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Abstract
The measurement of psychological properties often relies on discrete measures, for example, answers in questionnaires or
responses in tasks. This focus on discrete measures neglects information that is present in the process leading to an answer or
a response. A method to trace such processes is mouse tracking. Mouse tracking promises to open a continuous window onto the
processes leading from a stimulus to a response. However, most mouse-tracking studies fall short of the promise to extract
dynamic psychometrically valid markers for the different sub-processes, which are intertwined on the way to the final response.
Here we used time-continuous multiple regression (TCMR) to extract dynamic markers for the different sub-processes leading to
a response. From these markers, we extracted information about the timing, the duration, and the strength of the influence of the
different sub-processes. We evaluated these dynamic measures of sub-processes for their psychometric properties, i.e. reliability,
which is a basis for their use in the study of individual differences. Furthermore, we applied these dynamic measures in a group-
level study to identify differences in the sub-processes of resolving response conflict between groups performing either a Simon
or a flanker task. We found specific temporal patterns that match predictions from a conceptual model of these tasks. We
concluded that the extracted information from mouse movements could be used as psychometrically valid dynamic measures
of psychological properties and their differences across individuals and situations.

A software toolbox to perform the described analyses in Matlab is provided (osf.io/5e3vn).
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Introduction

The psychological study of differences between individuals
and between different situations usually relies on outcome-

based measures of tests or tasks, that is, choices, ratings, or
response times. From these outcome-based measures psychol-
ogists make inferences to uncover or quantify underlying con-
structs. Such a construct could be, for example, cognitive con-
trol, i.e., the ability to focus on relevant information in the face
of distraction, which might in turn be measured in a Stroop
task (Stroop, 1935) or a Simon task (Simon, 1969) by re-
sponse time differences between congruent and incongruent
trials. The implicit assumption of this approach is that the
outcome measure tells us something about the process that
led to the final response. However, the inference from the
outcome on the process is based on a single measurement.
Much more information about the decision process becomes
available when we use process-tracing measures, such as eye
tracking or mouse tracking, the tracing of a person’s computer
mouse movements during the decision (Koop & Johnson,
2011; Spivey & Dale, 2006; Spivey, Grosjean, & Knoblich,
2005). Here, we use time-continuous multiple regression to
exploit the full potential of process tracing using mouse track-
ing, and extract individual process markers frommousemove-
ments. Such markers could be used for both statistical group-
level analyses of subtle process-related differences between
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conditions and for the study of individual differences in the
processes that lead to responses. For all steps of analysis de-
scribed here we provide a toolbox of Matlab functions for
download (Scherbaum, 2017).

Mouse tracking gained momentum in recent years (Dale,
Kehoe, & Spivey, 2007; Dshemuchadse, Scherbaum, &
Goschke, 2012; Kieslich & Hilbig, 2014; Koop & Johnson,
2011; McKinstry, Dale, & Spivey, 2008; Scherbaum,
Dshemuchadse, Fischer, & Goschke, 2010; Spivey & Dale,
2006; Sullivan, Hutcherson, Harris, & Rangel, 2015). While
mouse tracking is in the tradition of other reach-tracking
methods (e.g., Buetti & Kerzel, 2009; Song & Nakayama,
2009), the ease of implementation and widespread use of com-
puter mice allows for a cheap and easy to implement method
of process tracing (Schulte-Mecklenbeck, Kuehberger, &
Ranyard, 2011). In a typical mouse-tracking paradigm, partic-
ipants indicate their response by using a computer mouse. For
example, they might have to work on a Simon task (Simon,
1969) and are instructed to respond to the direction of an
arrow (left/right pointing) presented on two different positions
on the screen (left/right side). Hence, in this task, the relevant
information (the direction of the arrow) might interfere with
the irrelevant information (the location of the arrow).
Normally, participants respond in this task via a left or right
key-press, which allows for measuring response times. This
yields the so-called Simon-effect: Participants are faster when
direction and location of the arrow correspond (so-called
congruent trials) than when direction and location of the arrow
do not correspond (so-called incongruent trials). When using
mouse tracking, participants indicate their response by mov-
ing a computer mouse from a starting field in the bottom-
center of the screen to pre-defined choice-fields in the upper-
left and upper-right corners of the screen. Mouse-tracking
studies assume that the choice process continuously leaks into
the choice movements of participants, allowing the choice
process to be tracedwithin a trial/itemwhile participants move
from the starting field to the final choice-field (Spivey &Dale,
2006; but see Fischer & Hartmann, 2014). In the Simon task,
this leads to relatively direct movements in congruent trials
and movements showing a deflection to the incorrect choice-
field in incongruent trials (Scherbaum et al., 2010;
Scherbaum, Frisch, Dshemuchadse, Rudolf, & Fischer, 2016).

Using process tracing to investigate the choice process over
time should in principle allow for more than only studying
deflections – it should allow for studying individual and situ-
ational differences in the (sub-)processes leading to a choice.
Such differences might show up in the strength, duration, or
timing of sub-processes which, in turn, offers new markers for
the study of differences between individuals or situations.
However, most mouse-tracking studies focus on static mea-
sures to quantify mouse movements, for example, the average
deflection of a movement to the unchosen alternative or the
maximum deviation of the movements (Freeman & Ambady,

2010). By focusing on such static measures, these studies
ignore the precise dynamics of sub-processes that might be
hidden in mouse movements and gain little more than could
be found by the analysis of response-time data. Here we show
how to fully gain the advantage from analyzing mouse move-
ments. To analyze the temporal patterns of different sub-
processes we use an approach that bears similarities to the
methods of analysis applied to neural data from fMRI: A
general linear model is applied coding the different trial prop-
erties to each time point of the mouse movements (compared
to spatial points of the BOLD signal). This procedure results
in time-varying beta-weights1 that indicate which trial proper-
ties, and in turn which related potential sub-processes, influ-
ence the mouse movement at which point in time to which
extent. It hence comprises a full temporal analysis (in contrast
to a spatial analysis in FMRI) of all sub-processes tapped by
different trial properties. We termed this form of analysis time-
continuous multiple regression analysis (TCMR; e.g.,
Scherbaum, Dshemuchadse, Leiberg, & Goschke, 2013). In
the Simon task, this approach allowed us to study the temporal
profiles of at least three sub-processes (Scherbaum et al.,
2010, 2016): First, the interference from the irrelevant infor-
mation (the Simon effect), second how this interference
changes depending on the congruency of the previous trial
(so-called congruency sequence effects), and third how
responding is influenced by the response in the previous trial
(the so-called response bias).

However, early applications of TCMR (Dshemuchadse
et al., 2012; Scherbaum et al., 2010; Sullivan et al., 2015)
posed two challenges for the statistical analysis of temporal
patterns. The first challenge is that mouse-movement data
show a reasonable amount of noise, which makes peak detec-
tion (peak strength and timing) based on individual data error
prone. This difficulty is typical for many forms of dynamic
data, for example, lateralized readiness potentials, and is often
solved by statistical methods, for example, analyses based on
jack-knifing (Miller, Patterson, & Ulrich, 2001). Such
methods, however, come at the cost of restricting statistical
analyses of peak data to the group level. Hence, situational
differences could be studied on the group level, but the anal-
ysis of individual differences is hampered. Furthermore, jack-
knifing works on averaged data, and, hence, smearing arte-
facts can occur due to different peak curves of individual
subjects.

