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Abstract
A vector-based model of discriminative learning is presented. It is demonstrated to learn association strengths identical to the
Rescorla–Wagner model under certain parameter settings (Rescorla & Wagner, 1972, Classical Conditioning II: Current
Research and Theory, 2, 64–99). For other parameter settings, it approximates the association strengths learned by the
Rescorla–Wagner model. I argue that the Rescorla–Wagner model has conceptual details that exclude it as an algorithmically
plausible model of learning. The vector learning model, however, does not suffer from the same conceptual issues. Finally, we
demonstrate that the vector learning model provides insight into how animals might learn the semantics of stimuli rather than just
their associations. Results for simulations of language processing experiments are reported.
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Discriminative learning accounts for a broad range of phe-
nomena in language learning and processing. This includes
changes in cognitive performance due to aging (Ramscar,
Hendrix, Shaoul, Milin, Baayen, 2014; Ramscar, Sun,
Hendrix, & Baayen, 2017), attention times in statistical learn-
ing paradigms (Baayen, Shaoul, Willits, & Ramscar, 2016),
and morphological, lexical, and n-gram processing effects
(Baayen, 2010; Baayen, Hendrix, & Ramscar, 2013;
Baayen, Milin, Đurđević, Hendrix, & Marelli, 2011; Shaoul,
Baayen, & Westbury, 2014). These findings are surprising
considering that the aforementioned work uses models from
a domain that has had little influence on modern language
research: animal learning.

Numerous animal models of discriminative learning have
been proposed (e.g., Courville, 2006; Gallistel & Gibbon,
2000; Pearce, 1994; Sutton & Barto, 1981; Wagner, 1981).
Within psychology, the most well-known of these is the
Rescorla–Wagner (R–W) model (Rescorla & Wagner, 1972).
The R–W model learns to predict outcomes from available
cues based on error correction. Formally, the R–Wupdate rule
is as follows:

If outcome i present : ΔVx;i ¼ αxβi λi−Vtot;i

� �
;

otherwise : ΔVx;i ¼ αxβi 0−Vtot;i

� �
;

ð1Þ

where λi denotes the maximum associability to Outcome i
(by convention, 1), Vtot,i denotes the summed association
strength to i of all cues present,ΔVx,i is the change in associ-
ation strength between Cue x and Outcome i, αx is a learning
rate parameter in range [0, 1] tied to Cue x (conceptually, its
salience), and βi is a learning rate parameter in range [0, 1]
tied to Outcome i (conceptually, its salience).

The R–W model updates association strengths between cues
and outcomes both in the case that a particular outcome is present
and in the case that it is absent. When observing the temporal
contingency between standing at a bus stop and a bus arriving,
the available cues—the bus terminal, other people standing
about, a particular time of day—become informative of the out-
come of a bus arriving. However, since you did not burn your
hand, someone did not serve you lunch, and a dog did not walk
past, association strengths between the available cues and those
nonoutcomes also need to be updated (towards λ = 0). Consider
that there are always far more possible outcomes that did not
occur, but which you have knowledge of, than outcomes that
did occur. Because of this, the R–Wmodel implies that the bulk
of computational effort involved in learning is directed toward
learning about nonoutcomes. It seems implausible that, effective-
ly, all of the computational work in learning is directed toward
explicitly updating knowledge about things that never happened.
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The conceptual issue of the R–W model—that far more
learning effort is directed toward outcomes that never hap-
pened than toward the outcome that did—brings with it a
computational burden. Researchers can reduce this computa-
tional burden by delimiting between outcomes that are rele-
vant and outcomes that are irrelevant. If a researcher is inter-
ested in studying learned associations between tones and food
under various patterns of association, the researcher need not
consider how the animal’s knowledge about the relationship
between tones and predators has been affected by the nonoc-
currence of those outcomes. If researchers are interested in
studying language learning, they can ignore all but linguistic
stimuli and linguistic outcomes. Doing so substantially de-
limits the space of possible outcomes, reducing the computa-
tional burden of the R–W model.

The problem is not so simple to address from an animal’s
perspective. Researchers have the luxury of knowing ahead of
time what they want to study and can thus delimit between
what is relevant and what is irrelevant, but the animal must
learn the boundary between relevant and irrelevant on its own.
It is unclear how that boundary could be learned if the animal
does not first start by considering all possible outcomes.
Learning to delimit between what is relevant and what is ir-
relevant is a nontrivial problem and bears resemblance to the
philosophical frame problem1: In a sufficiently rich environ-
ment, there is no tractably identifiable boundary between (1)
knowledge that is relevant to a particular context, and thus
needs to be updated through learning, and (2) knowledge that
is irrelevant to a particular context, and thus can be left alone
(Dennett, 2006; Moore, 1981; Pylyshyn, 1987; Wheeler,
2008).

To make the problem concrete, consider the following so-
lution to the limitations of the R–Wupdate rule: When one or
more cues occur, only update their relationship to outcomes
with nonzero association strength to at least one of the cues.
Our world is highly structured, meaning that most cue →
outcome associations will be zero. If an animal only had to
update nonzero associations, this would greatly reduce the
burden of updating knowledge about nonoccurring outcomes.
But, how does an animal know an association is nonzero un-
less that fact is verified? This proposal does not save any
computational effort unless it is accompanied by a mechanism
for distinguishing between zero and nonzero associations that
does not require explicit verification of those facts. Possible
mechanisms (e.g., tracking nonzero associations as lists tied to
various cues) invoke their own problems, either in terms of
burdens to memory size or burdens to memory search (see
Pylyshyn, 1987).

In what follows, I present the vector learning model
(VLM). Under specific parameter settings, the VLM learns
association strengths identical to the R–W model. However,

it only needs to update association strengths for observed out-
comes. I argue, because of this, the VLM is algorithmically
more plausible than the R–W model. I also demonstrate that
the VLM is informative of how animals could come to learn
the semantics of stimuli rather than just associations between
stimuli, a topic on which other models of animal learning
models have provided little insight.

The vector learning model

Consider cues and outcomes as occupying points in an n-di-
mensional Euclidean space. If association strength is a func-
tion of proximity between a cue and an outcome, and if vec-
tors for different outcomes are orthogonal to each other, then a
cue gaining association strength with one particular outcome
(i.e., its point moving toward that of the outcome) implies a
loss of association strength with other outcomes (i.e., moving
away from the point occupied by them).2 Learning about
nonoccurring outcomes happens implicitly while learning
about observed outcomes. Based on this observation, we pro-
pose a learning rule to approximate the R–W update rule:

ΔV
!

x ¼ αxβi λ
!
−V!tot

� �
ð2Þ

Cues and outcomes are represented as vectors in an n-dimen-
sional space. Upon conditioning, a set of cues on an outcome, i,
the vector for an individual cue that is present, x, (Vx) is updated
based on the difference between the outcome vector (λi) and the
addition of vectors for all cues present (Vtot). Updating is scaled
by parameters representing salience of the cue and outcome, αx

and βi, respectively, just like with the R–W model. A low-
dimensional visual example of how this learning rule works,
using a single cue, is depicted in Fig. 1.

