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Abstract
Success in the physical and social worlds often requires knowledge of population size. However, many populations cannot be
observed in their entirety, making direct assessment of their size difficult, if not impossible. Nevertheless, an unobservable
population size can be inferred from observable samples. We measured people’s ability to make such inferences and their
confidence in these inferences. Contrary to past work suggesting insensitivity to sample size and failures in statistical reasoning,
inferences of populations size were accurate—but only when observable samples indicated a large underlying population. When
observable samples indicated a small underlying population, inferences were systematically biased. This error, which cannot be
attributed to a heuristics account, was compounded by a metacognitive failure: Confidence was highest when accuracy was at its
worst. This dissociation between accuracy and confidence was confirmed by a manipulation that shifted the magnitude and
variability of people’s inferences without impacting their confidence. Together, these results (a) highlight the mental acuity and
limits of a fundamental human judgment and (b) demonstrate an inverse relationship between cognition and metacognition.
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The number of objects in a set has implications for a wide
range of human endeavors. The number of goods in a windfall
affects whether they can be allocated equitably or efficiently
(Blake & McAuliffe, 2011). The number of people in a group
predicts judgments of warmth and competence (Cao&Banaji,
2017) and decisions about whether to engage in physical con-
flict (Pietraszeswki & Shaw, 2015). Given the influence of
discrete quantity, it is important to assess people’s cognitive
ability to estimate set size and people’s metacognitive ability
to know their own limits and flexibilities.

While past work has examined problems where the entire
set is visible (Le Corre & Carey, 2007; Libertus, Feigenson, &
Halberda, 2011), we focus on problems where it is difficult or
impossible to view the entire set. This latter type of problem is
ecologically common, for the simple reason that one’s visual
field is limited, but the physical world is vast and includes
many ways of rendering sets of objects unobservable: They

can be hidden, dispersed, or occluded. Consider, for example,
how many people live on your block, how many taxis operate
in your city, or how many bicycles are on campus. Each of us
has intuitions about these set sizes (i.e., populations) even
though only subsets (i.e., samples) have been encountered.
How accurate are these intuitions? And to what extent does
confidence track these intuitions?

Answering the first question about accuracy requires a nor-
mative model against which human judgments can be com-
pared. Johannes Petersen, a 19th-century marine biologist,
laid the foundations of this model when estimating the number
of fish in a fjord. Petersen (1896) accomplished this by taking
a random sample of fish at Time 1, marking them (e.g., by
tagging their fins), and releasing them back into the fjord. At
Time 2, he took another random sample and counted the num-
ber of fish that were resampled.

The intuition behind this method is that the number of
resampled fish—the overlap between Samples 1 and 2—is
indicative of the total number of fish in the fjord. If the overlap
is small, there are likely many fish in the fjord. But if the
overlap is large, there are likely few fish in the fjord. The
idiom “it’s a small world” is commonly expressed when an
individual is encountered again; the “small world” references
the small population size that explains the reencountering of
the same individual.

This intuition is formalized in Bayes’s rule, allowing precise
inferences of population sizeN to be made based on the sizes of
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the two random samples, s1 and s2, and the overlap, o, between
them (see Supplemental Materials for technical details):

P N j s1; s2; oð Þ∝P o j N ; s1; s2ð Þ � P Nð Þ:

Ecologists have successfully applied this model to study-
ing, for example, the sizes of animal populations (Seber,
1982). In addition to usage by experts, a version of this model
may also be used by laypeople who are in situations where the
size of a population can be inferred based on the overlap
between two observable samples. After all, many populations
cannot be directly observed, but samples are frequently ob-
served. Furthermore, recall and recognition memory enables
the overlap between samples to be noticed (Tulving, 1999).

But unlike experts, laypeople may be unable to make ac-
curate inferences. Computing P(N | s1, s2, o) requires sensitiv-
ity to sample size, which people appear to lack, as they inad-
equately weigh sample size when it is presented alongside
information such as mean, variance, and qualitative text.
This insensitivity has been demonstrated among college stu-
dents in lab studies (Obrecht, Chapman, & Gelman, 2007),
prospective jurors making hypothetical decisions (Ubel,
Jepson, & Baron, 2001), and consumers reading online prod-
uct reviews (De Langhe, Fernbach, & Lichtenstein, 2016).
Given this insensitivity to sample size, it would seem that
people would fall short in a task that requires them to make
a population size inference based on random samples.

Furthermore, sample size insensitivity is among the many
cognitive errors documented by Tversky and Kahneman
(1974). Laypeople mistakenly believe that extreme heights
are equally likely to be observed in a sample of 1,000 individ-
uals as they are in samples of 100 or even 10 individuals.
Similarly, sample size is ignored when people judge that
smaller and larger hospitals are equally likely to record an
extreme gender imbalance among newborn babies. Both of
these cases demonstrate that people do not consider the statis-
tical fact that extreme outcomes are more likely in smaller
samples. This failure is reason to suspect that people’s ability
to use samples to infer a population size is compromised.