The second challenge is that for detecting coherent tempo-
ral segments of activity in the beta-weights, one tests these
beta-weights across participants (Scherbaum et al., 2010) for
every time step of the movement data. This leads, again, to the
problem that identified segments are defined at the group level
and further statistical analysis is not possible – neither infer-
ential statistics on the group level nor on the individual level.
Furthermore, the multiple testing of consecutive time steps
poses the problem of how to correct for multiple comparisons,
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a problem that until now had to be solved by Monte Carlo
simulations determining correction criteria (Dale et al., 2007;
Scherbaum, Gottschalk, Dshemuchadse, & Fischer, 2015).

Here, we extend the original approach. The extension rests on
the observation that the temporal profiles as reflected in time-
varying beta-weights roughly follow a Gaussian shape with their
initial positive main component (see Fig. 1). This positive main
component is followed by a compensatory negative component.
We call this negative component compensatory since it is a nec-
essary consequence of the spatial setup forcing participants to
reach the response box to give their response. As an example
(see Results of Study 1 and Fig. 7), we assume that the correct
response box in a Simon task trial is on the right side. Hence,
incongruent trialswill lead toan initialmovement to the (incorrect)
left side (the initial effect of irrelevant information). This initial
movementwill have to be corrected by a strong rightwardsmove-
ment (the consequence of processing the relevant information) so
that thecursor finally reaches thecorrect responseboxon the right.
In contrast, congruent trials will lead to an initialmovement to the
(correct) right side.This initialmovementwill thenbe followedby
a further but relatively weak movement to the right side since the

correct responseboxisalmostat reachalready.Sincetheregressors
for the interference effect are coded in a way that a positive com-
ponent in beta-weights mirrors the initial impact of the irrelevant
information, the beta-weightswill showan initial positive compo-
nent (the initial movement to the left or to the right) followed by a
negative component (the later movement to the right, which was
either large or small). The negative component is hence a direct
consequenceof thepositivecomponent andcanbe ignored forour
purposes.2

We will hence fit Gauss curves to the positive main com-
ponents of the time-varying beta-weights and use the param-
eters defining the Gauss curve, i.e. peak time (mean of Gauss
curve), peak strength (peak height of Gauss curve), and peak
width (SD of Gauss curve) as markers of the dynamic process.
In contrast to our original approach, this addition will allow
for, first, the extraction of parameters representing the tempo-
ral properties of each sub-process for each individual
participant and, second, the statistical comparison of tempo-
ral profiles between different situations.

In the following, we first examine the psychometric
properties of the extracted parameters in data that stem

Fig. 1 The processing steps in analyzing mouse-movement data via time-
continuous multiple regression (TCMR) and Gaussian fitting, illustrated
for the data of one participant from Study 1 (a Simon task). Raw data are
pre-processed first, yielding time-normalized time-series data that are
transformed into movement angles relative to the X-axis to provide a
continuous measure of instantaneous movement tendency. On these an-
gular time-series data, we apply TCMR to gain time-continuous beta-
weights representing the influence of different trial properties: For each
time-step, multiple regression analyzes the relationship between the trials’

properties and the current mouse-movement angle. These beta-weights
hence represent the time-continuous influence of different trial properties
(here the three properties are interference, congruency sequence, and
response bias; for more information on the properties, see main text)
and, in turn, the related sub-processes on the decision process. To quantify
the dynamics of these noisy individual beta-weights, Gauss curves are
fitted to the positive main components of the raw beta-weights, yielding
individual measures of the timing, duration, and strength of each sub-
process
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from a dynamic version of the Simon task (Scherbaum
et al., 2010). The Simon-effect has been used previously
to study inter-individual differences in cognitive control,
that is, how well a person can shield the response-
selection process from interference by irrelevant informa-
tion of where the stimulus appears. We investigate how
reliable the extracted dynamic measures of this interfer-
ence, congruency sequence effects, and the response bias
are for the study of individual differences.

As a second step, we investigate the potential of themethod
for studying differences between related sub-processes in dif-
ferent situations. We study differences between two cognitive
control tasks, i.e., the afore-mentioned Simon task (Simon,
1969) and the flanker task (Eriksen & Eriksen, 1974). In the
latter task, participants have to respond to a target stimulus,
which is surrounded by distracters that can either indicate the
same response – again called congruent trials – or the opposite
response – again called incongruent trials. It is an open ques-
tion how far the cognitive control processes in the Simon task
and the flanker task are similar or different.

We provide a complete toolbox of functions for Matlab
including all the steps of analysis presented here. Since the
toolbox provides not only the TCMR functions, but also
further basic pre-processing functions, it could be seen as
a Matlab-based complement to similar R-based toolboxes
(Kieslich, Wulf, Henninger, Haslbeck, & Schulte-
Mecklenbeck, 2017). The article (and the tutorial in the
toolbox), in turn, could also be used as a manual on how
to perform temporal analyses of mouse movements in
Matlab.

Study 1

In the first study we examine the psychometric properties of
the extracted parameters, i.e., split-half reliability. We study
dynamic markers of the Simon effect and the congruency
sequence effects (changes in the Simon effect depending on
conflict in the previous trial; Botvinick, Braver, Barch, Carter,
& Cohen, 2001; Gratton, Coles, & Donchin, 1992; but see
Egner, 2007; Mayr, Awh, & Laurey, 2003). Furthermore, in
a previous study (Scherbaum et al., 2010), we had found an
early influence of the previous response, so that movements
tended initially to the previously chosen direction (response
bias). We include this response bias in our analyses.

Whereas in the original study analyses were limited to the
group level and stayed descriptive for the dynamics of mouse
movements, we now analyze the data using TCMR with
Gaussian fitting and analyze split-half reliability of the extract-
ed parameters and their correlation with response time (RT)
indicators of the abovementioned sub-processes, namely the
interference, congruency sequence, and response bias.

Method

Participants

The data used in this study comprise data from an already
published study (Study 2 from Scherbaum et al., 2010) and
data newly acquired with the same paradigm. Overall, 72 stu-
dents (58 female, mean age = 23.36 years, SD = 3.75) of
Technische Universität Dresden took part in the whole study.
Similar selection criteria and procedures were followed in the
original and the new study. All participants had normal or
corrected-to-normal vision. The study was performed in ac-
cordance with the guidelines of the Declaration of Helsinki
and of the German Psychological Society. Ethical approval
was not required since the study did not involve any risk or
discomfort for the participants. All participants were informed
about the purpose and the procedure of the study and gave
written informed consent prior to the experiment. They re-
ceived class credit or 5 € payment.

Assuming a minimal acceptable correlation of r = 0.6 for
reliability, the sample size of 72 participants provided a power
of 0.99 (Faul, Erdfelder, Lang, & Buchner, 2007).

Apparatus and stimuli

Target stimuli were presented in white on a black background
on a 17-in. screen running at a resolution of 1,280 × 1,024
pixels (75-Hz refresh frequency). Target stimuli were numbers
(1–4: left response; 6–9: right response). They had a width of
6.44° and an eccentricity (center of stimulus to center of
screen) of 20.10°. In both studies, response boxes (11.55° in
width) were presented at the top left and top right of the
screen. As presentation software, we used Psychophysics
Toolbox 3 (Brainard, 1997; Pelli, 1997) in Matlab 2006b
(the Mathworks Inc., Natick, MA, USA), running on a
Windows XP SP2 personal computer. Responses were carried
out by moving a standard computer mouse (Logitech Wheel
Mouse USB). Mouse trajectories were sampled with a fre-
quency of 92 Hz and recorded from stimulus presentation
until response in each trial.

