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Abstract
Three experiments explored the learning of categories where the training instances either repeated in each training block or
appeared only once during the entire learning phase, followed by a classification transfer (Experiment 1) or a recognition transfer
test (Experiments 2 and 3). Subjects received training instances from either two (Experiment 2) or three categories (Experiments
1–3) for either 15 or 20 training blocks. The results showed substantial learning in each experiment, with the notable result that
learning was not slowed in the non-repeating condition in any of the three experiments. Furthermore, subsequent transfer was
marginally better in the non-repeating condition. The recognition results showed that subjects in the repeat condition had
substantial memory for the training instances, whereas subjects in the non-repeat condition had no measurable memory for the
training instances, as measured either by hit and false-alarm rates or by signal detectability measures. These outcomes are
consistent with prototype models of category learning, at least when patterns never repeat in learning, and place severe
constraints on exemplar views that posit transfer mechanisms to stored individual traces. A formal model, which incorporates
changing similarity relationships during learning, was shown to explain the major results.

Introduction

The empirical study of concepts has a long history, beginning
with the introspective analyses of Moore (1910) and Fisher
(1916), and soon followed by the analytical methodology of
Hull (1920). Hull’s paradigm, in which variables were intro-
duced in a learning phase followed by a transfer test, has since
become the paradigm of choice. For the purposes of the present
study, the interesting aspect of Hull’s paradigm, and virtually all
studies since, is that the learning set is typically recycled until
some learning criterion is met, such as errorless performance or
a predetermined number of learning blocks has occurred.

This paradigm has provided important insights into the for-
mation and representation of concepts, including the identifica-
tion of learning variables that shape concepts (e.g., Homa,
1984; Wills & Pothos, 2012) as well as the development of
formal, quantitative models of classification and category learn-
ing (e.g., Busemeyer & Diederich, 2009; Hintzman, 1986;
Nosofsky, 1988; Minda and Smith, 2001). Nonetheless, when

learning many real-world categories, for example birds or faces
or cars, only a tiny portion of the instances are ever exactly
repeated. Even individual exemplars vary subtly across time
(e.g., faces appear different depending on view angle or expres-
sion) or different instances of a category have individuating
characteristics (e.g., every red Toyota Prius differs in license
plate, cleanliness, and decoration). The exact repetition of in-
stances is more likely to fall within the domain of formalized
training or instruction. The category learning paradigm, in
which exact instances are repeated throughout the learning
phase, gives little insight into what kind of performance to
expect when learning non-repeating stimulus sets.

A handful of studies have explored category learning when
instances do not repeat in the training phase. Medin, Dewey,
and Murphy (1983) compared the acquisition of two face cat-
egories where the faces were either repeated on each trial block
or not. Only the terminal levels of learning were reported, and
subjects in the non-repeat condition found the task quite diffi-
cult (only 28% of the subjects reached errorless criterion).
Learning was probably slowed because the dimensions relevant
for classification – hair and shirt color, hair length, and whether
a smile was present or not – were unrelated to natural grouping
based on facial properties, and classification was solely deter-
mined by their value on facially-irrelevant dimensions. Ashby
and his colleagues (e.g., Ashby & Gott, 1988; Ashby &
Maddox, 1990, 1992; Casale, Roeder, & Ashby, 2012) have
explored categories in which patterns are randomly sampled
from a bivariate normal distribution, thereby generating a
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virtual limitless number of exemplars in learning. However,
their task differs from the experiments reported here in a num-
ber of ways: (1) subjects typically learned two categories; (2)
stimuli were composed of stimuli that varied along two readily-
identifiable dimensions; and (3) learning and transfer were not
contrasted for categories composed of repeated patterns versus
the learning of categories whose patterns never repeat1.

A different approach was taken by Knowlton and Squire
(1993) and Reed, Squire, Patalano, Smith, and Jonides
(1999), who presented 40 patterns one time each from a single
category to normal and amnesic patients. Their major focus was
whether results based on subsequent classification and recogni-
tion could be explained by single- or multiple-memory systems.
Disputes over the interpretation of transfer results have subse-
quently been provided by Nosofsky and Zaki (1998) and Zaki
and Nosofsky (2001). However, the utility of the single catego-
ry paradigm was questioned by Palmeri and Flanery (1999),
who demonstrated that subsequent classification on the transfer
test with this paradigm could be explained by factors unrelated
to learning. More recently, Homa, Hout, Milikan and Milikan
(2011) found that minimal category knowledge was acquired
following the observational phase of a single category. Because
degree of category knowledge is enhanced by the training on
more, rather than fewer, categories (Homa&Chambliss, 1975),
presumably because the additional categories in the learning set
provide the subject with information about distinctive category
cues, it is doubtful that subjects learn much about a category
from exposure to the members of a single category.

In the present study, we directly contrasted the learning of
multiple categories where the learning patterns were either repeat-
ed or not on each trial block. For subjects in the non-repeating
condition, the learning patterns were replaced on each trial block
with novel patterns of the same level of distortion from the same
prototypes. Subsequent transfer included either recognition or
classification tests. Our initial expectation was that categories
could be learned when training patterns never repeated, but that
this procedurewould likely slow the rate and possibly the terminal
level of learning, at least compared to the repetition condition.

Indeed, exemplar-based models of classification (e.g.,
Nosofsky, 1988; Nosofsky & Johansen, 2000; Shin &
Nosofsky, 1992) clearly predict a faster rate of learning when

patterns repeat versus a condition where the patterns never re-
peat (or repeat less frequently). This prediction occurs because
classification, either in learning or transfer, is based on the
summed evidence favoring a category, and similarity of a pat-
tern to itself is greater than the similarity of a pattern to any
other pattern of that category. This self-similarity ensures that
the summed similarity to a category always favors more rapid
learning when patterns repeat in learning.

To illustrate this, assume that the subject assigns a pattern
into a particular learning category based on its similarity to the
members of that category, relative to members of the contrast-
ing categories. As is typically done, assume that similarity is a
monotonic function of its distance to other category instances
in psychological space, where the psychological space is de-
rived via multidimensional scaling (e.g., Homa, Dunbar, &
Nohre, 1991; Nosofsky & Zaki, 1998; Shin & Nosofsky,
1992). Let the similarity between patterns i and j be defined as:

s i; jð Þ ¼ exp −cdij
� � ð1Þ

where dij is the distance between items i and j. The param-
eter c functions as a scaling (sensitivity) parameter that reflects
how well the category members are discriminated from each
other. To formalize the learning algorithm used in the present
study, first consider how learning was predicted by Nosofsky
and Zaki (1998). The probability that pattern i is classified into
category A rather than category B is given by:

P Ajið Þ ¼ ∑s i; að Þ þ β½ �γ
∑s i; að Þ þ β½ �γ þ ∑s i; bð Þ þ β½ �γ ð2Þ

The summed similarities of instance i to patterns in category
A and B are represented by∑s(i,a) and∑s(i,b), respectively. The
parameter β is background noise, and γ is a response-scaling
parameter (e.g., the subject evaluates the evidence for each cat-
egory and assigns the stimulus to the category based on proba-
bility matching when γ =1 and to the category more determin-
istically when γ exceeds 1). Because summed similarities cu-
mulate across learning blocks, and because the background
noise is constant, learning improves across trials. Logically, c
should be greater when learning patterns repeat during learning,
since repetition across learning blocks should make these pat-
terns more discriminable relative to patterns that never repeat.

