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Abstract
Our study examined processing effects in improving memory accuracy in older and younger adults. Specifically, we evaluated the
effectiveness of item-specific and relational processing instructions relative to a read-only control task on correct and false recognition
in younger and older adults using a categorized-list paradigm. In both age groups, item-specific and relational processing improved
correct recognition versus a read-only control task, and item-specific encoding decreased false recognition relative to both the relational
and read-only groups. This pattern was found in older adults despite overall elevated rates of false recognition. We then applied signal-
detection and diffusion-modeling analyses, which separately utilized recognition responses and the latencies to those responses to
estimate contributions of encoding and monitoring processes on recognition decisions. Converging evidence from both analyses
demonstrated that item-specific processing benefits to memory accuracy were due to improvements of both encoding (estimates of
d′ and drift rate) and monitoring (estimates of lambda and boundary separation) processes, and, importantly, occurred similarly in both
younger and older adults. Thus, older and younger adults showed similar encoding-based and test-based benefits of item-specific
processing to enhance memory accuracy.
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Processing information based on distinctive features often
yields a memorial advantage. Distinctive processing refers to
the processing of Bdifference within a context of similarity^
(Hunt, 2006, p. 12; see, too, Schmidt, 1991, for discussion). A
similar context occurs when a set of to-be-remembered mate-
rials contain shared spatial, temporal, or semantic features.
Distinctive processing can therefore occur in a variety of con-
texts and study tasks. Benefits have been found perceptually,
as evidenced by improved memory for information studied in
picture versus word formatting (Israel & Schacter, 1997;

Schacter, Israel, & Racine, 1999), for words that are ortho-
graphically bizarre versus typical (Hunt & Elliot, 1980;
McDaniel, Cahill, & Bugg, 2016), and for items studied in
isolation (Kelley & Nairne, 2001; von Restorff, 1933). By
extension, distinctive effects have also been found when study
tasks encourage the encoding of unique features. Item-specific
processing, for instance, has facilitated correct memory per-
formance while simultaneously reducing false recognition to
associatively related lure items, producing a net benefit to
overall memory accuracy (Huff & Bodner, 2013; Hunt,
Smith, & Dunlap, 2011). The purpose of the current study is
to further assess the locus of accuracy-enhancing benefits due
to item-specific processing by evaluating the contributions of
study-based and test-based processes through signal-detection
and diffusion-modeling analyses, and to determine whether
these mechanisms differ between younger and older adults.

A common paradigm for examining false memory errors is
the Deese–Roediger–McDermott (DRM; Deese, 1959;
Roediger & McDermott, 1995) paradigm. The DRM para-
digm presents participants with lists of associates at study
(e.g., bed, tired, rest) that converge upon a single nonstudied
critical lure (e.g., sleep). At test, false memory for lures is
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high: False recall approaches 50% (Roediger & McDermott,
1995) and false recognition can meet or exceed hit rates
(Gallo, 2006, 2010 for review, Lampinen, Neuschatz, &
Payne, 1999). Effects similar to the DRM illusion have been
found using other associative materials. Studying categorical-
ly related words (e.g., birds) also results in false recall and
false recognition for strongly related members (e.g., robin,
cardinal; Huff & Bodner, 2014; Meade & Roediger, 2006).

Given themagnitude of falsememory effects, it is important
to identify reliable methods by which rates of false memory
can be reduced. Successful methods include repeated study
presentations (Benjamin, 2001; McDermott, 1996), and warn-
ings presented before study and/or test (Gallo, Roediger, &
McDermott, 2001; McCabe & Smith, 2002; Neuschatz,
Payne, Lampinen, & Toglia, 2001). Importantly, distinctive
encoding has also been successful at reducing the illusion.
Israel and Schacter (1997) reported that when studying DRM
lists that are accompanied by a picture of the words referent,
the DRM illusion is reduced relative to a condition in which
the word is presented in isolation. This pattern has similarly
been found using other distinctive manipulations, such as
studying words in unique fonts (Arndt & Reder, 2003), gener-
ating words from anagrams (Gunter, Bodner, & Azad, 2007;
McCabe & Smith, 2006), creating mental images of list words
(Foley, Wozniak, & Gillum, 2006; Oliver, Bays, & Zabrucky,
2016; Robin, 2010), and, relevant to the present study, process-
ing the unique or distinctive features of individual study words
using item-specific processing study tasks (Huff & Bodner,
2013; McCabe, Presmanes, Robertson, & Smith, 2004;
Smith & Hunt, 1998). These benefits are particularly notewor-
thy because they often induce a mirror effect (Glanzer &
Adams, 1990)—an increase in correct memory coupled with
a decrease in false memory for distinctive encoding relative to
a read-only or processing-neutral control task.

