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Abstract
When searching for objects in the environment, observers necessarily encounter other, nontarget, objects. Despite their irrele-
vance for search, observers often incidentally encode the details of these objects, an effect that is exaggerated as the search task
becomes more challenging. Although it is well established that searchers create incidental memories for targets, less is known
about the fidelity with which nontargets are remembered. Do observers store richly detailed representations of nontargets, or are
these memories characterized by gist-level detail, containing only the information necessary to reject the item as a nontarget? We
addressed this question across two experiments in which observers completed multiple-target (one to four potential targets)
searches, followed by surprise alternative forced-choice (AFC) recognition tests for all encountered objects. To assess the detail
of incidentally stored memories, we used similarity rankings derived frommultidimensional scaling to manipulate the perceptual
similarity across objects in 4-AFC (Experiment 1a) and 16-AFC (Experiments 1b and 2) tests. Replicating prior work, observers
recognized more nontarget objects encountered during challenging, relative to easier, searches. More importantly, AFC results
revealed that observers stored more than gist-level detail: When search objects were not recognized, observers systematically
chose lures with higher perceptual similarity, reflecting partial encoding of the search object’s perceptual features. Further,
similarity effects increased with search difficulty, revealing that incidental memories for visual search objects are sharpened
when the search task requires greater attentional processing.
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Introduction

While searching through the environment, observers gather
large amounts of visual information, some more relevant than
others. For example, while navigating a department store in
search of jackets, observers likely view other clothing catego-
ries. Although irrelevant clothing sections (e.g., pants, shoes)
can be quickly dismissed without much attention, research
consistently shows that observers incidentally retain informa-
tion about nontarget objects encountered in real-world scenes
(e.g., Hollingworth & Henderson, 2002; Hollingworth, 2004,
2006). These memories are more than mere guesses: Across
several experiments, Castelhano and Henderson (2005) found

that incidentally encoding visual scene objects produced com-
parable memory performance to intentionally encoding those
objects. Similar results have been reported elsewhere (e.g.,
Draschkow, Wolfe, & Võ, 2014; Josephs, Draschkow,
Wolfe, & Võ, 2016; Williams, 2010), suggesting that ob-
servers clearly encode (and later recognize) objects encoun-
tered during visual search, even if they are not explicitly
attempting to do so.

Not all searches are created equal: Many factors can affect
the speed and accuracy of search tasks, such as the amount of
visual clutter (Whitney & Levi, 2011), target-nontarget simi-
larity (Alexander & Zelinsky, 2011, 2012; Duncan &
Humphreys, 1989), cue precision or accuracy (Hout &
Goldinger, 2015; Schmidt & Zelinsky, 2009; Yang &
Zelinsky, 2009), and the number of searched-for targets
(Menneer, Barret, Phillips, Donnelly, & Cave, 2007;
Menneer, Cave, & Donnelly, 2009). Search difficulty also
influences what observers incidentally remember from the
search task. For example, Hout and Goldinger (2010, 2012)
found that following challenging, multiple-target search, ob-
servers correctly recognized 11% more nontarget objects than
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they did following easier, single-target search. This pattern
reflects a trade-off between search efficiency and incidental
object encoding, because challenging searches were slower,
but yielded better incidental memory. Thomas and Williams
(2014) replicated this trade-off in a different search task: Even
when observers could not know the target details in advance,
and instead had to slowly locate the unique item in search
displays, observers had better memory for nontarget objects,
relative to speedier conditions with predefined targets.

Because challenging searches are conducted more slowly,
observers have a greater likelihood of looking at nontargets,
and for longer durations, which could potentially explain
difficulty-enhanced nontarget memory. Indeed, Hout and
Goldinger (2012) found that the number of fixations made dur-
ing search predicted subsequent nontarget recognition accuracy,
with more fixations occurring in difficult search conditions.
However, in one task, Hout and Goldinger (2010) eliminated
the need for eye movements by using Rapid Serial Visual
Presentation (RSVP) search: Twenty objects appeared in se-
quential order for 250 ms each, and observers’ target present/
absent responses were only possible after all objects had been
presented. In this way, item exposure durations were equated
across all conditions. Although viewing time was equated for
all pictures, observers’ incidental memory for nontargets was
again enhanced following the more difficult multiple-target
search trials, relative to the easier single-target search trials.1

Guevara Pinto and Papesh (2019) recently replicated these re-
sults and suggested that enhanced nontarget memory is due to
attention-allocation strategies. When target discrimination is
expected to be difficult, they suggested, observers allocate more
attention to visually “scrutinizing” each search item. Across
several experiments, difficult searches forced observers to focus
attention on the central search stream, impairing their ability to
spot items in the periphery, but improving nontarget encoding.
To rule out the possibility that the effects were an artifact of
simply searching for more items in the difficult conditions, they
included conditions in which search cues were well or poorly
specified words (e.g., pie vs. dessert or food). The results again
replicated, and suggested that difficulty-enhanced nontarget
memory, at least partially, derives from the manner in which
observers process information: Difficult searches encourage a
more exhaustive or attentive processing style to facilitate target
detection, which incidentally enhances nontarget encoding.

What sort of information is incidentally stored in long-term
memory during visual search, and how much can individuals
retain? Early research on visual long-term memory (VLTM)
consistently showed that people have high capacity for visual
information, even when pictures were only studied for brief

durations (Shepard, 1967; Standing, 1973; Standing, Conezio,
& Haber, 1970). More recently, studies have confirmed this
large capacity, and have also shown that intentionally encoded
visual objects yield highly-detailed representations (Brady,
Konkle, Alvarez, & Oliva, 2013a; Brady, Konkle, Gill,
Alvarez, & Oliva, 2013b; Konkle, Brady, Alvarez, & Oliva,
2010a, 2010b; Vogt & Magnussen, 2007). In a compelling
demonstration of the capacity and precision of VLTM,
Brady et al. (2008) had participants study 2,500 pictures for
only 3 s each, and later select the studied item from two alter-
natives. When the alternatives were from different semantic
categories (e.g., bird target, table lure), participants chose the
correct picture 93% of the time. Even when both objects
belonged to the same category, or when both images repre-
sented the same object in a different “state” (e.g., empty coffee
mug, full coffee mug), participants correctly selected the old
item more than 85% of the time. The large and detailed ca-
pacity for visual memories has been attributed to observers’
appreciation of objects’ conceptual and/or perceptual distinc-
tiveness during encoding (e.g., Antonelli & Williams, 2017;
Konkle et al., 2010a).

Although much has been learned about VLTM from inten-
tional encoding procedures, memory formation in the real
world is mostly incidental. In visual search tasks, for instance,
processing and remembering nontargets is orthogonal to the
goals of search. Moreover, studies with intentional encoding
procedures typically employ 2-AFC memory comparisons,
(e.g., Brady et al., 2008; Konkle et al., 2010a), old/new rec-
ognition (ONR) probes (e.g., Cunningham, Yassa, & Egeth,
2015), or continuous-report methods (e.g., Brady et al.,
2013b) to assess the fidelity of object representations stored
in VLTM. With the exception of continuous report methods,
many procedures leave open the possibility that responses can
be based on either perceptually rich representations or cate-
gorical gist-level representations (e.g., any bird, relative to a
specific bird). In continuous report methods, participants are
typically given a 360° color wheel, from which they either
select the color of the studied object or move a cursor around
the wheel until the color matches their memory (i.e., a method
of adjustment). When observers select the wrong color, they
often select colors perceptually close to the studied color
(Brady et al., 2013b). By plotting the probability of errors
across levels of perceptual similarity, researchers can gain in-
sight into the precision of VLTM. Although continuous report
methods are ideal for paradigms with distinctly colored ob-
jects, many visual search studies avoid using distinct or un-
natural colors during visual search,2 making continuous report
difficult to implement with standard search paradigms.

1 Previous work has demonstrated that multiple-target search incurs perfor-
mance costs relative to single-target search (e.g., Menneer et al., 2007;
Menneer, Cave, & Donnelly, 2009). However, it is possible that these costs
derive from memory demands rather than from task parameters such as search
difficulty.

