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Abstract
I address a recent extension of the generalized context model (GCM), a model which excludes prototypes, to the visual
short-term memory (VSTM) literature, which is currently deluged with prototype effects. The paper includes a brief review
whose aim is to discuss the background and key findings suggesting that prototypes have an obligatory influence on visual
short-term memory responses in the same VSTM task that the GCM’s random walk extension, EBRW, was extended to
account for: Sternberg scanning. I present a new model that incorporates such “central tendency representations” in memory,
as well as several other regularities of the literature, and compare its prediction and postdictions to those of the GCM on some
unpublished Sternberg scanning data. The GCM cannot account for the pattern in those data without post hoc modifications
but the pattern is predicted nicely by the central tendency representation model. Although the new model is certainly wrong,
the review and modeling exercise suggest a reconsideration of prototype models may be warranted, at least in the VSTM
literature.
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The Atkinson–Shiffrin model of memory (Atkinson &
Shiffrin, 1968) has motivated a great deal of theoretical
development in memory research. Indeed, many of the most
useful and successful models of long-term memory retrieval
can be seen as attempts to expand upon the modal model’s
basic structure and control mechanisms. Yet, despite such
developments in the long-term memory literature, modeling
of short-term memory seemed to develop in a somewhat
different manner, with a landscape divided by overly general
verbal theories and narrowly focused mathematical models.
To quote Shiffrin (1993, p. 195): “A few well-worked-out
models, roughly consistent with the framework, do a good
job of predicting the data from particular paradigms [...], but
a generally applicable model remains a goal for the future.”

In many ways, the trend toward development of
mathematical models tailored to specific STM paradigms
has continued (Ma, Husain, & Bays, 2014; Zhang &
Luck, 2011). However, there have been notable exceptions.
For instance, the feature-matching ideas embodied in
global matching models have recently been extended to
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account for visual short-term memory (VSTM) data via
the exemplar-based random walk model (EBRW; Nosofsky,
Little, Donkin, & Fific, 2011; Nosofsky, Cox, Cao, &
Shiffrin, 2014). EBRW is an extension of the generalized
context model (GCM; Nosofsky, 1984, 1992, 2000; Zaki &
Nosofsky, 2001), and uses the same basic representational
and retrieval scheme as GCM to account for reaction times
via addition of the well-known “Gambler’s Ruin” process
(Feller, 1968; Nosofsky & Palmeri, 1997; Parzen, 1962).
Thus, while EBRW has dealt with a specific task in VSTM
(Sternberg scanning), it is built on a long history of success
applying GCM and EBRW to perceptual categorization and
in this sense the EBRW may very well represent the kind of
STM model Shiffrin (1993) hoped to see developed. That
is, a detailed mathematical account with some degree of
generality and scope.

Interestingly, the VSTM literature has maintained a great
deal of interest in representational schemes and ideas that
seem contrary to a core aspect of the EBRW, namely,
its exclusion of any kind of memory representation of
prototypes or other memories of summary information. The
model instead assumes that decisions are based solely on
a global match between the features of a given probe, for
a categorization or old/new recognition decision depending
on the task, and the features of memory representations
of each of the items from recent study or training trials.
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Specifically, in the generalized context model (McKinley
& Nosofsky, 1995; Nosofsky, 1984, 1986a, 1992, 2000;
Zaki, Nosofsky, Stanton, & Cohen, 2003), the basic model
of response choice that the EBRW builds upon, responses
to a categorization probe p reflect a global match in which
the probe’s similarity to each previously seen exemplar a

of category A and b of category B is computed. Similarity
is an exponential decay function of Euclidean distance
d in a multidimensional feature space estimated through
multidimensional scaling (MDS):

spj = e−cdpj (1)

This means that the mental representation of similarity
between a probe p and a given exemplar’s memory
representation j falls off exponentially as the MDS
solution’s Euclidean distance increases.

Probe-exemplar similarities within Category A are
summed and divided by probe-exemplar similarities
summed over all studied categories K (in this case that
would mean all the exemplars, regardless of whether they
were in A or B). This computation, an application of
Luce’s Choice Ratio (Luce, 1961), estimates the response
probability for each test item.

P(A|p) =

A∑

a

spa

K∑

k

spk

(2)

As I mentioned, this pure exemplar approach to VSTM
stands in clear contrast to a large and growing literature
that is usually interpreted as showing that participants are
quite good at estimating and remembering the summary
statistics of recently encountered stimuli, that use of such
representations can improve VSTM accuracy, and that those
memories appear to obligatorily influence responding. That
is, several of those demonstrations appear to show distorting
effects of “central tendency representations” on memory
and perceptual responses to subsequent stimuli presented
in experiments with parameters comparable to those of the
VSTM and categorization tasks to which the EBRW has
been applied.

In what follows, I discuss this literature with the
aim of substantiating a key claim that VSTM responses
in tasks such as Sternberg scanning may show an
obligatory influence of central tendency representations
for stimuli presented both simultaneously and sequentially.
I then describe a simple model incorporating some of
the regularities discussed in the review and compare
its predictions to those of the GCM, EBRW’s core, in
unpublished data using a stripped-down, one-dimensional
version of the Sternberg task.

To preview, the results show an effect that ranges
from problematic to impossible for GCM to explain, but

which can be easily explained by assuming the matching
process includes matches to a stored prototype (which has
also been termed a “summary statistical” or “ensemble”
representation, when the word “prototype” is not used; the
preference appears to vary by lab but not by task or aspects
of the relevant data). Though the model I propose is most
certainly “wrong,” its ability to account for the data in
this way suggests a reconsideration of prototype models, at
least within the domain of VSTM, may be warranted. Such
results may suggest an important difference between the
mechanisms of VSTM and perceptual categorization that
should be embraced by unifying mathematical accounts.

Central tendency representation

Ariely (2001) conducted an experiment that has had a
major impact on subsequent work in the perception and
short-term memory literatures. In the study, subjects were
shown displays containing circles whose diameters differed.
Following each display, subjects were shown one or two test
probes. The number of probes differed only with respect to
the judgment (Yes/No or 2AFC), but produced analogous
results. Hence, we describe the single-probe variant. Here,
subjects were to make one of two judgments on a given
trial. On some trials they were asked whether the probe
circle had been in the memory set (Member Identification),
and on others they were asked whether the probe was
larger or smaller than the mean size of the study circles
(Mean Discrimination). Ariely found that, despite chance
performance on Member Identification, subjects were
highly accurate in Mean Discrimination. Ariely speculated
that such summary statistical representation of the items
could be adaptive, increasing the efficiency of the visual
memory system when item representations are degraded or
forgotten.