Separating encoding and retrieval processes
in distinctive encoding

The processes that give rise to a distinctive encoding advan-
tage in memory are not fully understood. At least two mech-
anisms have been proposed to account for the benefits of
distinctive processing: Those that facilitate distinctive
encoding through processes at study, and those that enhance
strategic monitoring at test. According to the impoverished
relational encoding account (Hege & Dodson, 2004;
Hockley & Cristi, 1996), distinctive processing operates at
study by either disrupting the thematic consistency of the list
(Brainerd & Reyna, 2002), or by reducing the implicit associ-
ations shared between list items and the critical lure (Roediger,
Balota, & Watson, 2001). However, distinctive processing
may influence retrieval by leading participants to adopt a
global-monitoring strategy known as the distinctiveness

heuristic, in which participants apply a test-based decision
rule in which memory items are reported only when accom-
panied by the recollection of distinctive details. Distinctive
details that are recollected can provide diagnostic evidence
that the item was studied, whereas absence of these details
can provide diagnostic evidence that an item was not studied
(see Gallo, 2004, 2010, for discussion).

One approach for separating these processes is using a
within-subjects design, in which participants study and are
tested on two types of DRM lists: Those studied in a distinc-
tive format and those that are not. The impoverished relational
encoding hypothesis would predict a selective reduction in
false memory only for the distinctive lists, whereas the
global distinctiveness heuristic would equally influence both
lists. Unfortunately, results from such studies have not yielded
consistent results. Schacter et al. (1999) had participants study
DRM lists in which half included pictures presented alongside
words, whereas the other half consisted of words in isolation.
At test, the DRM illusion was equally low for lists studied
under distinctive and nondistinctive formats, consistent with
use of a global distinctiveness heuristic. In contrast, Arndt and
Reder (2003) showed a reduction in the DRM illusion selec-
tively for lists studied using distinctive fonts, a pattern consis-
tent with that of impoverished relational encoding.

Another approach to separating these mechanisms is
through test-based inclusion instructions. Inclusion instructions
require participants to report or endorse all test items that were
studied or are related to items that were studied (Gunter et al.,
2007; Hege &Dodson, 2004; Hunt et al., 2011). These instruc-
tions should therefore reduce the contributions of test-based
monitoring (i.e., the distinctiveness heuristic), leaving only
encoding-based processes in place. Again, however, inclusion
instructions have yielded reductions in the DRM illusion se-
lectively for distinctive lists (Hege & Dodson, 2004; Hunt et
al., 2011), consistent with an encoding locus, but have also
produced a null effect, consistent with test-based monitoring
(Gunter et al., 2007; Pierce, Gallo, Weiss, & Schacter, 2005).

Aside from inconsistent effects, these approaches also suffer
an additional interpretation issue. Specifically, evidence found
for either the distinctiveness heuristic or impoverished relation-
al encoding eliminates the other process by default, which ex-
cludes a possibility that both encoding-based and test-based
processes may be involved in the distinctiveness reduction.
More recently, it has been argued that a signal-detection ap-
proach applied to recognition is a more appropriate method
for discerning the contributions of encoding and retrieval pro-
cesses in distinctive processing (Gunter et al., 2007; Huff &
Bodner, 2013; Huff, Bodner, & Fawcett, 2015). Using this
approach, signal detection allows for a separation of underlying
memory experiences for studied versus nonstudied information
(or discriminability, d′) from memory monitoring, or the likeli-
hood that nonstudied information is reported as studied versus
correctly rejected. When applied to encoding-based and test-
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based processes in distinctive processing, discriminability esti-
mates the amount of encoded memory information for studied
list items or the critical lure (an index of impoverished relation-
al encoding), whereas an estimate of memorymonitoring based
solely on the false alarm rate (computed as lambda, λ), quanti-
tatively estimates the amount of monitoring used at test (an
index of the distinctiveness heuristic; see Fig. 1, top panel, for
a graphical depiction of d′ and lambda in the distributions).
Thus, signal-detection estimates provide separate indices of
encoding and retrieval, allowing for the possibility that both
processes may contribute to distinctiveness effects.1

