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Abstract
It is increasingly understood that people may learn new word/object mappings in part via a form of statistical learning in which
they track co-occurrences between words and objects across situations (cross-situational learning). Multiple learning processes
contribute to this, thought to reflect the simultaneous influence of real-time hypothesis testing and graduate learning. It is unclear
how these processes interact, and if any require explicit cognitive resources. To manipulate the availability of working memory
resources for explicit processing, participants completed a dual-task paradigm inwhich a cross-situational word-learning taskwas
interleaved with a short-term memory task. We then used trial-by-trial analyses to estimate how different learning processes that
play out simultaneously are impacted by resource availability. Critically, we found that the effect of hypothesis testing and
gradual learning effects showed a small reduction under limited resources, and that the effect of memory load was not fully
mediated by these processes. This suggests that neither is purely explicit, and there may be additional resource-dependent
processes at play. Consistent with a hybrid account, these findings suggest that these two aspects of learning may reflect different
aspects of a single system gated by attention, rather than competing learning systems.

Keywords Cross-situational word learning . Dual systems accounts of learning . Propose-but-verify . Dual-task paradigm .

Implicit learning

Introduction

Many domains of learning and memory have been dominated
by debates about the specific mechanisms of learning that
underlie a given learning problem. These debates have
contrasted different representational assumptions, such as
whether a set of categories is learned by acquiring rules, pro-
totypes, or exemplars (e.g., Richler & Palmeri, 2014; J. D.
Smith, 2014); they have contrasted architectural aspects of
learning such as whether something is declarative or proce-
dural (Squire, 1992); and they have asked whether a given
problem requires one system or two (e.g., Ashby et al.,
1998; Edmunds et al., 2018). These debates have often played

out in the context of fairly straightforward supervised learning
tasks in which on each trial either the correct response is avail-
able or the subject receives feedback.

In contrast, work on language learning has traditionally
focused on less constrained, unsupervised forms of learning,
in which listeners are simply exposed to a series of inputs and
left to their own devices to identify structure. Such learning
has been motivated by the natural ecology of language acqui-
sition in which children are thought to receive little explicit
instruction or direct feedback to support learning. Here too,
there have been extensive debates between clashing mecha-
nisms (e.g., Pinker & Ullman, 2002; Rumelhart et al., 1986).
However, in the type of laboratory tasks often deployed in this
domain (and presumably in real-world language learning),
learners are completely unconstrained and often do not even
have a task. Consequently, a number of researchers have be-
gun to consider the possibility that learners engage multiple
learningmechanisms simultaneously (e.g., Endress &Bonatti,
2016; Feldman et al., 2013; Roembke & McMurray, 2016).

For example, children may acquire auditory categories
(speech sounds) of their language by tracking the distribution-
al statistics of specific cue values (e.g., formant frequencies,
voice onset) and identifying clusters; however, they may
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simultaneously be identifying larger chunks (e.g., words) and
using them to separate categories (e.g., the fact that the /ih/
sound occurs in milk and spin while the /eh/ sound occurs in
distinct words like bread and friend) (Feldman et al., 2013), or
they may use the visual referents of words (e.g., pet and pit) in
a similar fashion (Räsänen & Rasilo, 2015). This kind of hy-
brid is certainly not unique to language – the SUSTAINmodel
of categorization (Love et al., 2004), for example, includes
both unsupervised and supervised learning. Nevertheless, the
emphasis on unsupervised tasks in language highlights its
possibility.

In these hybrid learning models, it is critical to start to
understand the cognitive processes that underlie specific com-
ponents of learning: Does each component require attention,
feedback, cognitive resources, and so forth? The present paper
offers a first step in this direction. Specifically, we focus on a
popular statistical learning paradigm for learning word-object-
associations without feedback – cross-situational learning. As
we describe, initial debates have started assuming a single
mechanism approach, and research has contrasted statistical
from more propositional accounts of learning. This debate is
ongoing, but it has left us with clear behavioral indices of
several processes that play out simultaneously during learning
– processes that may loosely correspond to an implicit/explicit
distinction. Here, we use a dual-task procedure to ask if either
of these processes require cognitive resources. In this, wewere
loosely inspired by dual-task work on visual categorization
(Waldron & Ashby, 2001), though we are not arguing for an
explicit multiple-learning systems architecture (which may
not even be supported in visual categorization, e.g.,
Lewandowsky et al., 2012).

Cross-situational word learning

In the last decade, an explosion of work has asked how
learners use statistical learning to acquire the mapping be-
tween words and their referents (e.g., Dautriche & Chemla,
2014; Escudero, Mulak, & Vlach, 2016; Roembke &
McMurray, 2016; Scott & Fisher, 2012; Smith & Yu, 2008;
Yurovsky, Yu, & Smith, 2007). This has been motivated by
the fact that children master a huge quantity of words relative-
ly quickly but with little overt teaching or feedback.
Consequently, researchers have sought unsupervised mecha-
nisms that do not require a teaching signal. Work in this area
has converged on a specific statistical learning paradigm
known as cross-situational word learning (Yu& Smith, 2007).

Cross-situational word learning was originally intended as
a laboratory model that captures two critical assumptions
about how children learn the meanings of new words: (1) they
often do so without explicit feedback, and (2) in any naming
situation, there are many possible referents for a novel word.
Cross-situational learning proposes that even if any single
naming event was ambiguous, learners can acquire newwords

by combining information across encounters to identify the
correct word-object-mappings (Siskind, 1996; Yu & Smith,
2007).

In a standard cross-situational learning experiment, partic-
ipants see several objects and hear one or more novel words.
Each word is presented an equal number of times and each
picture appears equally often. Across trials, the target object
and word are consistently paired, whereas foil objects are ran-
domly selected across trials. Crucially, this means that object
competitors never co-occur with a word as often as its referent.
In this procedure, the referent of a wordmay be unclear on any
one trial, particularly early, when no words are known.
However, the learner can determine the correct mappings by
using the co-occurrence statistics across trials. Importantly,
participants are never told that it is their task to use the co-
occurrence of words and objects to extract the correct map-
pings, and they get no feedback as to their performance.