In the aforementioned cases, people fall prey to the represen-
tativeness heuristic, which undercuts the computation of simpler
conditional probabilities like P(cancer | positive mammogram)
(Kahneman & Tversky, 1972). Here, human error has been ob-
served where there are just two hypotheses and one piece of data
(i.e., whether someone does or does not have breast cancer given
a positive mammogram). By contrast, P(N | s1, s2, o) is more
complex: It involves a theoretically unbounded number of hy-
potheses and three pieces of data (the size of the first sample, the
size of the second sample, the overlap between the two samples).
Given these complexities and the comparatively straightforward
nature of tasks where people have been shown to fail, it seems
unlikely that people can accurately infer the size of an unobserv-
able population from observable samples.

In addition to gauging the accuracy of people’s inferences,
we also measure people’s confidence in their inferences to
assess metacognition. Deficiencies in metacognition typically
manifest as overconfidence. Physicians are confident in diag-
noses that turn out to be incorrect (Christensen-Szalanski &
Bushyhead, 1981). Students are confident in exam score pre-
dictions that are too high compared with the scores they actu-
ally receive (Clayson, 2005). And, as many readers can attest,
people are confident that they will finish their work sooner
than they actually do (Buehler, Griffin, & Ross, 1994).

Unlike past research where a single, verifiable truth (e.g.,
the actual diagnosis, exam score, completion date) was com-
pared with confidence ratings, the current experiments rely on
group-level distributions of population estimates because no
single estimate is correct per se. Rather, a distribution of esti-
mates represents accuracy (see Fig. 1 for further details). In the
forthcoming experiments, the overlap between random sam-
ples is parametrically manipulated, resulting in variability in
accuracy, as measured by the fit, or lack thereof, between
theoretically expected distributions and observed distributions
produced by participants. Insofar as confidence is highest
when accuracy is likewise highest and lowest when accuracy
is lowest, metacognition would bewell calibrated. However, if
confidence is highest where accuracy is lowest, then people
would be overconfident in their ability to infer the size of an
unobservable population from observable samples.

Experiment 1

Method

Participants Data were collected in two independent rounds
on AmazonMechanical Turk. A total of 424 participants were
recruited in the first round to demonstrate the effects. A further
1,262 participants were recruited in the second round to estab-
lish replicability and generalizability. Given how similar the
results are, data from both rounds are presented together.
Across both rounds of data collection, 78 participants did
not finish the procedure; 81 participants were excluded for
providing population size estimates that were less than the
logical minimum (see footnote 1). The final sample consisted
of 1,527 participants (Mage = 34.73 years, SDage = 11.21 years;
819 females, 701 males, seven unspecified).

Procedure In the first round of data collection, participants
estimated the number of marbles in an urn by using informa-
tion limited to the sizes two random samples and the overlap
between them. The first sample, s1, was always 10 marbles.
The second sample, s2, was always 5 marbles. The overlap, o,
was manipulated between subjects to be 0 out of 5 marbles
(denoted as 0/5) or 4 out of 5 marbles (denoted as 4/5).
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Since computing P(N | s1, s2, o) requires a prior over pop-
ulation size, N, the maximum number of marbles needed to be
specified. This value, Nmax, was manipulated between sub-
jects to be 50 or 100 marbles. A uniform prior over N was
established by informing participants that they could not hear
any of the marbles move as samples were taken (see Table 1).
Although any shaped prior is possible in principle, a uniform
prior is justified because the scenario participants read (see
Table 1) gave no indication of what a likely or unlikely pop-
ulation size was. Under these conditions of uncertainty, a uni-
form prior is appropriate.

After providing their population estimates, participants
expressed how confident they were in their estimates (1 = not
at all confident to 5 = extremely confident). Lastly, participants
provided self-perceptions of numeracy by indicating their level
of agreement with four statements (e.g., I feel confident in by
ability to solve statistical problems; 1 = strongly disagree to 5 =
strongly agree; see Supplemental Materials for all stimuli).

The second round of data collection was the same as the
first round, except for two differences. First, the type of object
was manipulated between subjects to be marbles (direct

replication), spoons (conceptual replication), or bottle caps
(conceptual replication). Second, participants did not provide
self-perceptions of numeracy.

The values for Nmax (50 and 100) and overlap (0/5 and 4/5)
were adapted from Lee and Wagenmakers (2013, pp. 75–76)
because these values lead to different theoretical distributions
when the overlap is 0/5, but similar distributions when the
overlap is 4/5 (see Fig. 1). When the overlap is 0/5, the total
number of objects can range from 15 (s1 + s2 − o = 10 + 5 − 0 =
15) to Nmax.

1 A uniform prior over this range is updated to
favor larger population sizes. Thus, the largest possible popu-
lation size, Nmax, matters a great deal.

