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Abstract
When people experience everyday activities, their comprehension can be shaped by expectations that derive from similar
recent experiences, which can affect the encoding of a new experience into memory. When a new experience includes
changes—such as a driving route being blocked by construction—this can lead to interference in subsequent memory.
One potential mechanism of effective encoding of event changes is the retrieval of related features from previous events.
Another such mechanism is the generation of a prediction error when a predicted feature is contradicted. In two
experiments, we tested for effects of these two mechanisms on memory for changed features in movies of everyday
activities. Participants viewed movies of an actor performing everyday activities across two fictitious days. Some event
features changed across the days, and some features violated viewers’ predictions. Retrieval of previous event features
while viewing the second movie was associated with better subsequent memory, providing evidence for the retrieval
mechanism. Contrary to our hypotheses, there was no support for the error mechanism: Prediction error was not
associated with better memory when it was observed correlationally (Experiment 1) or directly manipulated
(Experiment 2). These results support a key role for episodic retrieval in the encoding of new events. They also indicate
boundary conditions on the role of prediction errors in driving new learning. Both findings have clear implications for
theories of event memory.
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Everyday environments are dynamic, and so navigating
the tasks of daily living requires recognizing changes
and adapting appropriately. For example, suppose you
began taking an art class and found an efficient driving
route to class—but then on the second class found your
preferred route blocked by construction. You would likely
experience a prediction error upon encountering the
closed road. Recognizing and adapting to this change
could help you update your memory and choose a differ-
ent route for the next class. Here, we examine potential
mechanisms that govern the retrieval of past events in the
service of recognizing everyday changes and updating
memory to incorporate new information.

Updating episodic memory to incorporate
changes

Episodic memory research has conceptualized changes in
terms of interference (Underwood, 1957). Interference theo-
ries predict that episodic changes will impair memory when
multiple features are associated with a common context
(Anderson & Neeley, 1996). In our construction example,
the two routes are associated with the context of driving to
class. Because of this shared context, memory for the new
route may be impaired by proactive interference, which oc-
curs when earlier memories compete with retrieval of new
information. Learning the new route could also impair mem-
ory for the previous route due to retroactive interference,
which occurs when new learning impairs existing memories
(McGeoch & McDonald, 1931).

Although the negative consequences of interference are
well-established, they are not universal. For example, retro-
active facilitation has been observed in paired-associate learn-
ing when the same cue appeared with different associated
responses (e.g., Barnes & Underwood, 1959) and when the
same cue appeared with different responses, but participants
were told about the differences prior to encoding (Bruce &
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Weaver, 1973; Robbins & Bray, 1974). Similar findings were
also observed in discourse comprehension (Ausubel et al.,
1957). Collectively, these findings suggest that events includ-
ing shared and distinctive features can sometimes facilitate
memory, perhaps through integration. Consistent with this,
interference can be reduced by integrating features from a
common context into an event model (e.g., Radvansky, 2005).

The memory-for-change (MFC) framework proposes a
mechanism by which changed features can impair or improve
memory (Jacoby et al., 2015; Wahlheim & Jacoby, 2013).
This proposal was inspired by the recursive reminding
hypothesis (Hintzman, 2004, 2010, 2011), entailing that cur-
rent event features can trigger a reminding of similar past
events, leading to encoding of configural representations that
include the original features, the changed features, and the
discrepancy. When reminding leads to such memory
updating, this should lead to proactive facilitation. But if
reminding happens without updating, the increased strength
of the initial event due to retrieval increases proactive
interference.

Support for these predictions has been shown in paired
associate learning experiments by Jacoby, Wahlheim, and
colleagues. For example, Wahlheim and Jacoby (2013)
instructed participants to study two lists of cue–response pairs,
including responses that changed from the first to second pre-
sentation (e.g., knee–bend to knee–bone). During List 2, par-
ticipants indicated when they detected changed responses,
which was a measure of reminding. At test, participants were
shown cues (e.g., knee) and were asked to recall the most
recent responses (e.g., bone) and indicate when they remem-
bered changes. Memory for recent responses was enhanced
when changes were detected in List 2 and recollected at test,
whereas proactive interference occurred when changes were
detected but not later recollected. These results support the
role of change recollection in memory updating and have
since been replicated across various contexts (Jacoby et al.,
2015; Wahlheim, 2014, 2015; Wahlheim et al., 2019).

The dynamics of memory retrieval
in comprehension

Studies using word pairs are limited because they afford little
insight into the dynamics of memory retrieval in comprehen-
sion. A key function of memory is to enable predictions about
upcoming events, and prediction errors can be a powerful cue
for memory updating (for a review, see Sinclair & Barense,
2019). For example, Kim et al. (2014) proposed a context-
based mechanism by which similar contexts and cues trigger
automatic predictions, and when an item that was predicted
fails to appear, this error weakens the previous representation.
This process allowed for “pruning” of inaccurate episodic
memories through prediction error. Similarly, Sinclair and

Barense (2019) proposed that prediction error leads memories
to become more malleable and susceptible to interference.
Using incomplete reminders to induce prediction error, they
found that interrupting videos during reactivation destabilized
memories and increased intrusions from interfering videos.
Further, Sinclair et al. (2020) found that such prediction errors
signaled the hippocampus to switch frommaking internal pre-
dictions to an encoding mode that incorporated new informa-
tion into memory (see also Bein et al., 2019).

Characterizing the role of ongoing memory retrieval and
prediction in comprehension requires a theoretical framework
that describes these dynamics, and experimental methods that
are sensitive to them. To provide a theoretical framework,
Event Memory Retrieval and Comparison Theory (EMRC;
Wahlheim & Zacks, 2019) brings together the MFC frame-
work with an account of the temporal dynamics of event com-
prehension (Zacks et al., 2007). EMRC proposes that as peo-
ple observe everyday events, features cue recollection of sim-
ilar past events and those representations influence predictions
about upcoming events. When predictions of repeated event
features are accurate, event models are maintained. But when
predicted repetition is inconsistent with current event features,
errors spike, and this drives detection of changed features and
event model updating. The memory representation formed
subsequent to such updating encodes both events and the re-
trieval that united them in working memory.

Wahlheim and Zacks (2019) tested this account using an
everyday changes paradigm. In this paradigm, participants
watched movies of an actor performing everyday activities
on two fictive days in her life. There were two versions of
each activity differing on one central feature (e.g., the actor
woke up to a clock or phone alarm). For some activities, the
central feature changed between movies. On a final cued
recall test, participants recalled the central feature from each
activity in the second movie (Day 2) and indicated whether
the activity changed between days.When participants recol-
lected that the activity had changed, they were more likely
to recollect what the changed feature had become. Failure to
recollect change was associated with proactive interference.
According to EMRC, successful change detection and
recollection enabled encoding of features from both
movies, retrieval of features from Day 1 that elicited
prediction errors on Day 2, and the temporal relationship
between features. Further, Stawarczyk et al. (2020) used
pattern-based fMRI with this paradigm to test the role of
prior-event retrieval in memory updating. They found that
both neural and self-report measures of reinstatement dur-
ing the initial phase of an event predicted successful mem-
ory updating for changed events. These findings are consis-
tent with studies showing that neural reinstatement of prior
memories while encoding competing information is associ-
ated with reduced interference (e.g., Chanales et al., 2019;
Koen & Rugg, 2016; Kuhl et al., 2010).
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The present experiments