This learning algorithm was modified in the present study to
reflect the predictions of an exemplar model involving multiple
categories (e.g., Homa, Powell, & Ferguson, 2014; Nosofsky &
Johansen, 2000), where learning instances either repeated (REP)
on each block or not (NREP). For the REP condition, each cat-
egory was represented by five different patterns, and the subject
was required to learn three categories (A, B, C). On each trial
block, these 15 patterns were randomly presented, with subjects
receiving either 20 (Experiment 1) or 15 (Experiments 2 and 3)
trial blocks.When a pattern from set A is presented on a learning
trial, this item has maximal similarity to itself, a within-category

1 At least in the biological domain and except for close family members, the
family pet(s), etc., the vast bulk of encountered category instances are unique,
e.g., forest creatures, birds of prey, lake fish, etc., rarely make return appear-
ances. The novelty of experiences is further magnified by temporal changes
that occur moment by moment (e.g., viewing angle and distance, facial ex-
pressions, bodily positions) and by maturation across longer time periods (Do,
Homa, & Koehler, 2014), what Bruner, Goodnow, and Austin (1956) called
identity categories. This is not to dismiss the salience of a critical instance that
is repeatedly encountered or images in books that may be re-visited, although
the importance of instance frequency, at least in experimental studies, has been
shown to lose its impact on transfer with increases in category size (Homa
et al., 1991). Regardless, the present study focuses on a category learning
paradigm that uses reasonably complex stimuli that never repeat during the
learning phase, a paradigm largely ignored in the literature.
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similarity to the remaining four patterns of that category, and a
between-category similarity to the five patterns in each of the
other two categories. A simplifying assumption that does not
alter the predicted learning rate for the REP and NREP condition
is to assume that the subject performs randomly on the initial
learning block. Beginning with the second trial block and there-
after, classification is based on stored exemplar knowledge.
Therefore, when a pattern is presented for learning on trial block
N, all learning patterns have been encountered (N-1) previous
times. To generate specific learning functions, we substituted
multidimensional distances (Kruskal, 1964; Shepard, 1962) from
a study that approximated the categories and constraints used in
the present study (Home, Proulx, Blair, 2008). The particular
distances are less critical for the purposes of this illustration than
the constraint that similarity decreases with distance in the mul-
tidimensional space. The MDS distances between two medium
patterns from the same category were 0.72, with this distance
equal to 1.60 for patterns belonging to different categories.
Equation 2 can be rewritten, beginning with trial block B = 2, as:

P Aji;Bð Þ ¼ B−1ð Þðe−0c þ 4e−:72cÞ þ β½ �γ
B−1ð Þ e−0c þ 4e−:72cð Þ þ β½ �γ þ B−1ð Þ10e−1:6c þ β½ �γ

¼ B−1ð Þ 1þ 4e−:72cð Þ þ β½ �γ
B−1ð Þ 1þ 4e−:72cð Þ þ β½ �γ þ B−1ð Þ10e−1:6c þ β½ �γ

ð3Þ

For the NREP condition, the number of different patterns
supplants pattern repetition across learning blocks. The corre-
sponding equation for the NREP condition is, therefore:

P Aji;Bð Þ ¼ B−1ð Þ5e−:72c þ β½ �γ
B−1ð Þ5e−:72c þ β½ �γ þ B−1ð Þ10e−1:6c þ β½ �γ ð4Þ

The only difference between equations (3) and (4) is that
exemplar similarity to itself occurs in the REP equation and not
in the NREP equation, and the frequency of a pattern in the REP
condition is swapped with an equivalent number of different
patterns in the NREP condition, although the number of category
exposures in the REP and NREP conditions is the same.

Figure 1 shows predictions for these two equations, based
on variations of c and γ. Learning improves across trial blocks
in each case, with the REP condition always exceeding the
performance of the NREP version with comparable parameter
values. The predicted difference between REP and NREP
conditions is probably underestimated, because c should be
greater in the REP condition because pattern discriminability
should be higher whenever patterns are repeated in learning,
as is the case in the REP condition.2 Since learning rate is

increased with increasing values of c (e.g., the learning rate
in the REP condition with c= 2, γ = 1 is greater than the
learning rate with c = 1, γ = 1), differences between learning
rates in the REP and NREP condition should be greater as
well.

An alternative view is that category learning and subse-
quent classification of novel instances on a transfer test is
based on similarity to a category prototype (Homa, Proulx,
& Blair, 2008; Smith & Minda, 1998, 2002). The non-
repeating condition has a far larger category size compared
to the repeating condition, and increases in category size are
known to enhance subsequent generalization (e.g., Homa,
Goldman, Cornell, & Cross, 1973; Homa & Vosburgh,
1976). However, the benefits of category size have typically
been demonstrated for subsequent transfer following learning,
rather than learning itself. As a consequence, the learning rate
predicted for the REP and NREP conditions, based on a pro-
totype influence, is unclear. This is further complicated by
evidence that a prototype influence emerges only later in
learning and only following exposure to categories of large
size (Homa, Dunbar, & Nohre, 1991). Since increasing cate-
gory size produces substantial benefits on later transfer, sub-
sequent transfer might be as good, if not better, in the non-
repeating condition.

Recognition performance following learning in the REP
and NREP conditions was also of interest. Because subse-
quent recognition of the training patterns should be poor in
the non-repeating condition, classification of novel category
members on a transfer test might also be poorer for the non-
repeating condition as well.

By having subjects learn multiple categories, the interpre-
tative problems attendant with single-category learning
(Knowlton & Squire, 1993; Nosofsky & Zaki, 1998; Palmeri

Fig. 1 Predicted learning rates by exemplar model for repeating (R) and
non-repeating (NR) conditions, based on variations of c and γ

2 In general, the parameter c is assumed to reflect pattern discriminability, with
higher values associated with enhanced discriminability. The prediction that
the parameter c should be larger with increasing frequency in learning has been
reported previously, e.g., Shin and Nosofsky (1992). Furthermore, c is de-
creased with delay of test (Zaki & Nosofsky, 2001), indicating that pattern
discriminability is reduced with the passage of time.
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& Flanery, 1999) was avoided. Furthermore, this procedure
allows us to objectively track learning across trial blocks,
something impossible in the single-category paradigm.
Recognition and classification were assessed following a
common learning procedure. In the experiments by
Knowlton and Squire (1993), Reed et al. (1999), Nosofsky
and Zaki (1998), and Zaki and Nosofsky (2001), different
learning tasks preceded classification and recognition transfer
and thus the data outcome – an apparent dissociation between
recognition and classification – is compromised, i.e., what was
demonstrated was that it is possible to find a task that pro-
duced equivalent classification but different recognition, not
that classification transfer occurred in the absence of memorial
traces (recognition).