Procedure and design

Participants were instructed to respond to the direction indi-
cated by the target stimulus by moving a computer mouse into
the left or right response box. Each trial consisted of three
stages (see Fig. 2): the alignment stage, the start stage, and
the response stage. In the alignment stage, participants clicked
into a red box (11.55° in width) at the bottom of the screen
within a deadline of 1.5 s. This served to align the starting area
for each trial. After clicking within this box, the start stage
began and two response boxes at the right and left upper
corner of the screen were presented. Participants were
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required to start the mouse movement upwards within a dead-
line of 1.5 s. We chose this procedure forcing participants to
be already moving when entering the decision process to as-
sure that they did not decide first and only then execute the
final movement (Dshemuchadse et al., 2012; Scherbaum,
Fischer, Dshemuchadse, & Goschke, 2011; Scherbaum &
Kieslich, 2018). Hence, only after moving at least 4 pixels in
each of two consecutive time steps the response stage started:
The target stimulus was presented and participants responded
by choosing the respective response box. The trial ended after
moving the cursor into one of the response boxes within a
deadline of 2 s (see Fig. 1). If participants missed the deadline
of one of the three stages, the next trial started with the pre-
sentation of the red start box. RTs were measured as the dura-
tion of the third stage, reflecting the interval between the onset
of the target stimulus and reaching the response box with the
mouse cursor.

After onscreen instructions and demonstration by the ex-
perimenter, participants practiced 40 trials (10 trials with feed-
back and no deadline for any stage of a trial, 10 trials with
feedback and deadline and 20 trials without feedback and with
deadline).

The experiment consisted of three blocks and 257 trials per
block. We varied the following independent variables: for the
current trial, numberN (1–4: left/6–9: right) and locationN
(left/right), and for the previous trial, numberN-1 (1–4/6–9)
and locationN-1 (left/right). This resulted in 16 combinations
for the current trial (eight numbers × two locations) and 16
combinations for the previous trial. The sequence of trials was
balanced within each block by pseudo randomization. This
resulted in a balanced TrialN (16) × TrialN-1 (16) × repetition
(3) transition matrix. Concerning congruency of response di-
rection and stimulus location (which leads to the Simon effect
and the congruency sequence effects across trials), we hence
obtained a balanced sequence of trials with systematically
manipulated congruency of direction/location within the

current trial (congruencyN) and congruency of direction/
location within the previous trial (congruencyN-1).

Data pre-processing

We excluded erroneous trials, in which participants chose the
wrong response box, trials following an error, and trials not
fitting the RT outlier criterion of an RT > 4 SD and an RT <
100 ms (9.87%, SD = 8.6%). To estimate reliabilities, we used
split-half reliability and partitioned the data set into two sub-
sets, i.e., odd and even trials.

Mouse trajectories were aligned for common starting posi-
tion (horizontal middle position of the screen, 640 pixels).
Each trial’s movement trajectory was normalized to 100 equal
time slices (Spivey et al., 2005) by segmenting each trajectory
into 100 equal segments from the first to the last sample of the
trajectory using linear interpolation. For analysis of movement
dynamics, we focused on the trajectory angle on the XY
plane.3 Trajectory angle was calculated as the angle relative
to the Y-axis for each difference vector delta-X and delta-Y
between two time steps. In other words: For each time slice,
we calculated the instantaneous direction of the mouse cursor
relative to the y-axis, yielding one value that summarizes the
movement on the XYplane. This measure has two advantages
over the raw trajectory data. First, it better reflects the instan-
taneous tendency of the mouse movement since it is based on
a differential measure compared to the cumulative effects in
raw movement data. Second, it integrates the movement ten-
dency on the XY plane into a single measure. Notably, this
procedure also allows for calculating movement velocity.
While velocity can also be a valuable source of information,
it shows in our experience very similar profiles across condi-
tions in the Simon task, which is why we focus on the trajec-
tory angle in the following.We prepared the temporal analyses
described in the next step by introducing temporal correlations
between the single data points by convoluting the data over

Fig. 2 Setup of the study for number of target stimuli for the three stages
of a trial. In the alignment stage participants clicked with the mouse
cursor into a red box at the bottom of the screen. This triggered the start
stage, in which response boxes appeared at the upper edge of the screen
and participants had to move the cursor upwards (as indicated by the
dashed upwards arrow, which was not shown to participants) in order to

trigger the next stage. After reaching a movement threshold, the response
stage began: the target stimulus (here the number 3, indicating a left
response since it is smaller than 5) was presented and participants
moved the mouse cursor to the left or the right response box according
to direction indicated by the target stimulus
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time with a 10-point Gaussian smoothing window.4 Based on
this movement angle, we performed TCMR and Gaussian
fitting.

Time-continuous multiple regression (TCMR) TCMR follows
a procedure of three steps. In the first step, we coded for each
participant three predictors for all trials. To better understand
this coding step, it is helpful to conceive of the mouse-
movement angle as showing positive numbers when the
mouse moves to the correct response box and negative num-
bers when the mouse moves to the incorrect response box.
Hence, all predictors will be coded so that when an influence
supports the correct response, it will be positive and when an
influence supports the incorrect response, it will be negative.
The first predictor, interference, coded whether the irrelevant
location information pointed to the correct or the incorrect
response box, which is the Simon effect; the second predictor,
response bias, indicated whether the previous trials response
pointed to the now-correct or the now-incorrect response box;
the third predictor, congruency sequence, coded whether the
current trial’s congruency (congruencyN) was the same as the
previous trials congruency (congruencyN-1), which represents
congruency sequence effects. Hence, it codes how strongly
the mouse trajectory would be influenced by interference de-
pending on previously induced conflict. To provide compara-
ble beta-weights in the next step, we normalized the predictors
to a range -1 and 1. In the third step, we calculated multiple
regressions with the normalized predictors on the data from
each time slice of the trajectory angle (100 time slices➔ 100
multiple regressions), which had also been normalized for
each participant to a range from -1 to 1. This yielded three
time-varying beta-weights (three weights × 100 time slices)
for each participant (please see the Appendix for a tutorial of
how to run this analysis with the respectiveMatlab functions).
In the original study, we detected significant temporal seg-
ments of influence by calculating t-tests against zero for each
time step of the three time-varying beta-weights. According to
Monte Carlo analyses, correction for multiple comparisons in
this procedure could be achieved by only accepting segments
of more than 10 consecutive significant t-tests (Dale et al.,
2007; Scherbaum et al., 2015). Here however, we proceeded
differently by applying Gaussian fitting.

Gaussian fitting For each time-varying beta-weight of each
participant, we fitted a Gauss curve by minimizing the
summed squared error for the beta-weight series via a bound-
ed version of the simplex algorithm supported by Matlab
(D’Errico, 2012). The parameters of the Gauss curve were
its peak time, its duration (the standard deviation), and its peak
strength (the height of the Gauss curve at peak time). The
algorithm uses estimated parameter bounds and starting
values that are based on the grand average of each beta across
participants. It first estimates the population peak time and

peak strength from the grand average and consecutively esti-
mates duration by fitting a Gauss curve to the grand average.
Based on this initial estimation procedure, it constrains indi-
vidual peak time to the estimated population peak time +/-
50% of the estimated duration. It constrains individual dura-
tion to the estimated population duration +/- 50%. And it
constrains individual peak strength to the estimated popula-
tion peak strength +/- 2.57 SD (99%) of individual peak
strengths at the estimated population peak time. R2 values to
estimate fit quality were calculated as correlations of each
empirical beta and the fitted Gauss curve. This fit was calcu-
lated on 2.57 times the width of the Gauss curve (99% of time
points under the Gauss curve).