Ariely’s study inspired a massive amount of subsequent
research that continues to this day. This work promptly
and clearly established that central tendency representation
occurs for tasks as varied as multiple object tracking
(Alvarez & Oliva, 2008), rapid serial visual presentation
(Corbett & Oriet, 2011), change detection (Wilken & Ma,
2004), and Sternberg scanning (Dubé, Zhou, Kahana, &
Sekuler, 2014), to name a few. Several studies by Sperling
and colleagues have even used judgments of the centroids
of spatially arrayed stimuli to estimate the parameters of
attentional filtering operations (Drew, Chubb, & Sperling,
2009, 2010; Sun, Chubb, Wright, & Sperling, 2016).

Besides establishing that central tendency representation
occurs at a basic level, spanning tasks and processing
domains within perception and memory, this subsequent
work also suggests that i) central tendency representation
is obligatory, influencing subjects’ responding regardless
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of whether any instruction to compute an average is given
(e.g., Dubé et al., 2014), ii) perceptual averages occur across
time, affecting memory for items presented in sequence
(e.g., Haberman, Harp, & Whitney, 2009, using face stimuli
varying in emotional expression), and iii) the effects on
memory retrieval of this latter, temporal mode of averaging
are greater when visual attention at encoding is compro-
mised (e.g., Dubé et al., 2014). Such reliance on averages
under conditions of reduced or divided visual attention
makes sense given Ariely’s finding that iv) memory for
the average is preserved even when subjects have no
memory for the individual stimuli that were presented
and v) the demonstration by Alvarez (2011) that central
tendency representation can improve VSTM performance
and compensate for information loss in memory.

Although initial investigations of central tendency
representation typically followed Ariely (2001) in explicitly
asking participants for an estimate of some summary
statistic (usually central tendency, which I focus on here),
the key claim I wish to advance in this review is that the
influence of central tendency representations on memory
and perception responses is obligatory. This claim is, of
course, open to question and alternative explanations for the
results I will discuss are possible (as I detail below).1 Yet, the
overall consistency of the various results with the hypothesis
suggests the hypothesis is worthy of consideration in
theoretical development and empirical tests (work which is
initiated to a modest extent later in this paper).

To start at the beginning, it is interesting that obligatory
and biasing “central tendency effects” on perceptual
judgments were a major subject of investigation in the
early years of psychophysics, important enough to warrant
considerable discussion in Woodworth and Schlosberg’s
classic text (Woodworth & Schlosberg, 1954). Work
conducted somewhat later also appears to show effects of
central tendency representations, though the effects were
discussed in different terms (but with what appears to be
equivalent meaning to today’s terminology).

For instance, Ball and Sekuler (1980) used what
is nominally a perceptual task, motion detection, to
test models of stimulus uncertainty involving memory
representations of prior stimuli. All of their experiments
involved presentation of random dot cinematograms (RDC)
in which the dots were initially stationary but began to
“move” after an unpredictable interval. The subject’s task
was simply to respond as quickly as possible with a
keypress as soon as they detected the onset of motion. In
some of their experiments, blocks contained RDCs with
net movement along the same vector; these were termed
“Certain” conditions. In other blocks, a given trial could

1I thank Robert Nosofsky for pointing out several of the alternative
explanations.

present one of two possible directions: the direction from
Certain blocks and another direction. Across blocks of
this “Uncertainty” condition, the second direction varied
parametrically with respect to the Certain RDC direction.
Inflation in reaction times with uncertainty was measured
via a ratio of RT to the Certain direction in Certain blocks
to the RT for that same direction in each of the Uncertain
blocks. The results showed a clear parabolic relation across
several experiments, a result that has subsequently been
replicated in RT along with a similar pattern in the
corresponding N1 ERP component (Zanto, Sekuler, Dube,
& Gazzaley, 2013).

Of the models Ball and Sekuler considered, one, termed
the “Midway” model, is of particular interest. That model
assumed that, when faced with uncertainty about which of
two directions could appear on a given trial, subjects relied
in part on a memory representation of the direction that
would be midway between the two directions in the block.
The authors conceptualized this notion as a bank of feature
detectors with particular directional tuning profiles, with
attention directing the system toward detectors tuned to the
midway direction. The key test of this model occurred in
experiments in which uncertain blocks included a third RDC
direction occurring on a small subset (5-10%) of trials, the
direction of this RDC’s motion matching the average of
the two other directions. Such a stimulus would normally
be considered an oddball, and as in a typical oddball
task one would predict slower RT on trials presenting
this RDC direction (Hyman, 1953). However, if subjects
were actually encoding a memory representation of the
midway direction over trials and using it to improve their
RT under uncertainty, then the feature detectors for this
direction should be primed and produce faster RTs, contrary
to expectation.

The midway RT prediction is precisely what the authors
found, leading them to conclude that subjects mitigate
uncertainty by reliance on a midway representation. These
results complement other work showing that RDC motion
detection requires averaging over the motion vectors
within an RDC (Watamaniuk & Sekuler, 1992), suggesting
somewhat similar averaging operations occur at different
timescales.

Turning to studies of recall from VSTM, it appears that
a similar mechanism may be at work. In one such study,
Huang and Sekuler (2010a, Experiment 2) presented pairs
of Gabor patches in rapid succession, followed by a probe
Gabor patch. Subjects used the method of reproduction to
adjust the spatial frequency of the probe Gabor to match
one of the two study items. The study item in question
was indicated by a cue that was presented after both study
items had been presented. The results showed distortions
in recall in the direction of the spatial frequency of the
non-target Gabor, as well as an independent distorting
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effect of the average spatial frequency of the previously-
presented study items (i.e., from prior study-test cycles).
The latter “prototype effect” was subsequently found by
Huang and Sekuler (2010b) using a similar design and
with the addition of EEG recording during encoding. The
results demonstrated that encoding-related pre-stimulus,
posterior alpha power, long considered a marker of visual
attention (see, e.g., Dubé, Payne, Sekuler, & Rotello, 2013),
was negatively correlated with the prototype effect. This
suggests, consistent with other proposals in the VSTM
literature (e.g., Wilken & Ma, 2004), that subjects rely
on central tendency representations to compensate for
processing limitations that reduce the fidelity of the memory
representations that are subsequently probed at test (see also
Payne & Sekuler, 2014; Payne, Guillory, & Sekuler, 2013).

