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Abstract
Spatial memory is often biased by various factors, such as the region a target belongs to, which can be defined based on physical,
perceptual, or implicit boundaries. In the typical dot-localization task first introduced by Huttenlocher, Hedges, and Duncan
(Psychological Review 98: 352-376, 1991), individuals normally divide the task space into four quadrants delineated at the
Cartesian axes (forming Bdefault categories^) and show systematic bias in target localization toward the center of the category.
At least two mechanisms have been proposed to account for these categorical biases, namely (a) weighted-average of a metric
representation and the category prototype representation and (b) truncation of an un-biased metric representation at the category
boundary. Both models can account for these findings and cannot be differentiated by existing research methods. Using a new
distribution analysis, the current study sought to differentiate between these twomodels. Participants viewed a dot inside a circle and
recalled its location after a delay either with the same blank circle (i.e., the standard dot-in-circle paradigm) or when an alternative V-
shaped category boundary was visually presented at retrieval. The data from three experiments showed symmetrical distribution of
the errors that shifted toward the category center when people primarily used the default category, supporting the weighted-average
model. In contrast, when people primarily used the alternative category, the errors showed a highly skewed distribution, more
consistent with the truncationmodel. Overall, these results provided the first experimental evidence for bothmechanisms separately.
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Introduction

Spatial memory is an important cognitive capability for most
animal species, and a vast literature has been devoted to study-
ing the encoding and processing of spatial information across
many areas, including animal behavior, human development,
neural disorders, and brain functions. Within the spatial cog-
nition research, the format of spatial coding is one of the
central theoretical issues for understanding spatial memory
in both humans and other animals (e.g., Shelton &
McNamara, 2001; Wang, 2012), and many research para-
digms have been developed. For example, categorical bias is

a well-known phenomenon that reveals the underlying
structure of spatial representations and spatial coding
(Huttenlocher, Hedges, & Duncan, 1991; McNamara, 1986).
Previous research has shown that when people remember a
target location, they tend to show a systematic bias according
to the target’s region (Huttenlocher, Hedges, & Duncan, 1991;
McNamara, Hardy, & Hirtle, 1989; Steven & Coupe, 1978).
For example, people often mistakenly judge Los Angeles to
be to the west of Reno, supposedly because they use the rel-
ative location of California and Nevada in their assessment of
the spatial relationship between the cities within the respective
states. These findings suggest that region membership is an
integral component of the location memory representation,
which can be defined based on the physical, perceptual, or
implicit boundaries of the region.

A common paradigm to study this type of category bias in
spatial memory is the dot localization task, in which individ-
uals see a dot inside a simple geometric space (e.g., a circle)
and replace the dot in that space after a brief delay. In this
standard task, people implicitly impose Cartesian axes as the
boundaries of the regions to categorize the circular space. That
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is, the data indicate that individuals partition these simple
spaces into default categories bounded at the x- and y-axis
and misplace the dot in the direction of the center of the quad-
rant in which the dot had appeared (i.e., its L-shaped region or
spatial category). The phenomenon of spatial bias is prevalent
across a variety of other paradigms and also occurs with ori-
entation (Stevens & Coupe, 1978) and distance judgments
(McNamara, 1986) as well as many types of spaces, such as
world maps (Friedman & Brown, 2000), pictures of nature
(Holden, Curby, Newcome, & Shipley, 2010), natural envi-
ronments (Sampaio & Cardwell, 2012), and virtual environ-
ments (Sampaio et al., 2017). Together, the literature suggests
that metric information is calibrated within a frame of refer-
ence, and this frame can bias spatial judgments from memory.