Huff and Bodner (2013) utilized a signal-detection ap-
proach to estimate encoding and retrieval contributions in cor-
rect and false recognition in three experiments using a
between-subjects design. In each experiment, two variants of
a deep-processing task were compared with a read-only control
group. One variant encouraged item-specific processing, or the
processing of unique features of each DRM list item, whereas
the other encouraged relational, or shared characteristics of the
list items (Hunt & Einstein, 1981). Item-specific and relational
processing variants were created in three experiments, which
used a processing instruction study task, a pleasantness-rating
task, and an anagram-generation task. Across experiments,
item-specific and relational variants consistently improved cor-
rect recognition over the read groups, and these improvements
were due to a combination of increased encoding of studied list
items and increased monitoring (elevated d′ and lambda esti-
mates). False recognition following item-specific processing
was lower than both the read and relational processing groups,
and this distinctive reduction was due to a combination of both
a reduction in encoded memory information for the critical lure
and an increase in test-based monitoring (reduced d′ and ele-
vated lambda estimates). Impoverished relational encoding
and the distinctiveness heuristic therefore operated in concert
as a two-stage process: Impoverished relational encoding
disrupted initial critical-lure activation, and the distinctiveness

heuristic enhanced diagnostic monitoring at test (see Hunt &
Smith, 2014, for a similar proposed process). This signal-
detection pattern was further supported in a meta-analysis that
included data sets from early studies using distinctive study
tasks reviewed above (Huff et al., 2015).

While signal-detection indices ostensibly provide separate
measures of encoding and retrieval processes, it is important
to note that these indices are only estimates based on hits and
false alarms. A goal of our study was to test for convergent
validity of the signal-detection measures by applying a compu-
tational model of binary choice, the drift diffusion model
(Ratcliff, 1978). The diffusion model utilizes all aspects of per-
formance, proportion of responses and reaction-time distribu-
tions, to derive latent, psychologically interpretable parameters.
As shown in Fig. 1 (bottom panel), the diffusionmodel assumes
the noisy accumulation of evidence toward a given response
boundary (e.g., Bold^ or Bnew^ in a standard episodic recogni-
tion paradigm). The model produces four primary parameters.
The drift rate reflects the rate at which memory evidence accu-
mulates toward a given response, which may reflect the amount
or strength of information stored in memory. Boundary separa-
tion indicates howmuch evidence is required before a response
is made. This parameter is typically interpreted as reflecting
response caution. Nondecision time reflects processes that oc-
cur outside the decision process, such as stimulus decoding and
response execution. Finally, the starting point reflects where
information begins to accumulate and reflects preference for
one point over another.

The drift rate, nondecision time, and start point all have
associated variability parameters that are also estimated from
the model. Although several parameters are derived, we are
primarily interested in only two of them for the present pur-
poses. Specifically, we hypothesized that the drift rate and d′
(discriminability) would similarly be affected by the type of
processing task completed, producing an estimate of encoded
memory information. Likewise, we hypothesized that bound-
ary separation and lambda would also be similarly affected by
processing and estimate memory monitoring. In addition, the
ability of the diffusion model to provide novel insights into
age-related differences has been well established (Ratcliff,
Thapar, & McKoon, 2004, 2010). Furthermore, it is often the
case that diffusion-model parameters are more sensitive to
underlying changes than are summary statistics such as overall
accuracy (Aschenbrenner, Balota, Gordon, Ratcliff, & Morris,
2016; White, Ratcliff, Vasey, & McKoon, 2010). These pa-
rameters may also be sensitive to item-specific encoding pro-
cesses in older adults, a topic we will now discuss.