However, when the overlap is 4/5, the total number of
objects can range from 11 (s1 + s2 − o = 10 + 5 − 4 = 11) to
Nmax. A uniform prior over this range is updated to favor
smaller population sizes. Because the smallest possible

1 Fifteen (s1 + s2 − o = 10 + 5 − 0 = 15) is the logical minimum number of
objects in the population when s1 is 10, s2 is 5, and o is 0/5. Thus, any
population size estimates that fall below this value are invalid. In the
Supplemental Materials, analyses show that including these participants does
not change the findings.

max = 50, Overlap = 0/5 max = 50, Overlap = 4/5

max = 100, Overlap = 0/5 max = 100, Overlap = 4/5

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

0.0%

5.0%

10.0%

15.0%

0.0%

5.0%

10.0%

15.0%

P
ro

ba
bi

lit
y

Uniform Prior
Theoretical Posterior

Fig. 1 Uniform prior distributions and theoretical posterior distributions.
Theoretical posterior distributions result from 150,000 Markov chain
Monte Carlo (MCMC) samples per cell. When the overlap is 0/5, there

is a substantial effect of Nmax, resulting in different posterior distributions
(left column). But when the overlap is 4/5, the effect of Nmax is minimal,
resulting in similar posterior distributions (right column)
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population size is the same irrespective of whether Nmax is 50
or 100, Nmax hardly matters at all.

Results

To assess the accuracy of people’s inferences, we com-
pared theoretical and observed distributions. Across all
conditions, including replications, there was a qualitative
match between the two distributions (see probability mass
functions, PMFs, in Figs. S1–S4 in the Supplemental
Materials). When the overlap was 0/5, estimates were left
skewed, as participants tended to provide higher estimates
closer to Nmax. When the overlap was 4/5, estimates were
right skewed, as participants tended to provide lower esti-
mates irrespective of Nmax.

There are two challenges to quantifying the difference
between theoretical versus observed distributions. The first
is the disparity in samples sizes: 150,000 Markov chain
Monte Carlo (MCMC) samples for each theoretical

distribution versus an average of 95 participants in each
observed distribution. The second is that participants
tended to provide round numbers as estimates.

To overcome these challenges, the following steps were
taken. First, each observed PMF was converted to a cumu-
lative density function (CDF). Then, samples of size 95—
the average number of participants in each condition—
were randomly drawn from the theoretical distributions.
There were 1,000 of these distributions drawn in each con-
dition and converted to CDFs to form de facto null hypoth-
eses. Insofar as observed CDFs fall within the bootstrapped
theoretical CDFs, people’s estimates would be accurate.
Calculating the absolute difference in area under the curve
(AUC) between the observed CDF and each theoretical
CDF enables precise quantification. The average of these
absolute differences, MΔAUC, indexes the degree to
which each observed distribution differs from the theoret-
ical distribution, with zero indicating no difference and
higher values indicating greater deviation.

When the overlap between sampleswas 0/5, indicating a large
population, inferences were quite accurate. Observed CDFs re-
sembled the corresponding theoretical CDFs, as shown by small
average AUC differences, both when Nmax was 100 (see Fig. 2a;
MΔAUC ranged from 1.62 to 7.12; see Table 2) and when Nmax

was 50 (see Fig. 2c;MΔAUC ranged from 1.59 to 3.49).
However, when the overlap between samples was 4/5, in-

dicating a small population, participant’s inferences erred in
the direction of overestimation. Observed CDFs deviated
from corresponding theoretical CDFs, as shown by high av-
erage AUC differences, both whenNmax was 100 (see Fig. 2b;
MΔAUC ranged from 11.42 to 16.76) and when Nmax was 50
(see Fig. 2d; MΔAUC ranged from 2.71 to 8.64). These de-
viations indicate that a higher than expected proportion of
participants gave high population size estimates, a result that
is also visually apparent in the thicker right tails of the corre-
sponding PMFs in Figs. S1–S4 in the Supplemental Materials.

After inferring the population size, participants rated how
confident they were in their inferences. If confidence ratings
tracked accuracy, then participants would have been more con-
fident when the overlap was 0/5 than when the overlap was 4/5.
However, no main effect of overlap was observed when confi-
dence was regressed on the three-way interaction between
Nmax, overlap, object type, F(1, 1511) = 1.24, p = .27, η2p =

0.0008.2 Despite differences in accuracy that depended on the
overlap between observable samples, participants expressed
similar confidence ratings across all conditions (see Fig. S5 in
the Supplemental Materials). In Experiment 2, the overlap be-
tween the two samples was parametrically manipulated to

2 Statistical tests are abbreviated and reported in accordance with guidelines of
the Publication Manual of the American Psychological Association (6th ed.).
For additional effects, please refer to data and code posted on OSF (osf.io/
g7v3f/).

Table 1 Experiment 1, first and second rounds of data collection, marbles
condition. Stimuli presented to participants. Inside the square brackets are
the between-subjects manipulations. In the second round of data collection,
the object type was changed to “bottle caps in a box” or “spoons in a box”

As you read the scenario below, imagine yourself playing the game
that’s described.

Imagine you’re at a state fair where there are many games to play. One
game in particular catches your eye. It’s called, “Guess the Number of
Marbles.” You approach the person in charge of the game and ask him
how the game works. He shows you an urn and tells you the following
information, all of which is true:
• Inside the urn, there are an unknown number of marbles. Nothing else
is inside the urn.
• All the marbles are identical, and they’re all white in color. There are
no markings on any of the marbles.
• At most, there are 50 [100] marbles inside the urn.

