. 2).

The first phase was a study phase, in which participants
viewed each of the images for 10 seconds while their eye
movements were tracked with a head-mounted EyeLink
1000 Plus eye-tracking device. Participants studied 12 images
in total, determined as the average number of scenes recalled
by participants in a prior memory drawing study (M = 12.1
images; Bainbridge et al., 2019). We anticipated that twelve
images per participant would maximize the power of our
study; more images would likely result in a low recall rate
for any given image, while fewer images could be too easy
and reduce the experimental power. Between the presentation
of each stimulus image, a fixation cross was displayed to the
right of the image on the screen, in order to avoid biasing eye
movements to the center. After the participant fixated on the
cross, the next stimulus was then displayed. Each image was
displayed at 1,200 × 800 pixels on a 24-inch screen at 28
degrees of visual angle.

The second phase was a digit span distractor task intended
to disrupt verbal working memory strategies. Participants saw
a consecutive series of digits varying by 3-9 digits in length,
and then had to repeat back the series of digits from memory
when prompted. This repeated for 21 trials, and introduced an
approximately 6-minute delay between the study and test
phases.

The third phase was the drawing recall test phase. Participants
were given sheets of paper with a rectangular outline with di-
mensions matching those of the original images, and were asked
to draw as many images as they could remember in as much
detail as possible. Participants drew on a Wacom Paper Pro
tablet, which allowed participants to draw with an inked pen

on paper while it simultaneously recorded pen strokes digitally
in real time. Participants were told to draw the images in any
order. They were also given colored pencils if they wanted to
include color detail in their drawings, but were asked to include
color only if they specifically recalled it. They were instructed to
add color after completing the pen drawing of all the objects they
recalled. Participants were also told they could label objects if
they wished to clarify what they were. Participants were given as
much time as they needed and took 27 minutes on average for
the recall phase (SD = 8).

In the fourth and final phase, participants completed a rec-
ognition phase, in which they made a series of recognition-
based judgments of the images. They were shown the 12
scene images they studied randomly interspersed with 12
closely matched foil scenes of the same scene categories. All
scene images had a gray occluding ellipse covering the ma-
nipulated (consistent or inconsistent) object. Foil images had a
gray occluding ellipse placed in a plausible similar location.
First, for a given image, participants were asked if they had
seen the scene during the study phase (scene recognition). If
they said yes, they were presented with four object images and
had to indicate which was the object they saw in that scene.
The four choices of object images were: (1) the inconsistent
object, (2) the consistent object, (3) a different exemplar from
the inconsistent object category, and (4) a different exemplar
from the consistent object category. This question tested both
object category recognition (e.g., if you studied an inconsis-
tent scene, did you falsely remember seeing a consistent ob-
ject?), as well as specificity to the exemplar within the same
category (e.g., did you remember that you saw that specific
microscope in the scene, or a microscope in general?).

Online scoring procedures

The resulting 275 drawings were scanned and uploaded to
AMT, to crowd-source worker ratings on several proper-
ties of the memory drawings. Specifically, four different

Fig. 2 The experimental procedures. The experiment consisted of four
phases: (1) A study phase in which participants studied 12 randomly
ordered images (6 consistent, 6 inconsistent) for 10 s each while their
fixations were tracked; (2) a digit span distractor task in which partici-
pants had to verbally recall digit series; (3) a drawing recall test phase in

which participants drew the studied scenes from memory while their pen
movements were tracked; and (4) a recognition phase in which partici-
pants had to separately recognize the scene and the manipulated object
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sets of measures were collected for each drawing. For all
rating tasks, each AMT worker could participate in as
many trials as they wanted. Depictions of the four online
tasks can be seen in Fig. 3, with the precise instructions
given to AMT workers. AMT workers did not know the
origins of these drawings, the different image conditions
(i.e., consistent vs. inconsistent scenes), nor the nature of
the main drawing experiment. Drawings were also ran-
domly mixed, so that if an AMT worker participated on
multiple trials, they would not know if they were scoring
drawings from the same (or different) person or condi-
tions. Thus, AMT workers scored these drawings blind
to the conditions.

Drawing match scoring AMT workers rated how well each
drawing matched one of the images participants studied, pro-
viding a measure of diagnosticity of that drawing (see Fig. 3a,
top left). For a given trial, they were presented with a drawing
with an image next to it and rated on a 5-point Likert scale the
likelihood that it was a drawing of that image (1= definitely
not, 5 = definitely). Across trials, drawings were tested against
each of the 12 images seen by the participant who made the
drawings. Twelve ratings were collected for each drawing–
image pair (with a total of 144 ratings per drawing across
the 12 pairs), and 611 AMT workers participated in total.
The image with the highest match rating with a drawing (av-
eraged across the 12 AMT workers for that drawing–image