Finally, the recognition transfer test for the non-
repeating condition contained training patterns that had
occurred on each of the previous training blocks. This
has the advantage of determining the level of memory
for training patterns that had been presented early, mid-
way, or late in learning. A reasonable expectation is that
whatever recognition memory exists for these patterns
should be modulated by their placement in time during
original learning.

We were especially interested in three performance issues
and one major theoretical issue: (1) Can subjects readily learn
categories with instances that never repeat in the training
phase? (2) Do subjects exhibit non-zero recognition of these
training patterns? (3) Does training that likely degrades mem-
ory for particular training instances also degrade subsequent
transfer to novel instances from these categories? And (4) If
the exemplar-based model of classification (Nosofsky, 1988)
fails to predict the rate of learning when patterns repeat or not
on each trial block, can an alternative model be shown to
capture the results?

All experiments in the present study used multiple
learning blocks, usually with three categories (although
Experiment 2 also included a two-category paradigm).
In Experiment 1, the transfer test involved classification
of novel instances belonging to the learning categories. In
Experiments 2 and 3, the transfer test involved a recog-
nition test containing either old, new, and foil patterns
(Experiment 2) or old, new, and prototype patterns
(Experiment 3). Foil patterns were stimuli generated from
prototypes that were different from those used in learn-
ing. The modification of the recognition test in
Experiment 3 placed a severe constraint on exemplar
knowledge, since all patterns were members of the
learned categories but only a portion of these were old.
The memorial integrity of training patterns as revealed in
recognition is relevant to the evaluation of current models
of categorization. Also, signal detection measures (d’ and
β) can be calculated for the REP and NREP conditions in
Experiments 2 and 3.

Experiment 1

Method

Subjects The subjects were 58 undergraduates from an
Introductory Psychology course at Arizona State University,
26 subjects in the Repetition condition (REP) and 32 in the
Non-repetition condition (NREP).3 Subjects were randomly
assigned to the REP or NREP condition.

Materials and apparatus The subject sat in a sound-
dampened chamber about 20 in. from a 17-in. computer
monitor. The patterns used in learning and transfer were
the distorted forms used previously (e.g., Homa, 1978).
In brief, a form category is created by first generating a
random nine-dot configuration within a 50 × 50 grid and
then connecting the dots with lines. This pattern is arbi-
trarily designated as the category prototype; different
members of this category are then generated by statistically
moving each of the dots of the prototype. In the present
study, six different prototypes (A–F) were generated, with
about half the subjects receiving one set (A, B, C) and half
receiving the other set (D, E, F).

The amount of dot displacement determines the distortion
level of a pattern. Low-, medium-, and high-level pattern
distortions have vertices that are displaced, on average, about
1.20, 2.80, and 4.60 units, respectively, from each corre-
sponding dot of the prototype. Patterns belonging to different
prototype categories have their dots displaced, on average, by
10–15 units (Homa, 1978). All learning patterns were
medium-level distortions; transfer patterns included low-, me-
dium-, and high-level distortions, as well as the category pro-
totype for each category. All patterns were randomly gener-
ated from a statistical algorithm, with the only restriction
being that the generated pattern fell within a pre-specified
distortion range. During the learning phase, patterns were
randomly sampled for each trial block and subject to the
restriction that the patterns in the REP condition also appear
in the NREP condition.

Each pattern appeared in white against a black background.
The subject responded by depressing the A, B, and C keys on
a standard keyboard

Procedure All subjects received 20 trial blocks in the learning
phase. In the repeating condition (REP), each trial block
contained 15 patterns, five in each of three categories. The
order of the patterns within a trial block was randomized.
The same patterns were presented in each of the 20 trial

3 Based on previous studies with these stimuli and similar procedure, 25–35
subjects per condition provide an expected power of .80 and greater for rele-
vant interactions involving known variables such as pattern distortion level.
We targeted this number of subjects for all experiments and conditions herein.
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blocks. For subjects in the non-repeating condition (NREP),
the training patterns were always different.

The procedure on each learning block was the same – a
pattern was presented in the center of the screen (about 7.5 cm
along the horizontal and vertical dimensions) and remained
visible until the subject responded with a key press indicating
their category judgment. Immediately following the subject’s
response, the correct category name appeared for 1 s below the
pattern, followed by the next pattern. The presentation of the
learning patterns was seamless across trials blocks, with no
temporal break between blocks. For subjects in the REP con-
ditions, each learning pattern appeared 20 times; for subjects
in the NREP conditions, each pattern appeared once. All sub-
jects saw 300 patterns.

Transfer Following learning, a 5-min, self-paced distracter
task was used (rating CVCs for their pronounceability on a
7-point scale). The transfer task immediately followed the
distracter task. On the transfer test, each subject classified,
without feedback, 48 patterns, 16 from each of the three cat-
egories. The 16 patterns were composed of the prototype and
five instances each that were low-, medium-, and high-
distortions of the category prototype.

Results

Learning The mean proportion of correct classifications across
the 20 trial blocks for the REP and NREP conditions is shown
in Fig. 2. The effect of trial blocks was significant, F(19,
1,064) = 108.19, MSe = .0093, η2 = .659, p < .001, but the
effect of conditions (REP vs. NREP) was not, F(1, 56) = 0.06,
MSe = .146, η2 = .001, p =.809. The block × condition inter-
action was significant, F(19, 1,064) = 2.15, MSe = .0093, η2 =
.037, p = .003, and reflected the slight crossover, with NREP
exceeding REP performance for the initial 6 blocks, and the
REP generally exceeding the NREP for the final 12.

Transfer Proportion correct performance on the transfer test is
shown in Fig. 3 as a function of training condition.4 The main
effect of item type (low, medium, high, prototype) was signif-
icant, F(3, 168) = 31.58, MSe = .0052, η2 = .361, p < .001, but
the overall difference of condition was not, F(1, 56) = 1.63, η2

= .028, MSe = .0012, p = .207. The item × condition interac-
tion was significant, F(3, 168) = 2.86, MSe = .0052, η2 = .049,
p = .038. The interaction reflected the greater decline in accu-
racy with increasing distortion for the REP condition com-
pared to the NREP condition. Subsequent tests revealed that
the classification rate on medium distortions was significantly
higher in the NREP versus REP condition (t(56) = 2.02, p =

.049, two-tailed); the differences on the remaining items failed
to reach significance (p > .15 in each case).