The well-known pattern of misjudging a target’s location in
relation to its spatial region is frequently viewed as evidence
for the metric and categorical sources of information blending
in a Bayesian manner. However, the mechanism that leads to
the bias is not completely understood. The reliability of cues is
key in determining the relative weight of each cue in estimates
of location from memory. As certainty of a cue increases, the
influence of the others in location judgments decreases
(Engebretson & Huttenlocher, 1996; Huttenlocher et al.,
1991; Newcombe et al . , 1999). Engebretson and
Hunttenlocher (1996), for instance, manipulated the certainty
of the metric information and found that as it degraded, people
relied more on the categorical information. Huttenlocher et al.
(1991) decreased the precision of the metric information by
introducing a distractor task and also found that, in that case,
categorical information (in the form of a central value or pro-
totype) was weighed more heavily in people’s estimates of
location compared to the standard condition. Moreover, the
amount of bias depends on the degree of inexactness of cate-
gory values (i.e., prototypes and boundaries). Generally, there
is little bias in remembering targets that appear near the cate-
gory prototypes and/or boundaries (Huttenlocher et al., 1991).
The imposed axes of symmetry in circular spaces are invisible
and inexact, which influences the probability of correctly
assigning items to their respective categories. The size of the
category effect also increases with longer delays (Hund &
Plumert, 2002; Huttenlocher et al., 1991; Spencer & Hund,
2002, 2003). Sampaio and Wang (2012), for example, asked
participants to reproduce the location of target dots within a
circle after a short (300 ms) or a long (5,000 ms) delay, and
showed larger biases in target localization in the long delay
condition. The hypothesis is that the metric information de-
cays more rapidly over time compared with the categorical
representation. Thus, there is a greater reliance on the categor-
ical coding than on the metric coding with the passage of time.

In this paper, we investigated the mechanisms underlying
the bias. The dominant account for the use of categories in
spatial memory is that a weighting process based on Bayesian
principles occurs, yielding a response that combines the

multiple sources of information available at the time of esti-
mation. Specifically, the location of a target is coded at two
levels of detail: a coarse level (the category representation)
and a fine level (the metric representation). Huttenlocher
et al. (1991) proposed that both codings are represented as a
distribution of values, with the category coding centered at the
category mean and the metric coding centered at the actual
location of the target. These representations are associated
with some level of uncertainty and may be modeled as prob-
ability distributions centered at the corresponding mean with
the corresponding variance. The retrieval of the target location
during the responding stage involves obtaining a random sam-
ple from each distribution, and the two samples are averaged
with weights determined by the relative variance of the two
representations.

Huttenlocher et al. also proposed that recalled locations
may reflect a bias toward the center of the target’s region
because the distribution is truncated by the category bound-
aries. According to this hypothesis, a target’s location is also
represented at two levels of detail: a coarse level (category
representation) and a fine level (metric representation). The
metric representation is the same as that in the weighted-
average model. However, unlike the weighted-average model,
the category representation consists of the boundaries of the
category, instead of the prototype. At the time of retrieval, a
random sample is obtained from the metric representation, but
the selection is restricted to the range that resides within the
boundary of the category representation. In other words, the
distribution of the metric representation is Btruncated^ at the
category boundaries, which results in systematic biases in the
retrieved target locations toward the center of the category.

Both hypotheses make the same predictions on the tradition-
al measure of mean bias, and there has been no experimental
test that could differentiate them in the literature. In this paper
we sought to differentiate among these accounts for category-
biased responses based on a new distribution analysis extended
from the analysis recently developed by Sampaio and Wang
(2017). Although themechanisms in the two proposed accounts
predict the same mean bias, each mechanism produces a differ-
ent shape in error distributions and thus an analysis of distribu-
tion shape can potentially discriminate these mechanisms.
Specifically, a weighted average of the category and the metric
location information should produce an error distribution with
its center at a category-biased value, and the distribution’s shape
should remain symmetrical. On the other hand, truncation at
boundaries such that the borders of a particular category restrict
the placement of recalled locations should produce a distorted
distribution with a skewed tail away from the boundaries and
toward the mean of the category used. Moreover, the peak of
the distribution should remain at the true location of the target
and unbiased (Sampaio & Wang, 2017). Therefore, in the cur-
rent work, we focused on the shape/skewness of error distribu-
tions along with the position of the peak.
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Our aim for this research was to first examine the mech-
anism of category use in a standard paradigm with a blank
circle by re-analyzing the data of an experiment by
Sampaio and Wang (2017), which addressed the cause of
the category bias using the classic dot-in-circle paradigm.
In this case, data indicate that people impose invisible axes
of symmetry onto the circular space and carve up catego-
ries bounded at these axes (upper-left, upper-right, lower-
left, and lower-right). We applied our new analysis of dis-
tribution shape, and then we used the same analysis to
investigate the mechanisms underlying the bias when a
set of alternative category boundaries was presented to
participants during retrieval (Experiments 2 and 3).

Experiment 1

In this study, we re-analyzed the data in Sampaio and Wang
(2017) using a new extension of our distribution analysis to
examine the shape of the error distribution using the classic
dot localization paradigm (with a blank circle). If partici-
pants primarily used the weighted-average mechanism,
then their error distribution should be symmetrical with a
biased peak position. In contrast, if they primarily used the
truncation mechanism, then their error distribution should
show significant skew but little or no shift in the peak
position.