2 Color serves as a basic visual feature, which would make most search pro-
cesses relatively easy, regardless of other manipulations (see Wolfe &
Horowitz, 2017).
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To measure whether incidentally encoded search objects
are characterized by perceptual detail or categorical gist, we
created a semi-continuous report method by expanding up-
on standard alternative forced-choice (AFC) paradigms.
Specifically, we manipulated the number of within-
category alternatives (four versus 16), and the similarity
relationship between exemplars (previously seen objects)
and lures (new within-category items). Whereas the contin-
uous report color wheel provides a perceptually determined
similarity space, our method relied on multidimensional
scaling (MDS) to determine the similarity relationships be-
tween exemplars and lures. Since Shepard’s (1987) founda-
tional work demonstrating the utility of MDS for similarity
assessment (for an earlier account, see Torgerson, 1952), it
has been used to reveal the similarity structure of categories
ranging from irregular shapes (e.g., Homa, Blair, McClure,
Medema, & Stone, 2018) to man-made and naturalistic ob-
jects (e.g., Hout, Goldinger, & Brady, 2014; Horst & Hout,
2015), and even scenes of architecture and nature (Berman
et al., 2014; Coburn et al., 2019). MDS is a statistical tool
that examines observers’ similarity ratings derived from
many possible formats (e.g., pairwise Likert-scale ratings,
spatial distance metrics, perceptual discrimination times).
Using these data, algorithms model the psychological sim-
ilarity between all items in the set, resulting in similarity
“maps” for each set. These maps arrange items spatially,
such that inter-item distance is proportional to perceived
similarity, with shorter distances denoting greater perceived
similarity (see Hout, Papesh, & Goldinger, 2012, and Hout
et al., 2013, 2015, 2016, for reviews and tutorials). MDS
distance has been used in cognitive research for decades,
informing theoretical understanding of categorization (e.g.,
Goldstone, 1994; Nosofsky, 1984, 1992), face perception
(Papesh & Goldinger, 2010; Pedelty, Cohen, Levine, &
Shevall, 1985; Valentine, 1991), language (Goldinger,

1998), and visual search (Godwin, Hout, & Menneer,
2014; Hout &Goldinger, 2016), among others.

In the present study, MDS distances were used to quantify
exemplar-lure similarity in surprise 4-AFC and semi-
continuous 16-AFC memory tests, following easy and diffi-
cult search tasks. During the search phases of all experiments,
participants encountered pictures of real-world objects from
distinct categories as targets or nontargets. Only one exemplar
from each category ever appeared during this phase. Search
difficulty was manipulated via the number of potential targets
held in working memory. Following all search tasks, we tested
participants’ memory for each exemplar against within-
category lures, each of which had a measurable similarity
relationship to the previously seen object. For example, if
participants encountered a butterfly during incidental
encoding, a test trial would present them with that butterfly
and three or 15 other butterflies, with the goal of selecting the
correct “old” (i.e., previously encountered) butterfly. We pre-
dicted that we would replicate the difficulty-enhanced memo-
ry effect observed in prior work (e.g., Hout & Goldinger,
2010, 2012; Thomas & Williams, 2014), with higher hit rates
to old exemplars when search was more challenging. We also
hypothesized that these memories would be characterized by
rich perceptual detail (i.e., high-fidelity representations), rath-
er than sparse or gist-like detail (i.e., low-fidelity representa-
tions), because incidental encoding during difficult searches
benefits from exhaustive item processing (e.g., Guevara Pinto
& Papesh, 2019). Although this would certainly manifest in
higher hit rates to old exemplars, this hypothesis can also be
tested by examining errors, as is commonly done in research
on VLTM fidelity (e.g., Brady et al., 2013a, b). If observers
store perceptually rich representations, false alarms during
AFC tests should be predicted by the exemplar-lure similarity
of each object, with decreasing false alarms as “distance” from
the exemplar increases (Fig. 1, left panel). Conversely, if

Fig. 1 Hypothetical false-alarm distribution for perceptually detailed
memories (left panel) and gist-level memories (right panel). The x-axis
reflects the rank-ordered exemplar-lure similarity to the old item, with 1
being the lure of highest similarity and 15 being the lure of lowest

similarity in a 16-AFC memory test. The dashed line indicates an equal
distribution of false alarms across all levels of exemplar-lure similarity
(6.67% each)
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observers encode only sparse, gist-level representations, false-
alarms should be equally distributed across all levels of
exemplar-lure similarity (Fig. 1, right panel).

Experiment 1

In Experiment 1, we explored the influence of search difficul-
ty on incidental memory by manipulating observers’ search
loads. Although only one or two targets could ever be present
in the search display, observers kept inmind two, three, or four
potential targets. Prior research has shown that search con-
ducted under higher working memory (WM) load (i.e., with
more potential search targets in mind) yields slower, less ac-
curate target detection (e.g., Menneer et al., 2007; Menneer,
Cave, & Donnelly, 2009), but better incidental memory for
nontargets (Hout & Goldinger, 2010, 2012). In Experiment
1, we used both 4-AFC (Experiment 1a) and semi-
continuous 16-AFC (Experiment 1b) tests to determine
whether difficulty-enhanced nontarget memory effects pro-
duce perceptually rich memories or categorical (gist-like)
memories.

Method

Participants. A power analysis (within-subjects effect α =
.05, β-1 = .90) conducted on the average effect size across
all four experiments reported in Hout and Goldinger (2010;
ηp

2 = .16) indicated that at least 44 participants were necessary
to observe a reliable effect of search difficulty on nontarget
recognition. Sixty-one observers (68.8% women) from New
Mexico State University participated in Experiment 1a, and 67
new observers (70.1% women) participated in Experiment 1b
(30 observers from NMSU; 37 from Louisiana State
University). All observers participated in exchange for partial
course credit.

Stimuli and apparatus Stimuli were images from theMassive
Memory Multidimensional Scaling database (Hout,
Goldinger, & Brady, 2014; images originally obtained from
http://cvcl.mit.edu/MM/stimuli.html – see Brady et al., 2008),
which includes nearly 4,000 color images of real-world objects
spread across 240 different categories (with 16–17 exemplars
per category; see Appendix A for a full list of categories).
Within each category, the database contains values denoting
every item’s inter-item distance with all other same-category
objects, which Hout et al. (2014) rank-ordered to classify as
“close,” “mid,” or “far” from one another in MDS space (using
a ternary split). These designations correspond to pairs of items
that were similar, moderately similar, and dissimilar, respective-
ly. To populate 4-AFC trials with three lures in Experiment 1a,
one unseen nontarget from each similarity level was randomly
selected, allowing us to label items as having high, medium, or
low perceptual similarity to the studied exemplar. Experiment
1b, however, included all possible exemplars from each object
category, allowing us to compare perceptual similarity more
continuously (see Fig. 2). Images were presented in full color
and resized to fit within a 100 × 100 pixel square, subtending 2.
3° of visual angle (horizontally and vertically) at a viewing
distance of 60 cm. Stimuli were presented on 21.5-in. monitors,
with 1,920 × 1,080 screen resolution and 60-Hz sampling rates.
Experimental procedures were controlled using E-Prime 2.0
(Psychology Software Tools, 2006).

Procedure After providing informed consent, participants
completed all visual search trials, followed by a surprise mem-
ory test. The visual search phase comprised two blocks of
trials, with a 2-min break between each block. Before each
trial, participants studied two, three, or four potential targets
(low, medium, and high WM Load conditions, respectively),
knowing that up to two might appear in the upcoming display.
Once participants were ready to begin the search, they clicked
the left mouse button to dismiss the search cues, after which a
250-ms fixation cross appeared at the center of the screen.

Fig. 2 Sample recognition test for all exemplars in the butterfly category. Note: Images were presented to participants in color. Full color version
available online
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Following the offset of the fixation cross, a five-object search
array appeared and remained on the screen for 3 s. Search
objects were presented in a circular array, spaced at equidistant
locations from one another around an invisible circle whose
radius was 10.3° of visual angle. In effect, this created an
invisible circle that could be “rotated” randomly from one trial
to the next, such that items did not always appear in precisely
the same location from trial to trial; assignment of targets and
nontargets to each of the five possible locations was random-
ized across trials.