Fig. 3 a Example trials from the online experiments. Shown are
depictions of example trials from the four online experiments: (1) drawing
match scoring, (2) object identification scoring, (3) object location scor-
ing, and (4) false additional object scoring. b Up-close view of highlight-
ed objects. The object identification scoring and object location scoring

tasks required online participants to compare a highlighted object with the
drawings. Shown here are the close-up examples of objects highlighted in
red from “object identification” (Panel a). Outlines were created a priori
using LabelMe (see Methods). Online participants saw the full image
when making responses (as in Panel a)
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pair) was selected as the corresponding image (“original im-
age”) for that drawing. To score overall image recall perfor-
mance, each of the 12 images each participant sawwas given a
binary score (1 = was drawn, 0 = was not drawn) as deter-
mined by if a drawing was matched to it by the AMT scorers.
Number of recalled images was calculated as the sum of those
12 binary scores. If a participant made multiple drawings of
the same image, that image was only given a single score for
being remembered. However, these duplicate drawings were
scored for other measures (below) and their objects present
were taken as the union across duplicates within participants
(rather than us selecting a single drawing to be scored for a
given image). Seventeen participants drew multiple drawings
of the same image.

Object identification scoring For each drawing-image pair
resulting as the highest match from the drawing match scor-
ing, AMT workers determined which objects from that image
were included in each drawing (see Fig. 3a, top right). For a
given trial, they were presented with a drawing and five copies
of the matched image with a different object highlighted on it.
Objects were highlighted to AMT workers with a red outline,
determined by the LabelMe outline created a priori (see Fig.
3b, see Stimuli). AMT workers had to click on which of those
five objects (if any) were present in the drawing. Five AMT
workers rated each object, and 679 AMT workers participated
in total. Using these object outlines rather than object names
of the objects allows AMT workers to decide on the presence
of an object using object identity, detail, size, and spatial
information—so that presence can be determined when there
are multiple exemplars for a given object type (e.g., the
multiple umbrellas in Fig. 3a). The five objects shown to
any given AMT worker were randomly selected and
counterbalanced, so that across AMT workers, five ratings
were collected for every single object from each image.
Objects were determined to be in the drawing if at least three
out of five workers said it was in the drawing. In analyses
comparing object recall for consistent versus inconsistent
scenes, one participant was excluded because they did not
draw any consistent scenes. Participant recall performance
for an image was measured as the number of objects they drew
for a given image, divided the total number of objects present
in that image.

Object location and size scoringAMTworkers determined the
locations and sizes of each object present in the drawings (see
Fig. 3a, bottom left). For a given trial, they were presented
with a drawing and its matched image with an object
highlighted on it. On the drawing, they had to place and resize
an ellipse to encircle that specified object. Five AMT workers
made ellipses for each object and 453 AMT workers partici-
pated in total. The final ellipse was determined by the median
centroid and radii in the x and y directions. This scoring was

conducted for all objects determined to exist in a given draw-
ing, based on ratings in the object identification scoring. One
participant did not draw any consistent scenes, and so they
were not included in analyses comparing locations of objects
in consistent versus inconsistent scenes. One participant also
did not draw any inconsistent manipulated objects, and so an
analysis comparing the location and size of manipulated ob-
jects only included 28 of the 30 total participants.

False additional object scoring AMT workers determined the
presence of additional objects in the drawings that were not in
the original images (see Fig. 3a, bottom right). For a given
trial, they were presented with a drawing and its correspond-
ing image and had to write down all objects that existed in the
drawing, but not the image. Fifteen AMT workers rated each
image, and 200 AMT workers participated in total. Any ob-
jects listed by at least five workers were counted as false
alarms.

Fixation, pen-tracking, and saliency analyses

From the EyeLink 1000 Plus, we extracted eye-movement
patterns for each participant to each image, as a list of loca-
tions on the image and their fixation times. To obtain a metric
of fixation time per object per participant, we computed the
total fixation time across all pixels within a given object. We
also looked at fixation order by object, by comparing the order
in which themanipulated object had its first fixation in relation
to the first fixation on all other objects (e.g., of all objects, was
the manipulated object fixated first, second, etc?). A partici-
pant’s fixation order was then normalized by total number of
objects in the drawing.