Nonetheless, it seems possible that the distortions were
due at least in part to confusions among the study items in
memory (i.e., matching the probe to the irrelevant/uncued
study item). Huang and Sekuler (2010a) addressed this
by examining the relation between reproduction bias
(distortion toward the irrelevant item) and skew of the
response distributions, finding that the two were statistically
independent. This argues against a confusion of items
because if the distortion reflected such a confusion
that distortion should have been greater when the error
distribution showed greater skew in the direction of the
irrelevant item, but this did not occur. Additionally, other
data from a similar task using a recognition probe argue
against this as I mention below (a central tendency effect
remains despite a near-zero false alarm rate, or FAR, to
Gabor probes matching the irrelevant study item).

Note that none of the foregoing experiments conducted
by Sekuler and his colleagues included any instruction
or requirement to produce an average. This suggests
that, not only are subjects adept at doing so as a
wealth of prior VSTM studies suggest, but they do so
obligatorily. Such obligatory averaging, if true, would make
sense when taken along with the simulations reported
by Alvarez (2011) showing that VSTM can be improved
by incorporating central tendency representations. The
variation in a prototype’s influence with markers of
attention (greater influence when attention was reduced
immediately preceding the study Gabors) and the findings
fromBall and Sekuler (1980) regarding stimulus uncertainty
are all consistent with the idea that reliance on or influence
from the prototype is an adaptive phenomenon, right in line
with Alvarez (2011) and Wilken and Ma (2004). In other
words, reliance on summary information may constitute a
kind of control process (Atkinson & Shiffrin, 1968) applied
to visual STM at the time of retrieval.

Going a step further, Dubé et al. (2014) explored
the within-trial “attractor” effect reported by Huang
and Sekuler (2010a), using an analysis of mnemometric

functions. The basic task followed the original study
closely: On each trial, subjects viewed two Gabor patches
presented sequentially. Each Gabor contained vertically and
horizontally oriented sinusoid components. Following the
presentation of the second Gabor, a recognition probe was
presented that either did or did not match one of the two
study Gabors. Subjects made a Yes-No recognition response
to the probe. Important differences include a manipulation
of attention and parametric variation in the stimuli used to
construct the mnemometric functions.

Specifically, the Gabor stimuli were constructed in such
a way that only the vertical spatial frequency dimension
of each Gabor pattern could be used to make a response.
The precise values of spatial frequency for each subject
were obtained using a staircase technique, allowing each
stimulus to be expressed in just noticeable difference (JND)
units above a fixed base frequency. The recognition probes
presented to each subject in the experiment took on 15
different JND values, including the value that matched
the relevant study item (Target trials) and 14 degrees of
mismatch (Lure trials). Relevant and irrelevant study items
were always separated by eight JNDs, with the relevant
item taking on a value of either four or 12 JNDs. With
this technique, the distributions of recognition response
rates (P(“Yes”) values) at each of several levels of feature
matching could be constructed. These distributions, termed
mnemometric functions (Sekuler & Kahana, 2007), were
then modeled using a truncated skew-normal distribution
(Azzalini, 1986), which allowed separate estimates of the
Gaussian variance and skew of the resulting response
distributions.

A key manipulation in the experiment involved the
presentation of an attention cue. This cue was included
at several timepoints in order to examine how selective
visual attention affects stimulus representations. The cue
indicated which stimulus (1 or 2) would serve as the
trial’s relevant study item, to be compared to the probe,
and appeared either before the first study item (Pre
Cue condition), between the items (Mid Cue), or after
both items had been presented (Post Cue). The results
showed an effect consistent with an influence of a central
tendency representation on responses to the probe stimulus,
distorting subjects’ response distributions. Specifically,
subjects’ response distributions were inflated (relative to a
baseline that involved presentation of a single study item)
in the region spanning the average of the two study items’
spatial frequencies (5-11 JNDs). This occurred regardless of
whether the first or second study item served as the task-
relevant item. Crucially, the analysis of the skew-normal
parameters revealed a greater influence of central tendency
representation (an increase in skew, but not variance) when
the attention cue could not be used to selectively attend
to the relevant stimulus (Post Cue conditions). The key
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results can be seen in Fig. 1. They suggest that i) central
tendency representation obligatorily influences recognition
performance, and ii) such effects are most pronounced when
selective attention is lacking during study.

As pointed out by Dubé et al., the results are unlikely
to be due to confusions regarding which study item should
be matched to the probe, as FAR to “lures” matching
the irrelevant study item were essentially nonexistent. And
given the similarity to the prior studies of Sekuler and
colleagues using Gabors as well as their own analysis of this
potential confound discussed previously, it seems likewise
unlikely that the distortion effects reported in those studies
were due to such confusions (the behavioral study by Huang
and Sekuler, for instance, differs from Dubé et al. mainly in
that the former used a recall probe).

It is possible, however, that the increase in FAR is due
to an exemplar-matching process since the critical lures,
falling between the two study items’ spatial frequencies,
will have higher summed similarities than the control lure
which falls outside of the range spanned by the two study
items. This suggests a more diagnostic test may be needed
to definitively conclude that the effects described in these
VSTM studies are due to the influence of central tendency
representations.

Obligatory averaging effects have also been demon-
strated for perceptual judgments using the adaptation
paradigm (Corbett & Melcher, 2014; Corbett & Song,
2014; Corbett, Wurnitsch, Schwartz, & Whitney, 2012). For
instance, Corbett and Melcher (2014) had subjects view two

Fig. 1 False alarms to Gabor Lures matching the average spatial
frequency of two study Gabors in a Sternberg recognition task, as well
as a control Lure whose spatial frequency fell outside of the range
spanned by the study items. The “central tendency” effect was largest
when attention cues followed both study items, compromising visual
attention relative to the Pre- and Mid-Cue conditions (see text). The d

values are Cohen’s d. Data from Dubé et al. (2014)

clusters of dots differing in the dots’ diameters. The clus-
ters were presented to the left and right of fixation, with
one cluster having a higher mean dot diameter than the
other. The clusters remained in view for 1 min, functioning
as an adaptor. After the adaptation period, two test clus-
ters replaced the adaptation clusters. Subjects were asked to
select the cluster in this new display that had the larger aver-
age diameter. Subjects’ responses were distorted away from
the average diameter of each adaptation cluster: clusters pre-
ceded by an adaptor cluster with a large diameter appeared
to have a smaller diameter, and vice-versa, and the effects
were nonretinotopic. This is another example of a perceptual
task that nonetheless shows results consistent with an oblig-
atory influence of a central tendency representation held in
VSTM.