We extendedwork on event memory updating in the everyday
changes paradigm by attempting to replicate the relationship
between change recollection and recall, while testing for prior-
event retrieval and prediction error mechanisms. We did this
by modifying the event changes paradigm to include an overt
prediction task (Zacks et al., 2011). Participants watched two
movies, and during Day 2 movies, activities stopped after
initial segments that repeated from Day 1. When the movies
were stopped, participants made overt predictions about up-
coming features. Experiment 1 manipulated whether activities
repeated or changed, which resulted in prediction errors for
some but not all activities. Experiment 2 manipulated predic-
tion error using a response-contingent procedure that deter-
mined whether endings repeated or changed based on predic-
tions. Previous findings led us to expect positive associations
between change recollection and cued recall. We tested the
hypothesis that prediction errors would be uniquely associated
with change recollection and cued recall. To foreshadow,
prior-event retrievals before encoding changes were associat-
ed with enhanced subsequent memory, but there was no evi-
dence for a unique role of prediction error. In the General
Discussion, we discuss the possibility that the overt prediction
measure may not be an effective assay of the relevant predic-
tion mechanisms in online event comprehension.

Experiment 1

Participants viewed a movie depicting a fictitious day in the
life of the actor (Day 1). They then watched a movie depicting
a second fictitious day (Day 2). Each Day 2 movie included

repeated activities that were identical to clips shown on Day 1
and changed activities that began the same as Day 1 activities,
but ended differently. Day 2 movies also included novel ac-
tivities that did not overlap with Day 1. After watching the
first segment of each Day 2 activity, participants predicted
which of two endings would occur (see Fig. 1). Two days
later, participants returned for a second session and completed
a cued recall test in which they attempted to recall Day 2
activity features, indicated whether those activities changed
from Day 1, and, for activities they classified as changed,
attempted to recall Day 1 features. If prediction error facili-
tates memory updating for changed activities by enabling in-
tegrative encoding, then both recall accuracy and change rec-
ollection should be enhanced when Day 1 endings are predict-
ed. Please note that “session” refers to the separate experimen-
tal sessions in which participants were asked to come into the
lab. “Day” refers to each movie viewed by participants,
depicting a series of activities unfolding over a fictitious day
in the life of the actor. In Experiment 1, the Day 1 and Day 2
movies were both presented during the first of two experimen-
tal sessions. This was followed by a period of approximately
48 hours, and then the participant was brought back for the
second experimental session, which consisted of the cued re-
call task.

Method

Participants

No previous studies provided a basis for estimating an effect
size of prediction error effects on memory updating in the
current paradigm. But earlier work using the everyday chang-
es paradigm to investigate memory updating found robust

Fig. 1 Example of different endings for a changed activity. Images are
from an activity in which the actor woke up to one of two alarms. The left
image shows an image from the beginning segment that was the same for

both versions of the activity, and the right images show the two criterial
activity features corresponding with two different endings (i.e., an alarm
clock in Ending A and a smart phone in Ending B)
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results with 36 participants per experiment. Therefore, our
stopping rule was to test at least 36 participants. We tested
43 students from the University of North Carolina at
Greensboro across approximately one semester. Five dropped
out, leaving 38 participants (21 females, Mage = 18.76, SD =
0.93, range: = 18–21 years). We conducted a sensitivity anal-
ysis based on our a priori hypothesis that prediction errors
should lead to better recall and change recollection.
According to G*Power Version 3.1.9.2 (Faul et al., 2009),
36 participants was enough to detect a medium-sized effect
(d = 0.47) with power = .80, alpha = .05 (two-tailed).
Participants received course credit.

Materials and design

The materials were two movies of a female actor performing
daily activities around her home on two fictive days. There
were two versions of each activity, differing in a central fea-
ture (see Fig. 1). Separate versions were created by dividing
activity clips into two segments. The beginning segments
were identical for each version (Duration:M = 10.07 s, range:
1– 40 s) in duration. The ending segments included versions
that differed on a central feature (Duration:M = 26.85 s, range:
2–88 s). To minimize item effects, all activity endings were
congruent with larger activity schemas, and therefore should
not be surprising given the beginnings.

We manipulated activity type within subjects to create
repeated, novel, and changed conditions. Repeated activi-
ties appeared in both movies, novel activities appeared in
the Day 2 movie only, and changed activities included one
version in the Day 1 movie and the other version in the Day
2 movie. The material set included 59 total activities (45
critical, 14 filler activities). We counterbalanced the 45
critical activities by dividing them into three groups of 15
and rotating them through conditions. Activity changes
were created by showing the same Day 2 movie to all
participants and creating three formats of the Day 1 movie
that varied on which activities had endings that differed
from endings in the Day 2 movie.

Each of the Day 1movies included 44 activities (30 critical,
14 fillers) and ranged in duration from 22 min and 58 s to
26 min and 33 s. The Day 2 movie included 59 activities
(45 critical, 14 fillers) and had a total duration of 35 min 31
s. The Day 2 movie contained more critical items to allow for
the comparison of novel activities. Activity type conditions in
all movies appeared in a fixed-random order, with the con-
straint that no more than three critical activities from the same
condition appeared consecutively. Filler activities repeated
between movies and were included to make the movies more
coherent and cohesive. This was necessary because the tran-
sitions between critical activities were sometimes discontinu-
ous without intervening actions (e.g., the actor walking be-
tween the rooms in which she performed subsequent

activities). Memory for activity features was measured using
a cued recall test that included cues for all 59 activities in the
Day 2 movie. Test cues asked about the criterial feature of
each activity (e.g., “What device awakened the actor?”).

Procedure

All stimuli were presented using E-Prime 3 software
(Psychology Software Tools, 2016) connected to a 24-in.
monitor. The viewing distance was approximately 60 cm.
Participants were tested individually in two sessions separated
by 48 hours.

During the first session, participants watched both movies.
Before viewing the Day 1 movie, participants were told to
observe the actor and that they would be tested later; they also
watched an example activity. Before viewing the Day 2 mov-
ie, participants were told how activity endings related between
movies and to attend to those relationships. Participants were
also told that the movie would stop intermittently and that they
would be asked to predict activity endings; they were also
shown a schematic of the prediction task. The Day 2 movie
stopped after the first segment of each critical activity. Next,
two images depicting central features from each possible ac-
tivity ending appeared side-by-side. Participants predicted
endings by pressing the “Q” or “P” key for the left or right
image. Predictions were self-paced. A blank screen appeared
for 5 s after each prediction during which participants mental-
ly simulated the predicted ending. This was intended to gen-
erate robust prediction errors when actual and predicted activ-
ity endings differed. The Day 2 movie then resumed with the
ending determined by the activity type condition. Participants
were encouraged to note the relationship between the predict-
ed and actual endings (see Appendix A for complete
instructions).

We refer to predictions consistent with Day 1 endings as
memory-based, and predictions inconsistent with Day 1 end-
ings as non-memory-based. Novel activity predictions were a
baseline measure of selecting each ending. The combination
of activity and prediction types determined whether prediction
errors occurred. Prediction errors occurredwhen changed end-
ings followed memory-based predictions and repeated end-
ings followed non-memory-based predictions. Correct predic-
tions occurred when repeated endings followed memory-
based predictions and changed endings followed non-
memory-based predictions.