Ample empirical evidence demonstrates that both adults
and children can learn novel words in this paradigm
(Dautriche & Chemla, 2014; Fitneva & Christiansen, 2015;
Koehne et al., 2014; Roembke et al., 2018; Roembke &
McMurray, 2016; L. B. Smith & Yu, 2008; Suanda et al.,
2014; Trueswell et al., 2013; Yu & Smith, 2007). Thus, this
is a viable mechanism early in development when children
observe their surroundings in the absence of consistent feed-
back, but also for word learning during later years (Fitneva &
Christiansen, 2015; Roembke et al., 2018; Suanda et al.,
2014).

Contributions of multiple learning mechanisms in
cross-situational word learning

Originally, cross-situational word learning was framed as an
associative process of statistical learning (Yu & Smith, 2007).
Each time a word is heard and an object is seen, their connec-
tion gets strengthened (or their co-occurrence statistic gets a
bump). Since the correct object is consistently paired with its
word across situations or trials, this association grows, where-
as associations between the word and other objects remain
weak (since these do not co-occur as frequently). This can
occur even in the absence of feedback. Later at test, people
use the underlying association matrix to respond in the mo-
ment and select the correct object for the word that was heard
(McMurray et al., 2012; Yu & Smith, 2012). Importantly, this
learning process is supposed to be implicit, and awareness of
the word-object-mappings is not necessary to acquire them
(Wang, 2020; Yu & Smith, 2007).

In contrast, Trueswell et al. (2013; see also Medina,
Snedeker, Trueswell, & Gleitman, 2011) have argued that
participants could employ a more explicit strategy that
operates within a single trial, which they term “propose-but-
verify.” When presented with an ambiguous trial (a word for
which they do not know the referent), learners form a
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hypothesis as to the referent of the word. On subsequent trials,
this “proposed” word-object-mapping is then verified (if it is
consistent with the objects on that trial), or discarded if con-
tradictory evidence is encountered (e.g., if that object is not
present; Koehne et al., 2014; Medina, Snedeker, Trueswell, &
Gleitman, 2011; Trueswell et al., 2013). Critically, rather than
maintaining multiple partial hypotheses (or associations) for a
given word, in a propose-but-verify system, learners maintain
only a single hypothesis.

In support of this claim, Trueswell et al. (2013) present
evidence that the accuracy for an individual word is largely
predicted by the accuracy on the prior encounter with that
word: when the learner was incorrect on the last encounter
(trial) with a word, they were largely at chance on the current
encounter. According to propose-but-verify, this is because
their last-encounter hypothesis was clearly incorrect, and they
had to abandon it and start over (Trueswell et al., 2013).
Additionally, consistent with the proposal that cross-
situational learning uses explicit processes, Trueswell et al.
(2016) reported evidence that participants could distinguish
between less and more informative learning situations, indi-
cating awareness of their learning.

The way that these two opposing accounts – associative
learning and propose-but-verify – have been described rough-
ly maps onto the functional properties of implicit and explicit
forms of learning. An associative or statistical learning ac-
count is more consistent with implicit learning that gradually
accumulates statistics over trials. In contrast, propose-but-
verify (as described by Trueswell et al., 2013) is explicit and
rational, mapping more closely onto rule-based, symbolic or
inferential forms of explicit learning.

Subsequent studies challenged a pure propose-but-verify
account. Dautriche and Chemla (2014) conducted similar
analyses but took into account whether the foil object was also
present on a current trial. When this was done, there was
evidence for gains in performance even after an incorrect trial.
Perhaps most notably, Yurovsky, Fricker, Yu, and Smith
(2014) showed that after a first phase of learning, words that
had not been learned (they were still at chance) were still
learned faster in a second phase. This suggests that even if
learners had the wrong hypotheses for a word, they had still
acquired partial statistical evidence to help with future learn-
ing. Finally, Roembke and McMurray (2016) presented eye-
tracking evidence showing that even as learners may be
clicking on the correct object, they still maintain evidence
for alternative meanings. These studies do not rule out the sort
of processes posited by propose-but-verify. Indeed, in many
of these studies, there is still a very strong influence of whether
subjects responded accurately on the last encounter. However,
they suggest that in addition to this kind of processing, there
may be an associative learning process as well.

These findings raise the possibility of a hybrid model
(Roembke & McMurray, 2016; Roembke et al., 2018; see

also McMurray et al., 2012; Yurovsky & Frank, 2015). That
is, these hypothesized learning mechanisms represent the
function of two distinct processes that operate in parallel dur-
ing word learning and likely interact. Under this kind of hy-
brid, the gradual implicit accumulation of statistics across tri-
als occurs in parallel to more real-time, possibly explicit, pro-
cesses (Roembke & McMurray, 2016; Roembke et al., 2018;
see also McMurray et al., 2012; Yurovsky & Frank, 2015).
Importantly, in order to apply in the context of statistical learn-
ing, both of these systems must operate without feedback.

Trial-by-trial analyses: Markers of propose-but-verify
and gradual learning

A critical source of evidence for this hybrid is trial-by-trial
analyses of the learning curve that have identified indices that
reflect propose-but-verify or gradual (associative) learning
processes (Roembke et al., 2018; Roembke & McMurray,
2016). For example, we conducted a standard cross-
situational learning paradigm and used trial-by-trial analyses
to examine performance. As in Trueswell et al. (2013), we
examined the effect of the accuracy the last time the target
was encountered (which we term the last-encounter-accuracy
effect) as a marker of something like an inferential (propose-
but-verify) process. However, we also simultaneously esti-
mated the statistical effect of how much exposure the subject
had with that word (up to that point in the experiment), which
we term the target-exposure effect. This allowed us to esti-
mate the effect of raw number of exposures to a word over and
above the learners’ evolving inferential knowledge (represent-
ed by the last-encounter-accuracy effect). That is, we can es-
timate each simultaneously, controlling for any possible
collinearity.

We found significant main effects of both target-exposure
and last-encounter-accuracy, consistent with a hybrid account.
Moreover, the effect of last-encounter-accuracy interacted
with target-exposure, such that the effect of last-encounter-
accuracy increased at later points during training. This sug-
gests some interaction between systems such that increasing
statistical evidence allows learners to make better trial-by-trial
inferences later. We later extended these findings to children
and to mappings between non-linguistic sounds and referents,
suggesting these indices are robust in the learning curve
(Roembke et al., 2018).