Discussion

Twomajor results emerged from Experiment 1. First, the rate of
learning was not affected by having novel instances occur with-
in each trial block. In fact, performance in the REP condition
exceeded that for the NREP condition only late in learning.
This latter outcome is hardly surprising, since subjects in the
REP condition should eventually memorize the small set of
training patterns, an outcome not possible in the NREP condi-
tion. Second, transfer performance was at least as good, if not
slightly better, in the NREP condition. Taken together, having
new patterns appear in each trial block did not affect the rate of
learning while slightly enhancing subsequent transfer.

Fig. 2 Learning performance across the 20 trial blocks for the REP and
NREP in Experiment 1 (standard errors at each block for each condition
averaged between .01 and .03)

Fig. 3 Mean proportion correct performance (with standard error bars) on
the transfer test

4 The standard errors shown on each figure and table reflect the
recommendation by Cousineau (2005) that removes between-subject variabil-
ity inherent in mixed designs containing repeated-measure factors.
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Experiment 2

In Experiment 2 recognition rather than classification was
assessed following REP and NREP learning. The number of
learning blocks was reduced from 20 to 15 because learning
appeared to asymptote after 15 learning blocks. Following learn-
ing, all subjects received amixture of old (training), new, and foil
patterns, where the foil patterns were novel patterns from differ-
ent prototypes. We anticipated that subjects receiving REP train-
ing would clearly discriminate training patterns from new and
foil patterns, but were less certain whether subjects receiving
NREP training would show any ability to discriminate old from
new patterns. Also, subjects learned either two or three categories
prior to transfer, primarily to assess the generality of the acquisi-
tion results of Experiment 1.

Method

Subjects The subjects were 127 Arizona State University un-
dergraduates, randomly assigned to the four between-subject
conditions of number of categories learned × mode of presen-
tation (REP, NREP). Of the 58 subjects in the two-category
condition (2C), 33 were randomly assigned to the repeating
condition (REP) and 25 to the non-repeating (NREP) condi-
tion. Of the 69 subjects in the three-category condition (3C),
34 were in the REP condition and 35 in the NREP condition.
None of the subjects had served in Experiment 1.

Procedure All subjects received 15 trial blocks in the learning
phase. For the two-category condition, each trial block
contained ten patterns, five in each of two categories; for the
three-category condition, each trial block contained 15 pat-
terns, five in each of three categories. Otherwise, the learning
procedure was identical to that of Experiment 1.

Transfer On the transfer test, the subject briefly inspected the
pattern and indicated whether it occurred on the learning set,
typing “O” for old or “N” for new on the keyboard. In the 2C
REP condition, a total of 29 patterns were presented, ten old
(five from each category), ten new (five per category), and
nine foils. All new patterns were medium-level distortions
(as were the old); the foil patterns were medium-level distor-
tions from three different prototypes (three each from three
different prototypes), generated from prototypes not used in
learning. In the 3C REP condition, a total of 39 patterns were
presented, 15 old (five per category), 15 new (five per catego-
ry), and nine foils (again, three each from each of three differ-
ent prototype categories). In the 2CNREP condition, a total of
69 different patterns were used, 30 old (15 old from each of
two categories), 30 new (15 each from each of two categories),
plus nine foils (as before). In the 3C NREP, there were again
69 patterns, 30 old (ten old from each of three categories), 30
new (ten per category), and nine foils. Although the number of

transfer patterns differed in the various conditions, each con-
dition had similar proportions of old and new patterns.

In the NREP conditions there were two old patterns on the
transfer test from each training block, randomly selected from
the available training patterns. The rationale for this manipu-
lation is that memory strength for patterns that appeared only
once in learning might be manifested primarily in the later
blocks.

Results

Learning Learning performance in the REP and NREP condi-
tions is shown in Fig. 4, with each condition, as before, show-
ing substantial learning. The main effect of Blocks was sig-
nificant, F(14, 938) = 88.72, MSe = .014, η2 = .570, p < .001.
Neither the main effect of Learning condition (REP vs.
NREP), F(1, 67) = 2.38, MSe = .185, η2 =.034, p = .13 nor
the Block × Condition interaction, F < 1, were significant.

Transfer – Recognition Figure 5 shows the likelihood that old,
new, and foil patterns were called old on the transfer test. In
the REP conditions, there was a clear discrimination between
old and new patterns (Old = .896, New = .618), t(66) =12.77,
and old and foil patterns (Foils = .154), t(66) = 27.18, both ps
< .001, an outcome unchanged by the number of training
categories. For the NREP condition, no discrimination was
found between old and new patterns (Old = .771, New =
.780), t(59) = 0.72, p = .474, with old exceeding foils (Foils
= .188), t(59) = 19.89, p < .001. The only effect of number of
training categories for the NREP condition was a higher rate
of false alarming to the foil patterns in the three-category
versus the two-category condition (.244 vs. .133), t(58) =
2.14, p = .037.

The initial analysis included the variables of condition (REP,
NREP), number of training categories (two, three), and item
type (old, new, foil). The main effect of item type was signifi-
cant, F(2, 246) =776.51, η2 = .863, as was the Item × Condition
interaction, F(2, 246) = 31.22, MSe = .0197, η2 = .202, both ps
< .001. Neither the main effect of Condition, F(1, 123) = 1.15, p
= .286, nor Number of Training categories, F(1, 123) = 2.93, p =
.089 was significant. The Number × Items interaction was also
significant, F(2, 246) = 4.35, MSe = .0187, η2 = .034, p = .014.

Separate analyses for number of training categories did not
alter the results. With either two or three training categories,
the main effect of Items and the Item × Condition interaction
were each significant, p < .01 in each case; the main effect of
Condition was not significant.

Recognition of old patterns in the NREP condition was also
analyzed across blocks. Figure 6 shows the proportion of “old”
responses to training patterns when they occurred in trial blocks
1–15. Analyses revealed no obvious trend across training
blocks, with linear fits across trial blocks resulting in a non-
significant, slightly negative slope for both the two- and the
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three-category learning conditions. In particular, calling an old
pattern “old” did not increase with increasing block number.5

Signal detection analysis Each subject had their hit and
false-alarm rate for old, new, and foil patterns converted
to the signal detection measures of d’ and a criterion. Hit
and false-alarm rates of 1.00 and .000 were converted to
.98 and .02 for computational purposes. For REP, the d’
for the old versus foil patterns was 2.85 and 2.45 for
subjects who learned two and three categories, respective-
ly. For new items, these values were 1.81 and 1.31. The
corresponding d’ values for the NREP condition for old
items were 2.32 and 1.66 for two and three categories,
respectively. For the new items, these values were 2.17
and 1.83. The d’ for old versus new patterns was, for REP
subjects, 1.04 and 1.14 for the two- and three-category
conditions, respectively. For the NREP condition, the d’
for old versus new was 0.15 and -0.17, respectively.6

An analysis revealed that the main effect of pattern type on
the transfer test was highly significant, F(1, 123) = 116.79,
MSe = .156, η2 = .487, p < .001, as was the number of training
categories, F(1, 123) = 10.40, MSe = 1.352, η2 = .078, p =
.002. The significant type × condition interaction was caused
by the substantial differences in d’ for the old and new patterns
in the REP condition and the absence of a discrimination in
the NREP condition, F(1, 123) = 121.08, MSe = .156, η2 =

.496, p < .001. The only other significant source was the Type
× Condition × Number of Categories, F(1, 123) = 4.29, η2 =
.034, p = .04, MSe = .156. The REP × Number of Categories
was not significant, F = 0.04, p > .20.