During the second session, participants completed the cued
recall test. They were asked to recall Day 2 activity features,
indicate which activities included changed endings, and recall
Day 1 features when endings had changed. Before the cued
recall test began, participants first watched an example
changed activity comprising two clips with the same begin-
ning and different endings, to illustrate what we considered to
be changed activities. Then participants started the actual cued
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recall test. Test cues asked about the central feature in associ-
ated activities (e.g., “What device awakened the actor?”), and
participants typed their response. A prompt then asked wheth-
er the activity differed between the movies. Participants
pressed the “1” or “2” key to indicate that activities changed
or did not change. When participants indicated change, they
were cued to recall the Day 1 feature.

Statistical approach

All analyses were conducted using R software (R Core Team,
2013). We took frequentist and Bayesian approaches. For
frequentist analyses, we estimated probabilities for Day 2 re-
call and Day 1 intrusions from logistic mixed effects models
including activity type and prediction type as fixed effects and
subjects and items as random effects. We used models from
the glmer function of the lme4 package (Bates et al., 2015),
and performed hypothesis tests using the Anova function of
the car package (Fox & Weisberg, 2011), and post hoc com-
parisons using the emmeans function from the emmeans pack-
age (Lenth, 2019). The significance level was α = .05.

For Bayesian analyses, we computed Bayes Factors (BF10)
using the bayes_factor function to compare models fitted with
the brm function from the brms package (Bürkner, 2018) in-
cluding random effects of subjects and items. Following ear-
lier classifications (e.g., Jeffreys, 1961; Kass & Raftery,
1995), we interpreted support for the alternative hypothesis
as weak (BF10 = 1–3), moderate (BF10 = 3–10), or strong
(BF10 >10), and support for the null hypothesis as weak
(BF10 = 1–.33), moderate (BF10 = .33–.10), or strong (BF10

<.10). A BF10 of 1 indicates equal support for the null and
alternative hypotheses.

Results

Cued recall response coding

Cued recall responses for Day 2 features were classified into
four types. Day 2 recall included the central feature from the
Day 2 movie. Day 1 intrusions included the central feature
from the Day 1 movie (for repeated and novel activities, these
were baseline estimates of reporting the central feature not
from Day 2). Ambiguous responses included the action, but
did not differentiate between the two possible central features.
Other errors either did not refer to target actions or were
omissions. We only had a priori hypotheses for Day 2 recall
and Day 1 intrusions, so we did not analyze ambiguous re-
sponses and other errors.

Day 2 recall and Day 1 intrusions

We first examined overall Day 2 recall and Day 1 intrusions
(Fig. 2, top panels) with separate models including the activity

type factor. For Day 2 recall (left panel), there was a signifi-
cant effect, χ2(2) = 22.46, p < .001, with strong evidence for
the alternative hypothesis, BF10 = 9636.15. Recall was signif-
icantly higher for repeated than novel, z ratio = 3.98, p < .001,
and changed activities, z ratio = 4.28, p < .001, and was not
significantly different between novel and changed activities, z
ratio = 0.31, p = .95. For Day 1 intrusions (right panel), there
was a significant effect, χ2(2) = 29.19, p < .001, with strong
evidence for the alternative hypothesis, BF10 = 2.19 × 105.
Day 1 intrusions for changed activities were significantly
greater than baseline intrusions for repeated, z ratio = 4.63, p
< .001, and novel activities, z ratio = 4.42, p < .001, there was
no significant difference for repeated and novel activities, z
ratio = 0.21, p = .98.

Day 2 recall and Day 1 intrusions conditionalized
on predictions

We then examined the association between predictions and
memory accuracy using separate models for Day 2 recall
and Day 1 intrusions including the activity type and pre-
diction type factors (Fig. 3, top panels). We do not report
effects of activity type redundant with those above. For
Day 2 recall (left panel), there was no significant effect
of prediction type, χ2(1) = 2.13, p = .14, with anecdotal
evidence for the null hypothesis, BF10 = 0.88. There was
no significant interaction, χ2(2) = 1.31, p = .52, with an-
ecdotal evidence for the alternative hypothesis, BF10 =
1.04. To assay the association between prediction error
and subsequent encoding uncontaminated by memory for
Day 1 activities, we examined Day 2 recall for novel ac-
tivities conditionalized on whether participants predicted
the correct ending; there was no significant difference,
χ2(1) = 1.01, p = .32, with anecdotal evidence for the null
hypothesis, BF10 = 0.99. Finally, for Day 1 intrusions
(right panel), there was no significant effect of prediction
type, χ2(1) = 0.39, p = .53, with anecdotal evidence for the
null hypothesis, BF10 = 0.49. There was no significant
interaction, χ2(2) = 1.13, p = .57, with anecdotal evidence
for the alternative hypothesis, BF10 = 1.58. Collectively,
the results from the frequentist analyses indicated no sig-
nificant effects, and the results from the Bayesian analyses
provided no more than anecdotal evidence for the alterna-
tive or null hypotheses. These findings are therefore incon-
clusive regarding the direct association between prediction
error and memory updating.

Day 2 recall benefits and memory-based predictions

Next, we tested the EMRC proposal that prior-event retrieval
should enhance encoding of changed features by examining
whether accurate retrieval of Day 1 features before changed
Day 2 endings was associated with better Day 2 recall. We
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assumed that retrieving Day 1 features would lead to predicted
repetitions of those features, which we refer to as memory-
based predictions. These contrast with non-memory-based
predictions, that we assumed followed failures to retrieve
Day 1 features. Since we did not instruct participants to predict
Day 1 repetitions, we also did not predict a specific association
between memory-based predictions and Day 2 recall.
Consequently, we did not conduct hypothesis tests of that
association. But when looking at the data post hoc, we found
that participants made more memory-based predictions than
would be expected by chance (M = 66%, SD = 17%), t(37) =
5.80, p < .001, and predicted endings for novel activities at
chance (M = 54%, SD = 14%), t(37) = 1.57, p = .06. We
therefore generated a post hoc hypothesis that participants
varied in the extent to which they adopted a memory-based
prediction strategy, and to the extent that participants relied
relatively more on this strategy, memory-based predictions
should be associated with better Day 2 recall.

We tested this hypothesis by computing for each partic-
ipant the Day 2 recall benefit associated with memory-based
predictions, operationalized as the difference in Day 2 recall
between memory-based and non-memory-based prediction
trials. We then correlated those difference scores with

participants’ proportions of memory-based predictions
(Fig. 4, left panel). Supporting our hypothesis, there was a
significant positive association, r(36) = .47, 95% CI [.18,
.69], p < .01, providing preliminary evidence for Day 1
retrieval benefits on recall of changed features. We also
tested for differences in the correlations between memory-
based predictions collapsed across all activities and Day 2
recall differences for repeated and changed activities for the
36 participants who had scores on eachmeasure.We did this
using the Williams’s test of differences between dependent
correlations using the r.test function in the psych package.
There was no significant difference between correlations
including recall differences for repeated, r(34) = .33, and
changed, r(34) = .08, activities, t = 1.06, p < .30.