In an n-dimensional space, the maximum set of orthogonal
vectors is n. Thus, to represent two outcomes as orthogonal vec-
tors, at minimum a two-dimensional space would need to be
used. To represent 45,000 outcomes as orthogonal vectors, out-
comes would need to occupy points in a 45,000-dimensional
space. This does not, in fact, address the R–W model’s frame
problem. Instead of having to update association strengths with
45,000 outcomes (44,999 of which did not occur), the VLM is
instead updating one vector of dimensionality 45,000, which is
the same number of calculations; as the environment becomes
richer, longer vectors are required to represent outcomes orthog-
onally. The VLM does not have issues distinguishing between
relevant and irrelevant stimuli. Instead, it updates a single multi-
dimensional vector after each learning episode.

1 Not the AI frame problem, although the two problems are related.

2 Extinction of a cue → outcome association is then a necessary and implicit
consequence of a cue gaining association strength with another outcome that
occupies a different region of space. This has similarities to Matzel, Held, and
Miller’s (1998) explanation of extinction.
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Although vectors of dimensionality n are required to rep-
resent n outcomes orthogonally, it is possible to generate
much more than n near-orthogonal vectors through random
sampling (e.g., Jones & Mewhort, 2007). Consider this in
terms of correlation: Two random sequences of numbers are,
on average, uncorrelated with each other. If those sequences
are considered as vectors, then the direction of those vectors
will, on average, be orthogonal to each other.

Instead of requiring outcome vectors to be orthogonal, the
same amount of near-orthogonal vectors can be generated
through random sampling in a lower dimensional space.
After proving the equivalence of association strengths learned
by the two models when orthogonal vectors are used, we will
demonstrate that using near-orthogonal vectors allows for a
computationally efficient approximation of the Rescorla–
Wagner update rule when many outcomes are possible.

Formal equivalence of learned association
strengths

We define association strength between a cue and an outcome
as the sum of the cue vector elements multiplied by the sign of
the outcome vector elements, divided by the sum of the abso-
lute values of the outcome vector elements (see Equation 3).
Association strength is a function of whether the signs of cue
elements match the signs of outcome elements, weighted by
the magnitudes of those elements.

Vcue;outcome ¼ ∑cuei*sign outcomeið Þ=∑abs outcomeið Þ: ð3Þ

If a cue vector had values [0, 0.3, 0.2] and an outcome
vector had values [0.5, 0.5, 0.5], the association strength

between cue and vector would thus be (0 * 1 + 0.3 * 1 + 0.2
* 1) / (0.5 + 0.5 + 0.5) = 0.33. If the sign of the last element of
the outcome vector were flipped, such that the vector was now
[0.5, 0.5, −0.5], association strength would instead be (0 * 1 +
0.3 * 1 + 0.2 * −1) / (0.5 + 0.5 + 0.5) = 0.066. Using this
second outcome vector and a cue vector where the sign of the
third element is also flipped (i.e., [0, 0.3, −0.2]), the associa-
tion strength would again be (0 * 1 + 0.3 * 1 + −0.2 * −1) / (0.5
+ 0.5 + 0.5) = 0.33.

This way of representing cues, vectors, and their associa-
tions has the property that associations Vcue1,outcome + Vcue2,

outcome = Vcue1 + cue2, outcome. For purposes of calculating the
total association between all available cues and an outcome,
the vector for each cue can be added, and association to an
outcome can be calculated over the composite cue vector. We
have observed empirically, but not yet proven formally, that
the proposed measure of association strength is equal to the
ratio of magnitudes of the composite cue vector to the com-
posite outcome vector, multiplied by the cosine angle between
the composite cue vector and the composite outcome vector.
This may be of note to the fields of information retrieval and
computational semantics where it has been observed that co-
sine angle provides a useful measure of association strength
between entities represented as points in geometric space.

Consider the case of an animal learning to expect the pres-
ence or absence of a single outcome based on available cues.
The Rescorla–Wagner model treats the presence of the out-
come as a single value, λ = 1. Its absence is also treated as a
single value, λ = 0. Prior to being conditioned on an outcome,
the association strengths of all cues are assumed to be V = 0.

Single values are one-dimensional vectors. We can restate
this example by saying that the outcome is represented as the
vector, [1], the absence of the outcome is represented as the

Fig. 1 The learning problem, as conceptualized by the vector learning
model. Outcomes are points whose vectors are orthogonal to each other.
Conditioning a cue on an outcome involves moving its point toward that
of the outcome a proportion of the distance determined by α and β.
Association strengths are determined by the proximity of a cue to an
outcome. Because outcomes are orthogonal, when a cue moves toward

an outcome and gains association strength with it, a loss of association
with other outcomes also necessarily occurs. a Cue initially has
association strength of 0.5 with both outcomes. b Cue is conditioned on
Outcome 1. c Cue now has association strength of 0.6 with Outcome 1
and 0.4 with Outcome 2
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vector, [0], and the initial value of a cue is [0].We can then use
the update rule presented in Equation 2 to update the associ-
ation strength between cues and outcome, conditioning cues
on [1] when the outcome is present and on [0] when the out-
come is absent. Formally, this is identical to applying the R–W
update rule from Equation 1.

Next, consider the case where a cue might be conditioned on
one of n outcomes. Let us represent each outcome as a vector of
dimensionality n, such that element i of outcome vector i is equal
to 1, and all other elements are equal to 0. With this representa-
tion, all outcome vectors are orthogonal to each other. Let us
initialize cues as vectors of dimensionality n where all elements
are initially 0. We will apply Equation 2 to update a cue vector
when it is associated with an outcome.Wewill now demonstrate
that association strengths learned by such amodel are identical to
those that would be learned by the R–Wmodel.

The association strength between a cue and outcome i is
simply the cue’s value for element i. This is because element i
in the outcome vector is the only nonzero value, and that value
has a positive sign. Since all of the other elements are zero,
any nonzero value in the cue vector at an index other than i
will be multiplied by zero prior to summation along all dimen-
sions (see Equation 3).

Now, note that outcome i is also the only outcome with a
nonzero value for element i. Any time a cue is conditioned on
outcome i, its value for element i will be updated toward 1. This
is because 1 is the value of outcome i’s element i, and any time a
cue is conditioned on an outcome other than I, its value for
element i will instead be updated toward 0, because all other
outcomes have a value of 0 at element i. When applying the R–
W update rule with λ = 1, this is exactly how the association
strength between a cue and an outcome changes depending on
the presence or absence of that outcome. Since all cues start
with initial values of 0 for all elements, the strength of associ-
ation between a cue and outcome i learned by the R–Wmodel
after any arbitrary pattern of conditioning will be identical to
element i of a cue’s vector after the same pattern of condition-
ing. Since we have already established that the association
strength between a cue and outcome i is simply the cue’s value
for element i, we have now proven that there exists a version of
the VLM that learns association strengths identical to that of the
R–Wmodel when λ = 1. This holds for any arbitrary number of
outcomes and any arbitrary pattern of conditioning.