Using the tablet recordings of the pen movements, we also
calculated amount of time spent drawing each manipulated
object per participant. An in-lab scorer watched the video of
pen strokes created by the drawing tablet for each drawing.
The start and end time of pen strokes for the manipulated
objects were noted for each image, for the first span of time
in which the object was drawn. Time spent coloring objects
was not included, as participants were instructed to add color
after completing their drawing (and the tablet could not track
colored pens/pencils). Object drawing time also did not in-
clude any time spent returning to add details to an object later.
Total amount of time spent drawing the object was calculated
as the difference between the end time and the start time,
normalized by total amount of time spent on the drawing.
Similarly, we calculated sequential drawing order per partici-
pant by assigning an order to each object based on first pen
stroke on that object. Drawing order was then normalized by
total number of objects in the drawing. One participant was
removed from the drawing time and drawing order analyses
due to a technical glitch with the pen tablet software (resulting
in N = 29 for these analyses).
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To compute image saliency scores, we used two state-of-
the-art computer vision algorithms designed to predict human
fixation time: DeepGaze II (Kümmerer et al., 2016) and
Graph-Based Visual Saliency (Harel et al., 2007). Both
models aim to predict human fixations of an image, but
DeepGaze II is a more recent approach that utilizes a wide
range of feature types (i.e., both low-level and high-level vi-
sual information) and is trained on human fixation data, while
Graph-Based Visual Saliency (GBVS) is a more established
method commonly tested by attention researchers, that relies
solely on image-computable low-level visual features.
Specifically, DeepGaze II predicts fixation time based on fea-
tures from the VGG-19 deep neural network for object iden-
tification combined with a readout network trained for salien-
cy prediction based on human fixations (Kümmerer et al.,
2016). In contrast, GBVS is a model that identifies visually
dissimilar regions of an image (Harel et al., 2007). We were
curious to see whether these two models would perform dif-
ferently in their predictions of recall and fixation behavior,
given current debates on the success of these models in
predicting scene semantics (Hayes & Henderson, 2019;
Henderson et al., 2021; Pedziwiatr et al., 2021). For both
metrics, we obtained saliency heatmaps for each of the stim-
ulus images (see Fig. 8). Object-based saliency was then cal-
culated as the average saliency across the pixels of that object,
normalized by the average saliency of the entire image.

Finally, to generate heatmaps of recall for each image, we
calculated a recall score for each object, calculated as the
number of participants who drew that object, divided by the
number of participants who drew the image containing that
object. This allows us to create a heatmap of how well differ-
ent objects in an image were remembered, that can be directly
compared with heatmaps formed from fixation patterns, pen
movements, or saliency measures.

We thus have multiple values for each object in a given
image: (1) fixation time on that object (averaged or by partic-
ipant); (2) average time spent drawing that object (averaged or
by participant); (3) fixation order on that object (by partici-
pant); (4) drawing order of that object (by participant); (5) an
average GBVS saliency score of the object; (6) an average
DeepGaze II saliency score of the object; and (7) proportion
of participants recalling that object. Analyses were conducted
at the levels of these different object scores, not on the
heatmaps themselves.

Data analyses

For most analyses, we conducted paired samples t-tests within
subjects to compare the above metrics between participants’
drawings of consistent scenes versus inconsistent scenes. We
first tested these metrics for normality using a Kolmogorov–
Smirnov goodness-of-fit test, and found none of these were
significantly different from a normal distribution (all ps > .05).

For metrics with limited ranges (e.g., Likert scales, number of
drawings made), we instead conducted nonparametric paired
samples Wilcoxon signed rank tests. Effect sizes are included
with all significant statistical tests.

Results

Drawings are highly diagnostic of their images

The first step is identifying the images that correspond to each
drawing. Further, given the range of people’s drawing abilities
and memory, can a separate group of participants tell what
image a drawing represents? AMT workers saw individual
drawings matched with each of the 12 images studied by par-
ticipants in the main experiment, and judged the likelihood
that the drawing was of that image on a scale of 1 (definitely
not) to 5 (definitely). Overall, it was clear to AMT workers
what images matched the drawings, with only a single image
getting a score above 3 on average (see Fig. 4). For all further
analyses, the highest rated image was taken as the correspond-
ing image for each drawing. Importantly, there was no signif-
icant difference in ratings between consistent and inconsistent
images (Consistent:M = 3.9, SD = 0.5; Inconsistent:M = 3.7,
SD = 0.6; Wilcoxon signed rank test: Z = 1.70, p = .090). This
means that both semantically consistent and inconsistent

Fig. 4 Diagnosticity of the drawings across images for the two
conditions. The average ratings made by online scorers of the similarity
of participants’ drawings to each of the 12 images they saw, ranked from
highest to lowest. Similarity here was assessed on a scale of 1 (low) to 5
(high), with a question asking how likely it was that a drawing was of a
given image (the “drawingmatch scoring” experiment). Red bars indicate
drawings made of inconsistent images, while blue bars indicate drawings
made of consistent images. The high spike for image #1 and quick drop-
off for images #2–12 (all averaging below a rating of 1.5) for both con-
ditions indicates that it was clear to AMT scorers that a given drawing
was highly similar to only one image and dissimilar from all others. In
other words, drawings were highly diagnostic of their images. There was
no significant difference in diagnosticity between consistent and incon-
sistent images. Error bars indicate standard error of the mean
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drawings could be matched with their original images, and
were equally diagnostic of their original image. However, this
rating of diagnosticity serves as a relatively coarse metric, as
several different features could contribute to being able to
successfully match a drawing to an image (i.e., the manipulat-
ed object, properties of the background scene). A closer look
at the content in these drawings may reveal key differences
between consistent and inconsistent images.