You can’t see through the urn, so aside from picking a random number
between 1 and 50 [100], there’s no way for you to guess how many
marbles there are. You raise this objection, so the person in charge of
the game offers you some help. But first, he asks you to put on pair of
noise-canceling headphones so that you can’t hear the marbles move
inside the urn, which could give you an idea of how many marbles
there are. Intrigued you put on the headphones. You watch as the
person thoroughly mixes up all the marbles inside the urn. He then
randomly pulls out 10 marbles.

The person takes a red permanent marker and draws a large dot on every
one of the 10 marbles he pulled out. After the red ink on each marble is
completely dry, the person puts the 10 marbles back into the urn. Next,
the person thoroughly mixes up all the marbles once again and
randomly pulls out more marbles. This time, he pulls out 5 marbles. He
shows you these 5 marbles, and you see that none [4] of these 5
marbles have large red dots on them.

At this point, the person asks you to guess how many marbles there are
inside the urn.

How many marbles do you think are inside the urn? Please type in a
number below.

[Participant types in estimate here]
We’re interested in your intuitions. So don’t make any complicated

calculations or think too hard. Just put down when you think!
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assess accuracy and confidence across the full range of possible
overlaps between samples (i.e., from 0/5 through 5/5).

Experiment 2

Having shown that inferences were more accurate when the
overlap indicated a large population and less accurate when
the overlap indicated a small population, we sought to test the
full range of overlap values. On the one hand, inferences
might only be accurate when there is no overlap between
samples and erroneous otherwise. On the other hand, infer-
ences may be accurate across small and moderate overlap
values and err when the overlap is high. Testing the complete
range of overlap conditions would provide a fuller picture of
people’s cognitive and metacognitive abilities in this domain.

Method

Participants A total of 547 participants were recruited from
Amazon Mechanical Turk. Of those, 291 participants were
excluded for failing attention checks (see Supplemental
Materials for these checks).3 Another 75 participants were
excluded for providing one or more population size estimates
below the logical minimum. The final sample consisted of 181
participants (Mage = 39.26 years, SDage = 11.49 years; 95
females, 85 males, one unspecified).

3 Experiments 2 and 3 were conducted after summer 2018 when researchers
observed a drop in data quality from Amazon Mechanical Turk (Bai, 2018). To
guard against this concern, far more participants than necessarywere recruited and
stringent manipulation checks were included, resulting in the exclusion of many
data points from the analysis. Although Experiments 1 and 4 do not contain these
manipulation checks, this is not a concern because data quality was assessed in
accordance with Bai (2018) and the results are robust and replicate.

Theoretical

Observed, Marbles

Observed, Marbles Replication

Observed, Spoons

Observed, Bottle Caps

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100
N

C
um

ul
at

iv
e 

pe
rc

en
t

Nmax = 100, Overlap = 0/5a

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100
N

C
um

ul
at

iv
e 

pe
rc

en
t

Nmax = 100, Overlap = 4/5b

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100
N

C
um

ul
at

iv
e 

pe
rc

en
t

Nmax = 50, Overlap = 0/5c

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100
N

C
um

ul
at

iv
e 

pe
rc

en
t

Nmax = 50, Overlap = 4/5d

Fig. 2 Experiment 1. Theoretical versus observed cumulative density functions in each condition
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ProcedureAs in Experiment 1, participants estimated the num-
ber of marbles in an urn based on the sizes of two random

samples (s1 = 10; s2 = 5) and the overlap between them. Nmax

was manipulated between subjects to be 50 or 100. The overlap
was manipulated within subjects to range from 0/5 to 5/5. For
each overlap value, participants estimated the total population
size and gave a confidence rating in their estimate on a scale
from 0 (not at all confident) to 100 (extremely confident). Given
that participants rated their confidence for a total of six esti-
mates (overlap of 0/5 through 5/5), a more granular response
format was used instead of the coarser 1 to 5 format used in
Experiment 1. For each participant, the order in which the dif-
ferent overlap values were presented was randomized.

Results

Average estimates of population size decreased as the overlap
increased from 0/5 to 5/5, both when Nmax was 50 and 100 (see
Fig. S6 in the Supplemental Materials). This result indicate that
people were able to intuit the negative relationship between
population size and the overlap between random samples.
However, considerable variability in accuracy emerged when
theoretical versus observed distributions were compared.
Specifically, people were more accurate when the overlap was
small or moderate than when the overlap was large, in which
case the tendency was to overestimate the population size.

Table 2 Experiment 1, first and second rounds of data collection.
MΔAUC values for each condition

Nmax Overlap Object MΔAUC

100 0/5 Marbles 1.62

100 0/5 Marbles Replication 3.75

100 0/5 Spoons 7.12

100 0/5 Bottle Caps 2.89

100 4/5 Marbles 14.99

100 4/5 Marbles Replication 16.76

100 4/5 Spoons 11.42

100 4/5 Bottle Caps 14.15

50 0/5 Marbles 1.93

50 0/5 Marbles Replication 3.49

50 0/5 Spoons 2.72

50 0/5 Bottle Caps 1.59

50 4/5 Marbles 8.64

50 4/5 Marbles Replication 4.68

50 4/5 Spoons 2.71

50 4/5 Bottle Caps 7.63
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Fig. 3 Experiment 2. Theoretical versus observed cumulative density functions when Nmax was 50
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When Nmax was 50, observed distributions matched with
theoretical distributions for overlap values of 0/5, 1/5, 2/5, and
3/5 (MΔAUCvalues were relatively small, ranging from 1.03 to
3.14). However, observed distributions deviated from theoretical
distributions for overlap values of 4/5 (see Fig. 3; MΔAUC =
8.58) and 5/5 (MΔAUC = 6.57). Similar results emerged when
Nmax was 100 (see Fig. S7 in the Supplemental Materials).