Method

Materials and procedure

In their experiment, 32 participants from Western
Washington University took part in a version of the basic
dot-in-circle task developed by Huttenlocher et al. (1991).
There was a total of 160 trials, and in each trial partici-
pants saw a circular space for 2,000 ms in the center of a
computer screen and then with a small target dot for
250 ms in the space. After a blank white screen appeared
for 3,000 ms, the circle reappeared and participants were
asked to locate the dot from memory (Fig. 1a shows a
schematic procedure) by clicking the mouse on the posi-
tion they thought that the dot had been shown. To prevent
individuals from utilizing the cursor as a placeholder for
the target, participants had to move the cursor to the top
of the screen, above the circle, before responding. Targets
randomly appeared within the 5–15° range from the de-
fault category boundaries (the Cartesian axes). The deci-
sion to use angles at least 5° away from the boundaries
was due to the fact that targets presented at boundaries
usually exhibit no bias. The radii were also randomly
selected from 1.0 to 8.2 cm from the center of the circle.
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Fig. 1 Procedure and results for Experiment 1 (reanalysis of Sampaio &
Wang, 2017). Panel (a) shows the schematic procedure of one trial. Panel
(b) shows the kernel curve for the overall combined error distribution.
Panel (c) shows the comparison of the mean error and peak of the error
distribution
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Results and discussion

Sampaio and Wang (2017) used standard exclusion criteria,
which resulted in 6.3% of the trials being removed from the
analysis; the placements/recalled locations in these trials were
more than 45° away from the true target location. Moreover,
six individuals did not follow instructions and their data were
excluded from the analysis. In the first step, angular errors
were calculated as the difference between the recalled target
angle and the actual angle. Signs were then recoded in order to
make all errors toward the categorical mean (i.e., the diagonal
axes) positive for all targets and all errors away from the
categorical mean (i.e., toward the vertical or horizontal axes)
negative for all targets. The analysis of the mean errors re-
vealed the typical categorical bias effect, with systematic bias
toward the center of the category (mean bias = 3.27°, one-
sample, two-tailed t-test against zero, t(25) = 8.24, p < .001).

To test whether people used a weighted-average mecha-
nism or a truncation mechanism to estimate the target loca-
tions, we further examined the data in Sampaio and Wang
(2017) on the shape of the error distribution by extending
the distribution analysis used in the original study. First, a
distribution analysis was used to obtain the peak value of the
distribution by fitting the angular errors with a Kernel curve
for each participant individually. As Sampaio and Wang
(2017) explained, BKernel density estimation is a non-
parametric method to estimate the probability density function
of a random variable with no a priori assumption about the
nature of the density function such as normality or symmetry.
The density estimation uses a kernel function to weight the
data at each point, which decreases as the distance from the
point increases.^ (p. 1990). Figure 1b shows the Kernel curve
for all participants combined.

Next, we examined the skew of the distribution by com-
paring its mean and peak. We reasoned that if the distribution
were symmetrical, then the mean would be the same as the
peak; in contrast, if the distribution were skewed toward one
side, then the mean would be larger (positive skew) or smaller
(negative skew) than the peak value. We found that the mean
(M = 3.3, SD = 2.0) and peak (M = 3.4, SD = 2.3) are not
statistically different (paired t(25) = .39, p = .70). These results
are consistent with the hypothesis that weighted-average of
the codings is the mechanism responsible for the bias, at least
in the standard paradigm with a blank circle (Fig. 1c).

The analysis of the shape of the distribution thus suggests
that the weighted average mechanism underlies the categorical
bias in the standard paradigm. In Experiment 2, we performed
the same analysis of the shape of the error distribution to
investigate which mechanism is responsible for the bias when
a salient alternative category containing two boundaries of a V
shape was provided during retrieval. Both the weighted aver-
age and the truncation mechanism are plausible. People may
use the same mechanism regardless of which or how many

category sources are available; that is, people may use a
Bayesian combination of all the categorical and metric cod-
ings to generate an average that reflects the reliability of the
various sources. Alternatively, people may instead use differ-
ent mechanisms depending on the nature of the categories
being used (e.g., default or alternative categories). Our aim
was to use this new analysis of distribution shape to differen-
tiate possible mechanisms underlying the category bias under
different conditions.