More inconsistent scenes are recalled than consistent
scenes

The memory drawing experiment resulted in 275 total
drawings, with 126 drawings of consistent images, and
149 drawings of inconsistent images (see Fig. 5). This re-
flects a general tendency to recall inconsistent images over
consistent images (chi-squared test for proportions: χ2 =
3.85, p = .050, effect size φ = 0.12). Each participant on
average drew 9.2 drawings from memory out of the 12 that
they studied (SD = 2.16, Min = 5, Max = 12). Of those
drawings, participants drew more inconsistent images than
consistent images from memory (Wilcoxon signed rank
test: Z = 2.10, p = .036, r = .38), drawing on average 5.0
inconsistent images (SD = 1.5) and 4.2 consistent images
(SD = 1.5). Thus, memory for inconsistent images overall
was better than that for consistent images.

More objects are recalled in consistent scenes than in
inconsistent scenes

Next, we looked at the amount of detail available in
each drawing by having AMT workers judge which ob-
jects from the original image were included in each
drawing. Each image contained on average 39.3 objects
(with the same number of objects across the consistent
and inconsistent versions of a given scene), and partic-
ipants drew on average 9.0 objects per image (SD =
2.9), or 77.6 objects on average across the experiment.
Participants drew a significantly higher proportion of the
objects in consistent drawings versus inconsistent draw-
ings (Consistent: M = 23.4%, SD = 6.9%; Inconsistent:
M = 19.8%, SD = 8.1%), paired t test, excluding the
manipulated object: t(28) = 2.56, p = .016, d = 0.52.
We then looked to see whether there were differences in
the tendency to draw the manipulated object (the con-
sistent or inconsistent object). We found no significant
difference between consistent or inconsistent drawings
in the proportion containing the manipulated object
(Consistent: M = 53.8%, SD = 25.8%; Inconsistent: M
= 65.0%, SD = 28.1%), t(28) = 1.37, p = .181. This
indicates that while semantically inconsistent objects
were recalled just as frequently as their consistent coun-
terparts, there was reduced memory for objects in the
inconsistent background scenes than in consistent ones.

Fig. 5 Example drawings for four of the stimulus images. Shown here
are two example drawings each for the consistent and inconsistent
bedroom scene, and the consistent and inconsistent camp scene. Each
drawing was taken from a different participant, showcasing the

impressive level of both object and spatial detail in the memory
drawings for a range of people. The key question in this study is
whether there are differences in memory detail between drawings for
the consistent and the consistent scenes
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The nature of object errors in consistent versus
inconsistent scenes

We then investigated whether there were differences between
conditions in the types of object errors that were made in the
drawings. Overall, participants included relatively few false
additional objects in their drawings, only drawing 25 objects
that did not exist in the consistent images (across the 126
drawings from all participants), and 21 objects that did not
exist in the inconsistent images (across 149 drawings).
Within participants, there was no significant difference in
the number of false additional objects they drew for inconsis-
tent scenes versus consistent scenes, t(29) = 0.64, p = .526.
Thus, differences in scene semantics did not appear to induce
differences in false memories in these drawings.

However, participants made intriguing errors with the ma-
nipulated object in their drawings (see Fig. 6). In 18 drawings
(13 inconsistent, 5 consistent), participants made drawings of
only the manipulated object, unable to recall the surrounding
background scene. In six drawings (6 inconsistent, 0 consis-
tent), participants drew a detailed scene and included a circle
with an unspecified object; they remembered that the manip-
ulated object was there, but not what it was. Participants were
not explicitly instructed to draw such “fuzzy” objects, so these
occurred spontaneously by the participant. Finally, in 16
drawings (13 inconsistent, 3 consistent), participants trans-
posed the manipulated object so that it was in a different scene
they had viewed. All of these errors occurred significantly
more frequently for inconsistent than consistent scenes (chi-
squared test of proportions, Isolated Object: χ2 = 7.11, p =
.008, φ = 0.63; Unspecified Object: χ2 = 12.00, p = 5.32 ×
10-4,φ = 1.41; TransposedObject: χ2 = 12.50, p = 4.07 × 10-4,

φ = 0.88). These results imply that a disruption of scene se-
mantics may result in a looser binding in memory of that
inconsistent object with its encompassing scene.

Equally high spatial accuracy (location and size) in
consistent and inconsistent images

While there are differences in object memory based on scene
semantics, are there also differences in spatial accuracy for the
objects in the drawings? AMT workers indicated the size and
location of each object in the drawing by placing an ellipse on
the drawn object. With that ellipse, we calculated mean loca-
tion error (centroid x and y error) and size error (radius x and y
error) for each object. In both conditions, low amounts of
spatial error were found, although errors were larger in mag-
nitude in the Y-direction than the X-direction. Errors of object
location were transpositions of less than 11% of the size of the
entire image (X-direction: Consistent M = 2.2%, Inconsistent
M = 0.4%, Y-direction: ConsistentM = 9.3%, InconsistentM =
10.8%). Errors in size were on average less than 4% of an
image’s pixels (Width: Consistent M=2.2%, Inconsistent M
= 2.0%; Height: Consistent M = 2.9%, Inconsistent M =
3.7%). For the manipulated object, there was no significant
difference between consistent and inconsistent drawings in
spatial accuracy, either in terms of location accuracy (X-direc-
tion), t(27) = 0.94, p = .357; (Y-direction), t(27) = 1.24, p =
.226, or object size (Width), t(27) = 0.51, p = .613; (Height),
t(27) = 1.34, p = .191. There were also no differences between
conditions in accuracy for location or size of the other objects
in the scene (X-location), t(28) = 1.18, p = .249; (Y-location),
t(28) = 0.93, p = .361; (Width), t(28) = 1.24, p = .227;
(Height), t(28) = 1.43, p = .163. These results indicate that