Implicit and explicit mechanisms

This statistical approach offers the ability to isolate the simul-
taneous effects of gradual learning and or inferential processes
like propose-but-verify. What is not clear is the degree to
which either of these processes are explicit (requiring aware-
ness and cognitive resources) or implicit. Indeed, the open-
ended nature of the cross-situational word-learning task leaves
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this question quite open. On the one hand, in a standard cross-
situational word-learning experiment with adults, participants
are typically told that they are supposed to acquire the word-
object-mappings they are exposed to. In addition, response
times during testing are unlimited. These characteristics may
encourage the use of explicit processes. On the other hand,
participants are not specifically instructed to use co-
occurrence statistics of words and objects. Similarly, the ma-
jority of cross-situational word-learning experiments have
used unfamiliar objects as referents, which makes it more
difficult to engage reasoning processes as they do not have
other names (e.g., Roembke et al., 2018; Roembke &
McMurray, 2016; Smith & Yu, 2008; Yurovsky et al.,
2007). These factors could result in the use of implicit pro-
cesses, and are indeed why a statistical account was proposed
as the mechanism of learning.

Thus, it is not straightforward to identify the contributions
of explicit and implicit learning mechanisms in cross-
situational learning. A critical hallmark of explicit processing
is the use of cognitive resources. This has beenwell developed
within work on categorization (e.g.,Waldron&Ashby, 2001).
The idea is that if explicit memory resources are engaged with
a second task, learners are more likely to rely on implicit
learning processes.

Wang (2020) leveraged this paradigm for a more direct
investigation of explicit and implicit memory representations
in cross-situational word learning. In this study, participants
completed a categorization task as a cover; at the same time,
they were also exposed to word-object-mappings cross-situa-
tionally. The extent to which the explicit or implicit system
was used for learning was deduced from the presence/absence
of a relationship between participants’ confidence and word-
learning performance. Results suggested that participants used
the explicit memory systemwhen known objects were used as
referents, but that the implicit one was engaged when words
had to be mapped onto novel, unfamiliar objects where no
verbal encoding had been possible (Wang, 2020). The extent
to which the implicit and/or explicit system is used during
word learning may thus depend on a number of situational
characteristics, such as the amount of referential ambiguity,
familiarity of the visual referents, presence of a cover task
(task instructions) or time pressure to respond (Wang, 2020;
Yurovsky & Frank, 2015).

Nevertheless, this does not address the issue of whether
specific sub-components of learning – the gradual associative
or inferential processes identified above – are each explicit or
implicit. This is important because if these processes do dis-
sociate along these lines, it would suggest the involvement of
two distinct learning systems (e.g., Ashby & Maddox, 2005).
However, if neither are explicitly mediated or if both are, this
would be consistent with a single system mediated by general
cognitive operations like working memory or attention. While

the original framing of each process seems to support a
straightforward implicit/explicit contrast, there are several rea-
sons this remains an open question.

First, the last-encounter-accuracy effects – which were
intended to support an explicit propose-but-verify account –
could be explained via other means. This possibility is
highlighted by the fact that pigeons – a species unlikely to
engage in inferential processing – showed an effect of last-
encounter-accuracy in a task that was developed to mimic
human word learning (Wasserman et al., 2015). An alternative
conceptualization of the last-encounter-accuracy effects can
derive from the dynamic associative account of McMurray
et al. (2012; also see Roembke & McMurray, 2016). This
account argues that associations do not just count raw co-
occurrence – objects that are selected show larger gains.
When a learner selects the target object, its associative link
to the word should be increased more than the unselected (but
present) objects. This then increases the learners’ probability
of being correct again on a subsequent trial (assuming the
prior selection was correct). This “boost” from selection need
not be large; in-the-moment competition processes can ampli-
fy small differences in the underlying associative strength,
making behavior look more accurate than the stored map-
pings. Thus, the last-encounter-accuracy effect may not derive
entirely from explicit processes.

Second, a recent study byWarren et al. (2020) investigated
cross-situational word learning in patients with hippocampal
amnesia. Importantly, the hippocampus has often been thought
necessary for the formation of explicit, verbalizable rules as
well as for “memory in the moment.” Warren et al. (2020)
found that amnesic patients could acquire the word-object-
mappings; however, their learning was slower and less stable.
This also suggests explicit processes are not strictly necessary
for learning. However, the fact that learning was poorer sug-
gests that while cross-situational word learning can be accom-
plished with purely associative or implicit processes (mediated
by neocortical or procedural learning systems), explicit learn-
ing (mediated by hippocampal systems) also contributes.
However, as Warren et al. (2020) did not conduct trial-by-
trial analyses, it is not clear if the specific sub-components of
cross-situational word learning contribute to the more gradual
associative portion, the inferential portion, or both.

Current study

To summarize, existing studies of cross-situational word
learning are loosely consistent with explicit and implicit ap-
proaches to learning. Moreover, the hybrid proposed by
Roembke andMcMurray (2016), suggests two processes with
distinct markers in the learning curve (last-encounter-accuracy
and target-exposure). However, a crucial question is whether
any specific aspect of cross-situational learning is an explicit
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process. The most likely candidate would be the last-
encounter-accuracy effect (and by extension, proposing and
verifying), though other processes may contribute to the last-
encounter-accuracy effect as well.

Here, we take the same dual-task approach ofWang (2020)
to investigate the role of explicit and implicit systems in learn-
ing word-object-mappings:1 The present experiment limits
access to general cognitive resources with a dual-task para-
digm to provide insights into how important explicit processes
are for cross-situational word learning. Specifically, we assess
the degree to which the last-encounter-accuracy or the gradual
associative learning effects are explicit, and how effective
unsupervised word learning is under such circumstances.

In this study, all participants completed the same cross-
situational word-learning task in which accuracy was recorded
on each trial. Simultaneously, they participated in either a
verbal working memory task that required the maintenance
of several numbers (high-load) or one that only required re-
membering one number (low-load). Here, we operationally
define working memory as the “ensemble of components of
the mind that hold a limited amount of information temporar-
ily in a heightened state of availability for use in ongoing
information processing” (p. 1163; Cowan, 2017). The work-
ing memory task we used did not require the manipulation of
the presented content. Working memory was manipulated be-
tween subjects, as we were worried that having subjects par-
ticipate in the word-learning task twice could create con-
founds (e.g., the words learned in the first task could interfere
with word learning in the second task).