Figure 7 shows a signal detection representation at transfer
for the Old, New, and Foil patterns for the three-category
condition, separately for the REP (top panel) and NREP (bot-
tom panel) training conditions. A notable outcome is the clear
separation between old, new, and foil patterns in the REP
condition, and the minimal separation between old and new
patterns in the NREP condition. Placement of the criterion for
calling an item old was similar for both conditions. A similar
outcome (not shown) was obtained for the two-category train-
ing condition.

5 In the non-repeating condition, accuracy on the initial, middle, and final 23
recognition trials was .51, .52, and .49, respectively (p > .20). As a result, the
failure to discriminate old from new stimuli in the non-repeating conditionwas
not due to the longer test series, compared to the repeating condition.
6 For new versus foil patterns, d’ is a measure of discriminability between
these patterns.

Fig. 4 Mean proportion correct classification across trial blocks for the REP and NREP conditions as a function of number of training categories,
Experiment 2 (standard errors at each block and condition averaged between .01 and .03)
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new, and foil patterns on the transfer test, Experiment 2
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Discussion

Five major results were found in Experiment 2: (1) As was
the case in Experiment 1, learning was unaffected by hav-
ing different patterns represent each category on every
block; (2) Subjects in the REP condition readily discrimi-
nated old, new, and foil patterns. In contrast, subjects in the
NREP condition discriminated old and new patterns from
foil patterns but could not discrimination old from new
patterns; (3) Having subjects learn two or three categories
altered none of the major results, and thus, the conclusions
here are likely robust across number of training categories;
(4) An analysis of recognition in the NREP condition
across training blocks revealed no apparent trend, i.e.,
training patterns were called old at a rate independent of
where in learning these patterns occurred; and (5) A signal

Fig. 6 The proportion of old responses (with standard error bars) on the
transfer test to training patterns that occurred in trial blocks 1–15, Experiment 2

Fig. 7 A signal detection representation for the transfer items, three-category condition, Experiment 2
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detection analysis suggested that subjects established a
similar criterion for calling patterns old, with the old,
new, and foil patterns clearly separated in the REP condi-
tion. However, no such discrimination between old and
new patterns was revealed in the NREP conditions, al-
though these patterns were clearly separated from the foils.
The implication of the results in Experiment 2 was that
subjects had little difficulty in learning the categories in
the NREP condition, and performed at a rate equal to the
REP subjects, even though no discernible memory for the
training patterns was evident.

An alternative interpretation for the recognition results is
that subjects in the NREP condition had some memory for the
training instances but that they established a criterion to dis-
criminate category patterns from non-category patterns, not
old from new. To address this possibility, a final experiment
was done in which no foils from other categories were used.
Thus, all transfer patterns were patterns from the learning
categories. If subjects can discriminate old from new patterns
in the NREP condition, it should be apparent in Experiment 3.
If, in contrast, subjects had no discernible memory for the
training patterns, then no discrimination between old and
new patterns should be evident. The category prototypes for
the learning categories were also included in the recognition
set.

Experiment 3

Experiment 3 was identical to Experiment 2 with two excep-
tions: (1) The transfer set contained old, new, and prototype
patterns, and no foils from categories outside the learning
categories were used; and (2) All subjects learned three
categories.

Method

Subjects The subjects were 55 undergraduates at Arizona
State University, 29 in the REP condition, and 25 in the
NREP condition. None of the subjects had served in
Experiments 1 or 2.

Procedure The procedure was identical to Experiment 2.
Following learning, the transfer test contained only patterns
from the categories represented in the learning phase. For the
REP condition, the transfer test contained 33 patterns, 15 old
(five from each category), 15 new (five from each category),
and the three-category prototypes. In the NREP condition,
there were 63 different patterns, 30 old (10 × 3 categories),
30 new (10 × 3 categories), plus the three-category prototypes.
As was the case in Experiment 2, the transfer test for the
NREP subjects contained two old patterns from each of the
15 trial blocks.

Results

Learning Figure 8 shows the learning performance across the
trial blocks for the REP and NREP conditions. The substantial
learning across blocks was significant, F(14, 742) = 55.00,
MSe = .014, p < .001, but neither the main effect of condition,
F < 1, nor the Condition × Blocks interaction, F < 1, was
significant, both ps > .20.

Transfer
Figure 9 shows the likelihood that old, new, and prototype

patterns were called old on the transfer test. An analysis re-
vealed that the main effect of condition was not significant,
F(1, 53) = 1.67, MSe = .056, η2 = .031, p = .201. However, the
main effect of pattern type was significant, F(2, 106) = 45.60,
MSe = .016, η2 = .462, as was as the Pattern Type × Condition
interaction, F(2, 106) = 18.15, MSe = .016, η2 = .255, both ps
< .001. As was the case in Experiment 2, subjects discrimi-
nated between old and new patterns in the REP condition but
failed to discriminate between these patterns in the NREP
condition. The higher rate of calling the prototype old in the
NREP versus the REP condition (.923, .863) was not signifi-
cant, t(53) = 1.32, p = .187.

The likelihood that the old patterns in the NREP were
called old as a function of where they appeared in acquisi-
tion is shown in Fig. 10. Once again, performance ap-
peared to randomly fluctuate across training blocks. A lin-
ear fit across blocks revealed no evidence that the training
patterns were more likely to be called old if they appeared
later in training.

The signal detection analysis of the transfer results re-
vealed that, once again, subjects discriminated old from
new in the REP condition (d’ = 1.09) but not in the NREP
condition (d’ = -.04). The d’ values for the prototype-new
discrimination was somewhat higher in the NREP than in
the REP condition (d’ = 1.18 vs. 0.81).
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General discussion

The main focus of the present study was to assess whether
categories could be readily learned when novel patterns ap-
peared on each trial block, rather than repeating them, as is
typically done in categorization research. The results were
clear-cut. In each experiment, generally when three categories
were learned but also when two were used, the degree of
learning was substantial and no worse than when the category
patterns were repeated on each trial block. Interestingly,
exemplar-based models of classification (Medin & Schafer,
1978; Nosofsky, 1988) predict a faster rate of learning in the
repetition condition, an outcome forced by the greater

similarity to memorial traces when patterns are repeated in
learning. Since this outcome was not obtained, alternative
learning mechanisms must be considered.