If confidence tracked with accuracy, then participants would
have been more confident in their inferences when the overlap
was small to moderate and less confident when the overlap was
large. But to the contrary, participants expressed the greatest con-
fidence when the overlap was 5/5—when accuracywas at or near
its worst—and similar, lower levels of confidence when the over-
lap ranged from 0/5 to 4/5, when inferences were more accurate
(see Fig. 4). Upon fitting a mixed effects model where the inter-
action betweenNmax and overlapwas fixed and participant effects
were random, this dissociation between accuracy and confidence
emerged: Confidence in the 5/5 overlap conditionwas significant-
ly higher than confidence in all other overlap conditions [forNmax

of 50: bs <−5.62, SEs < 1.99, ts(895) <−2.83, ps < .005, rs > .09]
and [for Nmax of 100: bs < −7.98, SEs < 1.87, ts(895) < −4.27, ps
< .001, rs > .14].

Experiment 3

The results so far raise the question of why inferences are more
accurate when observable samples indicate a large population and
less accurate when observable samples indicate a small popula-
tion. One possible explanation is anchoring (Epley & Gilovich,
2006; Tversky & Kahneman, 1974). According to this heuristics
account, people anchored their estimates on Nmax (50 or 100,
depending on condition). As a salient and explicitly mentioned
possible population size,Nmaxwould produce the observed effects
if people used it as an anchor. Recall that small overlaps (e.g., 0/5)

indicate a large population, so anchoring on Nmax would enable
accurate inferences, which were observed in the previous exper-
iments. Further recall that large overlaps (e.g., 4/5) indicate a small
population, so anchoring on Nmax would reduce accuracy via
overestimation, which was also observed in the previous experi-
ments. Experiment 3 tested this heuristics account of the observed
effects.

Method

Participants A total of 1,704 participants were recruited from
Amazon Mechanical Turk. Of those, 547 participants were
excluded for failing attention checks (see Supplemental
Materials for these checks). The final sample consisted of
1,157 participants (Mage = 35.59 years, SDage = 11.75 years;
643 females, 503 males, 11 unspecified).

Procedure The same 2 (Nmax: 50 vs. 100) × 2 (overlap: 0/5 vs.
4/5) between-subjects design from Experiment 1 was adapted to
include an additional between-subjects factor, Nmin absent versus
Nmin present. The Nmin-absent conditions were identical to those
in Experiment 1: The small possible population size was not
explicitly mentioned, although it was computable (s1 + s2 − o).
By contrast, the Nmin-present conditions included an additional
sentence stating what the smallest possible population size could
be (see Supplemental Materials for stimuli).4

If people anchor their estimates on Nmax, then the presence
of Nmin should diminish this effect by rendering Nmax less
salient. In fact, people may instead anchor on Nmin due to its
intentional placement at the end of the vignette, right before
the dependent measure was taken. This heuristics account

max = 50 max = 100

0/5 1/5 2/5 3/5 4/5 5/5 0/5 1/5 2/5 3/5 4/5 5/5

Not at all confident = 0
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70

80

90

Extremely confident = 100

Overlap

Fig. 4 Experiment 2. Average confidence in population size inferences. Error bars are 95% confidence intervals. Violin plots show distributions in each
condition

4 Some readers may wonder about manipulating the presence versus absence
of Nmax in addition to Nmin. This manipulation would not be feasible because
computing the theoretical posterior distribution requires a bounded prior over
N, meaning Nmax must be specified.
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would therefore predict a main effect such that estimates of
population size are systematically lowered when Nmin is pres-
ent compared with when it is absent.

This systematic lowering, however, would have different
implications for an overlap of 0/5 versus 4/5. Recall that in
Experiments 1 and 2 where Nmin was absent, estimates were
largely accurate when the overlap was 0/5. A systematic low-
ering would result in underestimation. Also recall that in
Experiments 1 and 2 where Nmin was absent, estimates were
too high when the overlap was 4/5. A systematic lowering
would result in accuracy, or, at the very least, attenuated over-
estimation. Insofar as these predictions are supported, anchor-
ing would be a parsimonious account of how people infer the
size of an unobservable population from observable samples.

Results

The Nmin absent conditions replicated previous findings, further
underscoring the robustness of these effects. When the overlap
between samples was 0/5, participants were largely accurate in
their population size inferences. But when the overlap was 4/5,
participants tended to overestimate the population size.