Item-specific processing effects in aging

An additional goal of our study was to evaluate the effects of
item-specific and relational processing relative to reading in

1 Previous research using the DRMparadigm has examined the role of general
criterion shifts as a causal mechanism in false recognition (Miller & Wolford,
1999; Wixted & Stretch, 2000). In these papers, criterion is computed using a
bias measure (e.g., c), which, for false recognition, captures the propensity to
respond Bold^ versus Bnew^ to critical lures and is computed as the intersec-
tion between the critical item and critical item control distributions. We (and
others, Gunter et al., 2007; Huff et al., 2015) have suggested that traditional
response bias measures may be less accurate measures of monitoring, because
the distribution of old responses to critical items can shift due to changes in
associative or thematic activation of the critical item (which would shift the
Bhit^ distribution), due to changes in memory monitoring, or both. Thus, bias
measures in signal detection that utilize both distributions are ambiguous re-
garding the underlying cause. In contrast, lambda is computed by using only
the false-alarm rate to controls and mathematically is less affected by a shifting
Bhit^ distribution for critical items. We therefore argue that lambda is a better
estimate of memory monitoring over traditional bias measures, given hits are
not mathematically factored into computing the estimate. Of course, we do not
argue that lambda is a Bpure^ measure of monitoring and note that monitoring
and bias are likely correlated. Separation of the two via quantitative recogni-
tion responses is difficult and may require more qualitative memorial informa-
tion such as metamemory judgments.
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both younger and older adults.2 Older adults often show epi-
sodic memory deficits (see Balota, Dolan, & Duchek, 2000;
Kausler, 1994, for reviews), which are generally larger on tests
of free recall that require self-initiated retrieval than recogni-
tion (Craik & McDowd, 1987; Wahlheim & Huff, 2015). In

the DRM paradigm, older adults have also been shown to be
more susceptible to the DRM illusion (Balota et al., 1999;
Norman & Schacter, 1997; Tun, Wingfield, Rosen, &
Blanchard, 1998), demonstrating that age-related memory de-
clines compromise overall memory accuracy. Given the ben-
efits of item-specific processing in younger adults, a critical
question is whether item-specific processing effects extend to
older adults to remedy declines in memory accuracy.

Previous research examining item-specific effects in older
adults in the DRM paradigm have been relatively mixed,
though many of these studies have encouraged item-specific
processing by manipulating perceptual features of DRM list
items. As reviewed by Smith, Hunt, and Dunlap (2015), some
studies have shown a reduction in older adults when DRM

2 We note that other studies (e.g., Hunt et al., 2011, Experiment 1; Toglia,
Neuschatz, & Goodwin, 1999; Thapar & McDermott, 2001) have evaluated
item-specific processing (e.g., pleasantness ratings) in the context of a shallow
levels-of-processing task (e.g., vowel counting). These studies have shown
that item-specific tasks increase both correct and false recognition relative to
the shallow levels-of-processing task. Given the surface-level processing con-
ducted with shallow tasks, we argue that the read-only task is a more appro-
priate processing-neutral control task. As Hunt et al. (2011) demonstrate, the
comparison group is crucial for demonstrating whether or not item-specific
processing will show a reduction in false memory.

Fig. 1 Parameters of the signal-detection model (top panel) and the dif-
fusionmodel (bottom panel) and their relations to hit and false-alarm rates
and to old and new recognition responses, respectively. For the signal-