Critically, we leveraged the trial-by-trial approach of
Roembke and McMurray (2016) to ask which components
of learning use explicit resources. To do this, we go beyond
thinking of effects like the last-encounter-accuracy effect as
merely indicating one learning system or another. Rather, we
use it as a more continuous measure of how much a given
aspect of learning is operative as a function of memory load.
That is, we ask if load numerically reduces or enhances each
of the two trial-by-trial effects on the learning curve. This
design allowed us to address the following questions:

1. How does cross-situational word learning change when
participants have limited working memory resources?

2. Is the effect of last-encounter-accuracy modulated and/or
dependent on the availability of working memory
resources?

3. Is the effect of target-exposure modulated and/or depen-
dent on the availability of working memory resources?

4. Is the effect of load on performance fully mediated by the
last-encounter-accuracy and target-exposure effects?

At the broadest level, it is likely that an increased working
memory load may delay word learning, as this would limit the
ability of explicit systems to make in-the-moment inferences.
Moreover, we predicted that this effect would be more evident
at the end of the experiment than at the beginning (c.f.,
Roembke & McMurray, 2016). At the start, participants’ ac-
curacy might be more driven by chance and association, and
less by explicit processing. Yet, as they learn more word-
object-mappings (including the auditory word forms and vi-
sual representations), they can use working memory resources
in the moment to make referent selections. This is based on
our prior work, which shows a stronger last-encounter-
accuracy effect later in the learning curve.

Considering our trial-by-trial effects, if the last-encounter-
accuracy effect is mediated by an explicit learning system,
then it should be reduced – but perhaps not disappear – under
load. Such a partial reduction would indicate that people do
remember what word they last clicked on from trial to trial, but
a lack of complete elimination would suggest that other pro-
cesses could contribute to this benefit. A similar prediction
might be made for the gradual learning effect. If explicit pro-
cessing is necessary for this effect (e.g., statistical learning is
gated by attention: Toro et al., 2005), then it should be reduced
under high memory load.

Putting these together, we see two possible patterns. First,
under some dual-systems accounts of learning, implicit and
explicit processes compete, such that one tends to dominate at
any given point in learning or for any given task (e.g., Ashby
& Maddox, 2005; Maddox et al., 2003; Waldron & Ashby,
2001). Under a competitive model, a reduction in the last-
encounter-accuracy effect should be paired with an increase
in the target-exposure effect (gradual statistical learning).
Alternatively, if both effects derive from different aspects of
the same learning system (McMurray et al., 2012), and this
learning system uses some explicit resources, we might expect
both trial-by-trial indices to be reduced similarly in the pres-
ence of load.

Finally, we ask if the effects of load on learning are fully
mediated by the two trial-by-trial indices, or if there is a main
effect of load even after we account for these effects. Such a
main effect would point to explicit processes that are not fully
captured by propose-but-verify or gradual associative
learning.

Method

Participants Eighty-seven monolingual, native speakers of
English participated. Participants were students at the
University of Iowa and received course credit as compensa-
tion. Four participants in the low-load condition were exclud-
ed, as they did not appear to be complying with the instruc-
tions and had runs of trials in which they clicked on the same

1 Note that we did not also employ the confidence measures used in this study
because we were worried that the slower pace they require would disrupt the
trial-by-trial indices essential to the logic of the present study.
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screen location regardless of the word.2 Moreover, one partic-
ipant in the high-load condition was run on the incorrect ran-
domization list due to experimenter error. Finally, one partic-
ipant in the low-load condition was excluded from all analyses
for below-chance performance on the memory task (see
Results). In summary, six participants were excluded prior to
analysis, leaving 81 participants in the final data set for anal-
ysis (n high load = 40; n low load = 41). All exclusions were made
before data analysis was started.

Stimuli Participants learned 12 word-referent pairs. Words
were two-syllable, phonologically legal CVCV pseudo-
words (Table 1). Phonological overlap between words was
minimized to facilitate participants’ learning. Auditory stimuli
were recorded in a neutral carrier phrase by a female native
speaker of English. Five exemplars of each word were used
during the experiment to add natural variation in speech.
Exemplars were edited to remove elements that were not part
of the word (e.g., jaw clicks). Finally, all recordings were
normalized and 50 ms of silence was added to their beginning
and end. Referents were photographs of highly infrequent
objects and thus likely unfamiliar to participants, presented
on a white background.Mappings of referents and words were
random for each participant.

Design This study employed a dual-task paradigm in a
between-subjects design manipulating difficulty of the sec-
ondary task (Fig. 1): Participants completed two tasks inter-
leaved with each other: a cross-situational word-learning task
and a working memory task. Participants were randomly
assigned to one of two conditions that affected the working
memory task (high/low load). The cross-situational learning
task was identical between conditions. Random assignment
was based onwhether the participant number was odd or even.

During cross-situational word learning trials, participants
were presented with four objects and a single target word.
Trials always included the target object and three randomly
chosen foils. Foils were selected from the available pool with-
out replacement to avoid the possibility of one foil object
accidentally co-occurring with the target word at high rates.
The location of each object was randomized across the four
possible locations on each trial. There were 360 cross-
situational word learning trials, separated into three blocks
of 120 trials. Trials were randomly ordered within a block.

During the memory task, participants saw five numbers.
This number was selected to fill up working memory, but
not make it impossible to store additional information
(Woods et al., 2011). Numbers were randomly selected out
of all possible digits (0–9); no number was repeated within a
set of five.

The memory task was interleaved among four cross-
situational word-learning trials: Participants saw the numbers,
then completed four cross-situational learning trials, and then
responded to the memory task, before moving on to the next
set of trials. Order of trials within each set of four trials was
random, thus the same word could be repeated within a set of
four trials. In the high-load condition, participants reported the
five numbers in the correct order; in the low-load condition,
they reported the number of even numbers in the set. Since
participants knew in advance what their task would be, in the
low-load condition, they could simply count the number of
even numbers and retain a single value. Thus, the only differ-
ence between the high-load and low-load conditions was the
quantity of numbers maintained in memory while completing
the word-learning trials. Overall, there were 90 memory trials.