A study by Oriet and Hozempa (2016) shows additional
evidence for obligatory central tendency encoding. They
showed subjects several displays each containing ensembles
of circles varying in features such as their diameter and
color fill. Each trial involved perceptual judgments that
should have been unrelated to central tendency memory,
such as judging whether a color was repeated in the display.
Later, after several thousand circles had been viewed, the
subjects were incidentally asked to judge the statistical
properties of the stimuli they had seen, such as drawing
a circle with a diameter that matches the average circle
they had seen. Subjects were highly accurate in this task,
as in so many prior central tendency tasks. However,
this was again an implicit task in which subjects were
presumably encoding the stimulus statistics incidentally. In
discussing their results, the authors pointed out that “..the
present finding that subjects retain a very accurate summary
representation of an irrelevant, unattended feature would
seem to be at odds with the claim that no prototype is
extracted as the set of exemplars is learned.” Of course, it is
always possible to argue that prototype extraction does not
necessarily mean prototypes are always used to complement
retrieval or other cognitive processes. However, as Alvarez
(2011) has demonstrated, reliance on central tendency
information can compensate for information loss, in which
case it would seem disadvantageous for subjects to ignore
such information if it had in fact been obligatorily encoded.
It does remain unclear, however, whether central tendency
representations were formed during encoding of the stimuli,
or calculated at the time the statistical judgments were
queried from memory of (at least some of) the prior items.

Interestingly, obligatory central tendency effects may
not be limited to effects of the first moment. The
spread of the feature distributions can have an impact as
well. Specifically, several studies have demonstrated an
influence of the similarity between items within a Sternberg
study set (i.e., their homogeneity) on the following test
responses (Kahana & Sekuler, 2002; Nosofsky & Kantner,
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2006; Sekuler & Kahana, 2007). This phenomenon was
incorporated into the Noisy Exemplar Model of Kahana and
Sekuler (2002), a matching model closely related to the
GCM. In several tests of the model, Kahana and colleagues
consistently found that higher homogeneity is associated
with lower FAR. At present, however, it remains unclear
whether homogeneity is a memory representation or the
result of a computation carried out at test. Existing models
appear to be agnostic regarding the locus of the computation
(during study or at retrieval).

An interaction between homogeneity and obligatory
central tendency effects has also been reported. In one
such study, Corbett et al. (2012) used the adaptation task
described previously and found that the size of the effect
increased as the variance of the adaptor dots’ diameters
decreased. This suggests reliance on central tendency
representations may be greatest under conditions of high
homogeneity. An anologous pattern can be seen in the
mnemometric functions reported by Kahana, Zhou, Geller,
and Sekuler (2007), for visual textures in a two-item
Sternberg task.

Can the EBRW, a VSTM model that conspicuously lacks
memory representations of central tendency information,
account for the foregoing effects in VSTM? The answer
seems to be “probably.” That is, Zaki and Nosofsky (2001)
showed that the GCM (EBRW’s core model) can account
for various increases in FAR to prototype lures relative to
other lures. However, for the GCMmodel which assumed an
exponential similarity gradient, prototype effects in designs
with two study items are limited to cases in which FAR

to prototype lures approximates but does not exceed HR
(see Fig. 2A in Zaki & Nosofsky, 2001). As noted by Zaki
and Nosofsky (2001) with respect to the exponential GCM
applied to the two-item case:

“there are no parameter values in the model that
allow it to predict that the false-alarm rates to the
prototypes would exceed the hit rates of the old items.
Furthermore, it is only for values of the sensitivity
parameter that are virtually equal to zero that the
model predicts that false alarms to the prototypes will
be nearly equal to hit rates for the old items, (p.
1026).”

In the exponential GCM, FAR to prototype lures may
exceed HR only in cases where there is i) high sensory
noise, ii) multiple feature dimensions relevant to the
judgment(s), and iii) more than two study items (training
exemplars; see, e.g., Fig. 2B in Zaki & Nosofsky, 2001). All
three conditions must hold. Further, Nosofsky (1985a) has
argued that when confusable stimuli are used and sensitivity
is in fact low, a Gaussian similarity gradient provides a
more accurate description of generalization performance
(see also Nosofsky, 1985b, 1986b). As a Gaussian gradient

is capable of producing FAR > HR even in the two-item,
one-dimensional case, it is of particular interest in
explaining prototype effects in VSTM. I will return to this
point later.

Next, I develop an alternative VSTM scanning account
that incorporates some of the central tendency representa-
tion ideas discussed in the VSTM literature. Simulations
with the model show a prototype enhancement for a one-
dimensional, two-item task (in this case, a Sternberg task
similar to the ones to which EBRW was applied). The
increase in FAR is predicted, under certain experimental
conditions, to not only meet but exceed HR. Following
the simulation, I test this prediction using unpublished data
(Huang & Sekuler, unpublished manuscript). Included are
comparisons of the central tendency representation model,
the exponential GCM (which cannot predict FAR > HR

in this one-dimensional, two-item case), and the Gaussian
GCM (which can) in fits to the unpublished data as well as
to published data from Kahana et al. (2007).

Compressionmodel

To illustrate how memory representations of central
tendency statistics (including homogeneity) could be
incorporated into a matching model, consider a model of
performance in the Sternberg recognition task with two
study items (as in Dubé et al., 2014), in which only two
matches directly factor into memory evidence: The match
between the probe and the best matching item in memory,
and the match between the probe and the average stored in
memory.

The model is situated within the logistic approach
exemplified by, e.g., Luce (1961). The memory evidence is
a combination of two match values: the match between the
probe p and its best-matching study item, smin, defined as
follows

Emin =
(

1

θdv
min + 1

)r

smin �= smax, v = [1, ∞), r = [1, ∞), θ = (0, 1) (3)

and the match between p and the central tendency
representation of the two items, the latter referred to as sμ:

Eμ =
[

1

(1 − θ)dv
μ + 1

]r

(4)

The term dmin in Eq. 3 is the Euclidean distance (d)
between the probe (p) and its best-matching study item,
smin, and dμ in Eq. 4 is the distance between the probe and
the average of the study items (sμ). In general terms:

ds,p =
√

(s + ε − p)2 (5)
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where ε is a Gaussian noise term to mimic imperfections
in memory representations and/or noise in the matching
process.

The exponents on the evidence expressions, r and v,
govern the degree of sensitivity to mismatches: larger values
of r and v produce more extreme changes in evidence as the
degree of mismatch between p and s increases.