Within each display, participants used the computer mouse
to click on all targets as quickly as possible before the search
array disappeared (i.e., all trials were target-present). As par-
ticipants clicked objects, a black box appeared around each as
visual confirmation (see Fig. 3). Half of the trials included one
target, and half included two targets. To maximize nontarget
encoding, one- and two-target trials were randomly intermixed
within each block, encouraging participants to continue
searching (and therefore to continue examining the items) after
finding one target. Once the search array disappeared, partici-
pants received feedback on their search performance for both
correct (i.e., all targets were selected) and incorrect responses
(i.e., at least one target was not selected and/or at least one
nontarget object was selected). Feedback was self-paced and
participants clicked the left mouse button to start the next trial.
Participants completed six practice trials (two per WM Load
condition) before completing two 105-trial blocks of experi-
mental trials.Within each block, there were an equal number of
one- and two-target trials across WM Load conditions (35
each), presented in random order. Stimuli used in practice trials
were not used elsewhere in the experiment.

At the beginning of each experiment, 217 categories were
randomly selected from the 240 object categories in the data-
base. Seventy categories were randomly designated as targets,
and 49 were randomly assigned to each level of WM Load.
From each category, one exemplar was randomly selected for
use in the search task. Whereas the selected target exemplars
could appear during any search trial, nontarget exemplars only
appeared within their designated WM Load trials, and each
appeared five times over the course of the search phase. This
provided ample opportunity for encoding (as nontarget objects
may not be directly viewed on all trials), but limited the pos-
sibility of ceiling effects in recognition. In this way, only one
exemplar per category ever appeared during visual search.

After search, and before the surprise memory task, partic-
ipants completed simple arithmetic problems (e.g., 9 × 3 =
???) for 2 min. Each problem was presented in the center of
the screen and participants used the mouse to choose between
a correct (i.e., 27) and incorrect (e.g., 25) answer, which were
always within two digits of each other (so that incorrect an-
swers were not obvious). Following the arithmetic task, par-
ticipants completed a surprise AFC recognition memory test
for all objects encountered during search. For each recognition
decision, participants saw either four objects (Experiment 1a)
or 16 objects (Experiment 1b) presented in horizontal lines:
One previously seen object and three or 15 lures from the
same object category (see Fig. 2). The lures in Experiment
1a were chosen by selecting category items rated as relatively
similar, moderately similar, and relatively dissimilar to the
studied exemplar (see Stimuli and apparatus), and the lures
in Experiment 1b contained the entire similarity spectrum.
Exemplars and lures appeared in randomly determined

Fig. 3 Trial schematic following a High Working Memory (WM) Load trial in Experiments 1a and 1b. Note: Images were presented to participants in
color. Full color version available online
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locations on every trial. Participants clicked the object they
remembered seeing earlier in the search task, and no feedback
was provided. Both target and nontarget exemplars were test-
ed, in random order, resulting in 217 recognition trials (70
targets and 147 nontargets, 49 from each WM Load
condition).

Results

One participant from Experiment 1b was excluded from
analyses due to inattention during the experimental session,
as indicated by researcher observation. Two additional par-
ticipants from Experiment 1b were removed from analyses
for committing false alarms during visual search in more
than 15% of trials. All proportion data were arcsine-
square-root transformed prior to analysis to ensure normal-
ity. For clarity, we present raw values in our descriptives and
graphs, but inferential statistics are based on the trans-
formed data (inferential statistics on raw data do not differ
from those based on transformed data, and are reported in
Appendices E and F, respectively, along with descriptive
statistics). Alpha level for all analyses was set at .05, and
multiple comparisons were subjected to Bonferroni correc-
tions. Greenhouse-Geisser-corrected degrees of freedom
are reported for any sphericity violations. Traditional (i.e.,
frequentist) analyses of variance (ANOVAs) were supple-
mented with Bayesian ANOVAs conducted in JASP (JASP
Team, 2018) using the JASP-recommended default param-
eters (Cauchy scale = .707, r fixed effects = .05, r random
effects = 1) as suggested by Rouder, Morey, Speckman, and
Province (2012; see also Wagenmakers et al., 2018). For
Bayesian ANOVAs, the Bayes factor (BF10) reflects how
likely the data are under a model including each effect or
interaction, relative to a null model without the effect or
interaction. These analyses are provided to complement the
frequentist analyses and allow readers a fuller appreciation of
the strength of effects (both null and positive). Raw data and
analysis files for all experiments are available on OSF.3

Overall, search accuracy was high, with observers detect-
ing 98% of targets across both experiments and false alarming
in fewer than 0.5% of trials. Analyses (reported in Appendix
B) confirm that our search difficulty manipulation was effec-
tive: In both Experiments, observers were most accurate in
Low-Load searches. For brevity, we also report analyses of
memory for targets in Appendices C and D, as these items
were intentionally encoded, and our hypotheses centered
around incidental memory for nontarget objects.

Memory for nontargets To determine whether observers were
better able to remember nontargets encountered in the context
of challenging (relative to easy) search, we examined the

proportion of recognition hits in Experiments 1a and 1b in
separate repeated-measures ANOVAs testing the effect of
WM Load (low, medium, high). A reliable effect was ob-
served in both Experiments (Exp. 1a: F (2, 120) = 69.4, p <
.001, ηp

2 = .54, BF10 = 3.612e+17; Exp. 1b: F (2, 126) =
24.11, p < .001, ηp

2 = .28, BF10 = 7.333e+6). As shown in
Fig. 4, nontarget objects encountered during High-Load
searches were better recognized than nontargets encountered
during Medium- and Low-Load searches, all ps < .001.
Nontargets encountered during Medium-Load searches were
also better recognized than those encountered during Low-
Load searches, both ps < .03. The results of both experiments
confirm our predictions, and replicate previous findings (e.g.,
Hout & Goldinger, 2010, 2012), showing that observers re-
member more objects encountered during challenging relative
to easy, visual search, even when the memory test is more
stringent (16-AFC, Exp. 1b).

Recognition errors for nontargets In Experiment 1a, each 4-
AFC comparison included lures designated as relatively sim-
ilar, moderately similar, and relatively dissimilar to the studied
exemplar. Similarly, in Experiment 1b, lures were rank-
ordered from 1 (highest similarity) to 15 (lowest similarity).
False alarms could thus be examined as a function of the
perceptual overlap between studied exemplars and categori-
cally related lures in both experiments. To determine whether
observers’ incidental memories were characterized by percep-
tual richness or categorical gist (see Fig. 1), we examined error
probabilities as a function of exemplar-lure similarity across
levels of search difficulty.

For both Experiments, repeated-measures ANOVAs were
used to analyze the impact of exemplar-lure similarity and
search difficulty on the proportion of false alarms.
Experiment 1a used a 3 (WM Load: Low, Medium, High) ×

3 https://osf.io/p7yk2/

Fig. 4 Recognition hit rates for nontargets encountered in Experiments 1a
and 1b as a function of working memory (WM) load. The dashed line
represents chance-level performance in Experiment 1a (25%) and the
solid line represents chance performance in Experiment 1b (6.25%).
Error bars represent ± 1 SEM
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3 (Relative Exemplar-Lure Similarity: Similar, Moderate,
Dissimilar) ANOVA and Experiment 1b used a 3 (WM
Load: Low, Medium, High) × 15 (Lure Similarity) ANOVA.
The statistics for both analyses are presented in Table 1. As
shown in the Table, both Experiments yielded reliable effects
of WM Load and Similarity, but no interactions, indicating
that nontarget recognition errors were generally biased to-
wards lures with high perceptual similarity to the incidentally
encoded exemplars.

Although the main effects in the omnibus analyses on false
recognition in both Experiments were generally consistent
with our predictions, we failed to observe the predicted inter-
action. Specifically, we predicted that memory errors driven
by exemplar-lure similarity would vary as a function of search
difficulty, such that highly similar lures would be more likely
to be falsely recognized following challenging, relative to
easy, search. Although the interactions in both experiments
were not reliable, we conducted simple effects analyses on

the effect of lure similarity on the proportion of total false
alarms at each WM Load level to fully examine this a priori
prediction. Statistics from these analyses can be found in
Table 2.

In both Experiments, there was no relationship between
exemplar-lure similarity and the probability of false alarms
during Low-load search. During Medium- and High-load
search, however, we observed an exemplar-lure similarity ef-
fect in both Experiments, characterized by an increased prob-
ability of false alarms as the lures increased in similarity to the
exemplar. In Experiment 1a, all pairwise comparisons were
reliable in Medium-load search (all ps < .05), but the effect
in High-load search was driven exclusively by the high-
similarity lures (moderate and dissimilar lures did not
statistically differ, p > .05; see Fig. 5). Experiment 1b pro-
duced similar results, except that the effect of exemplar-lure
similarity was strongest in the High-load search condition (see
Fig. 6). These results, presented in Table 2, suggest that when

Table 1 Statistics from omnibus analyses on the proportion of false alarms as a function of working memory load and exemplar-lure similarity in
Experiments 1a and 1b

Frequentist Bayesian

Experiment Effect df F p ηp
2 BF10 Evidence favoring effect?