We note that these possibilities should not be viewed as
necessarily competing hypotheses, and different individuals
may use different mechanisms. For example, Crawford,
Landy, and Salthouse (2016) reanalyzed a previously pub-
lished data set and found variability on the strategies that
individuals use to remember locations within a space.
Although they did not use the dot localization task first report-
ed by Huttenlocher et al. (1991), their point that data aggrega-
tion may be mis-informative is highly relevant to the present
study. Specifically, when multiple categories are available
(e.g., the implicit default category bounded on the Cartesian
axes and the visible category bounded on the diagonals of the
circle), different individuals may use different categories in
their judgments. For example, some people may predominant-
ly use the default category and therefore should show a sys-
tematic bias toward the default category mean, while other
people may primarily use the alternative category and there-
fore show a systematic bias toward the alternative category
mean. Because these groups use different categories, theymay
exhibit different interaction mechanisms, therefore in
Experiment 2 we also examined the mechanism according to
the primary strategy people used.1

Experiment 2

In this experiment, we tested the prevailing view to explain
category biases when markings of the boundaries of an alter-
native category are presented. The markings reflect the carv-
ing of an alternative categorization to the default axes of sym-
metry typically found with circular spaces. In fact, in the dot-
in-circle paradigm used in our experiments, the robust default
Cartesian categorization has resisted various manipulations. In
a multi-experiment paper, for example, Huttenlocher, Hedges,
and Crawford (2004) attempted to induce an alternative cate-
gorization scheme in the circular space by presenting uneven
distributions of targets. In their four experiments, targets were
clustered along the vertical and horizontal axes, thus forming
categories bounded at the diagonals of the circle with central
values at the vertical and horizontal axes. Their prediction was

1 We define Bprimary strategy^ as the strategy used to any degree of preference
over the other. Thus, unless the weighting is absolutely even, people will be
grouped according to the category they prefer (even if only slightly).
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that if people categorized the stimuli according to their distri-
bution in the circle, biases locating the stimuli towards the
vertical and horizontal axes should result. However, if people
continued to use the default geometric categories bounded at
the horizontal and vertical axes, then the same pattern of bias
should result regardless of the distribution (that is, biases to-
wards the diagonals of the circle). They found that people used
the same spatial categories regardless of the distribution of lo-
cations, and they argued that the spatial organization used max-
imizes accuracy of estimates because the exact category bound-
aries minimize misclassification of stimuli. Even when partici-
pants made explicit classification judgments according to the
alternative BX^ categorization scheme (thus, a dot would be
classified as belonging to one of four V-shaped regions rather
than the L-shaped regions), they still continued to use the de-
fault L-shaped regions in their estimates of location.

A few years later, Sampaio and Wang (2010, 2012) and
Crawford and Jones (2011) reported that in specific circum-
stances, individuals can flexibly use an alternative catego-
rization scheme in a circle: (a) when clear, reliable visual
borders of an alternative category are provided during re-
trieval, and (b) when identifying membership information
based on unique target features (i.e., semantic information)
is available during encoding. These findings are consistent
with research in the developmental literature showing that
visible boundary cues can be used to form spatial categories
in space (e.g., Hund, Plumert, & Benney, 2002). The data
are moreover consistent with a more recent view that spatial
categories can indeed be flexible and created by the individ-
ual to perform a given task (Hund & Plumert, 2005). Hund
and Plumert suggest that people combine remembered in-
formation in memory, perceptually available information,
and task goals to carve up the space.

In Experiment 2, we used the shape of distribution analysis
to differentiate among possible mechanisms by which these
sources of categorical information (in this case, the default and
alternative) are integrated with metric information to form
biased responses. To account for potential multiple mecha-
nisms, we conducted a distribution analyses for each partici-
pant individually. Next, we divided the participants into two
groups based on whether they showed systematic bias toward
the default L-category or toward the alternative V-category
and examined the shape (skewness) of the distribution for
the two groups separately to assess the underlying mechanism
in each case.

Method

Participants

The participants were 30 undergraduate students, 80% female,
from Western Washington University, who carried out the
experiment to partially fulfill a course requirement.

Materials and procedure

We adopted the stimuli from Sampaio and Wang’s (2010)
Experiment 2 (see Fig. 2). The procedure was similar to the
typical dot localization task, in which subjects briefly see a
target within a circular space and reproduce its location from
memory. The only variation from the standard task was that a
BV^ marking the boundaries of an alternative category for
each target was presented at retrieval. That is, the BV^ was
90° in size and rotated 45° from the Cartesian axes.