Reducing vector dimensionality

The above equivalence requires that outcome vectors are
orthogonal and, hence, of dimensionality equal to the
number of possible outcomes. We now demonstrate that
the VLM also approximates the association strengths
learned by the R–W model when using near-orthogonal
vectors in a reduced-dimension space. Use of a reduced-

dimension space is relevant to discussing how the frame
problem applies to the VLM.

We adopt the convention of initializing outcome vectors
such that their elements are sampled uniformly from [−1, 1]
and then unit normalized. Cue vectors are initialized such that
all of their elements are zero.

Baayen (2010) has demonstrated that the R–W model
can be used to simulate lexical processing. Language
learning was simulated by conditioning letters and
bigrams on the words they appeared in over a corpus of
written text. For the word fair, the cues f, a, i, r, fa, ai, and
ir would be conditioned on the outcome, fair. Lexical
processing times were then simulated as a function of
word activation, given word cues, on the assumption that
lexical processing is being driven by the strength of
bottom-up support for a specific meaning that is available
in the stimulus environment. We replicate this simulation
using the R–W model and the VLM and then compare the
association strengths learned by both models.

The R–W model and the VLM were both trained on the
TASA corpus (Landauer, Foltz, & Laham, 1998). It con-
tains introductory paragraphs from a broad sample of K–
12 textbooks. The TASA corpus was first preprocessed by
converting all words to lowercase and stripping all punc-
tuation except for apostrophes and dashes placed between
two letters. Models were trained on all words that oc-
curred at least 10 times in the corpus. This included
10,764,128 tokens and 29,056 unique types. For each to-
ken that appeared in the corpus, letters and bigrams within
the token were conditioned on its type. Training occurred
in order of appearance of each token. Versions of the
VLM were trained with vector dimensionalities of 100;
200; 400; 800; 1,600; 3,200; 6,400; 12,800; 25,600; and
29,056. Outcome vectors were created through random
generation following the method described above. One
additional case was tested using orthogonal outcome vec-
tors (dimensionality = 29,056). Models were trained with
α = 0.02 and β = 1.0. Word activations, given cues pres-
ent in the word, were compared between the R–W model
and the VLM. Results are presented in Fig. 2.

Three things should be noted from these results. First,
when orthogonal outcome vectors are used, predictions
made by the VLM are identical to those of the R–W
model (see Fig. 2d; MSE = 0.0). Second, lowering vector
dimensionality reduces the computational cost of the
model, but also reduces fidelity at replicating the R–W
model’s predictions (see Fig. 2a). Third, even if vector
dimensionality is aggressively reduced, fidelity can still
be quite high. At vector dimensionality 1,600 (5.51% of
maximum dimensionality), word activations from the
VLM correlate with those of the R–W model at
r[29,054] = 0.97 (p < 2.2e-16), accounting for 94.1% of
the variance in R–W activations.
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Discussion

We have presented a model of discriminative learning that
approximates association strengths learned by the R–Wmod-
el. (Python code that implements this newmodel can be found
at https://github.com/hollisgf/reswag) .

In an environment that approaches the diversity of every-
day experience, there will always be far more outcomes that
did not occur than outcomes that did during any given learn-
ing episode. In sufficiently rich environments, the way the R–
W model frames learning implies that effectively all updates
to knowledge are for cue-outcome pairs that were unobserved.
This seems like a dubious property for a model of learning.

The R–W model has plausibility as a computational
model of learning (in the sense of Marr & Poggio’s, 1976,
levels of analysis), evidenced by the wide range of behav-
ioral phenomena it captures, but it is lacking in algorithmic
plausibility. Within the R–W model, there is no computa-
tionally tractable way for a learning agent to distinguish
between knowledge that is and is not relevant to a particular
learning context and, thus, does or does not need to be up-
dated based on a particular learning episode. Knowledge
about all outcomes must be updated after any outcome oc-
curs, but the space of all outcomes is intractably large for an
animal embedded within a diverse environment.

The VLM updates knowledge only using information
about observed outcomes. The VLM provides a way of con-
ceptualizing how a discriminative learning model could work
in a more algorithmically plausible way, eschewing negative
evidence by reframing learning as a geometric problem. The
VLM also provides a means of trading off between learning
fidelity (with reference to the R–W model) and learning effi-
ciency. The VLM does this by using stimulus representations
that can be made more or less informationally rich by length-
ening or shortening them. The VLM can save substantially on
computational effort by shortening its vector representations;
when low-dimensional vectors are used, fewer prediction er-
rors need to be calculated during each learning episode. Using
vectors with as low as ~5% of the maximum possible dimen-
sionality incurs surprisingly little loss in fidelity in the above
example. These findings are interesting in terms of providing a
reformulation of how to compute association strengths be-
tween stimuli. However, they do not directly address the frame
problem.

To address the frame problem, we need to study how vector
dimensionality affects predictive validity in complex learning
environments, not how well vector dimensionality allows for
reduplication of association strengths learned by the R–W
model. If higher dimensional vectors always provide more
precise predictions of learning data, then the vector model

Fig. 2 Comparison of predictions made by the R–Wmodel and the VLM
on a simulated lexical decision task. Models were trained by conditioning
letters and bigrams on words in the TASA corpus. a Similarity in word
activations given their letter and bigram cues are plotted for the R–W
model and the VLM. Similarity was measured by mean square error
(dots) and r squared (triangles). Data are plotted for vector

dimensionalities ranging from 100 to 29,056. For each unique word type
that occurred in the training data, VLM activation for all words is plotted
against R–W activation (vector dimensionality 1,600) (b), with
nonorthogonal vectors of dimensionality 29,056 (c), and with orthogonal
vectors of dimensionality 29,056 (d)
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does not address the frame problem; such a scenario would
imply that the model parameters that best capture learning are
the parameters that make for an intractable update rule. If,
however, there is a vector dimensionality below the maximum
that provides best fits to learning data, and that dimensionality
is relatively short, then that would be evidence that the VLM
does address the frame problem.

Experiment 1

This experiment has two main purposes. First, to provide ev-
idence that increases to vector dimensionality do not neces-
sarily increase the precision of modeling human learning in
diverse environments. The second purpose is to test predic-
tions about learning generated by the VLM. We start by pro-
viding an interpretation of what the vectors of the model cor-
respond to in the world. We then use this interpretation to
generate predictions of the model that are not made by the
R–W model.