1a (4-AFC)

WM Load (WM) 2,120 4.52 0.01 0.07 0.023 No evidence

Similarity (S) 2,120 18.44 < .001 0.24 4..20e+
7

Strong evidence

WM × S 4,240 2.09 0.08 0.03 1.782 Weak evidence

1b (16-AFC)

WM Load (WM) 2,120 8.11 < .001 0.12 0.011 No evidence

Similarity (S) 10.2, 640.9 5.46 < .001 0.08 1.01e+7 Strong evidence

WM × S 28, 1764 0.89 0.63 0.01 0.0489 No evidence

Table 2 Statistics from simple effect analyses of exemplar-lure similarity across levels of search difficulty in Experiments 1a and 1b

Frequentist Bayesian

Experiment Search F p ηp
2 CI BF10 BF01 Evidence for lure similarity effect?

1a (4-AFC)

Low WM Load .812 .446 .013 .000, .067 .167 5.98 No evidence

Medium WM Load 10.06 < .001 .144 .040, .251 14850 6.734e-5 Strong evidence

High WM Load 6.52 .002 .098 0.14, .197 210.44 .005 Strong evidence

1b (16-AFC)

Low WM Load 1.69 .053 .026 .000, .034 .053 18.91 No evidence

Medium WM Load 2.30 .004 .035 .004, .047 1.51 .662 Weak evidence

High WM Load 2.93 <.001 .044 .010, .058 47.42 .021 Strong evidence

Note: BF10 reflects strength of evidence for the alternative, BF01 reflects strength of evidence for the null

CI reflect 95% confidence intervals for partial eta-square
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visual search is challenging, objects are processed more ex-
tensively, such that detailed perceptual representations are in-
cidentally stored in memory. These detailed object represen-
tations allow observers to recognize more objects encountered
during challenging, relative to easy, search, and also bias ob-
servers into selecting lures with high perceptual overlap with
the encoded object when recognition fails.

Whereas the ANOVAs allowed us to determine whether
search difficulty and exemplar-lure similarity predicted
false alarm rates, they do not speak to whether the false alarm
rates reliably differed from chance. As shown in the left panel
of Fig. 1, if observers encode rich perceptual detail, the
highest-similarity lures should produce false alarm rates reli-
ably above chance, whereas lowest-similarity items should
fall below chance. To evaluate this prediction, we conducted
one-sample t-tests on the raw false alarm rates for items with
the highest and lowest exemplar-lure similarity ratings, com-
paring each exemplar’s proportion of false alarms to chance
(33.33% in Exp. 1a; 6.67% in Exp. 1b).4 Table 3 presents the
outcome of these analyses.

For the Low-Load condition in Experiment 1a, neither the
“similar” nor “dissimilar” lures reliably differed from chance,
suggesting that memories were more gist-like. In theMedium-
and High-Load conditions, however, both exemplars reliably
differed from the 33.33% criterion, with the high similarity
item above that criterion and the low similarity item below
it. These analyses confirm the interpretation of the ANOVAs:
Challenging search produces perceptually rich incidental
memories. Similar analyses on false alarm rates for the
highest- and lowest-similarity items in Experiment 1b repli-
cated this finding: False alarm rates for the most similar and
dissimilar lures differed from the criterion, and in the predicted
directions, when the object was encountered during challeng-
ing searches (e.g., Medium- and High-Load; see Table 3).

Discussion

Experiments 1a and 1b examined incidental memory forma-
tion as a function of visual search difficulty, which we manip-
ulated by varying the number of potential targets. Following
the search phase, participants completed a surprise 4-AFC
(Experiment 1a) or 16-AFC (Experiment 1b) recognition
phase probing their memory for exemplars previously en-
countered as search targets and nontargets. Lures in the mem-
ory test consisted of within-category objects that varied in
similarity to studied exemplars. This allowed us to examine
the precision of incidental memory representations by looking
at both true and false memories. In both experiments, we rep-
licated the effects of search difficulty on search accuracy and
incidental memory (e.g., Hout & Goldinger, 2010, 2012):
Search was less accurate, but memory was better, for exem-
plars encountered during difficult, relative to easy, search. As
a novel extension, we examined the effect of exemplar-lure
similarity on the distribution of error probabilities when true
recognition failed.When participants incorrectly “recognized”
a lure on the memory test, they were biased toward selecting
lures with higher similarity to the studied exemplar. Although
we did not observe the predicted interaction between search
difficulty and exemplar-lure similarity, simple effects tests of

Fig. 6 Proportion of total false alarms for nontarget objects encountered
in Experiment 1b as a function of exemplar-lure similarity (e.g., 1 = lure
of highest similarity). The dashed line indicates an equal distribution of

false alarms across all levels of exemplar-lure similarity (6.67 % each).
Error bars represent ± 1 SEM

Fig. 5 Proportion of total false alarms for nontarget objects encountered
in Experiment 1a as a function of exemplar-lure similarity. The dashed
line indicates an equal distribution of false alarms across all levels of
exemplar-lure similarity (33.33% each). Error bars represent ± 1 SEM
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this a priori prediction indicate that similarity exerted the big-
gest effect on items encountered during difficult searches, and
that these effects were clearly evident by examining false-
alarm rates for items with the highest versus lowest
exemplar-lure similarity. Combined, these results provide par-
tial support for the prediction that object representations
formed during challenging conditions contain richer percep-
tual details than those formed during easy search.

Experiment 1 suggests that observers incidentally encode
objects’ perceptual details during challenging search, poten-
tially due to greater attentional resources needed for visually
scrutinizing nontarget objects, compared to easy searches
(Guevara Pinto & Papesh, 2019). We suggest that, when cued
with imprecise or challenging search targets (e.g., four
potential targets), observers do not fully rely on target cues
to guide search (Wolfe et al., 1989; cf. Theeuwes, 1994a,
1994b). Instead, they allocate greater attention to closely in-
spect each item in the display, with the goal of preventing
target misses. The additional resources devoted to item pro-
cessing incidentally benefit nontarget encoding, resulting in
detailed object representations being stored in memory. Thus,

when observers searched under highWM load, they processed
each nontarget to a greater extent than when searching under
low WM load, resulting in “recognition” of highly similar
lures in the subsequent AFC test.

Experiment 2

Experiment 1 provided partial evidence suggesting that inci-
dental object memories encoded during challenging searches
possess greater detail than those encoded during easier ones.
However, this prediction cannot be fully supported without
observing a reliable interaction between search difficulty and
lure similarity in the proportion of false alarms. It is possible
that this interaction was not observed in Experiment 1 due to
the nature of the search task: Although search performance
statistically differed across each level of difficulty, these dif-
ferences may have been too small for observers to notice. For
instance, in Experiment 1a, search hits ranged from 96% to
99% across conditions (in Experiment 1b, hits ranged from
97% to 99%; see Appendix B). Such small differences

Table 3 Statistics from one-sample t-tests comparing false alarm rates for exemplars with high and low similarity at each level of difficulty to equal
distribution of false alarms in Experiments 1a and 1b

Frequentist Bayesian

Experiment Exemplar similarity t p Cohen’s d CI BF10 BF01 Evidence for lure similarity effect?