There were 160 trials in the experiment. The circle in this
experiment measured 18.5 cm in diameter. The targets were
blue squares randomly placed inside the circle, between the
range of 5–15° away from the default category boundaries
(i.e., the vertical and horizontal axes) or the range of 5–15°
away from the alternative category boundaries (i.e., the diag-
onals). The targets were placed at a random radius, varying
between 1.0 and 8.2 cm.

In each trial, subjects viewed a blank circle at the center of
the computer screen for 1,000 ms, and then they viewed a small
square target within the circle for 250 ms. Both the circle and
the square disappeared, and the screen was blank for 3 s. The
subjects were then presented with a circle containing a BV^
inside (two diagonal radius lines) to mark the boundaries of
an alternative spatial category where the square had appeared.
In each trial, the V frame appeared in one of the four segments
of the canonical axes probed according to the location of the
target, thus including sideways and inverted Vs in addition to
the upside V shown in Fig. 2. The alternative boundary cue was
100% valid, and subjects were told that the region in which the
target had appeared would be marked to aid their localization of
the target. Subjects responded by moving the mouse cursor to
the desired location and clicking there.

Results and discussion

Responses that were more than 45° away from the actual
target location were excluded from the analysis (2.9% of re-
sponses). Three participants were excluded from the analysis
due to failure to follow instructions.We defined angular errors
as the difference between the reported and the actual target
angle, following the standard convention. Bias caused by the
use of the default L-shaped categories is in the reversed direc-
tion of those caused by the use of the alternative V-shaped
categories. For simplicity, we changed the sign of the bias
for all angles between the ranges 5–15° and 30–40° in quad-
rant I, and the corresponding ranges in all quadrants. With this
coding system, the sign of the bias indicated which category
was applied in estimation: default bias appeared positive and
alternative bias appeared negative for all targets.

We also combined target angles into two bins: targets near
the orthogonal axes were placed in bin 1 (between the ranges
5–15° and 75–85° in quadrant I, and corresponding ranges in
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the other quadrants) and targets near the diagonal axes were
placed in bin 2 (between the ranges 30–40° and 50–60°, and
corresponding ranges in the other quadrants) (Fig. 1a). The
reason for the bins is that the effect of a category is most
strongly observed away from its center, hence the usage of
alternative categories will mostly noticeably surface in bin 2
(near-diagonal targets) while the usage of the default category
will most noticeably surface in bin 1 (near-orthogonal targets).
Because our primary interest was to observe the effects of
alternative categories, 90% of the trials had near-diagonal tar-
gets; the 10% filler trials were in the near-orthogonal bin and
were excluded from the analyses.

Our results showed an overall bias toward the center of the
alternative category, with a negative mean bias (M = -1.15, SD =
2.5, one-sample, two-tailed t-test against zero, t(26) =2.3, p =
.028). These results showed that overall people used the alternative
category to determine target positions.Moreover, we hypothesized
that if the distribution is symmetrical, then the mean should be the
same as the peak. If the distribution is skewed toward one side,
then themean should be larger (positive skew) or smaller (negative
skew) than the peak value. Overall, we found an unbiased peak (M

= .51, SD = 2.4, one-sample, two-tailed t-test against zero, t(26) =
1.1, p = .28), with a significant difference between the mean and
the peak (paired two-tailed t-test, t(26) = 7.47, p < .001), suggest-
ing that the distribution is significantly skewed toward the alterna-
tive category (Fig. 3) but the peak position remained at the true
target location. These results are consistent with the truncation
hypothesis but not the weighted-average hypothesis.

There were apparent variations in the mean bias across par-
ticipants, however, with some showing negative mean bias and
some showing positive bias. To further examine whether there
are individual differences in the use of categories, participants
were divided into two distinctive groups (Fig. 4) based on their
mean bias, the conventional criterion for determining which
category individuals use. The first group consists of participants
with a positive mean bias toward the default category (nine
participants, mean signed error = 1.76°,SD = 1.5, one-sample,
two-tailed t-test against zero, t(8) = 3.6, p < .01), while the
second group consists of participants with a negative mean bias
toward the alternative category (18 participants, mean signed
error = -2.60°, SD = 1.5, one-sample, two-tailed t-test against
zero, t(17) = 7.35, p <.001).