Properties of the vector learning model

Within the VLM, a single stimulus might have two vectors
referring to it—one for when the stimulus acts as a cue and
one for when it acts as an outcome. This distinction between
an outcome vector and a cue vector is similar to a distinction
made by the BEAGLE model of semantic memory (Jones &
Mewhort, 2007). BEAGLE is a model that learns semantic
representations for words. Each word has an environment
vector, a context vector, and an order vector (the latter will
be ignored in this discussion). A word’s environment vector
represents the physical properties of that word. Aword’s con-
text vector is the accumulation of environment vectors of oth-
er words it occurs with. After many exposures to samples of
language, context vectors become weighted sums of the con-
texts in which the represented word is expected to occur when
it does occur. Contexts in this case are other words. Critically,
the cosine similarity between context vectors provides infor-
mation about the degree to which two words share similar
contexts (and thus give information about similarity in
meaning; Firth, 1957).Measures of similarity between context
vectors and environment vectors provide information about
the degree to which one word (context vector) predicts the
occurrence of another (environment vector).

An interpretation of the VLM’s functioning is available
when considered in comparison to how BEAGLE frames
learning: Outcome vectors (environment vectors in
BEAGLE) are encodings of perceptual state when the out-
come is observed, whereas cue vectors (context vectors in
BEAGLE) are predictions about an animal’s future perceptual
state. The VLM’s update rule aligns predictions of the world

with observations of the world by minimizing prediction error
encountered during learning episodes.

In the rest of this article, the terms cue and outcome are
used to refer to stimuli that an animal would experience. The
terms expectation vector (EV) and state vector (SV) refer to the
vectors representing an animal’s expectations and experience,
respectively. To reiterate, a single stimulus might have two
vectors referring to it—one encoding the perceptual details
of that stimulus and the other encoding expectations that the
stimulus generates. The cue-outcome/EV-SV distinction is
relevant; I demonstrate that it is beneficial and theoretically
motivated to update a cue’s EV based on a combination of an
outcome’s SV and EV.

Previous sections focused on how the VLM can reproduce
the R–W model’s predictions about association strengths.
However, the above interpretation of the VLM leads to pre-
dictions about learning that go beyond the functionality of the
R–W model. Some of those predictions follow.

The VLM learns relations between cues even if the cues
themselves never occur within the same learning episode. This
is a consequence of cue EVs existing in the same geometric
space. As one cue is learned about, the relationship of its EV
necessarily changes to all other cue EVs. By learning that a
cue produces certain expectations, it is also learned that those
expectations are similar to or different from the expectations
generated by other cues.

EVs are encoding predictions about future state, so the
degree to which two EVs share association strength will be
informative of the overlap in their distribution of outcomes.
The distributional hypothesis, which is one of the main foun-
dations of computational semantics, states that the degree to
which two symbols’ contexts of occurrence are similar is an
indicator of the degree to which those symbols have similar
meanings (Firth, 1957). We thus predict that two stimuli will
have similar meanings to the extent that their EVs share asso-
ciation strength. This is a prediction that is beyond the scope
of the R–W model, since the R–W model provides no means
of assessing relationships between cues.

Second, so far we have only considered conditioning an
EVon a, SV. When a stimuli’s, s1, EV is conditioned on s2’s
SV, effectively the model is learning to Blook ahead one step
into the future.^ However, a further glimpse into the future is
also available to s1 via s2’s EV since that EV is an expectation
about future state after s2 occurs. The foresight of the VLM
can be changed by conditioning a cue’s EVon a weighted sum
of the outcome’s SV and EV. The more weight given to the
outcome’s EV, the more the model will come to value the
distant future when learning to make predictions about future
state. The R–Wmodel does not allow for a way to learn from
expectations rather than observations. We anticipate that this
property of the VLM will aid learning in environments where
there are complex temporal contingencies between stimuli
(e.g., in language).
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Third, we predict that relaxing the near-orthogonality con-
straint for SVs can be beneficial for learning. Johns and Jones
(2011) have demonstrated that learning can be facilitated by
allowing BEAGLE’s environment vectors to share similarity
to the extent that the physical properties of the encoded words
(i.e., phonology, spelling) are similar. The VLM can add sim-
ilar functionality by representing SVs as the summation of
vectors that reference subcomponents of the full stimulus.
For example, the SV for the could be the summation of three
vectors, one for each of t, h, and e. This should allow the VLM
to generalize associations between a cue and a set of outcomes
that share features. Allowing SVs to be nonorthogonal does
not provide the VLM with new functionality over the R–W
model (see compound stimuli in, e.g., Rescorla & Wagner,
1972). Rather, it allows for generalizations to be learned in a
way that is internally consistent with the interpretation of SVs
as encoding information about a real-valued perceptual state.

To demonstrate the functionality of the VLM, we report its
performance on various measures of language-based
knowledge.

Method

We take the stance that language learning is an associative
process over the stimuli of language, and cues and outcomes
are determined by temporal order. To simulate this process,
the VLM was exposed to contiguous sequences of real-world
language. Each successive pair of words in a sequence were
treated as a cue–outcome pair, conditioning the preceding
word on the following word.

Corpus

We use the TASA corpus (Landauer, Foltz, & Laham, 1998)
as model input. The TASA corpus was preprocessed by
converting all words to lowercase and stripping all punctua-
tion with the exception of apostrophes and dashes placed be-
tween two letters. Words that occurred fewer than 10 times
were removed from the corpus. This produced a corpus con-
taining temporally ordered streams of written words, blocked
into documents (each document coming from a different text-
book, or textbook chapter). The corpus contained 10,764,128
tokens and 29,056 unique types.

Model parameters

Parameters were systematically manipulated to test model pre-
dictions. Vector dimensionalities of 100; 200; 300; 400; 800;
1,600; 3,200; 6,400; and 12,800 were used.

SVs were constructed using two methods: either they were
randomly generated (see Reducing Vector Dimensionality
section) or they were constructed so that words with similar
spellings had similar SVs. For this second method, a random

vector was generated for every possible three-letter sequence.
A word’s SV was the addition of vectors for all three-letter
sequences contained within that word. Spaces at the beginning
and ending of a word were also treated as a letter in that word.
We will denote spaces as #. For example, #dog#’s SV would
be the addition of vectors for #do, dog, and og#. This vector
would have some correlation with the vector for #frog# due to
the shared trigram, og#. We call this method of vector con-
struction the orthographically correlated method because it
creates a dependency between a word’s form and its state
vector.

Finally, a cue’s EVwas conditioned on a weighted addition
of the following word’s SV and EV. The outcome’s SV was
always given a weight of 1.0. The weight of the outcome’s EV
was manipulated within the range of 0.0 to 1.0 (inclusive), in
steps of 0.2. For example, if the sequence the boy were en-
countered and the outcome EV weight was set to 0.4, the EV
for thewould be conditioned on 1.0 times the SV for boy, plus
0.4 times the EV for boy.

Since the construction of SVs is stochastic, each parameter
set was run independently 20 times. All models were trained
on the exact same corpus, experienced in the exact same order.

Model evaluation

Models were evaluated on three tests of language-based
knowledge. These tests are meant to evaluate the extent to
which a particular model has acquired structure in its knowl-
edge (i.e., EVs) that approximates the organization of human
knowledge.