Change classifications conditionalized on prediction types

Table 1 (top row) displays the probabilities of classifying an
activity as “changed” on the cued recall test. Responding
“changed” is a correct response for changed activities, and
an error for repeated and control activities. When changed
activities were correctly classified, participants sometimes
recalled the Day 1 features. Previous results indicate that

Fig. 2 Correct recall of Day 2 activities and intrusions of Day 1 activities:
Experiments 1 and 2. In the box-and-whisker plots, the red diamonds
indicate model-estimated probabilities, the horizontal lines indicate

medians, the height of boxes mark the interquartile ranges, and the whis-
kers extend 1.5 times the interquartile ranges. Dots represent individual
subject probabilities. (Color figure online)
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classifying an activity as changed without being able to recall
the Day 1 features is associated with poor memory for Day 2
features (Wahlheim & Zacks, 2019), so we further divided
activities classified as “changed” based on recall of the central
Day 1 feature (Table 2, top row). When changes were correct-
ly classified, change recollected indicated when Day 1 fea-
tures were recalled, and change remembered but not
recollected indicated when Day 1 features were not recalled.
Incorrect classifications of changed activities were categorized
as change not remembered.

We tested the hypothesis that memory-based prediction
errors should be associated with change recollection by
conditionalizing classifications on prediction types
(Table 2, second and third rows). The first column shows
that changes were recollected significantly more often fol-
lowing predicted Day 1 endings, χ2(1) = 6.49, p = .01,
BF10 = 15.04. The Bayes factor indicated strong evidence
for the alternative hypothesis, suggesting that memory-
based prediction errors were associated with better
encoding of the fact that activity features had changed.

Fig. 3 Correct recall of Day 2 activities and intrusions of Day 1 activities
conditionalized on prediction error: Experiments 1 and 2. Boldfaced blue
labels indicate conditions that were determined by the experimental

design. Point areas indicate the relative proportions of observations in
each cell. Error bars are 95% confidence intervals. (Color figure online)
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Day 2 recall and Day 1 intrusions conditionalized
on classifications and predictions

The results so far show equivocal support for the role of pre-
diction error in memory updating for changed activities. There
was inconclusive evidence for the main prediction of EMRC:
that prediction error should be directly associated with en-
hanced Day 2 recall. But prediction error was clearly associ-
ated with enhanced change recollection, which, according to
EMRC, should also be associated with enhanced Day 2 recall.
To further understand this combination of associations, we
conditionalized Day 2 recall and Day 1 intrusions for changed
activities on both prediction types and change classifications.
We expected to replicate earlier findings showing an

association between change recollection and enhanced Day
2 recall (e.g., Wahlheim & Zacks, 2019), but it was unclear
whether that association would be comparable for both pre-
diction types and how predictions would associate with Day 1
intrusions.

We fitted separate models to each recall measure including
the change classification and prediction type factors (Fig. 5,
top panels). The model for Day 2 recall (left panel) indicated a
significant effect of change classification, χ2(2) = 114.23, p <
.001, with strong evidence for the alternative hypothesis, BF10

= 5.31 × 1043; no significant effect of prediction type, χ2(1) =
1.37, p = .24, BF10 = 1.34, with only anecdotal evidence for
the alternative hypothesis. The interaction was not significant,
χ2(2) = 1.86, p = .39, but there was moderate evidence for the
alternative hypothesis, BF10 = 8.05. Given that the only un-
ambiguous effect was for change classification, we followed it
up with pairwise comparisons. Day 2 recall was significantly
higher when change was recollected than when change was
remembered but not recollected and when change was not
remembered, smallest z ratio = 7.75, p < .001. There was no
significant difference between the latter classifications, for
which change was not recollected, z ratio = 0.58, p = .83.

The model for Day 1 intrusions (right panel) did not include
change recollection because those responses were rare and am-
biguous to interpret. Although there was no significant effect of
change classification, χ2(2) = 2.01, p = .16, there was moderate
evidence for the alternative hypothesis, BF10 = 4.80. There was

Fig. 4 Associations between memory-based predictions and correspond-
ing recall benefits. Scatter plots showing the relationship between the
proportion of memory-based predictions for each participant (x-axis)
and the associated benefit on Day 2 recall of making a memory-based
prediction (y-axis). Point pairs and connecting lines are individual partic-
ipants. Single blue points without connecting lines in Experiment 1 (left

panel) are participants who only made both memory-based and non-
memory-based predictions for repeated activities. Best-fitting regression
lines appear in black for correlations collapsed across activity types, in
blue for correlations within repeated activities, and in red for changed
activities. The shaded regions are 95% confidence intervals for correla-
tions collapsed across activity types. *p < .01. (Color figure online)

Table 1 Model-estimated probabilities of change classifications as a
function of activity type: Experiments 1 and 2

Experiment Activity Type

Repeated Novel Changed

Experiment 1 .09 [.06, .13] .29 [.23, .37] .66 [.58, .73]

Experiment 2 .20 [.15, .26] .27 [.20, .35] .44 [.36, .52]

Note: Probabilities for changed activities are correct classifications,
whereas probabilities for novel and repeated activities are incorrect clas-
sifications. 95% confidence intervals are displayed in brackets.
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a significant effect of prediction type, χ2(1) = 4.67, p = .03,
with strong evidence for the alternative hypothesis, BF10 =
12.21. These effects were qualified by a significant interaction,
χ2(1) = 8.56, p < .01, for which there was strong evidence for
the alternative hypothesis, BF10 = 179.01, indicating compara-
ble intrusions when change was remembered, z ratio = 1.33, p =
.55, and more intrusions following prediction errors when
changes were not remembered, z ratio = 3.36, p < .01.

Collectively, the results from these conditional analyses
partly support EMRC. Change recollection was associated
with enhanced Day 2 recall. This benefit was comparable for
both prediction types, and change was recollected more fol-
lowing predicted Day 1 endings. But when changes were not
remembered, prediction errors were associated with more
memory errors (i.e., Day 1 intrusions). These results suggest
that prediction errors may have enhanced Day 2 recall by

Table 2 Probabilities of change classifications as a function of classification and prediction type: Experiments 1 and 2

Experiment Prediction Type Classification Type

Change Change Remembered Change
Recollected Not Recollected Not Remembered

Experiment 1 All activities .51 [.46, .55] .13 [.11, .16] .36 [.32, .40]

Day 2 ending (correct) .43 [.36, .49] .11 [.07, .15] .46 [.39, .53]

Day 1 ending (error) .54 [.49, .60] .16 [.13, .19] .31 [.26, .36]

Experiment 2 All activities .29 [.25, .32] .14 [.10, .19] .55 [.51, .59]

Day 2 ending (correct) .10 [.06, .15] .15 [.10, .21] .75 [.68, .81]

Day 1 ending (error) .35 [.31, .39] .17 [.13, .20] .48 [.44, .53]

Note: For prediction type, “all activities” included all observations in the changed conditions, “Day 2 ending (correct)” only included the observations
when participants predicted the Day 2 ending (correct predictions), and “Day 1 ending (error)” only included the observations when participants
predicted the Day 1 ending (prediction errors). 95% confidence intervals are displayed in brackets.

Fig. 5 Correct recall of Day 2 activities and intrusions of Day 1 activities
conditionalized on prediction error and change classifications:
Experiments 1 and 2. All correct predictions were non-memory-based,

and all prediction errors were memory-based. Point areas indicate the
relative proportions of observations in each cell. Error bars are 95%
confidence intervals
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enabling integrative encoding, but such enhancement was off-
set in summary scores by the increase in memory errors ob-
served when recall subsequent to memory-based predictions
was not recollection-based.