As revealed in Experiment 1, subsequent generalization to
novel patterns was not impacted by learning from non-
repeating stimuli. Classification of novel patterns occurred at
a rate equal to, or slightly better than, the classification rates
obtained following repetition training. Notably, rapid learning
and excellent classification occurred even though subjects ex-
hibited no significant memory for the individual training pat-
terns. Specifically, in the non-repeating condition, recognition
of the old patterns was no better than chance, as indicated by the
equivalent hit and false-alarm rates of old and new patterns. In
contrast, substantial recognition of the old patterns occurred in
the traditional repeating condition. Subsequent signal detection
analysis revealed that subjects establish a comparable criterion
for oldness judgments following repetition and non-repetition
learning, with d’ indistinguishable from zero for the non-repeat
condition. Converging support arose from analysis of the hit
rates for the patterns that occurred on each training block. One
might have anticipated some memory for patterns, especially
those that occurred late in the learning phase. Nonetheless, the
recognition rate for all patterns was flat across blocks and at a
level that did not differ from the false-alarm rate for new pat-
terns. Finally, the subjects in the non-repeat condition, who
failed to recognize any of the old patterns, nonetheless had a
false-alarm rate for the category prototypes that was higher than
for any other pattern and higher than the false-alarm rates for the
prototypes in the repeat condition.

Taken together, these results pose substantial problems for
exemplar-based models of classification. Proponents of exem-
plar theory might maintain that minimal memory of the train-
ing instances still existed following acquisition, which was
responsible for the classification and recognition performance.
Indeed, this is the basis of the argument by Nosofsky and Zaki
(1998), who reassessed and re-interpreted the performance of
amnesic patients in the study by Knowlton and Squire (1993).
The amnesic subjects in their study had a lower recognition
rate of the training patterns compared to the normal controls,
but recognition accuracy by amnesics was about 65% (where
chance was 50%). This reduced, but not absent, memory was
sufficient to generate classification and recognition results
similar to that obtained by Knowlton and Squire. Nosofsky
and Zaki also addressed the performance of one subject, E. P.,
whose recognition performance was at chance yet whose clas-
sification was near normal, concluding that: “The baseline
version of the exemplar model presented in this article is un-
able to fit this pattern of data.” (p. 254). In effect, the subjects
in the present study are like the patient E.P., who had normal
transfer for novel patterns even though his recognition mem-
ory for the training patterns was non-existent.

The argument might be made that our subjects extracted
pattern fragments in the learning phase, rather than intact
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patterns, sufficient to promote rapid learning and later gener-
alization even though recognition for individual patterns
might be virtually zero. This interpretation seems unlikely
because the storage of pattern fragments might result in re-
duced memory for intact patterns, but not zero. That is, the
existence of these pattern fragments would be matched with
the entire pattern at the time of recognition, something not
possible with the new patterns. As we noted previously
(Homa et al., 1991), novel pattern fragments are unlikely to
exactly repeat in another pattern when ill-defined, infinitely
variable patterns are used, and thus, stored fragments could be
exactly matched only with the training pattern.

What we believe is responsible for the learning, classifica-
tion, and recognition performance in the non-repeating condi-
tions is the abstraction of a category prototype early in learn-
ing, which continues to evolve as more and more patterns are
encountered in training. Further, this abstraction process is
more likely to occur when the patterns never repeat, since an
initial strategy of attempting to memorize individual patterns
is doomed to failure as more and more unique patterns are
encountered. This fosters an abstraction process early on, with
abstracted prototypes formed and continually modified as dif-
ferent learning patterns are presented. There is, in principle, no
necessity to store particular learning patterns in order to learn
the category. The subsequent classification is easy to explain –
research has shown for many years that increasing category
size aids later classification, an outcome that has been repeat-
edly obtained (e.g., Homa et al., 1973; Homa et al., 1991;
Homa, Proulx & Blair, 2008). Subjects in the non-repeating
condition are exposed to precisely that – a category of sub-
stantial size, relative to the category size of the repeating con-
ditions. The recognition results would similarly follow if, in-
deed, the subject stores the abstracted prototype and little else.

In the following section, we introduce a model of catego-
rization for the non-repeating condition that assumes that con-
tinual learning increasingly alters the similarity relationship to
an abstracted prototype. The current preliminary model can
capture the learning, transfer classification, and transfer rec-
ognition obtained in the present study.

Model of categorization The proposed model uses a common
set of parameters to capture three critical sets of results: (1)
Learning is as rapid when patterns never repeat as when they
do; (2) Following learning in the non-repeating condition
(NREP), subjects demonstrate little or no memory for the
training patterns; and (3) Classification of novel patterns is
no worse and perhaps slightly superior following training on
categories whose patterns never repeat. The model has one
major modification compared to previous models – we as-
sume that similarity among the transfer patterns is modified
and dependent upon the level of learning. That is, across train-
ing, categories begin to emerge, represented by increasingly
distinctive clusters in the multidimensional space. Otherwise,

the proposed model shares similarity to other models that rep-
resent similarity by the empirically determined multidimen-
sional distances separating the patterns (e.g., Homa et al.,
2008; Nosofsky & Johansen, 2000; Minda and Smith, 2001).

The current model makes one other critical assumption:
when a category is represented by a small number of patterns
that are repeatedly presented in learning, the subject stores these
exemplars and uses these stored traces for both recognition and
classification. However, when the patterns representing a cate-
gory are sufficiently numerous (especially when never repeated,
as in the present study), the subject abstracts the central tenden-
cy, which then forms the basis for all subsequent decisions.
There is support for the view that small-sized categories, e.g.,
three to five patterns per category, are represented as singular
traces whereas larger-sized categories, e.g., ten or more, are
more likely to rely upon summary representations, such as an
abstracted prototype (e.g., Homa, Sterling, & Trepel, 1981;
Homa et al., 2008). There is also support for the assertion that
similarity relationships are increasingly modified by degree of
prior learning (Homa, Rhodes, & Chambliss, 1979). In Homa
et al. (1979), themultidimensional space of three categories was
increasingly modified via different levels of learning. In partic-
ular, additional learning increasingly reduced within-category
distances (and, therefore, dissimilarity) as reflected by the sub-
sequent multidimensional configuration, especially for catego-
ries represented by numerous instances.

Our initial model adopted the simplifying assumption that
categories are largely unstructured at the outset of learning and
that the distances among the patterns common to a category are
increasingly reduced with additional learning blocks.
Specifically, we assumed in the version presented here that
themultidimensional distance among, for example, the distance
between any two medium level patterns terminated close to the
value of 0.72. This latter distance is the mean value obtained
from the multidimensional scaling of patterns following exten-
sive learning (e.g., Homa et al., 2008). On the initial block, we
assumed that this value was 1.60 (the mean distance between
any two patterns prior to learning). The convergence of distance
between any two medium-level distortions, common to a cate-
gory, to its terminal learning value obeyed the formula:

d Bð Þ ¼ db−dmm
Bλ þ dmm

Here B is the block number, db is the MDS distance be-
tween any two patterns from different categories, dmm is the
MDS distance between any two patterns from the same cate-
gory, and λ is a decay parameter that regulates how quickly
similarity is modified by learning.