TOEFLThe test of English as a foreign language (TOEFL) was
used by Landauer and Dumais (1997) to evaluate the quality
of knowledge acquired by their model, latent semantic analy-
sis (LSA). The TOEFL consists of 80 questions. Each ques-
tion has a reference word (e.g., enormously) and four options
(e.g., appropriately; uniquely; tremendously; decidedly). Test-
takers are instructed to choose the option that is most similar in
meaning to the reference. LSA also represents stimuli as vec-
tors. It answered questions by choosing the option whose vec-
tor had the highest cosine similarity to the reference’s vector.
The VLM was tested on the TOEFL, using association
strength to select among options; the option whose EV had
the highest association strength to the reference’s EV was
chosen.

Word similarityA commonmethod for evaluating models that
learn word meanings as vectors is to measure how closely
cosine similarities between vectors capture variation in human
judgments of word similarity. One of the most widely used
similarity norms is Wordsim353 (Finkelstein et al., 2002),
which contains 353 words pairs and human judgments of sim-
ilarity for those pairs. The VLM was tested on its ability to
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capture human judgments of word similarity bymeasuring the
cosine similarity between EVs of the word pairs present in
Wordsim353.

Priming in lexical processing Priming effects are pervasive in
psychology. If we assume that priming effects are due to phys-
ical or semantic similarity (e.g., spreading activation; Collins
& Loftus, 1975), or instead assume that they reflect enhanced
memory availability due to expectations of future state gener-
ated by available cues (e.g., needs probability; Anderson &
Milson, 1989), then we should hope that models of lexical
semantics will capture priming effects in lexical processing.
It is thus vexing that vector-based semantic models offer little
to no predictive validity of priming effects in lexical process-
ing tasks (e.g., Hutchison, Balota, Cortese, & Watson, 2008;
but cf. Johns, Jones, & Mewhort, 2016).

The data set of 300 prime–target facilitation effects for
word naming and lexical decision times released by
Hutchison et al. (2008) were modeled. Association strength
between EV–SV (prime–target) pairs were used as the mea-
sure of facilitation. EV–SVassociations were used for this task
rather than EV–EV associations, under the assumption that
priming effects reflect animals generating expectations about
future environmental state and preparing to act effectively in
that future environmental state (Anderson & Milson, 1989).

Alternative models The VLM is not intended to be a model of
just language learning. Its relationship to the R–Wmodel sug-
gests it should be applicable to modeling a broader set of
learning problems. However, we subject the model to tests
of lexical processing because that is a domain where many
learning outcomes are present and data for modeling are read-
ily available.

That said, we were interested in comparing the VLM’s per-
formance to that of popular lexical-semantic models in the liter-
ature: LSA (Landauer & Dumais, 1997), BEAGLE (Jones &
Mewhort, 2007), skip-gram, and CBOW (Mikolov, Chen,
Corrado, & Dean, 2013). Like the VLM, each of these models
represent stimuli as vectors of real-valued numbers.

Each of these models was also trained on the TASA corpus
and subjected to the above three tests. Their parameters were not
optimized. These models each have some reasonable ranges of
parameter settings. In each case, parameter values were chosen to
be within these ranges, as judged by the first author.

LSA parameter set Vectors of 300 dimensionality were used.
The association window spanned an entire document.

BEAGLE parameter set Vectors of 1,024 dimensionality were
used. Context and order vectors were used to construct mem-
ory vectors over which associations were performed. The as-
sociation window was a full sentence. Two-gram, three-gram,
and four-gram sequences were used to construct order vectors.

Skip-gram parameter set Vectors of 300 dimensionality were
used. The association window was four words to either side of
the target. The association window did not span beyond the
beginning or end of sentences. The down-sampling parameter
for high-frequency words was set to 1e-5. Ten negative sam-
ples were used in each learning episode.

CBOW parameter set The same parameters were used for con-
structing the CBOW model as were used for constructing the
skip-gram model. The details of each of the model’s parame-
ters goes beyond the scope of this work. If readers would like
to understand what these parameters do, they are referred to
articles describing these models: Landauer and Dumais
(1997), Jones and Mewhort (2007), and Mikolov et al.
(2013). Parameter values are presented here only to aid
replication.

Results

TOEFL

Results for the TOEFL test are displayed in Fig. 3. There are
four results of note. First, the VLM’s performance plateaus at
a vector dimensionality of approximately 300 (1.03% of the
maximum dimensionality of 29,056; Fig. 3a). We have previ-
ously demonstrated that increases to vector dimensionality
increase the fidelity of the vector model insofar as it correctly
reproduces association strengths learned by the R–W model.
However, these results provide evidence that increased fidelity
of R–Wassociation strengths does not translate to better pre-
diction of behavioral data. A 2 × 9 × 6 (Vector Type × Vector
Dimensionality × Memory Weight) ANOVA was conducted
on model performance. A reliable effect for vector dimension-
ality was found, F(8, 2095) = 21.05, p < 2e-16. However,
when models with vector dimensionality less than 300 were
omitted from the analysis, this effect was no longer observed,
F(6, 1633) = 1.13, p = .34. Increases in vector dimensionality
beyond 300 do not appear to influence model performance on
the TOEFL test.

Second, the VLM performed better when SVs were con-
structed such that words with similar spellings had similar
SVs (see Fig. 3a), F(1, 2095) = 214.53, p < 2e-16. This result
was expected and is interpreted as a benefit of generalizing a
learned cue–outcome association to outcomes with similar
spellings.

Third, increasing the weight of the outcome’s EV produces
a complex pattern of results. It was anticipated that increasing
the outcome’s EV weight would improve model performance.
This prediction was made on the basis that increasing the EV
weighting allows the model to learn temporally distant asso-
ciations (by allowing both observations and expectations to
drive learning), and that temporally distant associations are
characteristic of the structure of language. We expected that
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increasing outcome EV weight would improve model perfor-
mance (i.e., giving more weight to future expectations rather
than just observed outcomes) up to a threshold, and then begin
to decrease model performance (too much weight given to
distant expectations). Instead, we observe a clear U-shape pat-
tern. The model performs best with a large weight being given
to the outcome’s EV (0.8–1.0), suggesting that weighting the
outcome’s EV is in fact beneficial for someweights. However,
diminished performance was observed for middling weights
compared with no weighting at all. The effect for outcome EV
weighting was reliable, F(5, 2095) = 109.37, p < 2e-16.

Fourth, the model’s overall performance on the TOEFL is
relatively good compared with the other models tested. It does
not achieve the same accuracies as CBOW and skip-gram,
which are the best performing semantic models across a range
of tasks in natural language processing (e.g., Baroni, Dinu, &
Kruszewski, 2014), but it does have better performance than
LSA and BEAGLE, which are more commonly seen in the
psychological literature. We stress that model parameters were
only optimized for the VLM; it could be that better performance
would have been seen for other models with parameter
optimization.