Finally, the weighting parameter θ captures the effect
of the distance D between the two study items, i.e., their
dissimilarity or inverse homogeneity, on the combination of
evidence.

θ = Dn

Dn + δn
δ = [0, ∞) (6)

The parameter δ controls the rate of change in θ

with changes in D, and the exponents n control the
shape of the function. The functional form, sometimes
referred to as a “Naka-Rushton” function, is widely used
in computational neuroscience as a model of gain control
in the visual and various other sensory systems (Billock
& Tsou, 2011; Carandini & Heeger, 2012; Graham, 2011;
Naka & Rushton, 1966). Here it is used to selectively
amplify the matches to an item feature and an ensemble
average of that feature.

The choice of using only the best match to an
individual exemplar is motivated by the success and
widespread application of the winner-take-all activation rule
in machine learning and neural computation (Grossberg,
1982; Riesenhuber & Poggio, 1999). θ , the model’s
attentional weighting parameter, could be expanded into
or rewritten as a function relating changes in endogenous
visual attention to internal noise (Carrasco, 2011; Lu &
Dosher, 1998) of the memory representations of the study
items. In this way, the parameter could serve as an inverse
measure of sensitivity akin to modulating the standard
deviation in the denominator of discrimination measures
such as the signal detection measure, d ′ (Macmillan
& Creelman, 2005). It is also possible to characterize
the weight in terms of control processes (Atkinson &
Shiffrin, 1968), for instance by incorporating the notion that
participants may increase the weight on central tendency
information when greater noise or uncertainty are present
in the system. In order to retain the simplicity of the model
at present, however, the variable δ on which the attention
weight θ depends is simply a free parameter.

Matches provide memory evidence to the response
system in support of a “Yes” response. The evidence
corresponding to a particular threshold t∗, similar to the
“activation” at threshold in many neural networks, is:

E =
(

Emin

Emin + t∗

)(
Eμ

Eμ + t∗

)

t∗ = (0, b) (7)

The probability of an “Old” response in this model
is based on the total evidence for thresholds exceeding

t∗, for a given probe condition p and study-item spatial
frequencies (in JNDs, e.g.) smin and smax . This fraction can
be calculated by integrating the evidence with respect to t∗
using a partial fraction decomposition:

P(“Yes”) = 1

Z

b∫

t∗
Edt

= ln

[
(t∗ + Eμ)(b + Emin)

(t∗ + Emin)(b + Eμ)

](
EminEμ

Eμ − Emin

)
1

Z
(8)

The quantity denoted Z above corresponds to the total
activation in the system and normalizes the evidence
favoring a “Yes” response:

Z =
b∫

0

Edt b = (t∗, ∞) (9)

in which b is an arbitrary upper bound.
Performing a similar computation with Z and substitut-

ing the result into Eq. 8 produces:

P(“Yes”) =
ln

[
(t∗ + Eμ)(b + Emin)

(t∗ + Emin)(b + Eμ)

]/

ln

[
(b + Emin)(Eμ)

(b + Eμ)(Emin)

]

(10)

Finally, taking the limit as the upper bound approaches
infinity produces the final expression of choice probability:

P(“Yes”) = lim
b→∞

1

Z

b∫

t∗
Edt

= ln

(
t∗ + Eμ

t∗ + Emin

)/

ln

(
Eμ

Emin

)

(11)

To examine the model’s predictions, I conducted a
simulation to examine predicted mnemometric functions
with varyingD. The scenario is a two-item one-dimensional
Sternberg recognition task as in Dubé et al. (2014). The
parameter values, chosen by hand, were r = 2, v = 3, n = 9,
δ = 4 (low attention) and 1 (high attention), and t∗ = .3. The
values of s1 and s2 features (arbitrary units) were varied to
create three levels of homogeneity: -5 and 5, -4 and 4, -3 and
3. Though ideally the parameter ε should be a random draw
from a Gaussian, for simplicity it was set to a small arbitrary
value (.001). Probes were integers spanning the range [-10,
10].

The results, shown in Fig. 2, demonstrate the model’s
ability to produce quasi-normal mnemometric functions and
decreasing FAR with increasing homogeneity (compare to,
e.g., Kahana et al., 2007, Fig. 2). More importantly, the
figure shows an increase in P(“Yes”) to Lures matching the
average of the two study items as homogeneity increases
from panel A to C, and as the attention weight θ decreases
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a b c

Fig. 2 Simulated mnemometric functions using the compression
model. Open circles used δ = 1, and closed circles used δ = 4. Vertical
lines denote the locations of s1 (left line) and s2, where the probe fea-
ture value equals that of either s1 or s2. As homogeneity increases from
the leftmost to rightmost panel, θ , the model’s attention-based weight-
ing parameter, approaches 0. This puts more weight on the match to

the central tendency representation, inflating FAR to Lurea , located
at a feature value of 0 in the figure. A key prediction is that highly
homogeneous study items in a two-item, one-dimensional Sternberg
task will generally produce FARa > HR unless visual selection is
engaged at study

(open vs. closed circles). A novel prediction of this model
is that, under conditions of very high homogeneity (i.e., low
D) and relatively low attentional fidelity, the FAR to the
central Lure (henceforth, FARa to Lurea) will not only
meet, but will exceed, HR.

This prediction is tested next, using unpublished data
from Huang and Sekuler. The design involved a stripped-
down Sternberg recognition task with study set size = 2,
no attention precue, and only one variable dimension on
which judgments can be supported, controlled and varied
experimentally, as well as much higher homogeneity than in
the Dubé et al. (2014) data (in which HR always exceeded
FAR). The design affords a straightforward test of the
compression model prediction that, under such conditions,
FARs to “prototype” lures may exceed HR.

Methods

Subjects

Ten paid subjects (two males) were recruited from Brandeis
University’s student population. Subjects ranged from 18
to 24 years old (x̄ = 20.6 years) and were paid for
participating. The experiment entailed two sessions per
subject; successive sessions were separated by a minimum
of three hours, and successive sessions were completed
within 2 weeks of one another.