detection model, the hit distribution applies to correctly studied list items
and critical lures, whereas the false-alarm distribution applies to list-item
controls and critical-lure controls
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words are studied in picture format versus words (Schacter et
al., 1999), while others have found no reduction (Gallo, Bell,
Beier, & Schacter, 2006), in both recall and recognition. Other
studies however, have encouraged item-specific processing at
the task level. Thomas and Sommers (2005) had older adults
study DRM list words by embedding them in sentences that
either converged (i.e., relational) or diverged (i.e., item-specif-
ic) with a list theme relative to a read-only control condition.
Divergent sentences were found to reduce false recognition, a
pattern consistent with item-specific effects in younger adults.
More relevant to the present study, Butler, McDaniel,
McCabe, and Dornburg (2010) had older adults either verbal-
ly generate unique characteristics of DRM words or read
DRM words aloud. In contrast to item-specific effects found
in younger adults (Gunter et al., 2007; Huff & Bodner, 2013;
McCabe et al., 2004), DRM false recall was greater following
item-specific instructions than reading. Further, most studies
above failed to find correct memory benefits following item-
specific processing, suggesting that item-specific benefits may
be diminished in older (vs. younger) adults (see Smith, 2006,
for a similar conclusion). The lack of item-specific benefits
may therefore reflect deficits of item-specific processing to
engage encoding processes, monitoring processes, or both,
processes that have not yet been quantified in this context.

The current study

Given the mixed findings regarding item-specific process-
ing in older adults, we sought to further evaluate the effects
of item-specific processing relative to read-control and re-
lational processing tasks in both younger and older adults
(cf. Butler et al., 2010). We utilized signal-detection and
diffusion modeling approaches to determine whether
changes in correct and false recognition following item-
specific and relational processing reflect effects of
encoding, retrieval, or a combination of the two. To obtain
stable estimates of diffusion-model parameters for critical
lures, we utilized categorized (rather than DRM) study
lists, which allow for an increased number of critical lures
per list by withholding the top most common exemplars
from study. Categorized list words share strong thematic
and associative relations and therefore operate similarly to
induce false recognition as DRM lists.

In the present work, younger and older adults studied a
series of categorized word lists followed immediately by
an old/new recognition test. Participants studied lists using
either item-specific instructions or relational instructions
which were then compared to a read-only control group.
We expected that item-specific and relational processing
instructions would enhance correct recognition relative to
reading given both tasks involve a semantically deep
levels-of-processing. Based on Huff and Bodner’s (2013)

results, we expected that item-specific processing would
reduce false recognition relative to relational processing
and reading. Huff and Bodner did not find an increase in
false recognition over reading, which was suggested to
occur due to relational processing increasing the detection
and rejection of DRM critical lures at study and test. Given
our use of categorized lists, the lures would be less likely to
be detected. Therefore, we predicted that relational pro-
cessing would increase false recognition over reading de-
spite an improvement in correct recognition.

Additionally, we predicted that older (vs. younger) adults
would show limited accuracy gains from item-specific pro-
cessing given the extant literature (Butler et al., 2010; Smith,
2006); however, a counter prediction could also bemade that
older adults may instead show benefits of item-specific pro-
cessing over reading. This latter prediction stems from the
findings that older adults show deficits at spontaneously en-
gaging deep encoding processes given limited attentional
resources (e.g., Anderson, Craik, & Naveh-Benjamin,
1998; Craik & Byrd, 1982), but when given an encoding
strategy accompanied by practice and feedback, they may
showbenefits. Finally, signal detection and diffusionmodel-
ing were expected to produce converging estimates of
encoding and monitoring processes. We expected that the
mirror effect found following item-specific processing
would reflect a combination of enhanced encoding process-
es (increased encoded information for list items; decreased
encoded information for critical lures) and an increase in
test-based monitoring as estimated through signal-
detection and diffusion-modeling analyses.

Method

Participants

Eighty-eight younger adults and 82 older adults were re-
cruited for participation. Data from three younger and four
older adults were eliminated due to failures to follow in-
structions either during the study or recognition phases,
leaving 85 younger and 78 older adults for analysis.
Younger adults were psychology undergraduates who com-
pleted the experiment for course credit (Mage = 21.00 years,
range: 18–39; 77.64% female). Older adults were recruited
from either The University of Southern Mississippi’s Osher
Lifelong Learning Institute or from the greater Hattiesburg,
MS, community (Mage = 74.58 years, range: 60–90; 67.95%
female) and were compensated $10 per hour for their par-
ticipation. Participants were randomly assigned to either the
item-specific, relational, or read encoding groups, with dis-
tribution across groups being relatively even.