RT indicators To have a benchmark for the reliability of the
parameters from the TCMR analysis, we calculated RT indi-
cators of the three sub-processes of interest. For the response
bias from the previous trial, we calculated the advantage of
repeated responses over alternating responses, which is the
contrast RTresponse-switch – RTresponse-repetition. For interference,
we calculated by how much congruent trials were faster than
incongruent trials (the Simon effect), which is the contrast
RTincongruent – RTcongruent. For congruency sequence, we cal-
culated whether the Simon effect was larger after congruent
trials than after incongruent trials (congruency sequence ef-
fects indicating conflict adaptation), which is the contrast
Simon_effectcongruentN-1 - Simon_effectincongruentN-1.

Calculation of statistics All data pre-processing and calcula-
tion of statistics were performed in Matlab 2010a (The
Mathworks Inc.), using the standard functions of Matlab’s
Statistics Toolbox.

Results

The analyses of RTs and static mouse measures (average de-
viation ofmouse movements) showed the typical Simon effect
and the expected congruency sequence effects as reported in
the original publication (Scherbaum et al., 2010). Here, we
focus on the results of TCMR and Gaussian fitting with re-
spect to feasibility and reliability.

TCMR and Gaussian fitting

The results of TCMR show the distinct temporal patterns of
influences for both sub-sets of data that we created for the
analysis of reliability, i.e., odd and even trials. A first peak
of response bias, followed by the peak of interference and
then the peak of congruence sequence (see Fig. 3).

We applied the classic jack-knifing procedure5 as in the
original study to compare the results to those of the new
Gaussian fitting method. The results can be seen in Table 1.
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Fitting quality (R2) was best for interference and congru-
ency sequence, and slightly weaker for response bias. The
spread of parameters did not show any floor or ceiling effects,
indicating that the estimation procedure worked correctly (see
Fig. 4).

A representative fit to a single subject’s data can be seen in
Fig. 5 (subject 2; for graphs of all subjects, please see
Supplementary Material).

Reliability of estimated parameters

To check for reliability of the parameters from Gaussian fitting,
we calculated split-half reliability for all parameters, which are
correlations between odd and even trials (Table 2; for scatter

diagrams please see Supplementary Material). To warrant the
assumptions of correlation analysis and avoid outliers driving
reliability, we excluded outliers within the parameters (<
>3SD). Furthermore, we excluded outliers that showed very
low values in peak strength (< 3SD) since this indicates no peak
at all and hence invalid values for the parameters peak time and
duration. Notably, this procedure resulted in no exclusions for
response bias and the peak time and peak strength of
interference, one exclusion for duration of interference, and
three exclusions for all parameters of congruency sequence.
(Notably, including all participants did not change the results
qualitatively – see Supplementary Material.)

Split-half reliability was good for the peak time of
interference and very good for the peak strength of response

Fig. 3 A and B: Time-continuous beta-weights from time continuous
multiple regression for odd trials (A) and even trials (B). Lines above
graphs mark significant segments determined by t-test against zero.
Curve peaks were determined by a jack-knifing procedure (see main text).

C and D: Reconstructed beta-weights from the Gaussian fitting proce-
dure for odd trials (C) and even trials (D). Lines above graphs indicate the
area of 1 SD around the peak of the fitted Gauss curve. In all graphs,
shaded areas indicate the standard error of the mean

Table 1 Results of peak detection via jack-knifing and of Gaussian fitting of beta-weights for odd and even trials

Beta Jack-knifed peaks Parameters from Gaussian fitting

Peak time (SE) Peak strength (SE) Peak time (SE) Peak strength (SE) Duration (SE) R2 (SE)

Odd trials response bias 1 (0) 0.032(0.004) 7.692 (0.797) 0.031(0.005) 16.896(0.629) 0.738(0.032)

interference 40 (0) 0.152(0.009) 40.156(0.473) 0.171(0.009) 9.496(0.188) 0.954(0.009)

congruency sequence 48.194 (6.828) 0.024(0.002) 49.216(0.58) 0.029(0.002) 9.354(0.296) 0.791(0.024)

Even trials response bias 2
(0)

0.035 (0.005) 7.627(0.872) 0.036(0.005) 16.209(0.597) 0.776 (0.066)

interference 41(0) 0.143 (0.009) 40.115(0.451) 0.163(0.009) 9.185 (0.157) 0.947(0.01)

congruencysequence 49.014 (2.217) 0.032 (0.002) 48.497(0.6) 0.037 (0.002) 9.353(0.294) 0. 802(0.025)
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bias and interference. For the peak time of response bias and
the duration of response bias and interference, we found lower
but significant correlations, while we found only low correla-
tion for the peak strength of congruency sequence, marginal
correlation for the peak time of congruency sequence, and no
significant correlation for the duration of congruency
sequence. To see whether the weak results for congruency
sequence might stem from a relatively unstable process in-
stead of a weakness in the Gaussian fitting procedure, we
checked the benchmark split-half reliabilities of RT measures
of response bias, interference, and congruency sequence. As
the results in Table 3 indicate, response bias and interference
show fair reliability while congruency sequence does not
show any correlation.

In summary, this indicates that TCMR combined with
Gaussian fitting can in principle produce good reliability for
stable sub-processes – namely response bias and interference
– while other sub-processes seem to be unstable on the indi-
vidual level – namely congruency sequence.

We finally pursued two exploratory questions of interest to
check the validity of using the extracted parameters for psy-
chometric purposes. The first question asked was what was
the number of trials necessary to achieve acceptable levels of
reliability. To this end, we analyzed the relationship of trial-
number and split-half reliability based on a resampling ap-
proach. For a selected number of trials (20, 30, 50, 90, 170,
330), we randomly sampled a sub-set of odd and even trials so
that all cells of the design matrix were filled equally. We then

Fig. 4 Spread of parameters from Gaussian fitting for the three betas from TCMR, for odd (left) and even (right) trials. The parameters of the Gauss
curve were its peak time, its duration (the standard deviation), and its peak strength (the height of the Gauss curve at peak time)

Fig. 5 Data fit for one representative subject (see SupplementaryMaterial
for all subjects). Black lines: Time continuous beta-weights from time-
continuous multiple regression for odd trials (left) and even trials (right).

Colored markers: reconstructed beta-weights from the Gaussian fitting
procedure
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calculated correlation between the sampled odd and even tri-
als. For each number of trials, this procedure was repeated 50
times, yielding 50 correlation values for each number of trials.
Figure 6 shows the resulting curves.

For response bias and interference, peak strength ap-
proaches reliability levels of 0.8 within 90 trials, which is
quicker than for the RT measures, while the rise of reliability
for the peak duration and peak time follows RT more closely.
For congruency sequence, it shows the expectable low reli-
abilities across all numbers of trials, with mentionable reliabil-
ity for peak strength only appearing with more than 300 trials.
The second question asked was whether it was valid to ignore
the late negative parts of the analyzed mouse movements – or
more clearly, whether these parts only represented compensa-
tory movements that participants had to perform to finally
reach the response box. If this was the case, we expected a
strong correlation for the relevant positive peak in mouse
movements and the later negative peak. For example, in in-
congruent trials, the stronger the initial deflection to the wrong
response box, the stronger the correction needed to be so that
the cursor finally reached the correct response box. In contrast,
in congruent trials, the stronger the ignition deflection to the
correct response box, the weaker the later movement need to
be to finally arrive at the correct response box (see Fig. 7, left).

To check this assumption, we calculated the difference in
mouse movement angles for congruent and incongruent trials,
which shows the same structure as the interference beta-
weights (see Fig. 7, middle).We then calculated the area under
the curve for the early positive component and the late nega-
tive component and correlated these two scores, yielding a
good correlation of r = -.76, p < 0.001 (see Fig. 7, right).