1a (4-AFC)

Low Load Search

Similar .95 .345 .122 -.131, .373 .216 4.638 No evidence

Dissimilar -1.23 .221 -.158 -.410, .095 .289 3.458 No evidence

Med. Load Search

Similar 3.80 <.001 .487 .219, .751 71.07 .014 Strong evidence

Dissimilar -4.03 <.001 .516 -.781, -.247 140.55 .007 Strong evidence

High Load Search

Similar 3.13 .003 .400 .138, .660 10.85 .092 Strong evidence

Dissimilar -3.19 .002 .409 -.669, -.146 12.97 .077 Strong evidence

1b (16-AFC)

Low Load Search

1st rank 1.83 .072 .229 -.020, .476 .658 1.52 No evidence

15th rank -1.96 .053 .246 -.494, .004 .835 1.19 No evidence

Med. Load Search

1st rank 4.18 <.001 .522 .259, .782 231.10 .004 Strong evidence

15th rank -3.24 .002 .405 -.659, -.149 14.78 .068 Strong evidence

High Load Search

1st rank 3.44 .001 .431 .173, .686 25.95 .039 Strong evidence

15th rank -2.23 .029 .280 -.528, -.029 1.39 .719 Weak evidence

Note: The test value was set to .333 for Exp. 1a and .067 for Exp. 1b

BF10 reflects strength of evidence for the alternative, BF01 reflects strength of evidence for the null

CI reflect 95% confidence intervals for Cohen’s d
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between each level of search difficulty may have caused ob-
servers to perceive them all as equally challenging, limiting
trial-by-trial changes to attention allocation strategies. We
conducted a second experiment to allow observers to more
easily appreciate the differences between conditions, examin-
ing the influence of exemplar-lure similarity on memory as a
function of single- versus three-target search.

In addition to increasing the difficulty disparity across con-
ditions, Experiment 2 also tested the possibility that detailed
nontarget memories following difficult searches are due to
oculomotor differences across conditions: Although search
arrays in Experiment 1 were displayed for consistent durations
(3,000 ms), it is possible that difficult search cues encouraged
participants to inspect more objects (and/or for longer dura-
tions) than easy search cues, allowing for better incidental
encoding. If so, then the results of Experiments 1a and 1b
may be an artifact of eye movements (or be partially explained
by them), rather than processing efficiency. Experiment 2 thus
used a passive, Rapid Serial Visual Presentation (RSVP),
search task. In RSVP, each search object briefly appears in
serial sequence at the center of the screen, eliminating the need
for overt eye movements. Observers’ target present/absent
responses are issued at the offset of the entire RSVP stream,
ensuring that all objects are viewed for the same duration. If
difficulty-enhanced incidental memories arise from greater
attention to item processing, rather than the frequency or du-
ration of eye movements to each item during search, then
recognition errors should again be biased towards lures with
higher exemplar-lure similarity.

Participants Sixty-six observers (65.2% women) from
Louisiana State University participated in Experiment 2 in
exchange for partial course credit.

Stimuli and apparatus All stimuli and viewing conditions
were identical to those used in previous experiments.

Procedure Experiment 2 was similar to Experiment 1b, where
participants completed a search phase, followed by an arith-
metic distractor task, and then a surprise 16-AFCmemory test.
The search phase, however, used RSVP search in lieu of an
object array, and observers searched for one (i.e., Low-Load)
or three (i.e., High-Load) picture-cued targets during a 24-
item serial sequence of objects. As in the previous experi-
ments, observers self-initiated each trial after encoding the
target(s), followed by a 250-ms central fixation cross. The
24-object RSVP sequence began at the offset of the fixation
cross, with each object presented for 200 ms, with a blank 50-
ms interstimulus-interval (ISI) between each object. At the
end of the sequence, observers pressed the “F” key if a target
had been present, or the “J” key if all targets were absent. Only
one target could ever be present, if any. Responses were
followed by a 1,500-ms feedback screen, ending the trial.

Participants completed four practice trials (two per WM
Load condition), followed by two blocks of 60 RSVP search
trials (target presence vs. absence was randomized with 50%
overall prevalence) separated by a 2-min break. Observers
were randomly presented with Low- and High-Load trials
within each block (30 trials of each). As in previous experi-
ments, each Load condition drew from its own set of nontarget
objects. At the beginning of the experiment, 60 object catego-
ries were randomly selected for each participant to be used as
targets across conditions throughout the experiment. For each
Load condition, however, a unique set of 47 different nontar-
get object categories was randomly selected from the remain-
ing categories. A random exemplar was then drawn from each
category to be used as a nontarget object in the RSVP se-
quence. Given the very brief exposure of each object within
the RSVP sequence (200 ms/per object), each nontarget ex-
emplar was repeated 30 times over the course of the experi-
ment (albeit in randomly selected serial positions within the
sequence, and in different groupings of RSVP items confined
to a single WM load condition), preventing floor-level recogni-
tion performance. Thus, each RSVP sequence included objects
from 24 distinct categories. If present, the target object was
randomly presented in any serial position within the sequence.

After working on the arithmetic distractor task for 2 min,
participants then completed a surprise 16-AFC memory test
for all nontargets, as described in Experiment 1b.

Results Experiment 2

Three participants were removed from analyses for commit-
ting more than 15% false alarms in RSVP search trials. As in
Experiment 1, overall target detection was high (96.5% of
targets detected) and the false alarm rate was low (only 7.1%
of responses). Analyses (described in Appendix B) confirm
that Low-Load search (M = 97.1, SE = .01) was more accurate
than High-Load search (M = 88.7, SE = .01). Importantly, this
difference in search hits was larger than those observed in
Experiments 1a and 1b.

Memory for nontargets As shown in Fig. 7, we replicated the
results of Experiment 1b, showing better incidental memory
for nontargets encountered during High-Load (M = .40, SE =
.02) than Low-Load searches (M = .32, SE = .02), t(62) =
6.13, p < .001, Cohen’s d = .77, BF10 = 201,002.

Recognition errors for nontargets As in the previous experi-
ment, our prediction was that when recognition fails, ob-
servers’ responses should be biased toward lures with higher
exemplar-lure similarity, particularly when search is challeng-
ing. This prediction was tested in a Load (Low, High) × Lure
Similarity repeated-measures ANOVA. A reliable effect of
Lure Similarity was observed, F (10.56, 654.99) = 6.18, p <
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.001, ηp
2 = .09, BF10 = 1.41e+9, but no effect of Load was

found. More importantly, we observed the predicted Load ×
Similarity interaction, F (10.45, 647.95) = 1.87, p = .044, ηp

2

= .03, BF10 = .037. As in Experiment 1, we conducted simple
effects tests for each Load condition, comparing the effect of
similarity on the proportion of false alarms at each level of
search difficulty. A reliable effect was observed for objects
encoded in the Low-Load condition, F (14, 868) = 2.76, p <
.001, ηp

2 = .04, 95% CI = [.008, .056], BF10 = 17.77, but the
effect was twice the size in the High-Load condition, F (14,
868) = 5.16, p < .001, ηp

2 = .08, 95%CI = [.034, .098], BF10 =
1.19e+7 (see Fig. 8). This further confirms that the difficulty-
enhanced incidental memory effect observed in Experiment 1
was not a byproduct of eye movements or encoding time.
Instead, when search difficulty forces observers to allocate
greater attentional resources to visually inspecting search ob-
jects, they incidentally retain greater perceptual details about
those objects.

As in Experiment 1b, one-sample t-tests were conducted to
determinewhether the proportion of false alarms for lures with
the highest and lowest exemplar-lure similarity differed from
what gist-based memories would predict (i.e., an equal distri-
bution of false-alarms at 6.67% across similarity levels). For
the Low-Load condition, the proportion of false alarms for
highest-similarity lure was greater than the criterion, t(62) =
2.987, p = .004, Cohen’s d = .367, 95%CI = [.119, .631], BF10
= 7.61, but the lowest-similarity lure was not lower than the
criterion, t(62) = -1.459, p = .15, Cohen’s d = .184, 95% CI =
[-.432, .066], BF10 = .377. This suggests that the gist-based
account of incidental memories cannot be fully dismissed un-
der easy search conditions. For High-Load searches, however,
false alarm rates for both lures differed from criterion: The
highest-similarity lure was falsely recognized more often than
chance, t(62) = 3.970, p < .001, Cohen’s d = .501, 95% CI =
[.236, .760], BF10 = 119.39, and the lowest-similarity lure was
selected less often than chance, t(62) = -4.213, p < .001,
Cohen’s d = .531, 95% CI = [-.793, -.265], BF10 = .253.94.
These results suggest that observers retained some perceptual
features, even when making incorrect memory decisions.