Wordsim

There were some notable similarities and differences between the
TOEFL results and the results for predicting Wordsim353 simi-
larity measures (see Fig. 6 for Wordsim353 results). First, a

plateau in the predictive validity gained from increased vector
dimensionality is again seen. There is a clear effect of vector
dimensionality when all dimensionalities are considered, F(8,
2095) = 10.18, p = 5e-14. However, this effect disappears when
considering just vector dimensionalities of 800 and above, F(4,
1159) = 1.33, p = .26. This is still a small fraction of the maxi-
mum vector dimensionality of 29,056 (2.75%).

Second, there is again a clear effect for the way SVs were
constructed. The model has better performance at predicting
similarity judgments when SVs were constructed such that
words with similar spellings had similar vectors, F(1, 2095)
= 2770.01, p < 2e-16.

There is also a clear effect for the weighting given the
outcome’s EV when conditioning a cue on that outcome,
F(5, 2095) = 547.51, p < 2e-16. Unlike with the TOEFL data,
the anticipated pattern was seen with the Wordsim353 pattern:
EV weighting appears to have a monotonic effect on predic-
tive validity, possibly up to a threshold that exceeds the max-
imum EV weight tested in this experiment (Fig. 4).

Finally, the poor performance of the VLM at predicting
word similarities should be noted. LSA, CBOW, and skip-
gram models all perform reasonably well given the size of
the corpus on which they were trained (rs range between .37
and .48). The VLM (r = .12) and BEAGLE (r = .082) perform
much poorer by this test. All models were trained on the
same input; variation in predicting word similarity must
then stem from variations in the learning algorithms and
their parameter settings.

Fig. 3 Changes inmodel performance on the TOEFL test when (a) vector
dimensionality is manipulated and (b) outcome EV weight is
manipulated. Results are presented for two different methods of SV
construction. c Comparison with four distributional semantic models.
Results are reported for the 20 runs where VLM parameters were set to
vector dimensionality 800, outcome EV weight 0.8, and orthographically
correlated SVs. Error bars represent ±2 standard errors. Note. Landauer

and Dumais (1997) report accuracies of 54% on this test when trained on
the same corpus. This discrepancy has to dowith howmodels were tested.
There were some questions for which models had no entries for the
relevant words, due to them not appearing in the TASA corpus.
Landauer and Dumais assigned their model a correct response for 25%
of these questions (i.e., assumed the model guessed). These questions
were instead omitted from the analysis
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Predicting priming effects

The results of the priming analysis were substantially different
from either of the other two tests. Results for word-naming data
are displayed in Fig. 5. Lexical decision results are displayed in

Fig. 6. Only results for word naming are discussed; the pattern
of results are similar for both measures.

The first difference is that the model performs better at
predicting priming effects if SVs are not correlated with word
orthography, F(1, 2095) = 631.86, p < 2e-16. Upon visual

Fig. 4 Changes in model performance on predicting word similarity
judgments when (a) vector dimensionality is manipulated, and (b)
outcome EV weight is manipulated. Results are presented for two
different methods of SV construction. c Comparison with four

distributional semantic models. Results are reported for the 20 runs
where VLM parameters were set to vector dimensionality 800, outcome
EV weight 0.8, and orthographically correlated SVs. Error bars represent
± 2standard errors

Fig. 5 Changes in model performance on predicting the magnitude of
priming effects in word naming when (a) vector dimensionality is
manipulated, and (b) outcome EV weight is manipulated. Results are
presented for two different methods of SV construction. c Comparison
with four distributional semantic models, as well as measures of forward

and backward association strengths. Results are reported for the 20 runs
where VLM parameters were set to vector dimensionality 12,800;
outcome EV weight 0.4; and random SVs. Error bars represent ±2
standard errors
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inspection, the effect of vector dimensionality does appear to
plateau when orthographically correlated SVs are used, but
not when random vectors are used. When considering only
vectors of dimensionality 800 or more, there is an effect for
dimensionality, F(4, 1145) = 21.61, p < 2e-16. There is also an
interaction with SV construction method, F(4, 1145) = 9.64, p
= 7e-08. Figure 5 suggests the effect may exist for random
vectors, but not for orthographically correlated vectors.
However, when only orthographically correlated vectors are
considered, the effect remains reliable, F(4, 573) = 2.72, p =
.029.

The effect for outcome EV weight also appears to be qual-
itatively different compared with previous tests. The effect is
reliable, F(5, 2095) = 350.14, p < 2e-16, and suggests a re-
duction in performance as outcome EV weight is increased.
The function of this parameter is to give the model Blook-
ahead^ into the future by conditioning it on its own expecta-
tions. The decrement in performance may indicate that prim-
ing effects reflect immediate-future expectations, not distant-
future expectations.

Finally, although the model has poor absolute performance
at predicting priming effect magnitudes, it does have good
relative performance compared with other models (see Figs.
7c and 8c). These figures include correlation strengths for
forward association strength (FAS) and backward association
strength (BAS) taken from Nelson, McEvoy, and Schreiber
(2004), which Hutchison et al. (2008) report as their best pre-
dictors of item-level priming effects. Our results suggest that
the VLM predicts priming effects in word naming about as

well as forward association strength. The model’s relative per-
formance is not as high for lexical decision priming effects,
but still substantially better than the two of four models that
are more common in the psychological literature (LSA and
BEAGLE). In fact, BEAGLE predicts effects to be in the
opposite direction than they are empirically observed to be.

Discussion

The VLM was motivated by the observation that the R–W
model suffers from the frame problem. The R–W model pro-
vides no delimitation between knowledge that needs to be
updated after a learning episode and knowledge that can be
let alone. The VLM was presented as a possible solution to
this problem. It addresses the problem by eliminating the need
to update association strengths to nonoccurring outcomes
when a cue → outcome contingency is observed. The
VLM’s learning is driven entirely by observed outcomes.

It is possible that the VLM may simply be trading off one
computational problem for another. The VLM has complex
stimulus representations (i.e., high-dimensional vectors).
Using maximum dimensionality, the vector model requires
just as much computational effort to update as the R–Wmodel
does; rather than updating n association strengths, the model
instead updates a vector of dimensionality n. The current ex-
periment provides evidence that in some cases there exists a
threshold that, above which, further increases to dimensional-
ity have no effect on the predictive validity of the model.
When this threshold exists, it is very low compared with the

Fig. 6 Changes in model performance on predicting the magnitude of
priming effects in lexical decision when (a) vector dimensionality is
manipulated, and (b) outcome EV weight is manipulated. Results are
presented for two different methods of SV construction. c Comparison
with four distributional semantic models, as well as measures of forward

and backward association strengths. Results are reported for the 20 runs
where VLM parameters were set to vector dimensionality 12,800;
outcome EV weight 0.4; and random SVs. Error bars represent ±2
standard errors
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maximum possible vector dimensionality (1.03%–2.75% of
maximum). Increasing vector dimensionality increases the de-
gree to which the vector model accurately reproduces the as-
sociation strengths learned by the R–W model, but this does
not improve the model’s ability to predict behavioral data in
learning contexts where many outcomes are possible.