▪

1000ms

250ms

3000ms

reproduction
task

time

Fig. 2 Schematic distribution of targets in bin 1 (darker shading) and bin 2 (lighter shading) and experimental procedure for Experiment 2
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To examine how participants in these groups used the cat-
egorical information, we fitted the angular errors with a Kernel
curve (as in Experiment 1) for each individual participant and
estimated the main peak of the distribution. Next, we com-
pared the mean bias to the peak position to examine the skew
of the distribution, which provides information on the mech-
anism of the bias. When we examined the data by group, the
distribution of errors for the default group showed a large shift
of peak towards the diagonal (mean peak = 2.8°, SD =2.2,
one-sample, two-tailed t-test against zero, t(8) = 3.8, p <.01),
and a small but significant difference between the mean and
the peak position (paired two-tailed t-test, t(8) = 3.7, p < .01).
Figure 4 shows the combined distribution for the two groups
(panels a and b) and representative participants in the default
(panels c and d) and the alternative group (panels e and f). This

pattern of error distribution is similar to that of Experiment 1
and is most consistent with the weighted-average mechanism.

In contrast, the distribution of errors for the alternative
group did not show a significant shift of peak (mean peak =
-0.65°, SD=1.5, one-sample, two-tailed t-test against zero,
t(17) = 1.84, p = 0.08), but showed a large difference between
the mean and the peak position (paired, two-tailed t-test, t(17)
= 7.0, p < .001), suggesting a significant skew away from the
boundary (Fig. 4). This pattern of error distribution cannot be
explained by the weighted-average hypothesis, but instead is
consistent with predictions of the truncation hypothesis. These
results suggest that these two groups relied on different mech-
anisms in their use of the categorical information.

In summary, our new distribution shape analysis allowed
us to provide the first empirical evidence for the weighted-
average and the truncation mechanisms separately. Our goal
in Experiment 3 was to further examine the robustness of
these findings under some variant conditions.

Experiment 3

Method

The participants were 15 undergraduate students, 28% male,
from the University of Illinois at Urbana-Champaign, who car-
ried out the experiment to partially fulfill a course requirement.
We conducted a variant of Experiment 2 to test the reliability of
our findings. The general procedure was similar to that used in
Experiment 2 except that: (a) the BV^ frame to mark the alter-
native category was only presented in half of the trials deter-
mined at random; (b) there were 320 trials in total to provide
sufficient data in both the default condition (without BV^ bound-
ary) and the alternative condition (with the BV^ boundary); (c)
the delay was reduced to 1 s so that we can accommodate more
trials within a 1-hour experimental session; and (d) the targets
were randomly distributed around all directions, instead of clus-
tered in certain bins as in Experiments 1 and 2, to test whether
the distribution of targets affected the results. We reasoned that
the modified procedure would further establish our paradigm to
differentiate the mechanisms.

Results and discussion

Responses that were more than 45° away from the actual
target location were excluded from the analysis (1.0% of re-
sponses). One participant was excluded from the analysis due
to failure to complete the experiment. We calculated angular
bias, as we did in Experiment 2, as the difference between the
reported and the actual target angle. We also followed the
same coding scheme, so that the sign of the bias indicated
which category was applied in estimation: default bias ap-
peared positive and alternative bias appeared negative for all
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Fig. 3 Results for Experiment 2. Panel (a) shows the kernel curve for the
overall combined distribution of errors. The BV^ boundary line (and the
center of the default mean) was located between 5~15° from the true
target location (0° in the graph) on the positive side, with the mean
position at 10°. The center of the alternative category was located
between -40 ~ -30°, with a mean position at -35°. Panel (b) shows the
mean error and the mean peak position of the error distributions
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targets. Moreover, we conducted the distribution analysis and
fitted the kernel curve for each individual participant and for
the default condition and the alternative condition separately.

Our results showed a positive bias toward the center of
the default category when the V frame was absent at retriev-
al (i.e., a condition comparable to that of Experiment 1). The
mean bias was marginally significant, M = 0.73, SD = 1.4,
one-sample, two-tailed t-test against zero, t(13) = 2.0, p
=.066, and the peak position of the distribution of errors
was positive, M = 0.54, SD = 1.1, one-sample, two-tailed
t-test against zero, t(13) = 2.6, p =0.01. We then compared
the mean bias to the peak position to examine the skew of
the distribution, which provides information on the mecha-
nism of the bias, and found no significant difference be-
tween the mean and the peak position (paired, two-tailed t-
test, t(13) = 0.4, p = 0.67). These data indicate a symmetrical
distribution of errors for the trials without the V frame and
generally replicated the pattern in Experiment 1.