Stimuli

Subjects viewed Gabor patches. The Gabors’ mean lumi-
nance was 30 cd/m2 (as was their uniform, constant back-
ground); their peak Michelson contrast was 0.30. Each
Gabor’s sinusoidal component subtended 5.38 deg visual

angle (v.a.) at a viewing distance of 59 cm. The sinusoidal
component was windowed with a circular Gaussian enve-
lope whose space constant was 1.12deg v.a. The phase
of the sinusoidal component within a Gabor varied ran-
domly over the range [0, π/2]. The Gabor patches were
created and displayed using Matlab’s Psychtoolbox package
(Brainard, 1997). Subjects viewed these stimuli on a 32×24
cm CRT monitor with resolution 1152×864 pixels. CRT
monitor luminances were calibrated using Eye-One Match©

hardware and software from GretagMacbeth.

Procedure

A representative trial sequence from Huang and Sekuler’s
experiment is illustrated schematically in Fig. 3. On
each trial, the two study set Gabors were presented
simultaneously with locations equidistant from fixation.
This presentation was brief (200 ms). Following a short
retention interval (800±50 ms), a probe Gabor was
presented and subjects indicated whether the probe matched
the remembered spatial frequency of either study item.
Subjects advanced to the next trial via key press.

Spatial frequency conditions

Huang and Sekuler systematically varied not only the
spatial frequency similarity between the probe and the study
items, but also the probe’s location relative to the locations
previously occupied by the study items. However, subjects
were instructed to ignore spatial location, judging only
whether the probe did or did not match one of the study
items. Since the degree of spatial frequency match between
items is key to the models’ predictions, I collapse over the
location variable in the analysis. T arget probes occurred
on half of the trials (and on these trials, they matched the
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Fig. 3 Schematic diagram illustrating the stimulus sequence on a trial.
Subjects fixated on a black dot at the center of the screen for the
entire duration of the trial. The stimuli were Gabor patches of varying
spatial frequency. All stimuli (study items and probe) were centered
on the circumference of an invisible, notional circle (dashed circle
in the figure). The pair of study-items and then the probe were each
displayed for 200 ms, separated by a retention delay of 800±50 ms.
A trial ended when the subject made a response, pressing one of two
computer keyboard keys to signal either “yes, the probe shared the
spatial frequency of one of the study items” or “no.” The locations
and the feature (spatial frequency) values of stimuli varied from trial
to trial, as explained in the text. Figure from Huang and Sekuler
(unpublished manuscript), with permission

study item with the higher spatial frequency as often as
they matched the study item with lower spatial frequency).
Lures occurred on the remaining trials. T arget and Lure

trials were randomly intermixed. Crucially, Lures varied
systematically in their position on the spatial frequency
dimension with respect to the two study items, while
T argets maintained a very small, constant separation of
three JNDs.

Figure 4 depicts the relationships among the test probe
conditions on the spatial frequency dimension. The study
item with the minimum distance from a trial’s probe is
designated smin, and the remaining study item smax .

As depicted in Fig. 4, a Lure’s spatial frequency could
be (i) Luresf −1, one JND from the spatial frequency of
smin and thus two JNDs from smax ; (ii) Luresf +1, one JND
from smin and four from smax ; or (iii) Luresf +4, four JNDs
from smin, but seven JNDs from smax . With equal frequency,
smin was either the study item with higher spatial frequency
or the study item with lower spatial frequency. Luresf −1

approaches the average spatial frequency of smin and smax ,
so I refer to it as Lurea .

Fig. 4 Spatial frequency relationships among the items of the
Sternberg task. The horizontal line represents the spatial frequency
dimension. Blue dots represent the study items, and red diamonds
represent Lures. A gray arrow represents a T arget . The subscripts
on the lures indicate how many spatial frequency units (“sf”, scaled
in JNDs in the text) the items fall from smin, the best-matching
(minimally distant) study item. The sign indicates whether the lure fell
between the study items (“-”) or whether it fell outside of the range
spanned by the study items (“+”). Note: Though the spatial frequencies
of the study items, smin and smax , varied across trials, they always
differed in spatial frequency by a constant:D = 3 JNDs. Figure adapted
from Huang and Sekuler (unpublished manuscript) with permission

Stimulus set

Following the procedure suggested by Zhou, Kahana, and
Sekuler (2004), the set of spatial frequencies that would
be used as each subject’s stimuli was generated by a
subject-specific scaling procedure. Specifically, each sub-
ject’s stimulus set comprised Gabors whose sinusoidal com-
ponents’ spatial frequencies were defined by the relation

f = f0(1 + Ks)
n (12)

where f0 is a fixed base frequency, and Ks is a subject’s
Weber fraction.

Ks = �f

f
(13)

where �f is the difference threshold (just noticeable
difference, JND) for spatial frequency. Here, the JND
estimated the smallest difference in spatial frequency that a
subject could successfully discriminate (with an accuracy of
79%) between two iso-eccentric, simultaneously-presented
stimuli having a separation of 11.81deg v.a. on a line
through the fixation point.

The variable n, denoting the spatial frequency difference
f - f0 in JNDs, took on integer values in the range [0, 12].
This defined a set of 13 normalized stimuli whose pairwise
spatial frequencies differed by a variable, but known number
of JND units. To reduce the possibility that subjects might
learn particular stimuli over the experiment, on each trial,
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the base frequency f0 was varied randomly and uniformly
over the range 0.4–1.0 cycles/degree. Trial-to-trial variation
in study items’ spatial frequencies forced subjects to base
their recognition judgments on short-term visual memory
for that particular trial’s study items.

The experiment entailed 1200 trials per subject. Of these
trials, 50% were target trials (the probe’s spatial frequency
matched the spatial frequency of one of the study items), and
50% were Lure trials (the probe’s spatial did not match eit-
her study item’s spatial frequency). A T arget probe was pre-
sented equally often at each of the five eligible locations on
120 trials; and each of three categories of lure probes was pre-
sented at each of the five possible locations on 40 trials. All
told, the probes coincided with the location of one of the study
items on 40% of all trials. The order in which probe types
and locations were presented was randomized across trials.

Modeling

The core of the EBRW VSTMmodel, the GCM recognition
model, was fit to the data. The model equations are as stated
in Zaki and Nosofsky (2001). Two variants were used, one
with the exponential gradient and one in which the distance

is squared, producing a Gaussian curve. Both GCM models
had a total of 2 free parameters: c and k′. A single value
of memory strength m is reasonable since the data are from
a task using simultaneous presentation of the study items
(published data from a sequential variant are considered sub-
sequently). However, in the current design m and k are not
identifiable: m can be set to 1 and k replaced with k′ = k

m
.

The compression model (CM) was also simplified
somewhat by setting the exponent r to 1 and treating θ as a
free parameter, since there is only one level of homogeneity
in the current dataset. The free parameters were θ , t∗, and
v. In sum, there were 3 free parameters of CM and 2
parameters, c and k′, of GCM.