It may be that, in practice, behavior in complex learning
environments is best modeled by (relatively) low-dimensional
representations. Landauer and Dumais (1997) find that high-
dimensional representations in their model of semantics actu-
ally hinders its performance. They suggest this is because
making too many distinctions prevents a learner from finding
useful generalizations. The adequacy of low-dimensional vec-
tors in the VLM is supported by the results of the TOEFL
analysis and the word similarity analysis. However, it is not
supported by analysis of word priming effects. On the whole,
we take this as weak evidence that the VLM avoids the frame
problem.

Poor predictive validity of word similarities

The VLM was subject to a word similarity task. Across all
parameter settings, the model performed notably poorly com-
pared with computational semantic models. This is likely due
to a difference between how computational semantic models
determine context and how the VLM determines which ob-
served contingencies to learn from.

Sequential word pairs acted as cue→ outcome contingencies
in learning. In the sequence the boy ran, the would be condi-
tioned on boy, and boy would then be conditioned on ran. The
model is learning to make predictions about future state. In con-
trast, computational semantic models derive their semantic rep-
resentations from trying to predict future and prior state. In the

example just given, boy would be used to predict both the prior
word, the, and the following word, ran. Such models can be
trained using only forward prediction of state, but forward and
back prediction improves their predictive validity in most cases.

Reading moves in one direction along a sequence of words
(more than less). However, as people are reading, they might
also be imagining the scenes, objects, and actions referred to
by the text. This allows entities that were referenced earlier in
a document to still be present in the attentional awareness of
the reader. In such a case, the referents of antecedent words
would still be available to act as outcomes for learning.
Backward conditioning is a known phenomenon (i.e., an un-
conditioned stimulus precedes a conditioned stimulus, but the
conditioned stimulus’ association strength to the uncondi-
tioned stimulus still changes; e.g., Tait & Saladin, 1986). It
would be reasonable to consider the model’s performance if
prior and posterior words acted as outcomes. Although these
findings were not presented in the results of Experiment 1, a
version of the VLM was trained using words on either side of
the cue as outcomes. This improved the model’s performance
from a mean r of 0.113 to an r of 0.26 (by Fisher r-to-z trans-
formation, z = -1.89, p = .03).

Expectation vector weight

When an EV is conditioned on an SV, the model is learning to
make an expectation about immediate future state. But that
observed state itself generates expectations, and those

3 The following model parameters were used: vector dimensionality 800, out-
come EV weight 0.0, orthographically correlated SVs. Better model perfor-
mance was observed in Experiment 1 with an outcome EV weight of 0.8, but
having this parameter be above zero makes little conceptual sense when
predicting prior state.

Fig. 7 Neural network representations of (a) the vector learning model and (b) a proposed refinement to the model that represents cues as real-valued,
multidimensional entities rather than as symbolic abstractions
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expectations generate other expectations, and so forth.
Chaining expectations allows for the prediction of distant fu-
ture state. Adding some proportion of an outcome’s EV to its
SV during conditioning allows us to model the process of
using expectations to generate other expectations. It was an-
ticipated that nonzero values of this parameter would facilitate
performance in tests that the model was subjected to. This
hypothesis was made on the basis that language contains tem-
poral contingencies that span further than immediate word–
word relationships; words have consequences that span
sentences, paragraphs, and further.

In two of the three tests (TOEFL, word similarity), clear
evidence was found that model performance was improved by
allowing a portion of the outcome’s EV to contribute to learn-
ing. In the third test (word priming), the parameter appeared to
decrease model performance.

It could be that word similarity judgments and performance
on the TOEFL reflects the type of distant-future predictions
that were anticipated to be characteristic of language learning
and that word priming effects instead reflect local predictions.
Different tasks are best modeled by different parameter set-
tings. This interpretation would suggest that animals can dy-
namically adjust how far into the future they wish to try to
predict, based on task constraints.We do not think this to be an
unreasonable speculation. However, it is inconsistent with
how the VLM uses the outcome EV weight parameter. This
parameter is fixed at the beginning of learning and affects the
contingencies that the model learns, not how it recalls rela-
tionships. Likely, this reflects a limitation of the model.

We should expect that too much emphasis on prediction
about distant-future state should be a hindrance to an animal.
Planning for the future has utility, but only to the extent that it
does not impede fulfillment of immediate needs. Thus, we
expected to see an inverted U-shaped relationship between
the parameter that controls the model’s depth of future predic-
tion and its performance onmodeling behavioral data. Instead,
the pattern of effects for this parameter varied substantially
between tests. This might reflect a failing of the model, an
incorrectness in the presented hypothesis, or a failure to test
a large enough range for this parameter setting. More work is
required to fully test how this parameter controls model
behavior.

Word priming data

Word priming simulations produced results that were incon-
sistent with the other two tests. The benefit of increased vector
dimensionality did not plateau. Using orthographically corre-
lated SVs decreased model performance. Increasing the
weighting given to the outcome’s EV vector during condition-
ing hindered model performance. It is also notable that pre-
dictions made by the BEAGLE model were in the opposite
direction of empirical data. This latter finding has no bearing

on an evaluation of the VLM, but it is another point to the fact
that the results observed for this test were unexpected.

The semantic models tested in this work are anticipated to
perform well at modeling priming effects. Their most com-
mon use is to provide a measure of word similarity, and in the
case of one model, CBOW, its measure of word similarity can
be directly mapped onto Anderson and Milson’s (1989) con-
cept of needs probability (Hollis, 2017) Yet the performance
of all these models on the Hutchison et al. (2008) data is quite
poor. This is not by necessity; Johns et al. (2016) have dem-
onstrated that manipulations to a model’s training data can
substantially improve its performance on this test.
Ultimately, we have no good explanation to offer as to why
this data set is such an historic challenge for distributional
semantic models, or why the results we observed were so
wildly inconsistent with hypotheses. A better understanding
of the relationship between item-level priming effects and
models of learning and semantics is clearly required.

Limits of the R–W update rule

There are good reasons to think that the R–W model is an
incomplete model of learning (e.g., Miller, Barnet, &
Grahame, 1995), and that there might even be fundamentally
unaddressable problems with elemental models as a group
(e.g., Pearce, 1994). Within the classical conditioning litera-
ture, numerous people have moved away from the R–Wmod-
el and have begun pursuing other models (Courville, 2006;
Pearce, 1994; Wagner, 1981), some of which focus more on
temporal elements to conditioning rather than on discrete
events (e.g., Gallistel & Gibbon, 2000; Sutton & Barto,
1981), which is an important aspect of learning that the R–
Wmodel neglects. As a reviewer put it, Bthe present use of the
R–W model is like using a 50-year old locomotive to pull a
modern train.^ The R–Wmodel is most certainly flawed, lim-
ited, and outdated. That is acknowledged. However, its antiq-
uity is overstated by the above quote.