The Nmin-present conditions partially support an anchoring
account, as assessed by regressing population size estimates
on the three-way interaction between Nmax, overlap, and the
presence versus absence of Nmin. For an overlap of 0/5, par-
ticipants underestimated the population size when Nmin was
present compared with when it was absent. This underestima-
tion occurred when Nmax was 100 (see Fig. 5a; M for Nmin

present = 55.88 vs.M for Nmin absent = 68.25; b = −12.37, SE
= 2.24), t(1149) = −5.52, p < .0001, r = .16. This underesti-
mation also occurred when Nmax was 50, though this effect
was smaller (see Fig. 5c;M for Nmin present = 34.19 vs.M for
Nmin absent = 37.89; b = −3.70, SE = 2.23), t(1149) = −1.66, p
= .10, r = .05. Observed CDFs in the Nmin-present conditions
were shifted to the left relative to observed CDFs in the Nmin-
absent conditions, leading to inaccurate inferences that fell
outside and to the left of the bounds of the bootstrapped the-
oretical CDFs.

Although the results from the 0/5 overlap conditions are
consistent with the anchoring account, the results from the 4/5
overlap conditions were not. Irrespective of whether Nmin was
absent or present, participants tended to overestimate the pop-
ulation size—both when Nmax was 100 (see Fig. 5b; M for
Nmin present = 29.69 vs. M for Nmin absent = 32.13; b =
−2.43, SE = 2.31), t(1149) = −1.05, p = .29, r = .03, and when
Nmax was 50 (see Fig. 5d;M forNmin present = 20.44 vs.M for
Nmin absent = 20.95; b = −0.52, SE = 2.27), t(1149) = −0.23, p
= .82, r = .007. Together, these findings indicate that anchor-
ing can explain greater accuracy when the overlap is small and
indicative of a large population. However, anchoring cannot
explain the tendency for people to overestimate when the
overlap is large and indicative of a smaller population.

Experiment 4

Previously, people expressed the most confidence in popula-
tion size inferences that were among the least accurate.
Experiment 4 further probed this dissociation between cogni-
tion and metacognition through a manipulation that would
affect one construct but not the other. Inspired by implicit
social cognition studies that establish a lack of association
by showing effects on explicit but not implicit measures
(e.g., Gregg, Seibt, & Banaji, 2006), Experiment 4 induced
priors over the population size to be high or low. If cognition
and metacognition are indeed dissociated, this manipulation
of priors would affect the magnitude and variability of peo-
ple’s inferences, but not people’s confidence in these
inferences.

The rationale is as follows. If the prior over population size
is low, meaning smaller estimates are initially more likely,
then average estimates should be lower compared with when
the prior is high, meaning larger estimates are initially more
likely. These different priors should also affect the variability
of participants’ estimates: estimate variability should be lower
when the prior and data are consistent relative to when the
prior and data are inconsistent. The prior and data are consis-
tent when (a) the prior is low and the overlap is large (e.g., 4/5)
because both components suggest a small population, or (b)
when the prior is high and the overlap is low (e.g., 0/5) be-
cause both components suggest a large population. In these
cases, uncertainty is reduced, which should result in lower
variability. Conversely, the prior and data are inconsistent
when (a) the prior is low and the overlap is low, or (b) when
the prior is high and the overlap is large. In these cases, un-
certainty is exacerbated, which should result in higher esti-
mate variability.

While the above results, if they emerge, would show an
impact on cognition, dissociated metacognition would be sup-
ported by participants expressing the same level of confidence
regardless of how much uncertainty is in the task, which is a
direct function of the consistency, or lack thereof, between the
prior and data. That is, if participants make population size
inferences that are in line with manipulated priors but express
the same confidence irrespective of whether the priors and
data are consistent, then dissociation would be further
supported.

Method

Participants A total of 1,306 participants were recruited from
Amazon Mechanical Turk. Of those, 92 participants did not
begin the procedure, six participants began the procedure but
did not finish, and 57 participants were excluded for providing
estimates below the logical minimum. The final sample
consisted of 1,151 participants (Mage = 36.26 years, SD =
12.01 years; 683 females, 465 males, three unspecified).
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Procedure The same 2 (Nmax: 50 vs. 100) × 2 (overlap: 0/5 vs.
4/5) between-subjects design from Experiment 1 was adapted
to include an additional between-subjects factor, low versus
uniform versus high prior. The uniform prior conditions were
identical to those in Experiment 1 and replicate previous re-
sults (see Fig. S8 in the Supplemental Materials). In the low
and high prior conditions, the prior over population size was
induced by telling participants that when the marbles were
randomly sampled, it sounded like there were few or many
marbles inside, respectively (see Supplemental Materials for
stimuli). After estimating the population size, participants rat-
ed how confident they were in their estimates (1 = not at all
confident to 5 = extremely confident). Lastly, participants com-
pleted a measure of probabilistic reasoning (delMas, Garfield,
Ooms, & Chance, 2007).