Fig. 6 Examples of memory errors made by participants for the
manipulated object. Each example is taken from a different participant.
We identified three types of errors: (1) drawing the object in isolation
(left); (2) drawing a detailed scene with a circle noting recollection of an
unspecified object at that location, but not its identity; and (3) transposing

the object to a different scene. For the unspecified object errors, the text
labeling the circle is included in larger font. These errors occurred over-
whelmingly more often when objects were inconsistent with their back-
ground scenes (p < .01 for all error types)
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manipulations of object semantics do not appear to affect spa-
tial accuracy in memory.

Comparing eye fixations, visual saliency, and recall

Prior studies have observed an influence of scene semantics on
fixation time across the scene (DeGraef et al., 1990; Henderson
et al., 1999; Loftus & Mackworth, 1978; Malcolm &
Henderson, 2010).We examined whether there was a tendency
for participants to fixate longer on the inconsistent objects in
our paradigm. Further, we investigated whether fixation time
and order (see Fig. 7) could be predicted by visual saliency of
the image. Finally, we tested the degree to which these metrics
related to recall of the information in the images.

We looked at fixation time for each participant for each
object during the study phase, where they viewed each image
for 10 s. On average, participants fixated for significantly lon-
ger on the inconsistent manipulated object than the consistent
manipulated object (Inconsistent:M = 1,271.7 ms, SD = 553.3
ms; Consistent: 725.4 ms, SD = 365.4 ms), t(26) = 5.44, p =
1.05 × 10-5, d = 1.17; three participants were not measured as
fixating on the manipulated object. For the other objects in the
scenes, participants spent numerically more time looking at
them in the consistent condition than the inconsistent condi-
tion, but this difference was not statistically significant
(Inconsistent: M = 6,439.8 ms total across all other objects,
SD = 1,126.8 ms; Consistent: M = 6,956.5 ms, SD = 1,101.5

ms), t(29) = 1.97, p = 0.059. There was also no difference in
time spent fixating nonobject regions of the image
(Inconsistent: M = 1,592.2 ms, SD = 1,823.8 ms; Consistent:
M = 1,592.2 ms, SD = 1,682.1 ms), t(29) = 0.16, p = .871.
Thus, there is no clear evidence that increased fixations on the
inconsistent object detracted from fixations on other objects,
preventing their encoding into memory.

We then looked to see whether current state-of-the-art vi-
sual saliency algorithms DeepGaze II and GBVS could pre-
dict these fixation times (see Methods). Collapsing across
conditions, we found a significant correlation between
DeepGaze-predicted saliency and fixation time on the manip-
ulated objects (Spearman’s rank correlation: ρ = 0.634, p =
.001) as well as the same correlation for GBVS-predicted
saliency and fixation time (ρ = 0.634, p = .001). However,
there was no significant difference in either saliency score
measure between inconsistent and consistent objects in the
same scene, DeepGaze: t(11) = 0.48, p = .643; GBVS: t(11)
= 1.42, p = .182. These results indicate that visual saliency
may be able to partially account for fixation durations, but it
does not show a clear relationship to semantic consistency; we
discuss these implications later in the Discussion.

Next, we investigated whether these metrics could pre-
dict the proportion of people who recalled the manipulated
object (see Fig. 8). We observed no significant correlation
between mean fixation time across participants and recall
proportion for each manipulated object (ρ = 0.22, p = .308).

Fig. 7 Example average fixation heatmaps. Shown here are example
heatmaps of fixation time (averaged across participants) for the
consistent and inconsistent versions of two paired scenes where their
objects were swapped (i.e., a watering can or laundry detergent in a
backyard scene or a laundry scene). Red indicates higher total fixation
time on average, and blue indicates lower total fixation time. For the