Discussion

Experiment 2 replicated and extended the results of
Experiment 1, providingmore conclusive evidence that higher
search difficulty produces more perceptually rich incidental
memories for nontarget items. Using a single- versus
multiple-target RSVP search task, we found that veridical
memories and the distribution of false alarms revealed en-
hanced memories under more challenging, multiple-target,
search conditions. By using RSVP, Experiment 2 confirmed
that difficulty-enhanced distractor memories are not an artifact
of eye movements and fixation durations. Instead, these re-
sults suggest that representations incidentally encoded in

Fig. 8 Proportion of total false alarms for nontarget objects encountered
in Experiment 2 as a function of exemplar-lure similarity (e.g., 1 = lure of
highest similarity). The dashed line indicates an equal distribution of false

alarms across all levels of exemplar-lure similarity (6.67% each). Error
bars represent ± 1 SEM

Fig. 7 Recognition hit rates for nontarget objects encountered in Experiment
2 as a function ofWorkingMemory (WM) Load. The dashed line represents
chance-level performance (6.25%). Error bars represent ± 1 SEM
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VLTM increase in detail as the attentional demands of the
search task increase.

General discussion

In many visual search tasks, observers’ goals are to quickly
locate targets while minimizing the attention directed to
distracting nontarget objects. Although processing nontar-
gets decreases search efficiency, research often shows that
observers nevertheless encode and store representations of
nontarget objects, despite actively trying to ignore them
(e.g., Castelhano & Henderson, 2005; Hollingworth &
Henderson, 2002; Williams, 2010; Williams, Henderson,
& Zacks, 2005). This incidental encoding is exacerbated
when search is challenging and nontarget objects are hard
to ignore (e.g., Hout & Goldinger, 2010, 2012; Thomas &
Williams, 2014). Across two experiments, we investigated
the precision of incidentally encoded memory representa-
tions following easy and challenging visual search tasks.
Specifically, we manipulated the number of search targets
to produce different levels of search difficulty. We then
tested participants’ memories for the distracting (i.e., to-
be-ignored) search information by requiring participants
to choose the studied exemplar from a lineup of within-
category lures, each of which had a documented similarity
relationship to the old item. Across both experiments, par-
ticipants were more likely to remember nontarget exem-
plars encountered in challenging search contexts, even
when they could not self-select the search items to process
(Experiment 2). Moreover, memory errors revealed that
even when recognition failed, participants were more likely
to select lures with higher similarity relationships to the
previously-seen exemplar. These results replicate and ex-
tend prior research (Hout & Goldinger, 2010, 2012:
Thomas & Williams, 2014), showing that memories inci-
dentally formed during challenging visual search are char-
acterized by detailed, rather than gist-like, representations.

The fidelity of long-term memory representations is often
studied using continuous report methods in VLTM (e.g.,
Brady et al., 2013b). These methods allow researchers to
quantify the precision with which observers remember the
color of studied objects. Although continuous report methods
are challenging with stimuli that are not color-coded (as in the
present study), we used MDS similarity rankings and
“lineups” comprised of up to 16 within-category objects to
more closely approximate object-level precision in incidental
memory. With these methods, we found that object represen-
tations encoded during challenging searches are not sparse in
detail or characterized by category-only information. In addi-
tion to producing higher hit rates, challenging searches pro-
duced false alarm profiles consistent with precise memory
representations: Observers were more likely to select highly

similar lures than those with weaker similarity relationships to
the viewed exemplar, just as observers in VLTM studies are
more likely to (incorrectly) select colors similar to those they
studied.

Our results are consistent with recent findings from
Antonelli and Williams (2017), who found that task-relevant
perceptual features influence how object representations are
structured in VLTM. Specifically, they found that when color
was a task-relevant feature, incidentally encoded object repre-
sentations that shared color tended to interfere with one an-
other, but not with representations of a different color.
Similarly, we observed that lures with high perceptual overlap,
as operationalized via MDS rankings, were more likely to
interfere with the correct recognition of incidentally encoded
exemplars, and that this effect was greater for objects encoun-
tered during challenging visual search.

It is important to note, however, that although our study
used a stringent memory test, particularly in Experiments 1b
and 2, alternative forced-choice (AFC) tests have been criti-
cized as a measure of VLTM storage capacity, as they may
rely on familiarity processes rather than recollection
(Yonelinas, 2002). Old-new recognition (ONR) probes, by
contrast, may force observers to query memory for additional
details of the encoded event, possibly reducing the likelihood
of familiarity-based recognition judgments (Cunningham
et al., 2015). For instance, Draschkow, Reinecke,
Cunningham, and Võ (2018) recently used ONR probes to
show that sensitivity decreased for “state” lures (e.g., an old
object presented in a different physical state) relative to exem-
plar lures (e.g., a different category-exemplar relative to the
old object) for incidentally encoded objects, although such a
difference was not observed in previous work using 2-AFC
probes (e.g., Brady et al., 2008; Cunningham et al., 2015).
While it is possible that observers are more likely to query
memory for a specific memory trace when probed by ONR
relative to AFC probes, prior research suggests that AFC tests
populated with within-category lures encourage participants
to retrieve detailed memories (e.g., Guerin, Robbins,
Gilmore, & Schacter, 2012). As such, we suggest that ob-
servers in the current study were not relying on familiarity
processes to make their recognition decisions. Across both
memory tests (i.e., 4-AFC and 16-AFC), observers made sys-
tematic errors that were biased towards lures that shared
higher perceptual overlap with the old item. This exemplar-
lure similarity bias suggests that the perceptual details of the
object were retrieved even when a correct recognition was not
made.

The present results suggest that search difficulty impacts
attention allocation strategies, which themselves impact what
is remembered from search events. Search difficulty, however,
can be a relative concept. For example, although the results
from Experiment 1 partially supported our prediction that dif-
ficult searches would improve incidental memory, this effect
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only emerged in simple effects analyses; the predicted inter-
action was not reliable. This may be because even the chal-
lenging conditions were not terribly challenging: Search hits
exceeded exceed 96%, even under High Load. By contrast,
Experiment 2 had a wider range of search performance across
difficulty conditions and we observed the predicted interac-
tion. These results suggest that difficulty-enhanced distractor
encoding requires some level of objective, and potentially
subjective, difficulty before observers adapt their attention
allocation strategies. For example, observers in Experiment
2 may have adopted a more “active” cognitive strategy during
difficult trials (Smilek, Enns, Eastwood, & Merikle, 2006),
eliciting close inspection of each item and, therefore, inciden-
tal encoding. Although research suggests that these strategies
can be subject to cognitive control (Madrid &Hout, 2019), the
present results are agnostic regarding the conscious control
over trial-by-trial shifts in attention allocation.

Our findings are consistent with similar effects in the
prospective memory (PM) literature. In PM, individuals
complete an ongoing task (e.g., lexical decision) while si-
multaneously monitoring for target items (e.g., specific
words). In these paradigms, perceptions of global “task-
set” difficulty (i.e., how challenging it is to detect targets
in the context of the ongoing task) have been extensively
reported to alter ongoing task response times (e.g., Hicks,
Marsh, & Cook, 2005; Marsh, Hicks, & Cook, 2005;
Marsh, Cook, & Hicks, 2006). For instance, lexical deci-
sion times in PM tasks increase when participants expect
PM target detection to be difficult, but not when they ex-
pect it to be easy, even if task difficulty is not directly
manipulated (Lourenço, Hill, & Maylor, 2015). Similarly,
it is possible that perceptions of task difficulty may influ-
ence how observers adopt search strategies prior to search.
Active search strategies likely involve the allocation of
additional attentional resources to process items in the
search array (Smilek et al., 2006), and object encoding is
incidentally benefited from these additional resources
(Guevara Pinto & Papesh, 2019). This suggests that search
strategies may be one potential mechanism responsible for
difficulty-enhanced nontarget memory; observers may al-
locate greater attention during conditions that are subjec-
tively expected to be difficult. Future research may exam-
ine how search strategies are affected by perceived search
difficulty, and how such strategies subsequently impact in-
cidental object encoding.