Since db = 1.60 and dmm = .72, the equation reduces to:

d Bð Þ ¼ 1:60−0:72
Bλ þ 0:72

Therefore, following an extremely large number of learn-
ing trials, the MDS distance between any two medium-level
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distortions was 0.72. The decay parameter (λ) allowed pattern
distance to change at different rates across learning blocks for
the REP and NREP conditions.

In our model, performance in the REP conditions is
exemplar based, whereas performance in the NREP con-
dition is prototype based. In the following equations, pa-
rameters in upper case are fixed parameters based on the
design of the experiment (e.g., C, the number of catego-
ries is a fixed parameter; compared to c, the sensitivity-
free parameter). The fixed parameters for all conditions
are defined in Table 1, along with their values for this
study. Empirically determined parameters, the MDS dis-
tance measures, are presented in Table 2, along with their
definitions and values in this study. Lower-case parame-
ters are free parameters and were adjusted in the process
of finding values that minimized the RMSE error to mean
data across subjects (using the fminsearch function in
Matlab; e.g., β is processing noise that is hypothetical).
The free parameters along with their definitions and best
fit values are given in Table 3. Least square best fits
between observed and predicted values were determined
simultaneously for all conditions and three data sets –
learning, transfer-classification, and transfer-recognition.
In addition, best fits were determined by assigning equal
weights across these three data sets. The adequacy of the
data fits is addressed later.

Similarity measures are defined by MDS distances and
scaling parameter c during training by the equation (REP
and NREP, respectively):

Smm ¼ exp −cr Dmm þ Db

Bi

� �� �
ð5aÞ

Spm ¼ exp −cn Dpm þ Db

Bi

� �� �
ð5bÞ

Here, Smm is the similarity between two medium-level dis-
tortions in the REP condition; Spm is the similarity between a
medium-level distortion and prototype pattern in the NREP
condition. The added term Db / Bi reflects the assumption that
similarities increase with more training, i.e., block number (Bi).

The similarity measures for transfer are defined by the
equation (REP and NREP, respectively):

Smy ¼ exp −crDmy
� � ð5cÞ

Spy ¼ exp −cnDpy
� � ð5dÞ

The y subscript denotes whether we are calculating simi-
larity scores for low, medium, or high-distortion exemplars.

Training equations Performance is determined by Luce’s choice
axiom (Luce, 1959). For REP training, the probability of correct-
ly categorizing a stimulus in training block Bi is given by:

Table 1 Fixed parameter values for all conditions, with values for present Experiment

C Number of categories 3

Bi Current training block varies

BT Transfer testing block after training 21

N Number of exemplars used in REP training (per block, per cat) 5

Tol Number of old items tested during transfer for low distortion 0

Tom Number of old items tested during transfer for medium distortion 5

Toh Number of old items tested during transfer for high distortion 0

Tnl Number of new items tested during transfer for low distortion 5

Tnm Number of new items tested during transfer for medium distortion 5

Tnh Number of new items tested during transfer for high distortion 5

Table 2 Fixed multidimensional distance values for all conditions

Dx Distances for exact matches (identity match) (used in all REP portions of all experiments) 0.0

Dmb Between category distances, equal to Dpb (used in all REP portions of all experiments) 1.6

Dpb Between category distances, equal to Dmb (used in all NREP portions of all experiments) 1.6

Dml Distance between medium distortion and low distortion exemplars (used in REP/transfer) 0.5

Dmm Distance between medium and medium distortion exemplars (used in REP/transfer and REP/recognition) 0.72

Dmh Distance between medium and high distortion exemplars (used in REP/transfer) 0.86

Dpl Distance between prototype and low distortion exemplars (used in NREP/transfer) 0.24

Dpm Distance between the prototype and medium distortion exemplars (used in NREP/transfer and NREP/recognition) 0.45

Dph Distance between the prototype and high distortion exemplars (used in NREP/transfer) 0.82
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Pcorrect ¼
βr þ Bi−1ð Þ

�
1þ N−1ð ÞSmm

h iγ
βr þ Bi−1ð Þ

�
1þ N−1ð ÞSmm

h iγ
þ C−1ð Þ βr þ Bi−1ð ÞXSmb½ �γ

ð6Þ

This equation mirrors equations (1–4), with the major
change that similarity among the training patterns is continu-
ously modified as learning progresses.

The equation for training in the NREP condition is similar
to that for the REP condition with two key differences. First,
similarity values reflect the similarity of the exemplars to the
prototype rather than to each other; second, when calculating
similarity, the sensitivity parameter for REP (cr) and NREP
(cn) (equation 5) were allowed to take on different values. The
number of categories (C) remained the same between REP
and NREP. For NREP training, the probability of correct cat-
egorization in training block Bi is

Pcorrect ¼
βn þ Spm
	 
γ

βn þ Spm
	 
γ þ C−1ð Þ βn þ Spb

	 
γ ð7Þ

Figure 11 shows the learning results obtained in Experiment
1 (top panel) and themodel’s predictions (bottom panel), shown
separately for the REP and NREP conditions. The critical result
– that NREP fares no worse in learning than REP, except for the
final learning blocks when subjects likely memorized the fewer
patterns in the REP condition – is nicely captured by our model.

Transfer – classification Transfer patterns were composed of
new patterns at one of three level of distortion from the pro-
totype and the category prototype itself. For the REP condi-
tion, pattern similarities are computed based on similarity to
stored patterns in memory; for the NREP condition, pattern
similarities are based on similarity to the category prototype.

For a new medium-distortion exemplar in REP, the proba-
bility is:

Pcorrect ¼ βr þ BT−1ð ÞNSmm½ �γ
βr þ BT−1ð ÞNSmm½ �γ þ C−1ð Þ βr þ BT−1ð ÞNSmb½ �γ ð8Þ

Predicted classification of the low, high, and prototype
stimuli requires only that the appropriate similarity be

substituted into equation (8). For example, low-distortion per-
formance can be calculated as:

Pcorrect ¼ βr þ BT−1ð ÞNSml½ �γ
βr þ BT−1ð ÞNSml½ �γ þ C−1ð Þ βr þ BT−1ð ÞNSmb½ �γ

ð9Þ

The NREP classification calculations, based on prototype
models, are similar in structure. In the classification trial in
which the prototype is presented, we must remember that the
experimenter’s prototype is actually compared to the subject’s
internal prototype representation, which for our purposes are
assumed to be an exact match (Spp =1).