This confirms our assumption that the late component indeed
represents a compensatory movement necessary to reach the
response box and that it does not provide decisive information
about the decision process.

Discussion

In Study 1, we investigated the reliability of the parameters
extracted from mouse movements via TCMR and Gaussian
fitting for three sub-processes in a Simon task: the influence of
the previously performed response (response bias), the influ-
ence of the location information (interference), and the adap-
tation of control as reflected in congruency sequence effects.
We found that reliability was good for the first two sub-pro-
cesses, but was overall weak to non-existent for conflict ad-
aptation. Since a similar pattern was present for the respective
RT indicators, we concluded that conflict adaptation is a pro-
cess that is unstable across time within individuals and, hence,
when leaving group-level analyses. This finding was not a
specific phenomenon for the mouse-movement parameters
and fits recent evidence that conflict adaption might indeed
be a temporally fragile construct (Feldman & Freitas, 2016).

Taken together, the extraction of dynamic mouse parame-
ters opens the possibility to study inter-individual differences
in markers of sub-processes within a task. It hence fulfils the
first aim of the work, enabling future studies to identify rela-
tionships between dynamic parameters and individual proper-
ties/abilities. In the next study, we show how the extracted
dynamic markers could provide insight into differences be-
tween cognitive processes in different situations on the
group-level.

Study 2

In Study 2, we compared data from a mouse-tracking version
of the flanker task (yet unpublished data) with the mouse-
tracking data from a Simon task (Scherbaum et al., 2010,
Study 1). We aimed to compare the parameters for the previ-
ous response, the influence of interference and congruency
sequence effects to identify whether these sub-processes work
differently in the flanker and the Simon task, similar to

Table 2 Correlations (Pearson’s r and p values) between odd and even trials and split-half reliability (Spearman-Brown corrected correlations rc) for
the parameters from Gaussian fitting

Peak time Duration Peak strength

r p rc R p rc r p rc

Response bias 0.58 < .001 0.734 0.603 < .001 0.752 0.96 < .001 0.98

Interference 0.877 < .001 0.934 0.611 < .001 0.759 0.97 < .001 0.985

Congruency 0.227 0.059 0.37 0.084 0.487 0.155 0.451 < .001 0.622
Sequence

Table 3 Correlations (Pearson’s r and p values) between odd and even
trials and split-half reliability (Spearman-Brown corrected correlations rc)
for effects in response time (RT)

RT

r P rc

Response bias 0.708 < .001 0.829

Interference 0.752 < .001 0.858

Congruency sequence 0.029 0.808 0.056
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differences that had been studied via distributional analyses
between the Stroop and the Simon task (Pratte, Rouder,
Morey, & Feng, 2010). The nature of such differences is im-
portant on two levels, a theoretical and a measurement level.
On a theoretical level, they indicate that different cognitive
processes are tackled by different tasks: Though two tasks
might superficially tackle the same processes, a deeper
process-oriented investigation can provide evidence for dis-
tinct processes. In the case of the Simon and the flanker task,
both tasks are used widely to study cognitive control in an
interchangeable way. Given the different nature of interfer-
ence in the task, the interchangeable nature of the tasks should
not be taken as a given. This different nature is already evident
when we look at a simple conceptual model of both tasks
(compare Scherbaum et al., 2016), as shown in Fig. 8. In the
Simon task, the influence of the distracting information – the
location of the arrow – has been proposed to trigger an early
automatic response via a fast route. This initial response

impulse decays by itself after the initial peak (Hommel,
1994; Scherbaum et al., 2016; Stürmer, Leuthold, Soetens,
Schroter, & Sommer, 2002). Hence, interference comes from
the residual activation of this automatic response and the ac-
tivation of the correct response via a slow semantic route. In
contrast, in the flanker task the activation of the incorrect
response by the distracting information– the flanker arrows
surrounding a central target arrow – takes the same slow se-
mantic route as the correct response indicated by the target
arrow. Hence, interference stems from an activation of con-
flicting responses within the slow semantic route. This inter-
ference can only be solved by enhancing the contrast between
the relevant information – the target – and the irrelevant infor-
mation – the distractors (Cohen & Huston, 1994; Scherbaum
et al., 2011). The differences in timing of the irrelevant infor-
mation should lead to a different temporal overlap of the
response-selection processes: a small overlap in the Simon
task and a larger overlap in the flanker task.

Fig. 6 Resampled split-half reliability (Peason's r) for each of the three sub-processes, the three parameters, and response time effects as a function of the
number of trials

Fig. 7 Left: Mouse movements in congruent and incongruent trials.
Middle: Movement angles for congruent and incongruent trials and the
difference between both showing the same temporal signature as the
respective beta-weights with a clear early positive component and a

smaller negative component. Right: Area under the curve for the each
participant’s positive component plotted against the area under the curve
for the negative component
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On a measurement level, an important question is whether
outcome-based measures correctly inform about these differ-
ences between tasks and the respective sub-processes. This
boils down to the questions of what differences in RT mean
for the sub-processes of interest and whether the correct con-
clusion could be drawn from such differences.

Based on the reasoning above, we expect interference in
the Simon task to affect mouse movements earlier (the auto-
matic activation of a response in the fast route) than interfer-
ence in the flanker task (the parallel activation of different
responses in the same route). This later interference in the
flanker tasks in turn leads to a larger temporal overlap of
interference with the selection of the final response. This larg-
er overlap in turn leads to more pronounced interference ef-
fects in RTs for the flanker task. Hence, looking at RTs, one
might conclude that the influence of irrelevant information is
stronger in the flanker task than in the Simon task. However,
looking at mouse-movement data should show that the influ-
ence of the distracting information is similarly strong in both
tasks, but shows a different timing between tasks which, in
turn, leads to the differences in RT.

For the influence of the previous response, we did not
expect any differences as this reflects an intrinsic tendency
of response-repetition that should be independent from the
stimuli and the task. For conflict adaptation as indicated by
congruency sequence effects, we could only speculate: Since
conflict adaptation should be related to the experienced inter-
ference, differences in the strength of interference should also
lead to differences in adaptation. However, the strength of this

difference and the affected parameter (time, duration,
strength) are of an explorative nature, especially when consid-
ering the low reliability of congruency sequence effects in
Study 1.

Methods

Participants

Twenty students (17 female, mean age = 21.1 years) of the
Technische Universität Dresden took part in the Simon task
(Scherbaum et al., 2010, Study 1) and 20 students (11 female,
mean age = 22.1 years) in the flanker task (still unpublished
data). Similar selection criteria and procedures were followed
for the Simon task and the flanker task samples. All partici-
pants were right-handed and had normal or corrected-to-
normal vision. The study was performed in accordance with
the guidelines of the Declaration of Helsinki and of the
German Psychological Society. Ethical approval was not re-
quired since the study did not involve any risk or discomfort
for the participants. All participants were informed about the
purpose and the procedure of the study and gave written in-
formed consent prior to the experiment. They received class
credit or 5 € payment.

Given the sample size of 20 subjects per group and
assuming a large effect for interference (d = 0.8), we
calculated a power of 0.8 (Faul et al., 2007) at an alpha-
level of 0.05.