Procedure Participants were instructed that their task was to
discover which object goes with what word, and that, on each
trial, they should select the object that they believed mapped
onto the word they heard. They were also given the instruc-
tions for the memory task (which differed by condition).
Participants were informed that while they were expected to
perform well on the memory task, the word-learning task was
of primary interest.

At the start of each cross-situational word learning trial,
four pictures were presented in the four corners of a 19-in.
moni tor opera t ing at 1 ,280 × 1,024 resolu t ion .
Simultaneously, a small blue circle appeared at the center of
the screen. Participants were given 1,050 ms to inspect the
objects. Subsequently, the circle turned red, cueing the partic-
ipant to click on it to cue the auditory stimulus. When the
participant clicked on it, the circle disappeared, and the word
was played via headphones. Participants then clicked on one
of the four objects to end the trial. Again, the response selec-
tion was self-paced. Participants never received feedback on
cross-situational learning trials.

At the beginning of a set of four cross-situational learning
trials, participants were reminded of the instructions for their
memory task; they were then shown the five numbers for 1 s
each. After the completion of four word-learning trials, they
then responded to the memory task by typing a number or
string of numbers on the keyboard. Participants were given
feedback, indicating whether they had made the correct re-
sponse on the memory task: a “bell” sound indicated a correct
response, whereas a “buzz” sound indicated an incorrect
response.

2 Each trials’ target object was equally likely to appear in one of the four
locations. To quantify motivation, we scored a trial as “1” if participants had
clicked the object in the same location as on the preceding trial. We then
computed the proportion of trials in which participants had clicked in the same
location as before. On average, participants clicked in the same location as the
preceding trial on 0.25 of trials. Participants who were excluded (proportion
was 2SD above average) clicked in the same location as before on 0.53 of trials
or above.
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Results

First, we analyzed performance on the memory task to check
the validity of the dual-task manipulation. As part of the dual-
task design, it was essential to document that participants were
engaged in the memory task to ensure that the high-load in-
deed required more working memory resources. Second, we
analyzed participants’ trial-by-trial performance during word
learning to determine which components of performance were
affected by the memory load. A coarser analysis of mean
performance in the word earning task is available in
Supplement S1 (Online Supplemental Materials, OSM).

Memory task For the digit span task (high-load condition),
accuracy was calculated for each number position separately,
and then the average was taken. For instance, if the digits to be
remembered were 4, 1, 9, 5, 7 and a participant reported 4, 2,
9, 7, 5, that trial would be considered 40% correct (only the
first and third digit were correct). For the low-load condition,
participants’ single numeric response was evaluated against
the correct one.

We adopted a conservative criterion to guarantee that par-
ticipants complied with the dual-task design. A participant
was considered to be guessing their average accuracy was
below 40%. None of the participants in the high-load condi-
tion were excluded based on this, while a single low-load
participant was excluded (accuracy: 37.5%).

Average accuracy for each condition is presented in Fig.
2A. Participants in the low-load condition averaged above
90% correct, whereas participants in the high-load condition
averaged just above 80% correct. This difference in perfor-
mance is not surprising, as the high-load task was designed to
be more difficult and had a much lower chance level than the
low-load task. To confirm this pattern statistically, we ran a
one-way ANOVA on condition (between subjects); the DV

was empirical logit transformed accuracy3 in the memory task.
As suspected, participants in the low-load condition were sig-
nificantly more accurate than in the high-load condition (F(1,
79) = 23.97, p < 0.001, ηp

2 = 0.233).

Word learning Figure 2B shows learning performance as a
function of load. Participants in the low-load condition again
out-performed participants in the high-load condition; this
was particularly evident by the end of training (see
Supplement S1 (OSM) for an analysis of accuracy as a func-
tion of block and condition without the trial-by-trial factors).

Our core analysis asked whether the availability of working
memory resources moderated the effects of last-encounter-
accuracy and target-exposure. Importantly, if the effect of
last-encounter-accuracy in part reflects participants’ memory
of their previous response, this process should be hindered in
the high-load condition and we should observe a smaller ben-
efit of having selected the correct object on the last encounter
with that word. In contrast, the effect of target-exposure is seen
as a marker of more gradual implicit statistical learning during
cross-situational word learning. If this is the case, it should be
less affected by the availability of working memory resources,
as it is presumed to be driven by associative or statistical pro-
cesses that do not require domain-general cognitive resources.

To investigate this statistically, binomial mixed-effect
models were implemented in R (version Ri386 3.6.3; R Core
Team, 2014) using the lme4 (Bates & Maechler, 2009) and
nlme (Pinheiro et al., 2020) packages. The fixed effects were
(1) last-encounter-correct (1/0; whether a participant had select-
ed the correct object the last time s/he was exposed to the word

Goba Naida Goba Razi

Correct!

12645

12645?

Incorrect!

2?

Fig. 1 Graphic depiction of the experimental procedure in high-load (upper box) and low-load (lower box) conditions. Feedback was given in both the
high-load and low-load memory tasks, but never on cross-situational word-learning trials

3 The empirical logit transformationwas applied to stretch the space near 0 and
1 to overcome differences in the learning curve (there is more numerical room
to improve when one is in a medium accuracy range than when close to ceiling
levels).
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[effect of last-encounter-accuracy]); (2) target-exposure (how
often the target word had appeared up to that trial, log-scaled);
(3) condition (low-load/ high-load); (4) all of their possible
interactions. To provide a measure of effect size for each re-
ported effect, we calculated odds ratios by exponentiating the
raw coefficients.