Lastly, researchers have recently debated the nature of
object representations stored in VLTM. Two contrasting
views have proposed that real-world objects are stored ei-
ther as bound, unitary units (Balaban, Assaf, Mier, & Luria,
2019) or as a set of independent and separable features
(Brady, Konkle, Alvarez, & Oliva, 2013a; Utochkin &
Brady, 2019). While the present study was not designed to
contribute to this debate, we suggest that our results are

consistent with the “independent features” account of object
representations. Across each experiment, observers were
more likely to falsely recognize lures with high, relative to
low, perceptual overlap with the encoded object, indicating
that some of the object’s features were stored in memory,
while others were not (preventing correct recognition). This
suggests that an object’s features were identifiable in mem-
ory even when the exemplar itself was not. Importantly, the
exemplar-lure similarity effect was modulated by task diffi-
culty: The effect size increased as the encoding task became
more difficult. Task difficulty may also explain why some
evidence favors bound representations, while other evi-
dence favors independent features. For example, Brady
et al. (2013a, Exp. 1) and Konkle et al. (2010a, 2010b)
focused participants’ attention during encoding with exem-
plar repetition detection tasks, which is similar to an n-back
task. Others (e.g., Exp. 2 in Brady et al., 2013a; Balaban
et al., 2019), however, have used object size judgments, in
which participants determine whether an object is larger/
smaller than a predefined size. Differences in the difficulty
or cognitive demand of these two tasks may impact
encoding and explain disparate findings. Future research
into the nature of object representations may benefit from
directly manipulating the attentional demands at encoding,
as it possible that less demanding tasks may yield bound
object representations, while demanding tasks produce ev-
idence for independent features.

In conclusion, observers retain a great deal of visual infor-
mation from visual search, even if they are not intentionally
trying to do so (Castelhano & Henderson, 2005; Draschkow
et al., 2014; Hollingworth, 2004, 2006; Hollingworth &
Henderson, 2002; Josephs et al., 2016; Williams, 2010).
These incidental memories are enhanced when searches are
challenging, relative to easy (Hout & Goldinger, 2010, 2012;
Thomas&Williams, 2014). In the present study, we replicated
this finding, and showed that memory representations for ob-
jects encoded during difficult visual search are characterized
by richly detailed traces. Rather than simply guessing when
recognition fails, observers systematically “recognized” lures
that shared higher similarity relationships with encoded ob-
jects, particularly those encoded during difficult search trials.
We suggest that observers adopt more active, attentionally
demanding cognitive strategies during challenging search,
forcing observers to process search items more exhaustively.
Although challenging search should force observers to focus
more attention on the targets, our results suggest that, ironi-
cally, observers become more likely to process the nontargets
too.
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Appendix A

Table 4 Object categories used across experiments with average multidimensional vector inter-item distances

Category name Avg. inter-item distance Category name Avg. inter-item distance Category name Avg. inter-item distance

Abacus 0.68 Ball 0.70 Computer Key 0.67

Airplane 0.55 Balloon 0.75 Cookie 0.54

Apple 0.80 Barbie Doll 0.79 Cooking Pan 0.75

Toy Soldier 0.67 Baseball Card 0.57 Cooking Pot 0.70

Axe 0.68 Basket 0.70 Baby Crib 0.61

Russian Doll 0.63 Bathing Suit 0.70 Cup and Saucer 0.64

Baby Carriage 0.76 Teddy Bear 0.48 Cushion 0.64

Backpack 0.79 Beanbag Chair 0.62 Decorative Screen 0.72

Baby Playpen 0.69 Bed 0.68 Desk 0.68

Bird House 0.70 Beer Mug 0.74 Dog 0.62

Bowling Pin 0.62 Bell 0.76 Doll House 0.51

Carabiner 0.63 Bench 0.66 Domino 0.70

Chocolate 0.67 Bicycle 0.73 Donut 0.70

Circuit Board 0.66 Dollar Bill 0.63 Doorknob 0.75

Coffeemaker 0.75 Bird 0.67 Dresser 0.70

Cooler 0.73 Bongo 0.77 Dumbbell 0.70

Door Knocker 0.71 Bonsai Tree 0.55 Earrings 0.62

Feather 0.66 Boot 0.65 Easter Egg 0.62

Fruit Parfait 0.63 Bottle 0.69 Gym Equipment 0.78

Board Game 0.67 Bowl 0.59 Electric Fan 0.71

Eyeglasses 0.69 Bowtie 0.65 Fish Hook 0.62

Plant 0.58 Bread 0.67 Flag 0.64

Hair Dryer 0.68 Broom 0.77 Flashlight 0.68

Baby Chair 0.66 Bucket 0.73 Painting Frame 0.70

Highlighter 0.69 Butterfly 0.47 Frisbee 0.74

Horseshoe 0.65 Button 0.76 Video Game 0.63

Ice Skates 0.72 Cake 0.76 Garbage Can 0.70

Laptop 0.75 Calculator 0.67 Gift 0.64

Leatherman 0.65 Camcorder 0.79 Glove 0.64

Mailbox 0.78 Camera 0.71 Goggles 0.62

Protractor 0.68 Candle Holder 0.70 Golfball 0.65

Mattress 0.67 Car 0.78 Grill 0.70

Microphone 0.74 Cat 0.66 Guitar 0.65

Pasta 0.72 Ceiling Fan 0.68 Hair Brush 0.67

Printer 0.67 Cell Phone 0.76 Hammer 0.68

TV Controller 0.71 Chair 0.71 Hand Bag 0.54

Toy Robot 0.64 Cheese 0.66 Hand Gun 0.72

Router 0.67 Cheese Grater 0.80 Clothes Hanger 0.67

Scooter 0.75 Cherub Statue 0.67 Hat 0.68

Shower Curtain 0.72 Chess Board 0.69 Headband 0.69

Shredder 0.67 Christmas Stocking 0.58 Headphones 0.67

Sink 0.67 Christmas Ornament 0.61 Helmet 0.69

Skateboard 0.70 Cigarette Pack 0.75 Hourglass 0.72

Sleeping Bag 0.72 Clock 0.64 Jacket 0.74

1227Mem Cogn  (2020) 48:1214–1233



Appendix B. Visual search performance

Experiments 1a and 1b Search accuracy was examined in 3
(Working-Memory Load: High, Medium, Low) × 2 (Number
of Targets) repeated-measures ANOVA on search hit rates.
The main effect of WM Load in Experiment 1a, F (1.82,
109.06) = 58.13, p < .001, ηp

2 = .49, BF10 =5.272e+18, re-
vealed higher hits rate on Low-Load trials (M = .99, SE =
.001), followed by Medium-Load (M = .97, SE = .004) and
High-Load (M = .96, SE = .005) trials. The main effect of
Number of Targets, F (1, 60) = 76.56, p < .001, ηp

2 = .56,
BF10 =3.614e+7, is interpreted in the context of the reliable
interaction, F (2, 120) = 11.58 p < .001, ηp

2 = .16, BF10
=247.5: Search hits for one target (M = .98, SE = .002) were
higher than two targets (M = .97, SE = .004), but only when
searching under High or Medium WM Loads, both ps < .05.
This was replicated in Experiment 1b, where a main effect of
Number of Targets, F (1, 63) = 45.06, p < .001, ηp

2 = .42, BF10
=840,223, and a reliable interaction was observed, F (1.82,
114.39) = 7.86, p < .001, ηp

2 = .11, BF10 =21.22. The main

effect of WM Load in Experiment, F (2, 126) = 48.05, p <
.001, ηp

2 = .43, BF10=1.276e+15, again revealed higher hits
rate on Low Load trials (M = .99 SE = .002), followed by
Medium Load (M = .98 SE = .003) and High Load (M = .97
SE = .004) trials.

Experiment 2 A paired-sample t-test was conducted on the
search hit rate across Load conditions in Experiment 2. The
effect of Load is reliable, t(62) = 10.76, p < .001 , Cohen’s d =
1.36, BF10= 7.79e+12, indicating that more targets were de-
tected in the Low- (M = 97.1, SE = .01), relative to High- (M =
88.7, SE = .01), Load condition. A similar effect was observed
in false alarms, t(62) = 2.82 p = .007, Cohen’s d = 0.36, BF10=
4.98, with lower false alarms in the Low- (M = .02, SE = .004)
than in the High-Load condition (M = .04, SE = .01).