Results

As expected, average estimates were lower when the prior was
low and higher when the prior was high, as assessed by regres-
sion population size estimates on the three-way interaction be-
tween Nmax, overlap, and whether the prior was low vs. high
(see Fig. 6a). This pattern emerged when Nmax was 50 for an
overlap of 0/5 (MLow Prior = 29.39 vs. MHigh Prior = 40.24; b =
−10.85), t(1139) = −4.03, p = .0001, r = .12, and for an overlap
of 4/5 (MLow Prior = 19.48 vs. MHigh Prior = 26.25; b = −6.77),
t(1139) = −2.52, p = .01, r = .07. The same pattern also emerged
whenNmax was 100 for an overlap of 0/5 (MLow Prior = 46.67 vs.
MHigh Prior = 67.77; b = −21.10), t(1139) = −7.95, p < .0001, r =
.23, and an overlap of 4/5 (MLow Prior = 26.95 vs. MHigh Prior =
38.50; b = −11.55), t(1139) = −4.39, p < .0001, r = .13.
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Fig. 5 Experiment 3. Theoretical versus observed cumulative density functions in each condition
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Also as expected, estimate variability was lower when the
prior and overlap were consistent compared with when the
prior and overlap were inconsistent (see Fig. 6b), as assessed
by the Fligner–Killeen test of the null hypothesis of equal
variances (Conover, Johnson, & Johnson, 1981). This pattern
emerged when Nmax was 50. A low prior is inconsistent with
an overlap of 0/5 because the prior suggests a smaller popu-
lation while the overlap suggests a larger population. This
inconsistency resulted in descriptively, but not statistically,
greater variability relative to a high prior, which is consistent
with an overlap of 0/5 (VarLow Prior, 0/5 Overlap = 107.85 vs.

VarHigh Prior, 0/5 Overlap = 76.51), χ2(1) = 3.42, p = .06. A low
prior is consistent with an overlap of 4/5 because both the
prior and overlap suggest a smaller population. This consis-
tency resulted in lower variability relative to a high prior,
which is inconsistent with an overlap of 4/5 (VarLow Prior, 4/5

Overlap = 87.35 vs. VarHigh Prior, 4/5 Overlap = 159.21), χ2(1) =
14.67, p = .0001. Similar effects emerged when Nmax was 100
(see Supplemental Materials for inferential statistics).

Although different priors affected estimate magnitude and
variability, this manipulation hardly influenced how confident
participants were in their population size inferences.
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Regardless of whether the prior and overlap were consistent—
thereby reducing uncertainty—or whether the prior and over-
lap were in conflict—thereby exacerbating uncertainty—
participants expressed the similar levels of confidence (see
Fig. 6c). This pattern emerged when Nmax was 50. Despite
the difference in consistency between a low vs. high prior
and an overlap of 0/5, confidence ratings hardly differed
(MLow Prior, 0/5 Overlap = 2.15 vs. MHigh Prior, 0/5 Overlap= 2.18;
b = −0.03), t(1139) = −0.21, p = .84, r = .006. And despite the
difference in consistency between a low versus high prior and
an overlap of 4/5, confidence ratings once again hardly dif-
fered (MLow Prior, 4/5 Overlap = 2.41 vs. MHigh Prior, 4/5 Overlap =
2.14; b = 0.28), t(1139) = 2.01, p = .05, r = .06. The same
invariant level of confidence emerged when Nmax was 100
(see Supplemental Materials for inferential statistics).
Together, these data further support a dissociation between
people’s inferences of population size and people’s confidence
in these inferences.

General discussion

When inferring an unobservable population size from on ob-
servable samples, participants were largely accurate when the
overlap between samples indicated a large population. But
when this limited information was parametrically manipulated
to indicate a small population, participants erred by
overestimating the size of the population. Participants also
failed to recognize their success and limits: in Experiment 2,
where the complete range of overlap values was tested, con-
fidence was highest when accuracy was at or near its worst.
And as confirmed by the final experiment in which uncertain-
ty was manipulated, the cognitive ability to make inferences
about the size of an unobservable population is dissociated
from the metacognitive ability to assess these inferences.

Although the task participants completed is superficially a
math problem embedded in a hypothetical scenario, this task
captures the essence of common everyday experiences on two
levels. First, at a more specific level, resampling of objects
occurs spontaneously. Whether it is bumping into a colleague
at a café, driving past the same vehicle again, or noticing the
same neighborhood dog, samples are continually drawn and the
number of objects resampled provides information that is diag-
nostic of the underlying population size. Importantly, one key
difference between the experimental task and real-world set-
tings is that themaximum population size is rarely, if ever, made
explicit in the latter. In the current experiments this value,Nmax,
was necessary to compute the theoretical posterior. Although it
is possible in other contexts to compute the posterior without it
(Mukhopadhyay & De Silva, 2009), a direction that future
work should incorporate. Nonetheless, the current results indi-
cate how people may perform in more realistic settings—both
in terms of cognitive and metacognitive ability.

Second, at a more general level, people make rich, sophisti-
cated inferences that go beyond the data they receive.
Furthermore, these inferences are often remarkably flexible
and fast, sparking fruitful lines of research seeking to character-
ize this hallmark of human intelligence (Tenenbaum, Kemp,
Griffiths, & Goodman, 2011). Although imperfect, the infer-
ences made by participants were likewise rich, sophisticated,
and quickly performed over a wide range of scenarios. The data
collected here cannot formalize the process by which these in-
ferences were made, but these data are consistent with robust
evidence that, at some level, people’s inferences resemble
Bayesian prescriptions (Kersten, Mammassian, & Yuille, 2004).