backyard scene, the inconsistent detergent bottle causes more fixations
than the consistent watering can. For the laundry scene, both the watering
can and detergent bottle elicit fixations. Fixation heatmaps are generated
here for visualization purposes and were creating using EyeLink’s Data
Viewer. However, analyses were conducted at the level of individual
fixations, without smoothing
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As a secondary analysis, we conducted an analysis of var-
iance (ANOVA) across all manipulated objects, to see
whether fixation time differed based on two factors: (1)
whether than object was in a consistent or inconsistent
scene, and (2) whether that object was recalled or not. For
fixation time, we replicated our significant effect of consis-
tency, where inconsistent objects were fixated longer, F(1,
229) = 14.30, p = 1.99 × 10-4, η2 = 0.06. We also observed
significantly higher fixations for objects that were recalled
than for those that were forgotten, F(1, 229) = 4.25, p =
0.001, η2 = 0.02; Recalled: M = 1,308.5 ms, SD = 1,153.3
ms; Forgotten: M = 923.5 ms, SD = 862.9 ms, although we
observed no significant interaction, F(1, 229) = 0.39, p =
.53. Thus, fixation times do show some relationship to re-
call success, although this does not appear to be modulated
by the consistency of an object with its scene. We also
investigated the relationship of computational visual salien-
cy to recall performance. We observed no significant cor-
relation between recall proportion and DeepGaze-predicted
saliency (ρ = 0.137, p = .524), nor GBVS-predicted salien-
cy (ρ = 0.201, p = .346). For DeepGaze saliency, an
ANOVA showed no significant difference between consis-
tent and inconsistent objects (p = .477), nor recalled or
forgotten objects (p = .525), nor a statistical interaction (p
= .284). Similarly, an ANOVA for GBVS saliency showed
no significant difference between consistent and inconsis-
tent scenes (p = .244), nor recalled or forgotten objects (p =
.714), nor a statistical interaction (p = .455). Thus, it does
not appear that inconsistent objects were much more visu-
ally salient than consistent objects, and importantly, image-

based saliency cannot account for differences in memory
performance between the consistent and inconsistent
objects.

Comparing the temporal order of recall for consistent
and inconsistent scenes

In conjunction with recording eye movements during study of
the images, we also recorded real-time pen movements during
recall of the images (see Fig. 9). Participants did not spend a
significantly different amount of time drawing the inconsistent
versus consistent manipulated objects (Inconsistent: M =
16.08 s, SD = 7.75; Consistent: M = 15.85 s, SD = 11.26),
t(27) = 0.07, p = .942, nor a significantly different amount of
time drawing inconsistent versus consistent images
(Inconsistent: M = 2.03 min, SD = 0.62; Consistent: M =
2.28 min, SD = 0.89), t(27) = 1.53, p = .139. There was also
no significant difference in the order in which inconsistent
versus consistent objects were drawn. t(25) = 1.01, p = .323.
It was thus not the case that inconsistent objects were drawn
for longer or drawn earlier. There was also no significant
correlation at the level of the participant between amount of
time spent fixating the manipulated object and amount of time
drawing the manipulated object (Spearman’s rank correlation:
ρ = 0.21, p = .130). Similarly, there was no significant corre-
lation between fixation order and drawing order for the ma-
nipulated object (ρ = 0.09, p = .449). Thus, time spent during
the drawing recall phase does not reveal clear differences be-
tween the inconsistent and consistent images, nor a clear rela-
tionship to fixations during study.

Fig. 8 Comparison of fixation time during study, visual saliency, and
recall success. (Left) For each stimulus image, we looked at four types
of information: (1) eye fixation times across the pixels of the image, (2)
proportion of participants recalling each object in the image, (3) visual
saliency of the image calculated using Graph-Based Visual Saliency
(Harel et al., 2007), and (4) visual saliency of the image calculated using
DeepGaze II (Kümmerer et al., 2016). (Right) Scatterplots of average

fixation time with the three other metrics (recall proportion, GBVS visual
saliency, and DeepGaze II visual saliency). Each point represents one of
the 24 stimulus images, and indicates the average score for the manipu-
lated object. While saliency metrics were significantly correlated with
fixation time, no measure was significantly correlated with recall success.
Correlations reported here are Spearman’s ρ, with * indicating significant
correlations
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Postdrawing recognition task performance

Finally, we also tested participants’ memory for the items
using a visual recognition task following the drawing recall
task. When tested for their recognition of each background
scene (with the manipulated object concealed by a gray cir-
cle), participants had very high recognition accuracy regard-
less of whether the scene was originally consistent or incon-
sistent (Inconsistent: Mean hit rate = 92.2%, SD = 11.4%;
Consistent: M = 88.9%, SD = 13.4%), with no significant
difference between the groups, t(29) = 1.00, p = .326. There
was also no significant difference in false recognitions of
matched foil images from the same scene category
(Inconsistent: Mean false alarm rate = 11.2%, SD = 14.8%;
Consistent: M = 10.0%, SD = 11.2%), t(29) = 0.45, p = .656.
Participants then were presented with four possible objects to
fill in the obscured part of the image: (1) the inconsistent
exemplar, (2) the consistent exemplar, (3) a different exemplar
image from the inconsistent object category, (4) a different
exemplar image from the consistent object category. There
was no significant difference between inconsistent and con-
sistent scenes in participants being able to choose the correct
item out of the four options (Inconsistent: Mean hit rate =
28.2%, SD = 20.9%; Consistent: M = 26.5%, SD = 14.6%),
t(28) = 0.39, p = .697. There were also no significant differ-
ences in the types of errors made by participants. Participants
across groups were equally likely to choose an object that
appeared in another image (Inconsistent: M = 27.1%, SD =
19.1%; Consistent:M = 23.5%, SD = 18.5%), t(28) = 0.79, p =
.434, or an object of the correct category but an incorrect
exemplar (Inconsistent: M = 18.3%, SD = 16.6%;
Consistent: M = 24.8%, SD = 18.3%), t(28) = 1.34, p =

.192.Thus, while we measured differences in recall perfor-
mance in the drawing task, clear differences in recognition
performance did not appear. That being said, participants re-
ported this object recognition task was difficult (occurring
after the relatively effortful drawing recall task and with very
closely matched foil objects), and performance was relatively
low.