The models were fit in R (R Development Core Team,
2008) by using the Nelder-Mead algorithm to minimize the
RMSE between the model estimates and the data. Multiple
starting values were used to avoid local minima.

Results

Results are displayed in Fig. 5. Consistent with the high-
homogeneity prediction in Fig. 2, there is a clear increase

Fig. 5 Barplots show observed and predicted Yes rates from a two-
item Sternberg experiment with a small (three JND) separation
between the study items’ spatial frequencies. Data are from ten individ-
ual participants and the aggregate. Solid points and lines represent CM
fits, dashed lines and open circles represent Gaussian GCM fits, dotted

lines and squares represent exponential GCM fits. Data from Huang
and Sekuler (unpublished manuscript). Also shown are observed mne-
mometric functions from Kahana et al. (2007) shown as solid points.
The left function shows the fit of the CM as crosses and lines, and the
right function shows the fit of the Gaussian GCM in like manner
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in FAR to Lurea relative to Lure trials in this (high-
homogeneity) dataset, t(9) = 5.56, p < 0.001, BF10 = 98.
Also consistent with the predictions, FAR to Lurea

exceeds even the HR, by nearly 10%, t(9) = 2.93, p < 0.05,
BF10 = 4.

As shown in Table 1, the CM provided a better fit to
the data than the exponential GCM in all ten individuals
and in the aggregate data, and the magnitude of the fit
differences was substantial, t(9) = 6.49, p < 0.001, BF10

= 258. The Gaussian GCM did show an improvement over
the Exponential GCM, t(9) = 4.28, p < 0.01, BF10 =
22. However, the CM still clearly outperformed even the
Gaussian GCM, t(9) = 6.34, p < 0.001, BF10 = 221.

A similar pattern holds in comparisons of the Akaike
Information Criterion (AIC), which includes a penalty term
for the number of free parameters (recall that the CM has
three free parameters, and GCM 2). In AIC, the CM fared
better than the exponential GCM in all comparisons, and
outperformed the Gaussian GCM in eight of ten cases and
in the group data. The magnitude of the fit differences
was again substantial in comparisons of CM with the
exponential, t(9) = 3.66, p < 0.01, BF10 = 11, as well as
the Gaussian GCM, t(9) = 3.23, p < 0.05, BF10 = 6. Also
as expected, the latter outperformed the exponential GCM,
t(9) = 3.11, p < 0.05, BF10 = 5.

The best-fitting parameter values, listed in Table 2,
show that CM places 53% of the weight in the evidence
on the central tendency representation. However, if the
two participants who do not show HR < FAR to
Lurea are excluded, the weight is closer to 70%. Turning
to the exemplar models, the main difference between
the exponential and Gaussian GCMs is in the sensitivity
parameter c, which is consistently lower in the estimates
provided by GCM-G. The low values of c are consistent

Table 1 RMSEs and AIC values (italics) of the CM, exponential
GCM, and Gaussian GCM fit to the individual and group data from
Huang and Sekuler (unpublished manuscript)

ID CM GCM-E GCM-G

1 0.021, 1365.28 0.050, 1379.08 0.037, 1364.46

2 0.017, 1392.65 0.086, 1431.88 0.057, 1400.84

3 0.019, 1509.58 0.041, 1510.84 0.044, 1515.44

4 0.010, 1438.00 0.078, 1466.99 0.059, 1449.81

5 0.007, 1350.13 0.060, 1370.71 0.041, 1354.48

6 0.018, 1509.42 0.031, 1511.58 0.025, 1506.65

7 0.007, 1365.52 0.079, 1396.01 0.057, 1373.87

8 0.031, 1260.81 0.104, 1328.46 0.070, 1272.24

9 0.003, 1454.22 0.033, 1456.96 0.030, 1456.48

10 0.008, 1287.50 0.087, 1319.43 0.074, 1307.79

Aggregate 0.011, 14054.59 0.055, 14218.96 0.033, 14091.92

Bold values denote the best-fitting model in each case

Table 2 Best-fitting parameter values of the CM, exponential GCM,
and Gaussian GCM fit to the individual and group data from Huang
and Sekuler (unpublished manuscript)

CM GCM-E GCM-G

ID θ t* v c k′ c k′

1 1.00 0.33 4.58 0.76 0.31 0.17 0.48

2 0.28 0.27 2.96 0.73 0.43 0.18 0.64

3 0.43 0.37 1.85 0.49 0.60 0.09 0.85

4 0.10 0.23 2.70 0.58 0.43 0.12 0.62

5 0.45 0.23 2.68 0.75 0.33 0.17 0.51

6 0.99 0.53 3.25 0.59 0.60 0.13 0.87

7 0.42 0.27 3.04 0.78 0.40 0.20 0.62

8 0.27 0.17 3.50 0.88 0.26 0.23 0.43

9 0.50 0.28 1.99 0.54 0.44 0.11 0.64

10 0.28 0.20 3.27 0.82 0.31 0.19 0.51

Aggregate 0.47 0.28 2.46 0.68 0.41 0.15 0.61

with the discussion of prototype enhancements in GCM-E
applied to two-item tasks by Zaki and Nosofsky (2001) (see
Introduction). Also consistent with Zaki and Nosofsky
(2001), estimating c to be zero in GCM-E can only produce
FAR � HR, it cannot produce FAR > HR.

In sum, the pattern in these fits suggests that the Gaussian
gradient in GCM does allow the model to produce the
key pattern in response choice, as expected. However, it
cannot match the magnitude of the difference: the effect
is consistently underpredicted by GCM-G in all eight
participants who show the effect. This is consistent with the
notion that participants are supplementing their responses
with a central tendency representation, and inconsistent
with the alternative explanation that the effect is a by-
product of the form of the underlying generalization curve.
Nonetheless, both models, though they only have two
(GCM) and three (CM) free parameters, are being fit to
small datasets including only four observations in each fit.
Perhaps, under greater constraint from a larger dataset, the
results would be different.