A large portion of this work has demonstrated how animal
learning models can be applied to model language processing
and comprehension. It is only recently that language re-
searchers have started explicitly considering the applications
of animal learning models to simulate language learning. For
good or ill, most of the early work was done using the R–W
model (e.g., Baayen, 2010; Baayen et al., 2011). The fact that
the R–Wmodel is successful at capturing such a wide range of
linguistic phenomena should be a point of intense interest to
both learning theorists and linguists. It suggests the possibility
that language learning is well-described by simple animal
learning models. Because of its recent adoption in the lan-
guage learning literature, the R–W model is an appropriate
model for the presented work. Using the R–W model does
not preclude future application of other models to the problem
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of language learning. There is clearly much more work to be
done.

It is worth pointing out the possibility that some of the
apparent limits of models like the R–Wmodel (i.e., elemental
representations, using error correction) may be a failure of
rigorous study rather than a necessary flaw. An historic failure
of the R–W model is its inability to account for retrospective
revaluation effects. Retrospective revaluation occurs when the
pattern of responding to a stimulus is modified by later expe-
rience with a different stimulus (e.g., Wasserman & Berglan,
1998). Ghirlanda (2005) has demonstrated that the R–W up-
date rule, with a simple and principled change to the way
stimuli are represented, is capable of accounting for retrospec-
tive revaluation effects.

It has also been thought that the R–W model must make
use of configural cues to solve linearly nonseparable learning
problems. A configural cue is said to exist when the simulta-
neous presence of two cues, in a particular configuration, acts
as a third cue for an animal. However, the R–W model pre-
sents no basis for deciding when configural cues are and are
not involved in learning (Rescorla & Wagner, 1972). Without
a basis for use or exclusion, the only reasonable option for the
R–W model is to assume that configural cues always enter
into learning. This path quickly leads to absurdity; there are
combinatorially more configurations of observed elements
than elements themselves, and combinatorial problems quick-
ly become computationally intractable (Baayen et al., 2013).
However, Baayen and Hendrix (2017) have demonstrated that
dependence on configural cues is (again) largely a matter of
stimulus representation, and not a fundamental feature of the
R–Wupdate rule. We echo Ghirlanda’s (2005) conclusion that
Beven simple elemental models are not yet fully understood^
(p. 110). Further exploration of the R–W model, and related
models, may reveal other surprises about what such models
can and cannot do.

Finally, the R–W model is not the only animal learning
model that suffers from the frame problem. This issue is also
present in the more recent configural model of Pearce (1994)
and for the exact same reasons that it is present in the R–W
model. Demonstrating how a problem can be addressed in one
model, regardless of how antiquated it is, is useful knowledge
for advancing other models that suffer from the same problem
for the same reasons.

The outcomes of learning episodes

The current model has similarities to naïve discriminative
learning (NDL; e.g., Baayen et al., 2011). Broadly, NDL is
the R–W update rule applied to various aspects of language
learning. A key insight of NDL is that the R–Wupdate rule is
very good at modeling human behavior in many-outcome
learning problems like language. The fact that a model of
learning designed to capture patterns of variation in

nonlinguistic animal behavior can, with zero modification
and often zero free parameters, be scaled up to human lan-
guage and do an excellent job at capturing a variety of phe-
nomenawithin that domain is of intense interest, at least to this
researcher.

It is worth discussing the notion of a learning outcome in
NDL, and how it relates to the VLM. Cues within NDL are
sublexical units. Outcomes are a concept that has been termed
lexome (Baayen et al., 2011). A lexome is an underlying se-
mantic entity that the word evokes. We can discuss the word
ran as evoking the lexomes Brun^ and Bpast tense.^ Lexomes
are thought of as dynamic concepts that are themselves con-
stantly being recalibrated due to learning; you probably
learned about Bfairness^ as a child and also about Bfairness^
as an adult, but your concept of fairness has likely changed
from then until now.

NDL conceptualizes cues as physical stimuli that generate
expectations. The VLM is consistent on this point. However,
NDL conceptualizes outcomes as semantic entities of which
those expectations are about. This is different from the VLM,
where outcomes are perceptual states. We think that both
stances are reasonable within limits.

Experiment 1 demonstrated that it can be beneficial to con-
dition a cue’s EVon a combination of the outcome’s SV and
EV. We have discussed EVs as encoding expectations of fu-
ture state, and that semantics can be operationalized as an
expectation about context. Future state is one aspect of con-
text. As the weight given to the outcome’s EV is increased, the
VLM becomes like NDL in its assertions about what out-
comes are.

The two cases where outcomes are only perceptual states or
only semantics are both unlikely; self-evidently, cues are
followed by perceptual entities. Empirically, giving weight
to expectations generated by those perceptual entities can im-
prove learning about the cues that precede them (Experiment
1). The VLM provides a way to systematically explore how
perceptual and semantic outcomes differentially affect learn-
ing. The VLM also provides an algorithmic means for
implementing the core feature of a lexome—that outcomes
are themselves constantly being recalibrated as a result of
learning. This is a consequence of outcome EVs contributing
to learning, and the fact that EVs are themselves changing as a
consequence of learning about the referenced stimulus. This is
a new contribution; NDL currently treats lexomes as black
boxes.

Representing cues

Both the R–W model and the VLM treat cues as if they are
symbolic. An BF^ and an BR^ are unrelated cues, despite the
fact that they share feature overlap. Both models can force a
feature-based representation by treating BF^ as the presence of
(e.g., a long vertical line, a short horizontal line, and a medium
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horizontal line). All cues would contribute to model predic-
tions and have their association strengths updated when BF^ is
presented as a cue. The value of such a representation is that it
allows for generalization of learning to other cues that share
similar features like, for example, the long vertical line shared
by BR.^ However, this approach also leads to incorrect pre-
dictions about rates of discrimination between cues with high
versus low feature overlap (Pearce, 1994).

Use of symbolic and featural representations of cues in the
VLM both lead to a conceptual puzzle: Why are cues treated
as symbolic when state vectors represent the perceptual prop-
erties of outcomes as real valued and high dimensional? The
expectations generated by cues are subsymbolic, as are the
outcomes that follow those expectations, but cues themselves
are symbolic.

This issue can be addressed with further elaboration to the
model. Rather than generating expectations directly from a
symbolic representation of a stimulus (see Fig. 7a), that stim-
ulus could be first transduced into a perceptual encoding (i.e.,
a state vector) and then that encoding could be used to gener-
ate an expectation about future perceptual state (see Fig. 7b).
The proposed model could be implemented as a three-layer,
fully connected neural network that uses the R–Wupdate rule
to back propagate error between the third layer and the second.
Connections between the first layer and the second would
represent communication channels between the external envi-
ronment and an animal’s perceptual system. The resulting
model would use current perceptual state to predict future
perceptual state, and future perceptual state to error correct
predictions. The proposed model bears similarity to Clark’s
(2013) argument that the brain is a perceptual prediction ma-
chine in which learning is driven by error correction.

Open practices statement All software used in this research is
available at http://www.github.com/hollisgf/reswag. All data
used for simulations reported is publicly available.
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