Discussion

In this study, we tested how memory representations may
differ based on consistent or inconsistent object–scene seman-
tics using a visual recall drawing task. We found that scenes
containing inconsistent objects were recalled more often, but
with less detail. Further, object–scene inconsistencies resulted
in a weaker binding between the object and its scene, with the
inconsistent object sometimes drawn in isolation, with an un-
specified object identity, or transposed into an entirely differ-
ent scene. In contrast, while semantically consistent scenes
were recalled less frequently, their successful recollections
contained more object details, and fewer errors.

These results provide important evidence on the impact of
object–scene semantics on memory (Cornelissen & Võ, 2017;
Draschkow & Võ, 2017; Friedman, 1979; Hollingworth et al.,
2001; Pezdek et al., 1989). Using drawing as a memory output
allows for a fine-grained look at how object–scene semantics
influence memory representations, and we observe a nuanced
trade-off for semantically inconsistent scenes in which mem-
ory for the overall image is better, but memory for the objects
within it is worse. This dual result could account for the fact
that some work had previously observed diminished memory

Fig. 9 Example of pen tracking output and recall order analyses. For each
drawing, the pen tablet recorded a video of the pen strokes in order. This
figure shows 5 ordered example frames from one drawing video of an
inconsistent classroom scene (with a pile of logs). For the manipulated

object, a scorer noted the order in which the object was drawn
(normalized by total number of objects), and the length of time it was
drawn for (normalized by total time spent on the drawing)
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for inconsistent images (Draschkow&Võ, 2017) while others
observed improved memory (Friedman, 1979; Hollingworth
et al., 2001; Pezdek et al., 1989). In fact, both effects may be
occurring simultaneously at different levels of stimulus infor-
mation (i.e., the image, the objects, and the background
scene). This simultaneous effect may be akin to the trade-off
of capacity and precision observed in visual working memory
(Roggeman et al., 2014), in which inconsistent scene seman-
tics may result in higher capacity with less precision. Our
findings also provide evidence for the contextual guidance
model suggesting two parallel pathways for scene processing:
one for gist-based global information and one for object-based
local information (Torralba et al., 2006; Võ & Wolfe, 2015),
as well as fuzzy-trace theory, which posits parallel storage and
dissociable retrieval of verbatim versus gist information,
which has been shown to parsimoniously account for several
false memory findings (Brainerd & Reyna, 2002). While
scene–object inconsistencies may result in a distinctive scene
with boosted memory for the gist of the scene, they may pre-
vent the ability to use a scene template to fill in local, precise
object details (Hollingworth, 2009; Malcolm & Henderson,
2009). A disruption of the scene–object semantics may also
result in looser binding of an object to its scene, resulting in a
“spotlighting” on the inconsistent object (Cornelissen & Võ,
2017), and a tendency to migrate objects across memory epi-
sodes (Hannigan & Reinitz, 2003). Within memory, semanti-
cally inconsistent objects may impair abstraction of the scene
from a schema template (Hock& Schmelzkopf, 1980; Intraub,
1997), resulting in a loss of schema-coherent details. While
the current study focused on the consistency of a single object
with its greater scene, investigations of recall for more com-
plex semantic manipulations (e.g., manipulating the semantic
relationships of the objects to each other) may provide further
insight on how semantics during perception influence the
memory representation for a scene.

Considering the role of scene–object consistencies on
memory has important real-world implications for how we
design scenes, and how we test memory. Some of the first
seminal work looking at scene consistency and memory tested
memory for real graduate student offices (Pezdek et al., 1989),
and recent work has brought questions about scene memory
into virtual reality (Helbing et al., 2020). It will be exciting to
see whether our findings can help guide the design of real-
world scenes, based onwhat aspects we wish to bememorable
(Bainbridge, 2019): a key object, all objects, or the gist of the
scene. In some cases, one may want to enhance a specific
object even at the cost of surrounding objects being forgotten,
while in other cases the goal will be to make an entire land-
scape memorable. Drawing is also a task that has been histor-
ically used as a clinical tool to measure patient groups
(Corkin, 2002; Rey, 1941), and recent work has applied these
same drawing quantification techniques to aphantasia, a con-
dition of absent visual imagery (Bainbridge et al., 2021). The

current task manipulating scene grammar could potentially
reveal insight into groups with differing abilities at visual,
semantic, or mnemonic processing, such as individuals across
the life span.