Fig. 8 Conceptual model of the Simon task (top) and the flanker task
(bottom). Irrelevant information (red) and relevant information (black) is
fed into two response units inhibiting each other. The decisive difference
between tasks lies in the timing of the processing of irrelevant informa-
tion, which is fast and presumably automatic in the Simon task (the

arrow’s location) and slower in the flanker task (the flanker arrows’ di-
rection). The resulting timing profiles (right side) show how the differ-
ences in the timing of irrelevant information lead to a different temporal
overlap, which in turn causes different interference effects in response
times
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Apparatus and stimuli

The Simon task’s setup and the flanker task’s setup were sim-
ilar to the Simon task in Study 1, with exception of the imper-
ative stimulus. The Simon task now presented left/right
pointing arrows instead of different numbers as stimuli. The
flanker task presented a horizontal array of five left/right
pointing arrows of which the center arrow was the target and
the surrounding four arrows were the distracters. The array
was presented in the center of the screen. Each arrow had a
visual angle of 1.77° and the whole array spanned 10.62° at
60 cm viewing distance.

Procedure and design

The procedure followed the procedure of the Simon task
in Study 1 (see Fig. 9). In the Simon task, the interfering
information was the location of the arrow. In the flanker
task, the interfering information were the flanking arrows.
For a concise description of the design that was common
for both tasks, we will subsume both types of interfering
information as distracter in the following. In both tasks,
we varied the following independent variables: for the
current trial, targetN (left/right) and distracterN (left/right),
and for the previous trial, targetN-1 (left/right) and
distracterN-1 (left/right). This resulted in four combina-
tions for the current trial and four combinations for the
previous trial. The sequence of trials was balanced within
each block by pseudo randomization resulting in a bal-
anced TrialN (4) × TrialN-1 (4) × trial repetition (20) tran-
sition matrix per block. Each task consisted of two blocks
and 320 trials per block.

Data pre-processing

Data pre-processing followed the description from Study 1,
with the exception that we did not split the data set into even
and odd trials, but analyzed differences between the Simon
task and the flanker task. We excluded erroneous trials, in
which participants chose the wrong response box, trials fol-
lowing an error, and trials not fitting the RToutlier criterion of
an RT > 4 SD and an RT < 100 ms (6.22%, SD = 4.6%).

Results

RT results

We first checked for differences in the three RT indicators,
response bias (RTresponse-switch – RTresponse-repetition),
interference (RTincongruent – RTcongruent), and congruency
sequence (Simon_effectcongruentN-1 - Simon_effectincongruentN-
1), as shown in Fig. 10. We performed three independent sam-
ples t-tests (Bonferroni-corrected alpha-level = .0167). We
found a significant difference in the interference effect, t(38)
= 3.906, p < .001, d = 1.24. Interference was larger in the
flanker task (M = .109, SE = .007) compared to the Simon
task (M = .074, SE = .005). Furthermore, we found a signifi-
cant difference for congruency sequence, t(38) = -2.78, p <
.01, d = -.88. Congruence sequence effects were larger in the
Simon task (M = 0.045, SE = 0.004) than in the flanker task
(M = 0.028, SE = 0.005). There was no significant difference
for response bias, t(38) = 0.028, p = 0.978. Hence, congruen-
cy sequence effects in RTwere inversely related to the effects
of interference in RT, which one wouldn’t necessarily expect
according to conflict-monitoring theory.

Fig. 9 Setup of the flanker task. In the alignment stage participants
clicked with the mouse cursor into a red box at the bottom of the
screen. This triggered the start stage, in which response boxes appeared
at the upper edge of the screen and participants had to move the cursor
upwards (in the sketch indicated by the upwards arrow, which was not

visible to participants) in order to trigger the next stage. After reaching a
movement threshold, the response stage began: The target and distracter
stimuli were presented and participants moved themouse cursor to the left
or the right response box according to direction indicated by the target
stimulus (here the right arrow: right response box)
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Mouse results

The results of TCMR for the Simon and the flanker tasks both
show the distinct temporal patterns for each influence. A first
peak of response bias, followed by the peak of interference
and then the peak of congruence sequence (see Fig. 11).

The jack-knifed peak time and strength from TCMR and
the parameters extracted by Gauss curve fitting can be seen in
Table 4.

Fitting quality (R2) was best for interference and weaker
for response bias in both tasks. Congruency sequence showed
good fitting quality in the Simon task, but the worst fit in the
flanker task. The spread of parameters did not show any floor
or ceiling effects, indicating that the estimation procedure
worked correctly (see Fig. 12).

To check for differences in the mouse parameters, we per-
formed nine t-tests on the three parameters of the three extract-
ed beta-weights (Bonferroni-corrected alpha level = 0.0056).
The results can be found in Table 5.

We found significant differences for all parameters of
interference. The influence peaked at an earlier time slice in
the Simon task (M = 43.547, SE = 0.778) than in the flanker
task (M= 53.833, SE= 0.750), lasted longer in the Simon task
(M = 9.439, SE = 0.164) than in the flanker task (M = 8.215,
SE = 0.166), and was stronger in the Simon task (M = 0.208,
SE = 0.011) than in the flanker task (M = 0.159, SE = 0.011).
We also found significant differences for the peak of congru-
ence sequence, which peaked later in the Simon task (M =
50.369, SE = 0.847) than in the flanker task (M = 45.653,
SE = 1.086) and was stronger in the Simon task (M = 0.037,
SE = 0.004) than in the flanker task (M = 0.013, SE = 0.003).

There were no further significant differences, especially, as
expected, for response bias. Considering the absolute peak
times6 for the interference effect of the Simon task (M =
0.253 s) and the flanker task (M = 0.367 s) shows that the
difference between these peaks shows a similar magnitude to
the interference effect in RT itself and hence was of substantial
magnitude.

Finally, we checked for correlations between the mouse
parameters and RT indicators with (Bonferroni-corrected al-
pha level = 0.0056, see Table 6).

The only significant correlation was present for the peak
time of interference. The later the peak time of this interfer-
ence, the larger the interference effect in RT.7

Discussion

Study two found the expected later peak of interference in the
flanker task compared to the Simon task. As theoretically
derived above, this indicates that interference in the flanker
task can be attributed to a slower sub-process than interference
in the Simon task: In the flanker task, interference is caused by
parallel competing processing of semantic information (e.g.,
the direction of arrows in the flanker and the target stimuli) –
hence, processing of irrelevant information and correct infor-
mation competes simultaneously and shows a strong overlap
during selection of the final response. In contrast, in the Simon
task, interference is caused by an early and presumably auto-
matic activation of the stimulus’ position, which then decays
and shows only minimal overlap with the selection of the final
response by processing semantic stimulus information (the
direction of the arrow). Notably, the overall strength of

Fig. 10 Response time (RT) effects in the Simon and the flanker tasks. Left: The benefit of response repetitions. Middle: RT slowed by interfering
irrelevant information. Right: Modulation of interference by congruency sequence
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influence by irrelevant semantic information was actually
weaker in the flanker task than the strength of influence by
the automatic location activation in the Simon task. This find-
ing in mouse movements is important because we also found a
difference in interference between tasks in RT. However, this
difference alone might have led to the opposite conclusion,
since RT indicated a stronger interference in the flanker task
than in the Simon task. Considering the mouse movement
results, it is not valid to interpret the RT difference as a differ-
ence in strength of influence of irrelevant information. It
should instead be interpreted as a difference in the overlap of

the two interfering processes (irrelevant information and rele-
vant information). This overlap was larger for the flanker task
(later peak) than for the Simon task (earlier peak).
Corroborating evidence for this interpretation comes from cor-
relating RT and dynamic markers, which indicates that the
stronger interference effect in RT for the flanker task is related
to the later peak time of the interference. This was further
underlined by a lack of correlation between the interference
effect in RTand the peak strength of this influence. Hence, it is
not the strength of influence of irrelevant information that
causes the difference in RT between the Simon task and the