To identify the random effects, a series of nested models
were compared to find the model with most complex random
effect structure required to fit the data (Matuschek et al.,
2017); we used a forward selection approach, evaluating a
more complex model against a less complex model using
the chi-square test of model comparison (detailed results of
this are available in Supplement S2 (OSM)). The most com-
plex model that still converged included a random effect of
subject and target object but no random slopes:

accuracy∼last−encounter−correct*target−exposure*condition

þ 1j subjectð Þ þ 1j target objectð Þ
ð1Þ

The main effects of last-encounter-correct and target-
exposure were significant (last-encounter-correct: B = 1.30,
SE = 0.03, Z = 40.24, p < 0.001, odds ratio = 3.67; target-
exposure: B = 0.74, SE = 0.02, Z = 32.35, p < 0.001, odds
ratio = 2.10). This is a standard finding and parallels earlier
studies (Roembke et al., 2018; Roembke&McMurray, 2016).
These two effects suggest that, first, participants were more
likely to be accurate on a current trial if they had been also
correct on a previous encounter with that word; and, second,
that they were more likely to be accurate when they had en-
countered the target more often. Critically, the presence of
target-exposure in the model controls for position in the learn-
ing curve on the effect of last-encounter-correct (e.g., the ef-
fect cannot be driven by the fact that early trials tended to have
last-encounter-correct = 0, while late trials tended to have last-
encounter-correct = 1). The interaction of last-encounter-
correct and target-exposure was also significant (B = 0.46,
SE = 0.04, Z = 10.49, p < 0.001, odds ratio = 1.58); this was

because the effect of last-encounter-accuracy was higher at the
end of the experiment (c.f., Roembke & McMurray, 2016).
The presence of these standard effects suggest that word learn-
ing was not qualitatively different from previously conducted
experiments that have employed this analytic strategy (e.g.,
Roembke & McMurray, 2016; Roembke et al., 2018).

Importantly, the interaction between last-encounter-correct
and condition was significant (B = -0.56, SE = 0.06, Z = -8.65,
p < 0.001, odds ratio = 0.57). The effect of last-encounter-
accuracy differed in the two conditions: Participants in both
conditions were equally likely to be incorrect on a current trial
if they had been incorrect on their last encounter with the
target word. However, participants in the low-load condition
had a larger effect of last-encounter-accuracy than participants
in the high-load condition (Fig. 3). In addition, the two-way
interaction of target-exposure and condition was also signifi-
cant (B = -0.16, SE = 0.05, Z = -3.56, p < 0.001, odds ratio =
0.85). This was due to the fact the slope of target-exposure
was steeper under low-load than high-load conditions (Fig. 3).
The three-way interaction was not significant (p = 0.167).

To investigate these significant two-way interactions fur-
ther, data were split by condition, and the models were re-run
without the effect of condition and its associated interactions
(after Bonferroni correction, α = 0.0125). The main effect of
last-encounter-accuracy was significant in both the high-load
(B = 1.02, SE = 0.03, Z = 22.79, p < 0.001, odds ratio = 2.77)
and the low-load conditions (B = 1.57, SE = 0.05, Z = 33.75, p
< 0.001, odds ratio = 4.81). However, the reduced coefficient
and effect size in the high-load condition are consistent with a
smaller effect. Thus, these findings indicate less working
memory capacity available reduced the effect of having se-
lected a correct or an incorrect object previously; nevertheless,
it clearly was not fully eliminated. Similarly, the effect of
target-exposure remained significant in both conditions as
well, though its estimate was reduced in the high-load condi-
tion (low-load: B = 0.82, SE = 0.03, Z = 25.14, p < 0.001,
odds ratio = 2.27; high-load: B = 0.66, SE = 0.03, Z = 20.62, p
< 0.001, odds ratio = 1.93), indicating lower learning per trial
in that condition.
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Fig. 2 (A) Performance on the memory task by condition. Error bars indicate standard error of the mean (SEM). (B) Word-learning accuracy across
blocks as a function of load condition. Each block represents 120 cross-situational learning trials. Error bars indicate SEM
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Intriguingly, in the main analysis, even after accounting for
the interactions of load with these two processes, there was
still a significant main effect of condition (B = -0.44, SE =
0.22, Z = -2.02, p = 0.044, odds ratio = 0.64). This suggests
that the effects of working memory load are not entirely me-
diated by the effects of gradual learning and last-encounter-
accuracy.

General discussion

This experiment used a dual-task manipulation to ask how
explicit and implicit learning processes interact during cross-
situational word learning, and whether any specific aspect of
cross-situational word learning requires explicit cognitive re-
sources. In particular, we examined two specific influences on
the learning curve identified by prior work (Medina et al.,
2011; Roembke et al., 2018; Roembke & McMurray, 2016;
Trueswell et al., 2013): the last-encounter-accuracy effect,
which has been attributed to hypothesis testing (propose-but-
verify, posited to be an explicit strategy) and the target-
exposure effect, a marker of (implicit) gradual learning. We
found that increased memory load showed a relatively small
overall effect on performance (Fig. 2B, Supplement S1
(OSM)). However, both trial-by-trial indices showed strong
evidence for moderation by load: cognitive load lessened both
the last-encounter-accuracy and the target-exposure effects.
Finally, the effect of load was not limited to these effects –
there was a small but significant main effect that even account-
ing for the interactions of load with last-encounter-accuracy
and target-exposure.

We first consider the limitations of the experiment before
turning to its implications for mechanisms of cross-situational
word learning and learning more broadly.

Limitations

First, participants in the high-load condition struggled more
with completing the cover task than participants in the low-
load condition. This was part of the design; nevertheless, it is
possible that this manipulation of working memory also had
unintended consequences on how participants performed on
the word-learning trials. That is, they could have learned the
mappings equally well but struggled to translate that knowl-
edge to an accurate response on a given trial due to the mem-
ory load. As a result, any differences in accuracy cannot be
interpreted as differences in word learning, but only as differ-
ences in how well word knowledge was executed.

Similarly, the loadmanipulationmight have affected fatigue
levels: That is, participants in the high-load condition might
have become more tired as the experiment progressed, making
it more difficult to form or select the correct word-object-map-
pings. Importantly, such cognitive fatigue effects might in fact
be a sign that additional domain-general resources (instead of
more automatic ones) are allocated to a task, thus requiring
more sustained mental effort (e.g., mental fatigue as a result
of hearing loss; Hornsby, 2013; McCoy et al., 2005). In such a
scenario, fatigue might not be considered noise, but rather a
potentially theoretically interesting consequence of our dual-
task manipulation as a sign of increased load. But again, it is
not clear whether the increased load (indicated by fatigue)
leads to poorer learning or poorer performance.
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However, given that we did not find strong evidence for a
large overall performance difference in the word-learning
analyses due to condition (e.g., Fig. 2, Supplement S1
(OSM)), such effects of the cover tasks were likely limited.
Moreover, these concerns primarily affect overall perfor-
mance, which was not of primary interest. Instead, our trial-
by-trial analysis included a main effect of condition to account
for general effects like these, while still isolating the effect of
load on the two more specific indices. Nonetheless, this anal-
ysis still identified interactions of several factors with condi-
tion. Future experiments that target overall learning perfor-
mance should include a subset of word learning trials without
the memory task to investigate word-learning differences in
the absence/presence of working memory resources more
clearly.