Discussion

Changing a central activity feature was associated with en-
hanced Day 2 recall when the change and Day 1 feature were
both remembered (i.e., when change was recollected). But
when changes were not recollected, memory accuracy was
impaired. These findings are consistent with EMRC predic-
tions and earlier findings (Wahlheim & Zacks, 2019). The
more novel contribution of this experiment was to test the
EMRC proposal that successful retrieval of past events leads
to prediction errors that improve encoding of changes.
Although we did not instruct participants to use their Day 1
memories to predict Day 2 endings, exploratory analyses sug-
gested that many participants did, and for those participants,
making a memory-based prediction was associated with better
subsequent recall of Day 2 features. This supports the idea that
retrieval during learning, and even during active encoding, is
associated with enhanced memory updating. In Experiment 2,
we further examined this retrieval effect more directly by
instructing participants to use Day 1 memories to form predic-
tions during Day 2 viewing.

We hypothesized that memory-based prediction errors
should be associated with enhanced Day 2 recall; estimates
of correct recall and intrusions failed to support or to strongly
reject this hypothesis. The association between pure predic-
tion error and Day 2 recall of novel activities was also incon-
clusive. The absence of a direct association between predic-
tion errors and recall for changed activities can be explained as
reflecting a balance of offsetting enhancement and impairment
that depended on recollection-based retrieval. Memory-based
predictions were associated with more frequent change recol-
lection, which was associated with enhanced Day 2 recall. But
these predictions were also associated with more Day 1 intru-
sions when changes were not remembered (i.e., no
recollection-based retrieval). In Experiment 2, we further ex-
amined the consequences of this balance on recall of changed
activities by directly manipulating the experience of predic-
tion error.

Experiment 2

In Experiment 2, we made the experience of prediction error
independent of one’s ability to retrieve Day 1 features by
making the ending shown after each prediction made during
Day 2 viewing dependent on that prediction. Instead of ma-
nipulating activity types by preassigning endings to Day 2
activities, we manipulated prediction errors by using a

response-contingent display. If an activity was assigned to
the no prediction error condition, it was always followed by
predicted ending; if an activity was assigned to the prediction
error condition, it was always followed by the opposite end-
ing than predicted. In other words, whereas in Experiment 1
each activity was randomly assigned to be repeated or
changed (or novel) and prediction error depended on partici-
pants’ predictions, in Experiment 2, prediction error or no
prediction error was directly manipulated, and assignment of
activities to repeat or change depended on viewers’ responses.
Also, to encourage participants to adopt a memory-based pre-
diction strategy during Day 2 viewing, we instructed partici-
pants to make predictions based on memory for Day 1
endings.

We expected to replicate the overall patterns from
Experiment 1. But we also expected that instructing partici-
pants to make memory-based predictions and the consequent
response-contingent prediction errors would lead to more op-
portunities for enhanced memory updating associated with
change recollection.

Method

Participants

Experiment 1 did not show an association between prediction
errors and memory accuracy in summary scores. Thus, there
are still no findings on which to estimate the effect size for
prediction error benefits, so we followed the stopping rule
from Experiment 1. We tested 42 participants from
Washington University in St. Louis, but five dropped out,
and data from two were lost due to technical errors. The final
sample included 35 participants (23 females; Mage = 19.80
years, SD = 1.41, range: 17–24 years). Participants received
either $10 per hour or course credit.

Materials and design

The materials and design were similar to Experiment 1. We
used the same movies, but manipulated prediction type within
subjects to create prediction errors. The Day 1 movies includ-
ed 36 of the 45 critical activities that were either repeated or
changed in the Day 2 movie (i.e., recurring activities) and 14
fillers that would repeat in the Day 2 movie (50 total activi-
ties). The Day 2 movie included all 59 activities. Of the 45
critical activities, 36 appeared in both movies as recurring
activities, and nine appeared as novel activities only in the
Day 2 movie.

We counterbalanced both the assignment of activities to
prediction type conditions and the two versions of activities
to the Day 1 movie by first dividing the two versions of the 36
recurring activities (72 total) into four groups of 18 activities.
Then, we assigned each group to each condition once, thus
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creating four experimental formats. The nine activities shown
as novel clips on Day 2 also differed between these two for-
mats and were divided similarly according to the manipula-
tion. The nine novel activities also differed between the two
formats so that activity was not confounded with activity type.
The Day 1 movie format duration ranged from 21 min and
19 s to 22 min and 28 s. The total duration of the Day 2 movie
depended on predictions, but could have ranged from 23 min
and 57 s, if all predictions resulted in the shorter ending, to
26 min and 50 s, if all predictions resulted in the longer end-
ing. There were differences in the clip lengths, with the aver-
age difference between clip versions being 1.13 seconds.

Procedure

All experimental stimuli were presented using PsychoPy soft-
ware (Peirce et al., 2019) on an Apple iMac computer with a
21.5-in. screen. The viewing distance was approximately 60
cm. Participants were tested individually in three sessions,
each separated by exactly 7 days. The additional delay be-
tween movies relative to Experiment 1 was to prevent partic-
ipants from always being able to make memory-based predic-
tions (see Appendix B for task instructions).

During the first session, participants watched the Day 1
movie and were told to attend to the actor’s actions and that
they would be tested later. Participants watched two practice
activities and then watched the Day 1 movie as one continu-
ous film.

During the second session, participants watched the Day 2
movie and were told how the upcoming recurring activities
would relate to those in the Day 1 movie, but the instructions
did not include a description of novel activities. Next, partic-
ipants practiced the prediction task twice. One example was a
prediction error trial and the other was not. The experimenter
explicitly indicated the repeated feature from Day 1 to Day 2
in the trial without prediction error and the changed features
from Day 1 to Day 2 in the prediction error trial to highlight

the type of change that participants were supposed to notice.
Participants then performed the prediction task for each activ-
ity. The task was the same as in Experiment 1, except that
participants were asked to predict what they thought would
happen on Day 2 based on their memory for Day 1. This is a
critical difference from Experiment 1, in which participants
were not instructed about strategy use for the prediction task.
Participants made their predictions by pressing either the “1”
or “2” key to choose the left or right image, respectively.

The Day 2 ending for each activity was contingent upon
participant predictions and the prediction type condition (for a
schematic, see Fig. 6). On trials without prediction errors,
participants viewed the activity version that matched their
predictions. On trials with prediction errors, participants
viewed the activity version opposite of their predictions
(e.g., a clock alarm prediction followed by a phone ending).
As in Experiment 1, predictions were described as either
memory-based (consistent with Day 1 endings) or non-
memory-based (inconsistent with Day 1 endings). This did
not apply to novel activities. This task feature resulted in re-
curring activities being repeated or changed from Day 1.

During the third session, participants completed the cued
recall test of activity features from both movies that also in-
cluded change classification judgments. In contrast to
Experiment 1, the test cues were the first segments of the
Day 2 activities. We modified test cues to preclude ambiguity
about which activities they signaled. After the cue appeared,
participants were asked to type the ending of corresponding
Day 2 activity. Participants were then asked to report whether
the activity ending changed or repeated from Day 1 to Day 2.
Participants pressed the “1” or “2” key to indicate that activ-
ities changed or repeated, respectively. When participants in-
dicated that an activity changed, they were then prompted to
type the Day 1 ending. Participants were also asked to classify
novel activities as changed or repeated but we did not analyze
these responses given that the classifications did not map on to
the activity type.