Fig. 11 A and B: Time-continuous beta-weights from time-continuous
multiple regression for the Simon task (A) and the flanker task (B). Lines
above graphsmark significant segments determined by t-test against zero.
Curve peaks were determined by a jack-knifing procedure. C and D:

Reconstructed beta-weights from the Gaussian fitting procedure for the
Simon task (C) and the flanker task (D). Lines above graphs indicate the
area of 1 SD around the peak of the fitted Gauss curve. In all graphs,
shaded areas indicate the standard error of the mean

Table 4 Results of peak detection via jack-knifing and of Gaussian fitting of beta-weights for the Simon and the flanker tasks

Beta Jack-knifed peaks Parameters from Gaussian fitting

Peak time (SE) Peak strength (SE) Peak time (SE) Peak strength (SE) Duration(SE) R2 (SE)

Simon response bias 1 (0) 0.029 (0.012) 6.327 (1.199) 0.024 (0.013) 15.718 (0.82) 0.869 (0.047)

interference 44.5 (2.169) 0.185 (0.012) 43.547 (0.778) 0.208 (0.011) 9.439 (0.164) 0.958 (0.005)

congruency sequence 52 (0) 0.034 (0.004) 50.369 (0.847) 0.037 (0.004) 8.32 (0.283) 0.888 (0.024)

Flanker response bias 1.6 (3.995) 0.043 (0.012) 4.751 (1.908) 0.044 (0.014) 16.135 (1.225) 0.8 (0.065)

interference 54.9 (1.308) 0.138 (0.012) 53.833 (0.75) 0.159 (0.011) 8.215 (0.166) 0.933 (0.008)

congruencysequence 45.15 (1.556) 0.012 (0.003) 45.653 (1.086) 0.013 (0.003) 8.805 (0.625) 0.712 (0.041)
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flanker task, but the timing of when the irrelevant information
is processed.

General discussion

The aim of the current work was to show the potential of
extracting individual dynamic parameters that describe the
temporal patterns of sub-processes in decision making as they
are reflected in mouse movements of participants.

We showed that the extracted parameters from a Simon
task (Scherbaum et al., 2010) yield promising reliability for

the peak time and peak strength of two sub-processes, i.e., the
influence of the previous response of the irrelevant location
information. In comparison, we found similar levels of reli-
ability for the respective RT markers, though with a trend to
slightly lower values. However, for the third sub-process, con-
flict adaptation, we found surprisingly low levels of reliability
for mouse parameters, and even worse levels for the RT mark-
er. This finding is startling, as conflict adaptation is one of the
hallmarks of cognitive control processes and could be expect-
ed to show stable inter-individual differences. However, this
observation adds to recent findings of low reliability for con-
flict adaptation (Feldman & Freitas, 2016) and suggests a
heightened level of caution when studying inter-individual
differences of this sub-process.

We used the validated parameters to compare the cognitive
processes of the Simon task and the flanker task. In RT, we
found stronger interference effects in the flanker task than in
the Simon task, which might have suggested that the flanker
task triggers stronger interference than the Simon task.

Fig. 12 Spread of parameters from Gaussian fitting for the three betas from TCMR, for the flanker task (left) and the Simon task (right)

Table 5 Independent samples t-tests on mouse parameters

t df p d

Response bias peak time -0.729 38.00 0.471*1 -0.23

Response bias duration 0.282 38.00 0.779 0.089

Response bias peak strength 1.041 38.00 0.304 0.329

Interference peak time 9.523 38.00 < .001 3.011

Interference duration -5.258 38.00 < .001 -1.663

Interference peak strength -3.02 38.00 0.004 -0.955

Cong. Seq. Peak time -3.423 38.00 0.001 -1.082

Cong. Seq. Duration 0.707 38.00 0.484*2 0.224

Cong. Seq. Peak strength -4.819 38.00 < .001 -1.524

*1 Levene's test is significant (p < .05), suggesting a violation of the equal
variance assumption. Welch's t-test yielded p = 0.472
*2 Levene's test is significant (p < .05), suggesting a violation of the equal
variance assumption. Welch's t-test yielded p = 0.485

Table 6 Correlation of response time (RT) indicators and mouse pa-
rameters (Bonferroni-corrected alpha level = 0.0056)

Peak time Peak SD Peak strength

r p r p r p

Response bias .084 .605 .011 .948 .321 .043

Interference .481 .002 .231 .151 .032 .843

Congruency sequence .286 .074 .332 .036 .312 .050
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However, analysis of the dynamic parameters showed that
the strength of interference is larger in the Simon task than in
the flanker task, while the peak time of interference is earlier
in the Simon task than in the flanker task. The latter could
lead to a stronger overlap of the interference influence and
response selection and, in turn, lead to the interference ef-
fects that we found for RT in the flanker task (Hommel,
1994; Ridderinkhof, van den Wildenberg, Wijnen, & Burle,
2004). Correlation analysis bolstered this interpretation that
stronger interference effects in RT are not caused by a gen-
erally stronger peak of the interference influence, but by a
larger overlap of the interference influence and the response
selection process. This indicates that the analysis of temporal
dynamics of sub-processes with mouse tracking can provide
additional, and even correcting, information to a pure analy-
sis of mean RT or static markers of performance in mouse
tracking and motion tracking (Buetti & Kerzel, 2008, 2009).
It is noteworthy that mouse tracking is not the only approach
that could unveil this information. Properties of and differ-
ences between conflict tasks can also be inferred via distri-
bution analyses of RT (e.g., Ridderinkhof, 2002;
Ridderinkhof et al., 2004) and physiological measures, for
example, the lateralized readiness potential in the EEG (e.g.,
Stürmer et al., 2002) and subtle muscle movements in EMG
(Burle, Possamaï, Vidal, Bonnet, & Hasbroucq, 2002).
Mouse tracking and the TCMR method fill a gap here in
the sense that distribution analysis on the one hand provides
a simple but indirect inference of the process from static
behavioral markers, and measuring EEG on the other hand
provides a methodologically complex though more direct (at
least in the case of the lateralized readiness potential) infer-
ence from a process-oriented measure. Mouse tracking to-
gether with TCMR allows for combining the simplicity of
a behavioral measure with the process orientation of physio-
logical measures. It goes without saying that the TCMR
method, or more general multiple-regression approaches,
could be applied to almost any time-continuous signal and
thus also to physiological signals (e.g., Cohen & Cavanagh,
2011; Cohen & Donner, 2013) to gain more information
from these signals.

While we and others have shown this gain of information
for mouse tracking in principle in previous studies
(Dshemuchadse et al., 2012; Frisch, Dshemuchadse, Görner,
Goschke, & Scherbaum, 2015; Scherbaum et al., 2016, 2015;
Sullivan et al., 2015), the gain of the method provided here –
TCMR with Gaussian fitting – is the possibility of an
inference-statistical analysis of all extracted parameters rather
than the descriptive approach that is usually applied. Hence,
the promise of mouse tracking and process tracing in general –
an extensive study of the dynamics of cognitive process – is
more in reach with the method presented here.

Some limitations concerning the approach presented here
need to be considered.