Second, these results cannot speak to what other factors –
over and above any explicit processes in working memory –
contribute to cross-situational word learning or to the size of
the last-encounter-accuracy effect or the effect of target-expo-
sure. Our well-established dual-task/memory paradigm was
able to examine the effect of limiting access to working mem-
ory resources on specific components of cross-situational
learning. Nonetheless, the main effect of condition suggests
there may be other aspects of word learning that are sensitive
to load.

Third, working memory has been conceptualized different-
ly by researchers, and it is possible that our results would have
varied had we used a task based on a different definition of
working memory (c.f., Cowan, 2017). Thus, to what extent
other types of (explicit) processes contribute to cross-
situational word learning should be the subject of future
experiments.

Finally, we did not measure participants’ working memory
capacity. As a result, we do not know if some people were
more (or less) affected by our manipulation than others due to
individual differences in working memory capacity. For ex-
ample, a participant with a larger than average working mem-
ory might have been able to rely more on explicit encoding
and maintenance of mappings, even if they were assigned to
the high-load condition (see DeCaro, Thomas, & Beilock,
2008). Given that the participant pool was restricted to under-
graduate students, it is likely that the range of working mem-
ory was relatively limited as well. However, had we measured
working memory capacity, we may have been able to reduce
the impact of this variable (noise) on our effects by either
controlling for it statistically, or optimizing the load manipu-
lation to the subjects’ own capacity (c.f., Otto et al., 2013).

Interactions of explicit and implicit processes during
cross-situational word learning

Participants were able to learn the set of word-object-
mappings in both load conditions. However, performance

was poorer when participants’ access to working memory re-
sources was limited (e.g., the main effect of condition). In
addition, the effect of the manipulation appeared stronger at
the end of the experiment (the condition × target-exposure
interaction; see Supplement S1 (OSM)). This offers evidence
that the negative effect of limiting working memory availabil-
ity was cumulative over time, though – as pointed out in the
Limitations – it is unclear whether this performance difference
was the result of differences in underlying knowledge of
word-objects-mappings, participants’ ability to use the learned
knowledge, or both. It is also consistent with the notion that
early on, word learning is generally more driven by chance-
level guessing (i.e., participants randomly clicking on one
referent but not another) coupled with association building,
whereas later it can take advantage of explicit processes
(such as hypothesis testing or processes like mutual
exclusivity; Roembke et al., 2018).

Despite this, it should also be pointed out that the effect of
condition on overall performance was numerically small, sug-
gesting that limiting access of working memory impacted
cross-situational word learning less than one we originally
anticipated. Rather, word learning in this paradigm is primar-
ily implicit, with smaller potential gains on top of this due to
explicit processing.

Our primary analysis found statistically robust interactions
of load with two specific influences on trial-by-trial perfor-
mance. We start by discussing the pattern of these effects
independent of load condition, before turning to their moder-
ation by load.

At face value, these two indices – last-encounter-accuracy
and target-exposure – appear to have analogs in explicit and
implicit processing. Last-encounter-accuracy has been agued
to be a marker of an explicit inferencing process (proposing
and verifying) (Dautriche & Chemla, 2014; Roembke &
McMurray, 2016; Trueswell et al., 2013), whereas target-
exposure has been argued to reflect gradual, statistical or as-
sociative learning (Dautriche & Chemla, 2014; Roembke &
McMurray, 2016). Independent of load condition, these ef-
fects patterned similarly in this study to prior studies.

As in previous experiments, we found a significant inter-
action between last-encounter-accuracy and target-exposure:
specifically, the effect of last-encounter-accuracy increased
over the course of the experiment (Roembke & McMurray,
2016). This is perhaps consistent with a reduction in pure
guessing (which is almost a necessity at the beginning of the
experiment), in favor of decisions that are guided by other
sources of knowledge. One possibility is episodic memory,
which could nudge these guesses toward answers guided by
the memory of previous trials. At this point, the role of epi-
sodic memory is not clear in this context: It could be that
participants’ memories of past selections influence what ob-
ject they choose on a current trial; however, it could also be
that statistical information is weighed more strongly if it is
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“collected”more recently, thus resulting in a stronger effect of
last-encounter-accuracy if a word was heard only a trial or two
ago. These two mechanisms may be hard to distinguish, as
they result in very similar if not identical predictions. The
similarity of this pattern to prior work suggests that word
learning in this experiment was not qualitatively different
from learning in single-task designs (Roembke et al., 2018;
Roembke & McMurray, 2016).

When we examined how the effect of memory load
interacted with these trial-by-trial indices, there were several
important findings. First, there was a main effect of condition,
again reflecting overall greater difficulty under high load.
Critically, this effect of load was found even after controlling
for its possible mediation by factors like target-exposure and
the last-encounter accuracy effect. This suggests that there
may be other explicit processes that are not tapped by these
markers, an important avenue for future research.

Second, participants in the high-load condition showed a
reduced effect of last-encounter-accuracy (a significant last-
encounter-accuracy × condition interaction). This was predict-
ed on the basis that explicit processes may rely on working
memory resources to “remember” what was last clicked on.
However, this effect was not fully eliminated: Participants
both in the low-load as well as in the high-load condition
showed an effect of last-encounter-accuracy, even though it
was reduced in the high-load condition. We see several pos-
sible explanations for this. One possibility is that the last-
encounter-accuracy effect is driven only partially by explicit
processing. For example, it may simply derive from the fact
that associations between words and objects get more of a
boost when the object is selected. This small boost when the
object was correctly chosen on the prior trial then can then be
amplified by competition among referents in the current trial
(McMurray et al., 2012). This is consistent with the fact that
pigeons – a species with little capacity for explicit processing
(c.f., O’Donoghue et al., 2020) – also show an effect of last-
encounter-accuracy (Wasserman et al., 2015). If this is true,
this would challenge the utility of this as a unique marker of
inferential processing.