For trials in which the V frame was presented at re-
trieval, the mean bias toward the alternative category did
not reach significance (one-sample, two-tailed t-test
against zero, M = -1.15, SD = 2.6, t(13) = 2.0, p =
0.13). As for the distribution, the peak was centered at
the true target location (M = 0.44, SD = 1.6, one-sample,
two-tailed t-test against zero, t(13) = 1.1, p = 0.31).
Moreover, the peak and mean bias were significantly dif-
ferent (paired, two-tailed t-test, t(13) = -2.8, p = 0.01), as
shown in Fig. 5, revealing a skewed distribution. The
error distribution data in the trials with a visible V frame
are thus more consistent with the predictions of the trun-
cation hypothesis while the data in the trials without a V
frame are more consistent with the predictions of the
weighted average hypothesis. The pattern of data when
the V frame was absent replicates that of Experiment 1
and the default group of Experiment 2, while the pattern
of data when the V frame was presented generally
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Fig. 4 Error distribution for the two groups of participants in Experiment
2. (a) The combined distribution for participants in the default category
group; (b) the combined distribution for those in the alternative category
group; (c) and (d) two representative participants in the default category
group; (e) and (f) two representative participants in the alternative

category group. In all these plots, the BV^ boundary line (and the center
of the default category) was located between 5~15°, with the mean
position at 10°. The center of the alternative category was located
between -40 ~ -30°, with a mean position at -35°. (g) Mean error and
peak of the error distributions for the two groups separately
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replicates the overall pattern and that of the alternative
group in Experiment 2, providing further evidence of the
two mechanisms separately under experimental conditions
of different target distribution and memory delay.

General discussion

Spatial representation is hierarchical in nature. The evi-
dence comes from phenomena such as the effect of region
membership on location memory (Huttenlocher et al.,
1991), orientation judgments (Maki, 1981), and proximity
judgments (Allen, 1981), as well as the effect of barriers
on estimations of distance (Newcombe & Liben, 1982). In
this paper, we examined the mechanisms underlying the
effect of spatial category on estimates of location.
Specifically, using a distribution shape analysis, our aim
was to develop a new paradigm to differentiate possible
mechanisms underlying the category bias in spatial mem-
ory. We distinguished between the main hypotheses using

a standard paradigm with a blank circle and when the
boundaries of an alternative category to the default sym-
metrical axe were visible during retrieval. We found evi-
dence for multiple mechanisms underlying the category
bias in spatial memory.

First, we reanalyzed the data from Sampaio and Wang
(2017) and showed that the mechanism causing the bias with
the standard dot-in-circle task (no alternative category to the
default category bounded at the Cartesian axes is visually
presented) is consistent with a weighted average between the
coordinate information and the category (a symmetrical dis-
tribution of errors). In Experiment 2, when the boundaries of
an alternative category were visible at retrieval (participants
recalled dot locations in a circle with a V marked), our results
showed two patterns of skew dependent on which category
individuals used. Specifically, some people primarily used the
default categories bounded at the horizontal and vertical axes
and displayed a large shift of the peak towards the boundary
with a slight skew in the distribution of errors. Other people
primarily used the alternative BV^ categories bounded at the
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Fig. 4 continued.
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diagonals and displayed little shift of peak but a large skew
away from the boundary. Experiment 3 replicated the over-
all pattern of data: a symmetrical distribution of errors
shifted toward the center of the default category in trials
when a V frame was absent during retrieval, and a skewed
distribution of errors away from the boundaries in trials
when the V frame was present.

Overall, our data suggest that the default category informa-
tion mainly shifted the distribution toward the category mean
and only slightly changed the shape of the distribution. This
pattern is indeed most consistent with a weighted average
mechanism (Huttenlocher et al., 1991). In contrast, the alter-
native category information mostly changed the shape of the
distribution and only minimally the peak. This pattern is most
consistent with a truncation effect at the category boundaries.
In addition, the data indicate that when an additional source of
categorical information is available in the form of visible
boundary lines of an alternative category, the bias is primarily
caused by truncation in some cases and by weighted average
in others. These findings provided the first experimental evi-
dence for these two mechanisms separately using the new
distribution analysis.