Fig. 6 Schematic illustrating prediction types in Experiment 2 using the example activity from Fig. 1
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Results

Day 2 recall and Day 1 intrusions

As in Experiment 1, we first examined overall Day 2 recall
and Day 1 intrusions (Fig. 2, bottom panels) with separate
models including the activity type factor. For Day 2 recall (left
panel), there was a significant effect, χ2(2) = 16.16, p < .001,
with strong evidence for the alternative hypothesis, BF10 =
474.81. Recall was significantly higher for repeated than nov-
el, z ratio = 3.38, p = .002, and changed activities, z ratio =
3.30, p = .003, and was not significantly different between
novel and changed activities, z ratio = 1.18, p = .47. For Day
1 intrusions, there was a significant effect, χ2(2) = 27.54, p <
.001, with strong evidence for the alternative hypothesis, BF10

= 3.20 × 105. Day 1 intrusions for changed activities were
significantly greater than baseline intrusions for repeated, z
ratio = 4.17, p < .001, and novel activities, z ratio = 4.07, p
< .001; repeated and novel activities were not significantly
different, z ratio = 1.19, p = .46.

Day 2 recall and Day 1 intrusions conditionalized
on predictions

We then examined the association between predictions and
memory accuracy using separate models for Day 2 recall
and Day 1 intrusions including activity type and prediction
type as factors (Fig. 3, bottom panels). We do not report ef-
fects of activity type redundant with those above. For Day 2
recall (left panel), there was no significant effect of prediction
type, χ2(1) = 0.43, p = .51, with anecdotal evidence for the
null hypothesis, BF10 = 0.40. There was a significant interac-
tion, χ2(2) = 8.07, p = .02, with strong evidence for the alter-
native hypothesis, BF10 = 51.27. Despite statistical support for
the interaction, pairwise comparisons indicated no significant
differences between prediction types within each activity type
conditions, largest z ratio = 2.25, p = .21. Thus, the interaction
reflected opposite numerical trends showing greater recall fol-
lowing predicted Day 2 endings for repeated and novel activ-
ities and greater recall following predicted Day 1 endings for
changed activities. Tests of the association between “pure”
prediction error and novel activity recall indicated no signifi-
cant effect, χ2(1) = 2.16, p = .14, but moderate evidence for
the alternative hypothesis, BF10 = 3.93.

The pattern of Day 2 recall for repeated and changed activ-
ities is consistent with the hypothesis that memory-based pre-
dictions should be associated with enhanced memory for Day
2 activities. We were able to directly test this hypothesis be-
cause we instructed participants to make their predictions
based on memory for Day 1. As in Experiment 1, participants
made more memory-based predictions than would be expect-
ed by chance (M = 75%, SD = 10%), t(34) = 14.11, p < .001,
and predicted novel activity endings at chance (M = 51%, SD

= 6%), t(34) = 0.50, p = .31. Analyses of memory-based
predictions, which were applicable only to the repeated and
changed activities, indicated a significant effect of activity
type, χ2(1) = 9.75, p < .01, with strong evidence for the alter-
native hypothesis, BF10 = 49.52, a significant effect of predic-
tion type, χ2(1) = 7.96, p = .01, with strong evidence for the
alternative hypothesis, BF10 = 20.00, and no significant inter-
action, χ2(1) = 0.09, p = .76, with anecdotal evidence for the
null hypothesis, BF10 = 0.87. These results show that
memory-based predictions were directly associated with
higher Day 2 recall regardless of prediction accuracy.

For Day 1 intrusions (right panel), there was a significant
effect of activity type, χ2(2) = 13.51, p < .01, with strong
evidence for the alternative hypothesis, BF10 = 3.08 × 105,
and no significant effect of prediction type, χ2(1) = 2.61, p =
.11, with anecdotal evidence for the alternative hypothesis,
BF10 = 2.89. A significant interaction, χ2(2) = 9.37, p = .01,
with strong evidence for the alternative hypothesis, BF10 =
257.89, showed that for changed activities, there were signif-
icantly more intrusions associated with predicted Day 1 than
Day 2 endings, z ratio = 3.28, p = .01, but the intrusion rates
within repeated and novel activities were not significantly
different, largest z ratio = 1.46, p = .69.

Although these results collectively show the same qualita-
tive pattern as in Experiment 1, they also show that memory-
based predictions were associated with significantly greater
Day 2 recall and Day 1 intrusions. These results suggest that
encouraging participants to predict Day 1 endings both im-
proved and impaired memory updating. Below, we describe
how these effects depended on participants’ use of
recollection-based retrieval.

Day 2 recall benefits and memory-based predictions

As described in Experiment 1, memory-based predictions oc-
curred when participants predicted Day 1 endings. But here
we instructed participants to predict Day 2 endings based on
their memory for Day 1 endings. This appeared to increase
memory-based predictions, as such predictions occurred more
often in Experiment 2 than Experiment 1. The absence of
instructions in Experiment 1 allowed maximal variability in
participants’ prediction strategy. This resulted in a positive
association between memory-based prediction frequency and
its benefits for Day 2 recall (see Experiment 1 for description
of measures). Mandating memory-based predictions through
instructions should reduce that correlation. Consistent with
this hypothesis, Fig. 4 shows a nonsignificant association be-
tween these measures, r(33) = .22, 95%CI [−.12, .52], p = .19.
We also tested for differences between correlations including
recall differences for repeated and changed activities using the
Williams’ test. The correlation including recall differences for
repeated activities, r(33) = −.05, was significantly different
from the correlation including recall differences for changed
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activities, r(33) = .49, t = 2.68, p < .01. We had no a priori
reason to expect this difference and have no explanation for it.

Change classifications conditionalized on prediction type

As in Experiment 1, we estimated change classification prob-
abilities using separate models for each type. The overall
change classification probabilities (Table 1, bottom rows)
are lower than in Experiment 1, likely because Experiment 2
included longer delays between each phase. Experiment 2
replicated the downstream consequences of predictions made
during Day 2 on the various change classifications shown in
Experiment 1 (Table 2, bottom two rows). Of particular inter-
est, changes were recollected significantly more often follow-
ing erroneous predictions of Day 1 endings, χ2(1) = 22.69, p <
.001 (there was strong evidence for the alternative hypothesis,
BF10 = 4.05 × 105, which supported the hypothesis that
memory-based prediction errors should improve encoding
and recollection of changes).

Day 2 recall and Day 1 intrusions conditionalized
on classifications and predictions

As in Experiment 1, we tested the predictions that memory-
based prediction errors should improve encoding and recol-
lection of activities and their order and lead to impaired mem-
ory when recollection fails. We did this by fitting models with
change classification and prediction type as fixed effects to
Day 2 recall and Day 1 intrusions (see Fig. 5, bottom panels).

Day 2 recall (left panel) showed a significant effect of
change classification, χ2(2) = 150.68, p < .001, with strong
evidence for the alternative hypothesis, BF10 = 6.08 × 1052,
and no significant effect of prediction type, χ2(1) = 0.35, p =
.56, with anecdotal evidence for the null hypothesis, BF10 =
0.88. Although the interaction was not significant, χ2(2) =
2.65, p = .27, there was strong evidence for the alternative
hypothesis, BF10 = 10.89. We only followed the change clas-
sification effect with pairwise comparisons because it was the
only unambiguous effect. Day 2 recall was significantly
higher when change was recollected than when change was
remembered but not recollected and when change was not
remembered, smallest z ratio = 6.46, p < .001. There was no
significant difference when change was remembered but not
recollected and when it was not remembered, z ratio = 1.40, p
= .34. These results replicate the strong positive association
between change recollection and Day 2 recall.