However, resemblance between people’s inferences and
Bayesian prescriptions does not necessarily mean that the un-
derlying cognitive process is Bayesian. As shown in Experiment
3, people’s success in making population size inferences is, in
part, due to the anchoring heuristic. However, people’s failure—
as illustrated by overestimations—cannot be attributed to this
heuristic. Two points are noteworthy about these results. First,
although heuristics are often and justifiably discussed in the
context of errors and biases, researchers would be remiss to
ignore the fact that these mental shortcuts serve people well
under many circumstances. Inferring the size of a population
based on two samples with a small overlap appears to be one
of these circumstances, a possibility that dovetails with recent
research suggesting that when time and cognitive resources are
limited, reliance on the anchoring heuristic may, in fact, be ra-
tional (Lieder, Griffiths, Huys, & Goodman, 2018a, 2018b).
Secondly, these findings suggest that different mechanisms un-
derlie successful versus unsuccessful inferences. As parsimoni-
ous as it would be for a single mechanism to account for human
performance, the data instead indicate greater complexity.

So why might people display a tendency to overestimate
the size of an unobservable population when the overlap be-
tween samples indicates a small population? These overesti-
mations cannot be simply attributed to nonuniform priors that
favor large population sizes. Uniform priors resulted in close
fits between observed and theoretical distributions when the
overlap indicated a large population, and it is implausible that
a change in single value that is orthogonal to priors would
result in such a shift.

One possible explanation for this overestimation bias is
extremeness aversion, the tendency to prefer intermediate op-
tions to options at the extremes (Simonson & Tversky, 1992).
In the present studies, small estimates of Nmin were extreme
options that participants may have found unattractive.
However, estimates of Nmax, which is also an extreme option,
were common among participants, which is inconsistent with
this account.

An alternative is that small populations sizes are prone to
overestimation insofar as the surprise associated with resam-
pling the same objects interferes with subsequent mental com-
putations. The idiom “it’s a small world” can be thought of as

Mem Cogn (2020) 48:348–360358



an expression of surprise when the same objects are
resampled. Note, however, that there is no analogous idiom
for the absence of resampling. This asymmetry in surprise
might account for differences in performance, a possibility
that is consistent with copious evidence illustrating the influ-
ence of emotion on human judgment (Clark & Isen, 1982;
Clore, Schwarz, & Conway, 1993).

The current experiments are not without their limitations.
First, data were collected on AmazonMechanical Turk, which
allows for the recruiting of larger sample sizes, although po-
tentially at the cost of lower data quality. We note that in
Experiments 2 and 3, checks were included and participants
were excluded versus retained accordingly. Furthermore, ef-
fects obtained on AmazonMechanical Turk are comparable to
effects obtained in laboratory settings (Amir, Rand, & Gal,
2012). Another limitation is the lack of an inferential test for
comparing MΔAUC values across conditions. One-sample t
tests against zero could have been performed, but the results
would have been dependent on how many bootstrapped sam-
ples were drawn. Despite this limitation, the overall pattern is
clear: when the overlap between samples indicated a smaller
population size, participants tended to overestimate.

The presenting findings—which show variability in human
performance in inferring a hidden population size—raise the
question of how performance might be bolstered.
Interestingly, advanced training in or experience with statistics
may be of less benefit than one might think. Before any ex-
periments were conducted, the procedure was piloted on psy-
chology graduate students and postdocs. Their inferences re-
semble the inferences of less quantitatively sophisticated par-
ticipants on Amazon Mechanical Turk (see Fig. S9 in the
Supplemental Materials).

Furthermore, in Experiment 4 where probabilistic reasoning
ability was measured, participants who were higher and lower
in this ability, as defined by a median split, displayed similar
tendencies: Greater accuracy when the overlap indicated a larg-
er population but an overestimation bias when the overlap in-
dicated a smaller population (see Fig. S10 in the Supplemental
Materials). Finally, when individual differences in probabilistic
reasoning ability is operationalized continuously, these differ-
ences comprise a weak and inconsistent predictor estimate qual-
ity (see Figs. S11–S13 in the Supplemental Materials).

In addition to igniting future research about when and why
individual differences come into play, these findings may also
inspire investigation into how fundamental and early emerg-
ing these effects are. Work from developmental psychology
may be of note. Infants as young as 8 months have been
described as intuitive statisticians for making rational infer-
ences about a population from which a sample is drawn (Xu
& Garcia, 2008). Whether young children can make similarly
rational inferences based on the overlap between samples—
and avoid the overestimation bias documented here among
adults—remains to be seen.

Although adult inferences erred toward overestimationwhen
the overlap between samples indicated a small population, peo-
ple expressed relatively high levels of confidence in these in-
ferences. This disconnect between cognition and metacognition
dovetails with previous work showing overconfidence (Moore
& Healy, 2008). This metacognitive failure could prevent peo-
ple from adjusting unlikely estimates and maintaining likely
estimates, two key benefits of well-calibrated metacognition
(Metcalfe, 1996). This miscalibration can be costly. When con-
sequential decisions depend on accurate inferences of popula-
tion size, too much confidence can lead to suboptimal out-
comes. Knowledge of this miscalibration may be a first step
in countering its effects.
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