While we observed differences in recall for consistent and
inconsistent scenes, we also observed several similarities be-
tween memory representations for consistent and inconsistent
scenes. Between these two conditions, recalled drawings
tended to be equally diagnostic, have equally high spatial ac-
curacy (in terms of both object location and size), and
have equally rare numbers of additional objects inserted into
the drawings.We also did not observe differences between the
two conditions in visual recognition performance (although
this could be due to the difficulty of the recognition task).
Thus, while scene semantics may influence some aspects of
a memory (e.g., memory for other objects in an image), it may
have less of a sway on other aspects of that memory (e.g.,
spatial accuracy). Indeed, various work has suggested differ-
ences in how object and spatial information may be coded in
memory (Bainbridge et al., 2021; Farah & Hammond, 1988;
Staresina et al., 2011). While the current work investigates
scene semantics, other work has suggested that scene
syntax—the spatial arrangement of semantically consistent
objects within a scene—as a similarly meaningful organiza-
tional principle for scenes (Võ et al., 2019). An experiment
manipulating scene syntax rather than semantics (e.g., moving
a consistent object to an inconsistent location) may result in
higher spatial error but preserved object accuracy in memory.

While the current study serves as important evidence to-
wards a dissociation of scene versus object memory for incon-
sistent scenes, some caveats of this work motivate future stud-
ies. We utilized stimulus images that were manipulated to
appear natural, regardless of the object consistency.
However, future studies could explore similar methods using
stimuli that prioritize systematic manipulation of the images
(e.g., keeping object size, location, lighting, and shadowing
consistent across all images), rather than naturalness of the
stimuli. Further, while we decided a priori on a sample size
validated from prior work (Bainbridge et al., 2019), some
results showed small to medium effect sizes or null effects
that would be valuable to replicate in follow-up research. A
future study could also increase the number of images per
participant in order to look at influences of saliency and fixa-
tion patterns on within-participant recall performance; howev-
er, we do note that participants may not be able to recall many
more images. Also, as this task required detailed memoriza-
tion of the scene, all visual information was highly task rele-
vant. However, prior research has shown that some tasks such
as visual search can result in higher recall performance than
explicit memorization (Draschkow et al., 2014). It would be
interesting to see if an incidental study task would drive even
stronger differences between object and scene recollection.
Relatedly, it would be interesting to see whether different
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explicit instructions (such as telling participants to indicate
vaguely remembered objects) would influence the informa-
tion present in memory drawings. Finally, there are still many
open questions about how drawing as a recall task itself may
influence remembered information. Some work in children
has shown that drawing of a memory can increase accurately
recalled information, but it also has a tendency to increase
false memories (Bruck et al., 2000; Otgaar et al., 2016).
Other work has shown that artists are able to produce more
memory information than nonartists (Perdreau & Cavanagh,
2015; Vogt & Magnussen, 2016), potentially suggesting that
different strategies may boost performance on the task. Thus,
further investigation into the limitations as well as potential for
drawing as a memory task will be highly important in future
work.

Finally, our results also suggest attention-based and
fixation-based models may be insufficient models for recall.
Here, we are successfully able to replicate findings suggesting
that individuals fixate inconsistent objects during perception
(De Graef et al., 1990; Henderson et al., 1999; Loftus &
Mackworth, 1978; Malcolm & Henderson, 2010). We also
observe significantly higher fixation times on objects that are
recalled versus those that are forgotten. However, we do not
observe that this effect is modulated by the consistency of the
object. We also do not observe correlations between eye-
tracking patterns during study and pen-tracking patterns during
recall. In terms of computer-vision-based visual saliency met-
rics, we are able to replicate prior work showing that they can
successfully model eye movements on an image (Harel et al.,
2007; Kümmerer et al., 2016). We find that these saliency
measures are not different between inconsistent and consistent
versions of an object, suggesting consistency effects are not
strongly driven by visual differences between conditions.
That being said, while we had counterbalanced consistent–
inconsistent pairs across participants, it is still possible the in-
consistent images may have been more visually striking (e.g., a
colorful beach ball in a monochromatic laboratory) and driven
fixation behavior. Indeed, we wonder if semantically consistent
objects tend to share low-level visual features, making it diffi-
cult to create equally salient inconsistent images. However, if
image saliency were to drive recall performance, we would
expect to observe a relationship between fixations during
encoding and pen movements during recall, which we do not
find. Thus, our findings are likely due to semantically driven
differences in memory rather than visually driven differences.
Prior work has found key differences between saliency-based
predictions and recall, such as a lower visual field bias for
object recall not present in saliency models (Bainbridge et al.,
2019) as well as an inability for saliency models to capture
semantically meaningful portions of an image (Bylinskii
et al., 2016; Henderson & Hayes, 2017). The current work
highlights a need for image-based metrics aimed at making
predictions specific to scene memory, accounting for semantic

abstraction of the scene as well as what objects and features are
memorable (Bainbridge, 2019). Future work could examine
scenes with graded levels of inconsistency, in order to create
more nuanced models that can account for both semantic in-
consistency as well as visual saliency.

In sum, this study reveals a multi-pronged impact of scene
semantics on visual memory representations. While semantic
inconsistencies result in highly atypical images that are re-
membered overall, these inconsistencies disrupt memory for
local object detail in the scenes.
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