Appendix C. Target recognition memory

Experiments 1a and 1b The proportion of correct recognition
choices was examined in one-way repeated-measures

Table 4 (continued)

Typewriter 0.65 Coat Rack 0.62 Jack-o-Lantern 0.73
Vacuum 0.69 Coffee Mug 0.53 Juice 0.64
Wall Lamp 0.63 Coin 0.68 Kayak 0.65
Box 0.63 Dog Collar 0.72 Key 0.76
Bagel 0.72 Compass 0.78 Keyboard 0.73
Keychain 0.59 Water Pitcher 0.67 Stapler 0.67
Knife 0.71 Pizza 0.61 Stool 0.72
Lamp 0.77 Poker Card 0.63 Suit 0.65
Lantern 0.72 Power Strip 0.77 Suitcase 0.66
Lawn Mower 0.76 Radio 0.69 Table 0.64
Leaf 0.72 Razor 0.79 Tape 0.72
Hawaiian Lei 0.65 Record Player 0.68 Telescope 0.69
License Plate 0.66 Ring 0.73 Tennis Racquet 0.71
Lipstick 0.65 3-Ring Binder 0.74 Tent 0.59
Lock 0.68 Road Sign 0.70 Toilet Seat 0.65
Magazine 0.63 Rock 0.59 Tongs 0.62
Makeup Kit 0.63 Roller Skates 0.79 Toothpaste 0.77
Mask 0.68 Rosary 0.64 Toy Horse 0.71
Meat 0.65 Rug 0.72 Toy Rabbit 0.72
Microscope 0.64 Saddle 0.67 Toy Train 0.70
Microwave 0.61 Salt/Pepper Shakers 0.57 Tree 0.72
Motorcycle 0.72 Sandwich 0.81 Tricycle 0.54
Mp3 Player 0.57 Scale 0.67 Trophy 0.66
Muffin 0.62 Scissors 0.69 Trumpet 0.72
Mushroom 0.69 Scrunchie 0.49 Trunk 0.68
Nail Polish 0.59 Seashell 0.66 Turtle 0.60
Necklace 0.69 Shoe 0.81 Television 0.70
Necktie 0.68 Baby Sippy Cup 0.71 Umbrella 0.53
Nunchaku 0.68 Snow Globe 0.61 Vase 0.67
Handheld Fan 0.63 Socks 0.63 Watch 0.67
Pants 0.70 Soda Can 0.68 Water Gun 0.81
Poolside Chair 0.60 Sofa 0.60 Wig 0.66
Pen 0.63 Speaker 0.71 Wind Chime 0.76
Phone 0.65 Spoon 0.67 Wine Glass 0.67
Tobacco Pipe 0.65 Stamp 0.40 Yarn 0.63
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ANOVAs, comparing recognition for targets to nontargets en-
countered during Low-,Medium-, and High-Load searches. A
reliable effect was observed in Experiment 1a, F (3, 180) =
437.5, p < .001, ηp

2 = .88, BF10= 1.475e+81, in which recog-
nition differed across all items, with target objects recognized
the best (M = .94, SE = .01). More importantly, nontargets
objects encountered during High-Load search (M = .63, SE
= .02) were recognized better than nontargets encountered
during Medium- (M = .58, SE = .02) and Low-Load search
(M = .48, SE = .01). Similarly, a reliable effect was observed in
Experiment 1b, F (2.56, 161.24) = 660.88, p < .001, ηp

2 = .91,
BF10= 1.574e+101, with target objects recognized the best (M
= .80, SE = .02), while nontargets encountered during High-
Load search (M = .31, SE = .02) were recognized more often
than nontargets encountered during Medium- (M = .26, SE =
.01) and Low-Load search (M = .22, SE = .01), both ps < .001.
Nontargets fromMedium-Load search were recognized better
than nontargets from Low-Load search, p = .035.

Appendix D. Target recognition errors

Experiments 1a and 1b In Experiment 1a, each 4-AFC com-
parison included lures designated as relatively similar, moder-
ately similar, and relatively dissimilar to the studied exemplar.
Similarly, in Experiment 1b, lures were rank-ordered, from 1
(highest similarity) to 15 (lowest similarity). False alarms
could thus be examined as a function of the perceptual overlap
between studied exemplars and categorically related lures in
both experiments. Separate one-way repeated-measures
ANOVAs analyzed the impact of exemplar-lure similarity on
the proportion of false alarms in Experiments 1a and 1b. Both
experiments revealed reliable effects of lure similarity
(Experiment 1a: F (1.5, 90.02) = 25.79, p < .001, ηp

2 = .30,
BF10 = 7.141e+9; Experiment 1b: F (9.92, 624.92) = 13.45, p
< .001, ηp

2 = .18, BF10 = 4.035e+27), indicating that when
recognition of target objects failed, observers were more likely
to commit false alarms to lures of high similarity with the
target.

Appendix E

Table 5 Statistics from omnibus analyses on raw data values for proportion of false alarms as a function of search difficult and exemplar-lure similarity
in Experiments 1a, 1b, and 2

Frequentist Bayesian

Experiment Effect df F p ηp
2 BF10 Evidence favoring effect?

1a (4-AFC)

WM Load (WM) 2,120 -0.47 1.00 0.00 0.021 No evidence

Similarity (S) 2,120 18.47 < .001 0.24 5.183e+8 Strong evidence

WM x S 4,240 1.65 0.152 0.03 0.55 No evidence

1b (16-AFC)

WM Load (WM) 1,63 1.53 .22 0.02 0.004 No evidence

Similarity (S) 10.06,633.7 6.45 < .001 0.09 1.167e+
10

Strong evidence

WM x S 18.4, 1157.3 1.14 0.30 0.01 0.005 No evidence

2 (16-AFC)

WM Load (WM) 1,62 0.18 0.68 0.03 0.057 No evidence

Similarity (S) 9.94,616.24 6.93 < .001 0.10 2.10e+9 Strong evidence

WM x S 10.07,624.4 1.66 0.058 0.03 0.167 No evidence

Note: BF10 reflects the evidence favoring the inclusion of the effect relative to the null model
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Appendix F

Table 7 Transformed false-alarm data valuemeans (± 1 SEM in parentheses) across conditions and exemplar-lure similarity in Experiments 1a, 1b, and
2

Experiment Lure similarity Low Load Moderate Load High Load

1a (4-AFC)

Similar .625 (.015) .670 (.016) .667 (.018)

Moderate .614 (.011) .616 (.018) .598 (.019)

Dissimilar .596 (.013) .527 (.021) .553 (.018)

1b (16-AFC)

1st rank .269 (.010) .296 (.011) .288 (.012)

2nd rank .272 (.014) .240 (.014) .267 (.014)

3rd rank .246 (.011) .255 (.012) .250 (.014)

4th rank .235 (.013) .267 (.014) .251 (.013)

5th rank .238 (.014) .235 (.012) .243 (.014)

6th rank .256 (.013) .242 (.013) .243 (.012)

7th rank .249 (.011) .241 (.013) .244 (.013)

8th rank .250 (.011) .243 (.011) .231 (.013)

9th rank .261 (.010) .238 (.013) .231 (.014)

10th rank .229 (.013) .237 (.014) .238 (.014)

11th rank .240 (.014) .229 (.011) .242 (.013)

12th rank .229 (.010) .231 (.012) .227 (.014)

13th rank .227 (.012) .219 (.013) .196 (.014)

14th rank .229 (.013) .250 (.011) .193 (.015)

15th rank .219 (.013) .212 (.011) .215 (.016)

2 (16-AFC)

1st rank .279 (.014) n/a .304 (.014)

2nd rank .285 (.014) n/a .249 (.016)

Table 6 Statistics from simple effect analyses on raw data values for the effect of exemplar-lure similarity across levels of search difficult in
Experiments 1a, 1b, and 2

Frequentist Bayesian

Experiment Search F p ηp
2 CI BF10 BF01 Evidence for lure similarity effect?

1a (4-AFC)

Low WM Load 1.33 .27 .02 .000, .091 .311 3.22 No evidence

Medium WM Load 9.21 < .001 .13 .034, .239 6250 1.600e-4 Strong evidence

High WM Load 6.84 .002 .102 .026, .223 348 .003 Strong evidence

1b (16-AFC)

Low WM Load 1.89 .024 .029 .001, .041 .172 5.82 No evidence

Medium WM Load 2.98 <.001 .045 .009, .067 69.85 .014 Strong evidence

High WM Load 3.09 <.001 .047 .012, .072 137.4 .007 Strong evidence

2 (16-AFC)

Low WM Load .2.99 <.001 .046 .011, .060 77.29 0.013 Strong evidence

High WM Load 5.42 <.001 .08 .037, .102 9.350e+
7

1.069e-8 Strong evidence

Note: BF10 reflects strength of evidence for the alternative, BF01 reflects strength of evidence for the null

CI reflect 95% confidence intervals for partial eta-square
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