Pcorrect ¼
βn þ Spp
	 
γ

βn þ Spp
	 
γ þ C−1ð Þ βn þ Spb

	 
γ ð10Þ

All the other NREP classifications can be calculated by
substituting Spp with Spy, where y is the appropriate distortion
level desired.

Figure 12 shows the obtained and predicted values for clas-
sification (Experiment 1) of the category prototype, low, me-
dium, and high-level distortions. Overall, the model captures
the gradient across distortion level, including the slight but
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Fig. 11 Observed and predicted performance in learning for the REP and
NREP conditions

Table 3 Parameter values and root mean square error (RMSE) for the
mixed and exemplar model

Mixed Exemplar

cr Sensitivity parameter for REP 2.953 2.933
cn Sensitivity parameter for NREP 1.532 1.944
γ Response scaling parameter 2.336 2.272
βr Processing noise parameter for REP 3.009 2.866
βn Processing noise parameter for NREP 0.000 0.000
θr Recognition threshold for REP 545.520 454.453
θn Recognition threshold for NREP 0.127 917.197
λ Similarity modification across blocks 0.552 0.624
RMSE 0.028 0.048
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significant advantage of the NREP condition for the medium
level distortions.

Transfer – recognition In recognition, we have different but con-
ceptually similar equations for REP andNREP conditions for old,
new, and prototype recognition test items. The difference between
recognition judgments and categorization judgments is reflected in
the use of a recognition threshold, θr for REP and θn for NREP.

To denote the change for REP, Srmm is used (similarity
between two medium patterns in the REP condition) instead
of Smm; NREP similarity is denoted as Snmm. The probability
of calling “old” a previously-seen exemplar in the REP con-
dition is modeled as:

Prepjold ¼
βr þ BT−1ð Þ

�
1þ N−1ð ÞSmm þ C−1ð ÞNSrmb

h iγ
βr þ BT−1ð Þ

�
1þ N−1ð ÞSmm þ C−1ð ÞNSrmb

h iγ
þ θr

ð11aÞ

The probability for a subject to call a new exemplar “old” is
modeled as:

Prepjnew ¼ 1−Prepjold ð11bÞ

NREP probability is similarly structured, except for the fact
that we are using prototype-based models:

Pnrep ¼
βn þ Snpm þ C−1ð ÞSnpb
	 
γ

βn þ Snpm þ C−1ð ÞSnpb
	 
γ þ θn

ð12aÞ

The probability for a subject to call a new exemplar “old” is
modeled as:

Pnrepjnew ¼ 1−Pnrepjold ð12bÞ

The obtained and predicted performance on the recognition
test is shown in Fig. 13. Critically, the model captures the
result that subjects in the REP condition could discriminate
the training from the new patterns whereas subjects in the
NREP could not.

Fit to an exemplar model of categorization We also fit an
exemplar-based model to the same set of results – learning,
transfer-classification, and transfer-recognition for repeated
versus non-repeated pattern learning – using the same param-
eters as used for our mixed model. The only change was that
pattern similarity was based on the relationship of patterns to
stored exemplars rather than the category prototype, regard-
less of whether learning involved the repetition of patterns
across training blocks or the presentation of novel patterns
within each block.

Overall, the mixed model outperformed the exemplar
model (RMSE = .028 for the mixed model and .048 for the
exemplar model). The advantage of the best-fitting mixed
model, versus the exemplar model, arose primarily in the
transfer data (e.g., subsequent classification [Experiment 1]
and recognition [Experiment 3]). Figure 14 shows these
disparities, with the mixed model in the upper panel and
the exemplar model in the lower panel. Although the
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exemplar model provides a reasonable fit to the data, includ-
ing fit to the category prototype, critical contrasts generally
favored the mixed model, especially for the NREP condi-
tion.7 In particular, the exemplar model over-predicted clas-
sification of the high distortions and under-predicted the
false recognition rate of the prototype. The former outcome
is consistent with previous concerns that the exemplar mod-
el generally failed to capture the magnitude of the gradient
across decreasing similarity to the category prototype (e.g.,
Homa et al., 1981; Homa & Powell, & Ferguson, 2014;
Smith &Minda, 2002). Two additional comments regarding
the parameters are worth noting: (1) the best fitting thresh-
old parameter is large for the mixed model for REP but close
to zero for NREP. This implies that recognition performance
is above chance for REP but is essentially at chance for
NREP, as in the data; the exemplar model does not have this
property; and (2) the noise parameter is zero for NREP but
substantially above zero for REP. This suggests that the
repetition of stimuli across learning blocks in the REP con-
dition generates increasing noise whereas the virtual ab-
sence of memory for stimuli in the NREP condition does
not. We should reiterate that the mixedmodel is an exemplar
model for the repeat condition and a prototype model for the
non-repeat condition. Not surprisingly, the mixed model

and the exemplar model predict with similar accuracy for
the repeat condition.7

Conclusion

Our preliminary model does an adequate job in capturing the
major results of our study. Learning is predicted to be as rapid
when patterns repeat as when they do not, little or no memory
for the training patterns exists when patterns are never repeated
in learning, and subsequent classification of novel patterns, in-
cluding those of increasing distortion level, was demonstrated.

Being able to capture results does not prove the legitimacy of
our model (Wills & Pothos, 2012), but it demonstrates that a
prototype model can capture critical results following non-
repeating training better than the exemplar model explored in

Fig. 14 Transfer predictions of Mixed (upper panel) and Exemplar (bottom panel) models for classification (left panels) and recognition (right panels)

7 One reviewer asked whether the high classification and recognition rates of
the category prototype in the REP condition might reflect the joint contribution
of memorized instances as well as the abstraction of the central tendency
(prototype) of that category. We have elsewhere suggested that the joint influ-
ences of these factors might occur, modulated by factors like category size and
level of learning (Homa et al. 2008). We cannot deny this alternative explana-
tion for the present study, although exemplar influences alone were sufficient
to capture results in the REP condition.
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the present study. Some assumptions were adopted for
simplicity’s sake, such as the manner in which similarity
changed across blocks and the assumption that learning on
the first block would be at chance. We cannot claim that other
models yet considered would fare less well than our current
one, although the finding that learning can occur rapidly even
when subjects cannot discriminate old from new patterns at
better than chance accuracy poses a severe challenge for any
exemplar or related connectionist models (e.g., ALCOVE,
Kruschke, 1992). An interesting exception could be Minerva
II (Hintzman, 1986), which stores particulars but can generate
an echo mimicking the prototype. Given the severe memorial
degradation of exemplars in the non-repeating condition, an
issue is whether sufficient exemplar knowledge resides inmem-
ory to even generate a functional echo. A full examination of
how other models may or may not capture our results is beyond
the current scope of this paper. Regardless, the results in the
present study are novel to the field and interesting in their own
right since no classificatory cost was obtained when learning
patterns never repeated, a characteristic likely to be common in
natural learning situations but absent in current paradigms.
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