First, it is worth mentioning two approaches that could
be seen as a complement to the approach presented here:
the analysis of decision spaces (O’Hora, Dale, Piiroinen,
& Connolly, 2013) and the analysis of trajectory proto-
types (Wulff, Haslbeck, & Schulte-Mecklenbeck, in prep-
aration). In the first approach, one derives attractor land-
scapes from the recorded mouse movements and compares
the landscapes across participants or conditions. This ap-
proach is visually intuitive and nicely summarizes the in-
formation hidden in mouse movements. Though it lacks
the possibility to extract individual parameters, it provides
a complement to the detailed analysis of temporal patterns
of different influences/sub-process as provided by the
method presented here. In the second approach, individual
mouse movements are clustered into prototypes to detect
whether these movements reflect a continuous decision
process (a smooth though deflected movement to a re-
sponse box) or a discontinuous and presumably step-
wise decision process (a disrupted or cornered movement,
first to one response box and then to the alternative one).
Though this approach considers the whole trajectory, it
does not target the temporal dynamics of sub-processes,
but is more a method to ensure that mouse movements
represent the processes that they are assumed to represent
(continuous decision processes). Hence, it represents a
methodological complement to our approach that could
ensure construct validity especially when the mouse-
tracking setup might favor discontinuous processes
(Grage, Schoemann, Kieslich, & Scherbaum, under
review; Scherbaum & Kieslich, 2018; Schoemann,
Lüken, Grage, Kieslich, & Scherbaum, in press).

Second, the fitted Gauss curves do not fully represent the
shape of the extracted beta-weights. The positive peaks of the
beta-weights are most often followed by a negative counter-
part. We did not consider fitting this part, since it reflects a
necessary compensatory movement triggered by the initial
(positive) peak, that is, because the start and end point of the
movements is fixed by the coordinates of the start box and the
response box on the screen. Hence, when an influence leads
the movement to divert from its path, this diversion must be
compensated for later in the movement so that the cursor fi-
nally arrives within the target area. Based on this logic and on
our experience, this later part of the movement bears no fur-
ther information about the specific regressors’ influence com-
pared to the initial main component.

Third, one might ask why we performed single regression
analysis for each individual in contrast to a hierarchical model
analysis. We have shown several times that hierarchical model
analysis provides nearly identical information on the
participant-level (Scherbaum et al., 2016; Scherbaum &
Kieslich, 2018). Simple regression analysis is a basic tool that
could be used and understood by most social scientists and its
implementation in Matlab is straightforward. Considering this
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simplicity and the comparability of the results, we decided in
favor of the simpler method in our toolbox.

Fourth, the extensive study of temporal patterns hidden in
mouse movements poses prerequisites on the quality of the
acquired data, that is, the homogeneity and continuity of
movements (Schoemann et al., in press). This quality might
depend on many parameters, of which the starting condition
is one parameter (Scherbaum & Kieslich, 2018). While many
studies use a dynamic starting procedure to encourage par-
ticipants to move consistently, such a procedure is not appli-
cable to all areas of study, for example when the stimuli are
too complex for a swift decision (e.g. Kieslich & Hilbig,
2014). In such setups, certain modifications of the task might
be required, for example, sequential presentation of informa-
tion (Dshemuchadse et al., 2012). Hence, researchers should
investigate their data for movement consistency and low
movement initiation times to warrant homogeneous data for
the analysis of temporal patterns (Scherbaum & Kieslich,
2018).

Fifth, one might ask whether comparing data from two
separate samples in Study 2 provides reliable support that
the found differences on the congruency effect stem from
the differences in the tasks and not from differences in sam-
ples. Though we ensured that instructions and setups were
completely comparable, the two different samples might still
show intrinsic differences. Because of these potential intrinsic
differences, it was of utter importance that the predictor re-
sponse bias showed no difference between the two groups,
since this predictor does not represent a stimulus-driven influ-
ence, but should solely represent participants’ intrinsic tenden-
cy to repeat their response. The missing difference here hence
indicates that the samples were as comparable as possible.

Sixth, and finally, the analyses described here need pro-
gramming skills to be performed. To ease the use of the meth-
od, we provide a toolbox of Matlab functions for
downloading. We provide the commented functions and a
demonstration script that uses a subset of the data from our
Simon task study (Scherbaum et al., 2011), allowing users to
learn and explore the method. While our Matlab toolbox is
currently the only toolbox offering TCMR, users interested in
analyzing mouse movements in general might also refer to
alternative open source packages, for example, mouse trap
(Kieslich et al., 2017), especially when they prefer the use of
R over Matlab.

We hope that the results presented here and the toolbox
provided for downloading encourage researchers to enter the
study of the temporal dynamics of cognitive sub-process as
reflected in mouse movements. While we used cognitive con-
trol as an example, the wide range of existing mouse studies,
for example, about semantic processing (Dale et al., 2007;
Dshemuchadse, Grage, & Scherbaum, 2015; Spivey et al.,
2005), value-based decision making (Dshemuchadse et al.,
2012; Koop & Johnson, 2013), and moral decision making

(Kieslich & Hilbig, 2014), suggests that the presented method
could shed light on the processes in many other areas.

Studying processes this way could not only provide more
information in empirical studies; recent advances in cognitive
modelling ask for more and more data to allow for better
model fitting (Turner, Rodriguez, Norcia, McClure, &
Steyvers, 2016). The extraction of individual dynamic param-
eters from mouse tracking and motion tracking in general
might provide a way to go beyond qualitative model compar-
isons (Dshemuchadse et al., 2015; Frisch et al., 2015;
Scherbaum et al., 2016) and could be a simple and efficient
addition to the pool of data one can fit a model on. Hence,
methods for a deeper analysis of mouse movements as pre-
sented here allow researchers to use data that have often been
ignored before: the way from the start to the end of a decision.

Notes

1. We use the term beta-weight in the following to denote the
weights/slopes in linear regression models of the form y =
α + βx.

2. We will, of course, check this assumption in our data, see
results of Study 1 and Fig. 7.

3. The movement angle reflects the instantaneous tendency
of the movement more precisely as it integrates the move-
ment on the X/Y plane into a single measure. Other po-
tential measures, e.g., the movement on the X-axis, only
represent the cumulative previous instantaneous tenden-
cies. While such a cumulative measure yields less noise, it
shows a time lag for when exactly an influence affected
the movement and, hence, we prefer the instantaneous
measure of the movement angle.

4. We apply temporal smoothing for two reasons (similar to
spatial smoothing in fMRI analysis; e.g., Mikl et al.,
2008): First, it increases the signal-to-noise ratio. Since
the movement angle is a differential measure, it shows a
higher level of noise than raw movement data; this noise
is reduced by smoothing. Second, smoothing improves
the validity of statistical tests since it makes error distri-
butions more normal.

5. Jack-knifing represents one of several possible resam-
pling methods: for each dataset d in a group of n datasets,
the jack-knife produces a new mean dataset consisting of
all datasets in the group, except dataset d. Hence, for
dataset 1, the method creates a mean dataset averaging
across the data in datasets (2, 3, …, n). For dataset 2, it
creates a mean dataset averaging across the data in
datasets (1, 3, 4,…, n). While this reduces the noise oc-
curring in time-series data, e.g., LRP data, it also reduces
the degrees of freedom. Hence, for statistical testing, test
parameters have to be adjusted (for further details, see
Miller, Patterson, & Ulrich, 2001).

Mem Cogn (2020) 48:436–454452



6. Absolute peak time (APT) denotes a derived temporal
measure that is calculated by applying relative peak times
in time slices ts (e.g., time slice 43 of 100) to mean RT of
the respective task (RTtask): The formula hence is:

APT ¼ ts=100*RTtask

7. With a sample size of 40 subjects, the correlational results
should be taken with care. However, taking the full pattern
of correlational results together with a post hoc power
analysis (Faul, Erdfelder, Lang, & Buchner, 2007) for
the effect of peak time in interference (r = 0.481, alpha
= 0.0058) yielding a power of 0.75, indicates that the
results could be interpreted in favor of the overall
interpretation.
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