For Day 1 intrusions (right panel), we again excluded
change recollection observations from the models due to their
rarity and ambiguity. There was no significant effect of
change classification, χ2(1) = 2.01, p = .16, with moderate
support for the alternative hypothesis, BF10 = 3.90. There
was a significant effect of prediction type, χ2(1) = 13.89, p <
.001, with strong support for the alternative hypothesis, BF10

= 1.23 × 104, showing more intrusions when Day 1 endings
were predicted during Day 2 viewing. Although the interac-
tion was not significant, χ2(1) = 3.32, p = .07, there was strong
evidence for the alternative hypothesis, BF10 = 10.02. The
finding of more intrusions following memory-based predic-
tions when change was not remembered replicates
Experiment 1 in showing the cost of prediction errors in the
absence of recollection-based retrieval. The similar, but nu-
merically smaller, difference when change was remembered
was unique.We cannot explain this, especially since there was
ambiguity in the evidence for the interaction effect between
the two analytic approaches. Collectively, these conditional
results replicate Experiment 1 in showing improved and im-
paired memory for Day 2 activities associated with memory-
based predictions that depended on change recollection.

Discussion

The results of Experiment 2 replicated and extended
Experiment 1. Changing a central activity feature was again
associated with enhanced Day 2 recall when change was re-
collected and impaired recall when change was not recollect-
ed. The memory impairment associated with failed recollec-
tion also resulted in more Day 1 intrusions. Comparing across
experiments, the instructions in Experiment 2 to make
memory-based predictions for Day 2 endings appeared to im-
prove Day 2 recall for repeated and changed endings. But this
could also have reflected participants being sampled from dif-
ferent universities. Regardless, finding that a higher rate of
memory-based predictions was associated with better subse-
quent memory emphasizes the benefits of prior-event retrieval
on memory for all activity features. As in Experiment 1, con-
ditional analyses showing that prediction errors were associ-
ated with both improved and impaired updating depending on
change recollection provided provisional correlational evi-
dence of a role for prediction error in updating. However, as
in Experiment 1, there was no clear association between pure
prediction errors and memory for novel activities, an associa-
tion that would be expected if prediction error leads to mem-
ory updating. Collectively, these results clearly show that
prior-event retrievals benefitted event memory updating and
leave open the possibility that prediction error played a role,
but do not conclusively establish such a role.

General discussion

In two experiments, we tested two proposed mechanisms of
successful event change detection and memory updating:
prior-event retrieval and prediction error. We did this by in-
corporating overt retrieval and prediction measures during
event encoding into the everyday changes paradigm. This
allowed us to assay retrieval success, control the activities
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associated with prediction error, and examine the contribu-
tions of event retrieval and prediction error to memory for
changed event features. We replicated earlier findings show-
ing proactive facilitation in event memory retrieval when
change was recollected and proactive interference when
change was not recollected (Wahlheim & Zacks, 2019).
Both experiments implicated a role for prior-event retrieval
in enhanced recall of changed event features. Across experi-
ments, there was inconsistent evidence for a direct association
between prediction error and updating, as it was inconclusive
in Experiment 1 and strong in Experiment 2. Both experi-
ments showed clear evidence that prediction error was associ-
ated with more change recollection, which was associated
with better updating, but prediction error was also associated
with more intrusions when change was not recollected. This
showed that prediction error effects on overall recall may be
obscured by offsetting effects that depend on recollection-
based retrieval. Below, we consider the theoretical implica-
tions of these findings for mechanisms of event memory
updating.

Prior-event retrieval and event memory updating

Research in the episodic memory updating literature has im-
plicated a role for retrieval of prior memories in learning and
has demonstrated its benefits on subsequent memory (see
Hintzman, 2011). This retrieval process also plays a central
role during the specific encoding of changed features in effec-
tive memory updating. The MFC framework and EMRC pro-
pose that this retrieval process is necessary for past and present
event features to coexist in consciousness, therefore enabling
encoding of configural representations (Jacoby et al., 2015;
Wahlheim & Jacoby, 2013; Wahlheim & Zacks, 2019).
Consistent with this view, neuroimaging studies have shown
that reactivation of prior memories while encoding competing
memories is associated with interference reduction and im-
proved memory updating (e.g., Chanales et al., 2019; Koen
& Rugg, 2016; Kuhl et al., 2010; Stawarczyk et al., 2020).

In the present study, we measured prior event (Day 1) re-
trieval during overt predictions made while viewing Day 2
movies. We assumed that predictions based on memory for
Day 1 features indicated successful prior-event retrieval that
guided Day 2 predictions. In Experiment 1, we instructed
participants to predict what they thought would happen with-
out suggesting that they should make their predictions based
on Day 1 memories. Allowing participants to choose their
prediction strategy produced individual variation in memory-
based predictions that was associated with subsequent mem-
ory. Specifically, participants who made more memory-based
predictions showed higher subsequent memory for changed
Day 2 features. In Experiment 2, when we instructed partici-
pants to use a memory-based prediction strategy, the overall
rate of memory-based predictions was higher than in

Experiment 1. When participants were explicitly instructed
to make memory-based predictions we found that, within-par-
ticipants, successful memory-based predictions were predic-
tive of subsequent memory of Day 2 event features. This sug-
gests that encouraging participants to make memory-based
predictions increased their frequency of retrieval, and that this
facilitated memory. Of course, one must consider the caveat
that this between-experiment difference could have reflected
differences in the population from which the samples were
drawn, as the experiments were conducted at different
universities.

More broadly, the associations observed between memory-
based predictions and Day 2 recall are consistent with previ-
ous findings showing that successful retrieval of related event
features during encoding is associated with better memory
accuracy for changed features (e.g., Wahlheim & Jacoby,
2013). Taken with the finding that Day 2 recall for changed
features was also higher when change was recollected, these
results suggest that memory-based predictions, and successful
retrieval, facilitated the detection of changed features.
However, we could not measure change detection directly
here. One possibility is that memory-based prediction enabled
the formation of integrated memory representations.

Prediction error in event comprehension

Behavioral and neurophysiological data suggest that predic-
tion errors can trigger memory updating. For example, Kim
et al. (2014) presented sequences of pictures, with repeating
contingencies that could introduce predictions. Prediction was
assayed using multivariate pattern fMRI, and it was found that
prediction errors were associated with memory updating. Bein
et al. (2019) used deliberate retrieval of picture memories to
induce predictions that then led to errors when changed pic-
tures were presented. They found that this shifted hippocam-
pal activity from a retrieval-related state to an encoding-
related state. Similarly, Sinclair et al. (2020) used a partial-
reminding procedure with videos to induce prediction errors
and found that such prediction errors both shifted hippocam-
pal states and promoted memory updating (see also Sinclair &
Barense, 2019). Such results are consistent with EMRC, as
described in the Introduction (Wahlheim & Zacks, 2019).

However, across the present experiments, we found
inconclusive evidence for a direct association between
prediction error and memory updating. This could reflect
the all-or-none nature of the memory-based prediction
measure. Previous research has demonstrated that the
strength of reactivation driving a prediction is important
for modulating memory updating; weak or strong reacti-
vation is less effective than intermediate reactivation
(Bein et al., 2019; Kim et al., 2014; Norman et al.,
2007; Sinclair & Barense, 2019). This could also reflect
that the self-reported prediction measure used here was
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insensitive to effects of prediction error on memory
updating. The task we used here halted participants’ event
processing and forced them to make an explicit prediction
by choosing one of two options. The video playback had
been stopped, removing the participant from the context
of the narrative, and a conscious choice had to be made.
Although previous research has successfully used this
measure to characterize the role of prediction error in
event segmentation (e.g., Zacks et al., 2011), this task
may not always be a valid indicator of ongoing prediction
error during event comprehension.