We acknowledge that when the V frame was presented, the
lack of peak shift alone (i.e., a distribution centered at the true
target location) could be a result of the weighted average of two
opposite categories instead of a true truncation effect. However,
note that we defined the evidence of truncation primarily on the
skew of distribution, with the absence of peak shift only as a
secondary feature. Because the skew cannot be produced by the
weighted average mechanism, we believe the truncation effect
we found was not due to multiple category averages.

When we made multiple categories experimentally avail-
able to participants (e.g., in Experiments 2 and 3), the distri-
bution pattern showed some slight deviation from the predic-
tions of a pure weighted-average or a pure truncation mecha-
nism. These deviations likely reflect occasional usage of a
secondary strategy. For example, the slight skew in the distri-
bution for the default category group could be due to partici-
pants using the alternative category boundaries by truncation
in a small subset of trials, which could affect the shape of the
distribution slightly. Similarly, when the conditions were
mixed and unpredictable in Experiment 3, the effect of the
default category also seemed weaker, possibility due to using
the default category less consistently.

The finding that some individuals still used the default
categorization scheme despite the alternative categorization
cues being perceptually visible supports previous research that
found that default categorization is challenging to overcome,
even when people are instructed to use an alternative category
(Huttenlocher, Hedges, & Crawford, 2004). We do not know
what led individuals to use one or another category. Crawford
et al. (2016) found that working memory capacity is related to
how people structure a space and remember targets within it.
They found that greater bias is associated with lower working
memory capacity. We speculate that it is possible that individ-
uals with lower working memory capacity relied more on the
visible alternative category, while individuals with higher
working memory capacity relied more on the invisible default
category. Other individual differences such as spatial ability
may also play a role in the variations in category use. How
different individuals use and weight multiple categories re-
mains a question for future research.

Fig. 5 Mean error and peak of the error distributions for the two conditions in Experiment 3
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The evidence of both models raised an important theoreti-
cal question, i.e., when and/or why each mechanism is used.
Speculatively, it is possible, for example, that people are more
inclined to use a truncation mechanism for categories with
salient boundaries (they may represent the boundaries for cat-
egories with salient boundaries). On the other hand, when the
boundaries are not directly presented, people may be more
likely to represent the prototype of the categories and thus
the weighted-average mechanism may be more prominent.
Although effects of boundary salience have been examined
in the literature (e.g., Simmering & Spencer, 2007; Spencer
& Hund, 2002), the topic has not yet been linked to the cause
of the bias. Future research can manipulate boundary salience
(e.g., dim/thin vs. bright/thick lines), for example, as a path to
start answering the question on when and why each mecha-
nism is used.

Another issue that future research needs to examine is with
regard to whether categorical and metric cues actually
combine when people estimate locations from memory.
Sampaio and Wang (2017) found that, in the standard dot-
in-circle paradigm, individuals integrate the metric and cate-
gorical sources to respond in each trial, as revealed in their
distribution of errors (unimodal and centered at a biased loca-
tion), rather than alternating the use of a single cue in each
trial/judgment. Similar to the case of a standard dot-in-circle
paradigm, when multiple categories are available at the time
of retrieval, there are different possibilities for how different
sources of information may be blended. For example, it is
possible that the multiple categorical codings merged with
the metric information in a given trial to form a single, inte-
grated representation (full combination). Alternatively, each
category may compete to combine with the metric information
individually and succeed with a certain probability (indepen-
dent combination). That is, in any given trial, only one of the
categories is combined with the metric information. Finally, it
is also possible that all sources of information compete indi-
vidually and no combination occurs in a given trial (full alter-
nation). Thus, every response is made exclusively based on
the metric, the default category, or the alternative category,
each with a certain probability. Although these scenarios are
clearly different from each other, the traditional analysis of
mean bias cannot distinguish among them, as it only reflects
overall effects. How to differentiate these potential scenarios
remains a challenge for future research.

In summary, our studies provided the first experimental
evidence for the weighted-average hypothesis and the trunca-
tion hypothesis separately using a new distribution shape anal-
ysis. Moreover, we found individual differences in estimating
locations when multiple categories are available. Some people
preferred to combine the metric information with the default
and others with the alternative category. Importantly, individ-
uals used different mechanisms of integration for the default
and alternative categories; those using the default category

primarily result from a weighted average, while those using
the alternative category result from a truncation effect at the
visible category boundaries.
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