Alternatively, the hypothesis testing described by propose-
but-verify may be embedded in language areas and may not
require domain-general resources. A third possibility is that the
last-encounter-accuracy effect is fully explicit, and we simply
did not load working memory sufficiently. This seems unlike-
ly as five digits is a fairly large load. What is important is that
our working memory manipulation reduced this effect – even
controlling for the main effect of condition – suggesting that at
least some portion of it requires domain-general resources.

Surprisingly, we also found that the target-exposure effect
was also moderated by working memory load, and in the same
direction as the last-encounter-accuracy effect: learners in the
high-load condition showed a smaller gradual learning effect
than those in the low-load condition. This was not expected.

The exposure effect was predicted to reflect statistical or asso-
ciative learning that does not require working memory re-
sources, or that maybe would even benefit by blocking a com-
peting explicit learning system. Instead, we found the opposite.
One possibility is that statistical or gradual learning – or the
input to it – is resource requiring. This is consistent with Toro,
Sinnett, and Soto-Faraco (2005) and Turk-Browne, Jungé, and
Scholl (2005), who both found reduced statistical learning un-
der divided attention (though other studies report no such ef-
fect: Musz et al., 2014; Saffran et al., 1997). If these studies are
right, then statistical learning may be gated by attention.

Importantly, the fact that both effects are moderated by
memory load in the same direction suggests that the hypoth-
esis testing represented by the last-encounter-accuracy effect
and the gradual learning represented by the exposure effect do
not operate in competition. If this were the case, one would
have predicted the effect of target-exposure to be either unaf-
fected by participants’ condition or even increased in the high-
load condition when access to explicit processes was reduced.
Instead, we found that target-exposure also interacted with
condition, but that this was the result of a reduction of its
effect in the high-load condition. That is, less statistical learn-
ing occurs when people have limited access to explicit
processes.

Even though both effects were moderated by load, it is
unlikely that they represent purely explicit processes. This is
for three reasons. First, with 12 objects and referents, even if
we assume only memory for a single hypothesis for each
word, this would far exceed any reasonable estimate of capac-
ity. Second, likely because of this, the overall influence of
memory load was small despite a rather large memory load.
This implies that both processes may be only partly explicit
(resource requiring) and may be largely implicit. Finally,
Warren et al. (2020) showed that patients with hippocampal
amnesia can learn words cross-situationally, though with re-
duced performance relative to a control group. The hippocam-
pus is often thought to be responsible for learning verbalizable
rules (consistent with explicit processing) and “memory in the
moment” (e.g., during a visual search task; Voss et al., 2011).
Thus, together these results suggest unambiguous evidence
for an implicit component.

Nonetheless, we should not dismiss explicit processing ei-
ther. Even after accounting for the effect of memory load on
the last-encounter-accuracy and target-exposure effects, there
was still a main effect of condition. This implies that memory
load can influence performance in a cross-situational word-
learning task via other mechanisms than the two that we have
identified and quantified here. Moreover, Berens, Horst, and
Bird (2018) reported that hippocampus activity was more pre-
dictive of cross-situational word learning than activity in other
brain areas. These findings suggest a clear explicit component
as well. One way to consider the neuroscience is that that
implicit processes might be more important for cross-
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situational learning when explicit processes are not an option
(as in a dual-task paradigm or after hippocampal amnesia).
However, our data suggest that such a view may underesti-
mate the breadth of interactions that occur between explicit
and implicit processes during cross-situational learning.

Taken together these data support a hybrid model in which
both implicit and explicit processes play a role. Moreover, our
data are consistent with a unique hybrid inwhich attentionmay
play a critical role. In the McMurray et al. (2012) approach to
word learning, true learning takes place slowly as associations
are built between words and objects. However, in the moment,
real-time competition processes direct attention to more likely
referents (and away from incorrect mappings). Learning oc-
curs on the “output” of these processes such that attended
objects get more associative boost. Thus, anything that reduces
attention may reduce the efficiency of this competition and
impact learning. However, even if these competition processes
are inefficient or fail (e.g., in patients with amnesia or in the
high-load condition), associative learning can still occur. This
then may explain how working memory load can influence
both aspects of learning in the same direction.

Critically, this attentional manipulation can in principle af-
fect both aspects of learning. If competition does not fully
resolve, then more spurious associations (e.g., between the
target and other objects) will be formed since these referents
could not be fully suppressed in the moment. This would
result in a smaller effect of target-exposure. This could lead
to a smaller last-encounter-accuracy effect in one of two ways.
First, recall that the last-encounter-accuracy effect interacts
with target-exposure – it is bigger later in learning. This im-
plies that last-encounter-accuracy is a product of learning – if
learning is slowed, then it should be reduced. Second, if com-
petition resolves less accurately, then the word-object-
associations laid down on the last encounter will be less ro-
bust, and these in turn will be less amplified in the moment.
Finally, given the pervasive nature of attention, this may also
have other effects on performance that are not captured by
these indices (accounting for the main effect).

Note that here the only explicit process necessary in this
account is attention. However, the hybrid approach is consis-
tent with other explicit processes as well. For example, work-
ing memory of prior trials, as well as inference and hypothesis
testing could also guide attention to the correct object in the
moment, and this can ultimately benefit learning. Critically,
such an account acknowledges both implicit and explicit pro-
cesses, but with only a single underlying system for storing
word-object-mappings (a single learning system).

Conclusions

Our study shows that working memory load affects two spe-
cific aspects of cross-situational word learning: both the

effects of last-exposure-accuracy and target-exposure were
reduced when participants learned words cross-situationally.
Prior work has linked these to more explicit and implicit pro-
cesses. However, our findings suggest that that these two pro-
cesses do not compete (as predicted by classic dual-systems
accounts of learning); rather they support each other. As a
result, they are unlikely to derive from independent learning
systems. Instead, cross-situational learning may be a product
of more basic associative learning mechanisms buttressed by
in-the-moment attention.
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