Other studies have sought to assess prediction error by
using indirect cognitive neuroscience techniques rather
than more direct behavioral measures. For example, previ-
ous research has conceptualized and measured prediction
error through hippocampal activity indicated by functional
magnetic resonance imaging (fMRI; Shohamy & Wagner,
2008), dopaminergic activity measured by neural elec-
trodes (Bayer & Glimcher, 2005), and through dopaminer-
gic activity in the midbrain and striatal regions, again mea-
sured by fMRI (Zacks et al., 2011). Although such tech-
niques can be leveraged to examine prediction error medi-
ated learning, they are not always accessible. This indi-
cates the need for more accessible behavioral measures that
are sensitive to prediction error signals. One caveat of this
approach, as shown in the present study, is that behavioral
measures as indirect assays will vary in their sensitivity.
The prediction-contingent paradigm used here represents
an indirect measure that may not have been sufficiently
sensitive to the kind of predictive processing that precedes
the encoding of event changes. Ultimately, any direct assay
of prediction error may not be effective as it would neces-
sarily involve interrupting ongoing encoding, necessitating
the call for indirect measures, whether behavioral or
physiological.

Eye tracking is another indirect behavioral measure used to
examine predictive processing during naturalistic event com-
prehension. This measure shows promise as a sensitive tool
for detecting prediction error signals. For example, Eisenberg
et al. (2018) demonstrated predictive looking during narrative
activities with eye tracking by showing that viewers looked at
objects just before actors contacted those objects. Eye tracking
is an effective and unobtrusive way of measuring predictions
during ongoing processing, without halting participants’ en-
gagement. Future studies may benefit from further identifica-
tion of noninvasive assays of prediction error, such as eye
tracking, during ongoing comprehension.

Conclusion

The present study tested theoretical mechanisms proposed to
underlie the encoding and memory for naturalistic event

changes. In two experiments, making predictions based on
memory for a previous related event was associated with suc-
cessfully encoding changes in a new event. This is consistent
with models proposing that spontaneous retrieval during
encoding facilitates that new encoding. Such models generally
further predict that when things change, retrieval during
encoding leads to prediction errors, which in turn drive mem-
ory updating. The current results did not provide strong evi-
dence for or against this proposal. One possibility is that indi-
rect assays may provide a more sensitive test of the hypothesis
that prediction error drives memory updating for naturalistic
events. We are currently exploring this possibility.

Instructions

Appendix A

Day 1 movie

In this part of the experiment, you will watch an actor perform
a series of everyday activities throughout the course of a day.
Your task will be to pay careful attention to her actions.

Day 2 movie

In this part of the experiment, you will watch an actor perform a
series of everyday activities throughout the course of another
day that occurred later in the week. These activities will vary in
their relationship to those she performed on Day 1. She will
repeat some activities in exactly the same manner as Day 1; she
will perform some new activities that she did not perform on
Day 1; and she will perform some activities in a manner similar
to Day 1, but a critical feature of those activities will change.
You should pay careful attention to her actions and note the
relationship between these actions on Day 2 and the actions
from Day 1.

Importantly,wearealsointerestedinyourability topredicther
future actions. Tomeasure this, wewill stop the video at various
points and ask you tomake an explicit prediction aboutwhich of
two actions shewill performwithin the next few seconds.When
the video stops, two images will appear, depicting the actor
performing two different actions. Your task will be to choose
the action that she is more likely to perform.

To do this, press the “Q” key to choose the image on the left
side of the screen or press the “P” key to choose the image on
the right side of the screen. After you have chosen an action, a
screen will appear with the message “Imagine Actions” for 5
s. Take this time to imagine how the upcoming sequence of
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actions will unfold. The video will resume after the 5 s have
elapsed. Please pay attention to the actor’s subsequent actions
and compare them with the actions that you imagined.

Test

In this part of the experiment, you will be asked to recall
details from the activities you viewed from Day 2. For each
question, you will first be asked to type a response in a box
below. After you have typed your response, press ENTER.

Here, we are also interested in your ability to remember
which activities changed from Day 1 to Day 2. When you
watched the actor perform activities on both days, she per-
formed some activities in the exact samemanner on both days,
she performed other activities only on the second day, and she
changed how she performed another set of activities from the
first to second day.

After recalling details from each activity, you will be asked
whether certain actions associated with an activity changed
from Day 1 to Day 2. For example, the actor could have
cleaned the counter with a paper towel on Day 1 and a wash-
cloth on Day 2 (you will see an example of this change short-
ly).When you are askedwhether the activity changed between
days, you will press “1” to respond “Yes” and “2” to respond
“No.”When you respond “Yes” that you remember the activ-
ity changing from Day 1 to Day 2, you will be asked to report
how the activity was accomplished on Day 1. Please type your
response in the box and press ENTER.

Appendix B

Session 1

The purpose of this study is to investigate how people under-
stand and remember everyday events. In this experiment,
you’ll first watch movies of an actor performing daily life
activities, and afterwards we will ask you to answer questions
about these movies. This experiment will take place in three
sessions, with a week between each session, at the same time
and place. Each session will last approximately 1 hour.

In this part of the experiment, you will watch an actor
perform a series of activities throughout the course of a normal
day. Pay close attention to the activities and try to commit
them to memory. Press Space to continue and watch two ex-
amples of activities.

This is the type of activity you’ll see during the real
task. The first movie will take about 20 minutes, and we
will call it “Day 1.”

Session 2

In this part of the experiment, you will watch the same actor
perform another series of everyday activities throughout the
course of a second day. We’ll refer to this as DAY 2 to dis-
tinguish it from the DAY 1 you already saw. You will first
watch the beginning of each activity, and then it will be
stopped and you will be asked to select what you think will
happen next by pressing the number in parentheses that cor-
responds with the image of your choice, based on your mem-
ory of what happened on DAY 1. Then you will watch the
remainder of the activity on DAY 2. Please note that some
activities will have the same endings as DAY 1, and some will
be different. Still pay close attention and try to commit the
activities to memory. You will first complete two practice
examples. Press Space to continue.

On both days, the actor placed her phone in the exact same
spot on the piano, but she plugged in an e-reader to charge on
Day 1, and on Day 2 it was a tablet. This is the kind of change
that you will see during the real task. It is important to note
these changes in detail.

Session 3

You will be presented with the beginning of one of the activ-
ities that you viewed previously. Remember the movie from
the first session is DAY 1 and the movie from the second
session is DAY 2. Once the clip has ended, you will be asked
to recall what happened on DAY 2. You will type in your
response, and then press Enter. After responding with the
ending to DAY 2, you will be asked whether the ending
changed from DAY 1 to DAY 2. Make your selection by
pressing the key in parentheses that corresponds to your an-
swer. If you select “changed,” you will then be asked to report
what happened on DAY 1. You will first be shown the two
example clips as practice. Press Space to continue.

It’s crucial that you answer with the Day 2 ending, and
then, if it differed from Day 1, you will report the Day 1
ending afterwards. Make sure to respond with as much detail
as possible.
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