For this reason, I also include some mnemometric
function data from Kahana et al. (2007). In this study, the
authors used a very similar procedure and stimuli to the
unpublished Huang and Sekuler study just discussed. As
in Huang and Sekuler’s experiment, the study items were
two Gabor patches, and their presentation was followed
by a recognition probe Gabor. The main differences were:
i) the homogeneity of the study items varied, and did so
either across trials (“mixed” condition) or across blocks
(“blocked” condition), ii) the study items were presented
in succession rather than simultaneously, and iii) the
study included 29 possible values of match between the
probe and a given study item, varied parametrically in
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steps of .5 JNDs. The resulting mnemometric functions,
plotted as filled circles in Fig. 5, were taken from the
high-homogeneity, blocked condition (mixed and blocked
homogeneity conditions produced similar results, as is
apparent in Fig. 2 of Kahana et al.). The results are collapsed
across two functions differing in whether the first or second
study item had the higher spatial frequency; the authors do
report a recency effect in these data however they do not
report any interaction with spatial frequency.

The data show a single-peaked and roughly symmetric
distribution of responses centered on the value of the
prototypical spatial frequency value (scaled to 0 in
Figure 5). This is consistent with the high-homogeneity,
low-attention results of the CM simulation reported earlier.
Both the CM and GCM-G were fit to these data. Since
the study items were presented in sequence, unlike the
simultaneous presentation in the unpublished Huang and
Sekuler data, two values of m are reasonable in GCM-G in
addition to c and k. As in the prior analysis, however, one
of them (m1) can be absorbed into the k parameter without
loss of generality, and in the present case m2 is by the same
manipulation replaced withM ′=m2

m1
. For CM, the parameters

θ , t∗, v, and r were estimated. Thus both models use a
small number of parameters (three in GCM, four in CM) to
estimate 29 datapoints. The best-fitting parameter values are
listed in Table 3.

As is clear in Fig. 5, the CM (left panel, crosses and lines)
provides a better fit to the data, RMSE = .027, than does
the GCM-G (right panel), RMSE = .045. Incorporating a
penalty for the difference in number of parameters (four in
CM vs. three in GCM) results in �AIC = -155.50 favoring
the CM. The reason for the difference in fit is clearly the
same as in the fits to the unpublished data: the GCM cannot
match the degree of prototype enhancement that is observed
empirically. Kullback − Leibler (K − L) divergence for
CM is .08 and for GCM-G it is -.18. The ratio of the
two (ignoring sign) is .18/.08 = 2.25. In other words, the
divergence between the distributional predictions and the
data is more than twice as great in GCM-G as in the CM,
and as is apparent in the figure, a majority of this difference
across 29 data points stems from the large discrepancy

Table 3 Best-fitting parameter values from CM and Gaussian GCM
fit to the aggregate high-homogeneity mnemometric function reported
in Kahana et al. (2007)

Parameter CM GCM-G

θ , c .11 .40

t∗, k′ .14 .29

v, M ′ 4.98 .71

r .81

apparent in the three data points spanning the location of the
prototype.

Discussion

The current results are consistent with the predictions of
the compression model in showing an inflation in FAR to
Lures matching the average of the study items presented in
a Sternberg scanning task. Crucially, and also as predicted,
the FAR to these critical Lures exceeds even the response
rate to items that were actually studied by a substantial
amount.

This pattern also held in analyses of a published data set
from Kahana et al. (2007), though in this case presentation
of the study items was sequential and a full distribution
of responses over a large range of similarity matching was
obtained. Both sets of data were difficult for the GCM to
account for, though the CM provided a good account of all
of these data. The results suggest that a reconsideration of
the prototype approach is warranted, at least in the VSTM
literature.

Do these results call the GCM and its RT extension,
EBRW, into question? The answer to this question is
“No,” for several reasons. First, it is quite possible that a
suitable modification of GCM/EBRW could account for the
present data without necessitating memory representations
of central tendency information, though admittedly these
would be post hoc modifications. Second, out of all
the results reviewed in the Introduction the data that
are most challenging for EBRW and GCM are found in
only the very specific circumstances of the current dataset
and paradigm. Specifically, while the small three JND
study-item separation, one-dimensional stimuli, and two-
item study set size provide ideal conditions for testing
the models’ predictions, it is only a single small dataset
and only a single class of stimulus, certainly not enough
evidence for making any claims about the validity or
generality of the exemplar approach.

For instance, one potential issue is that the current
design, with only one level of homogeneity, encourages
a strategy to rely on the average in order to reduce
memory load. Though this seems consistent with the
idea of compensatory, adaptive reliance on remembered
averages discussed in the Introduction, it nonetheless
raises questions about the generality of the finding since
homogeneity was fixed. However, the fact that the same
pattern was observed in the experiments of Kahana et al.
discussed earlier, which included trial-by-trial variation in
homogeneity, does seem to suggest that the key results of
the current analysis are not simply a by-product of the
design.



Mem Cogn (2019) 47:589–602 601

Furthermore, the compression model is most certainly
a “comically oversimplified” model: it is what mathemati-
cians would call a toy model, used to illustrate a point in
a convenient but admittedly oversimplified way. Though
it may provide a useful direction or framework for future
models of ensemble effects, it seems doubtful whether the
current model can compete seriously with EBRW on larger
datasets with more parameters varying across experiments,
particularly in light of the fact that GCM and EBRW have
already withstood over two decades of scrutiny in the per-
ceptual categorization literature. The point of the present
exercise is, rather, to raise questions relevant to our under-
standing of VSTM.

The most crucial question raised here is whether
VSTM is likely to operate using a pure exemplar
matching approach, or whether it is worth (at least)
entertaining alternative approaches incorporating central
tendency representations. I believe the large and growing
literature on central tendency representation, along with
the current results, suggest such a consideration is not
ill-advised and that such effects should not be ignored
in modeling work. Though the compression model is
most certainly a model of a specific task, the modeling
exercise reported here suggests an important difference
may exist between the perceptual categorization and VSTM
literatures, one that any future, unifying mathematical
account will need to explain.

Although much research remains to be done to establish
firmly the details involved in producing ensemble effects,
the literature review and modeling suggest that statistical
information may be useful to control processes of the
sort originally detailed in Atkinson and Shiffrin (1968).
Specifically, reliance on central tendency information
appears to serve an adaptive function, improving memory
performance and compensating for noise in the system
(Dubé & Sekuler, 2015). From this perspective, it is a
reasonable hypothesis that participants might vary the extent
to which they use such information at the time of retrieval,
weighting such information more heavily when noise
or uncertainty surrounds item representations. A useful
direction for future work may be to examine the extent to
which use of such information is under the participant’s
control, as it seems to be, and to determine the limits
and extent of such processes in both unidimensional and
multidimensional stimuli across a broad range of memory
tasks.
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Dubé, C., & Sekuler, R. (2015). Obligatory and adaptive averaging in
visual short-term memory. Journal of Vision, 15(4), 13–13.
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