Demographics for both age groups are reported in Table 1.
Older adults reported more years of education than younger
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adults (15.55 vs. 13.52), t(159) = 5.32, SEM = .35, and had
higher vocabulary scores (32.27 vs. 26.53), t(152) = 7.32.
SEM = .78, on the Shipley Institute of Living Scale (Shipley,
1986), but scored lower on theMiniMental State Examination
(MMSE; Folstein, Folstein, & McHugh, 1975) than younger
adults (27.14 vs. 28.13), t(152) = 3.21, SEM = .31, though still
within a normal range (24 or greater) based on standard scor-
ing guidelines. Education information was not reported by one
younger and one older adult, and the Shipley scale andMMSE
were not completed by nine younger adults. Further, due to a
computer error, response latencies were unavailable for four
younger adults. These individuals were included in all analy-
ses, aside from the diffusion model, as this analysis required
latencies.

Materials

Study and test materials were presented via a computer running
SuperLab software. Two sets of 10 categorized lists were con-
structed that contained items taken from either the Battig and
Montague (1969) or Van Overschelde, Rawson, and Dunlosky
(2004) categorical word norms. The top 20 exemplars from
each category were used. Of these exemplars, the five most
common exemplars (i.e., the top five items in the norms) were
designated as critical lures and were not studied. The remain-
ing 15 exemplars were then used as study items and presented
in descending order of typicality (see Huff, Balota, &
Hutchison, 2016; Meade & Roediger, 2006, for a similar
procedure). A 260-item recognition test was then constructed
and composed of 80 studied list items (from positions 1, 3, 5, 7,
9, 11, 13, and 15 from each studied list), 80 list item controls
taken from the nonstudied list set (from the same list positions),
50 critical lures (five per studied list), and 50 critical-lure con-
trols (five per nonstudied list). The recognition test was pre-
sented in a newly randomized order for each participant.

Procedure

All participants were tested individually with an experi-
menter present. Participants were instructed that they
would study a series of word lists and that each word would
be read aloud. The item-specific group was further

instructed to Bthink of a unique characteristic that differen-
tiates each word from the other words on the list.^ The
relational group was instructed to Bconcentrate on what
the words have in common to associate them together.^
Item-specific and relational instructions were modeled after
those used by Huff and Bodner (2013). The read group
simply read each word aloud. An eight-item practice list
made of weak associates was then presented to participants
(a mediated list taken from Huff & Hutchison, 2011). For
each item on the practice list, participants were instructed to
verbally state the unique or shared characteristic for each of
the items. An experimenter provided participants with feed-
back to ensure the appropriate encoding task was deployed
(cf. Butler et al., 2010). Participants then studied the 10
experimental lists, which were once-randomized and pre-
sented in the same order. Study duration for each list item
was participant paced. Each list was separated by a screen
with the words Bnext list,^ which the experimenter read
aloud. The recognition test immediately followed the study
phase. Words were displayed individually on the computer
screen and participants classified each word as Bold^ if the
word was presented on one of the previous study lists, or
Bnew^ if the word was not using a button-labeled response
box. Given the importance of response latencies in our
analyses, participants were instructed to place their index
fingers directly on the old/new buttons and respond quickly
to each test word, but without compromising accuracy. The
recognition test was similarly participant paced.

Immediately following the recognition test, participants
completed the demographics, vocabulary, and MMSE
questionnaires. Participants were then debriefed and com-
pensated with course credit or payment. An entire session
lasted approximately 60 minutes.

Results

We set a p < .05 significance level for analyses, and pro-
vide effect sizes for reliable and marginal analyses of var-
iance (ANOVA) effects (ηp

2) and t tests (Cohen’s d). Mean
recognition scores, signal-detection indices, and diffusion-
model parameters for correctly recognized list items and
falsely recognized critical lures are plotted in the refer-
enced figures below, and numeric means are reported in
the Appendix Table 2 for completeness. A post hoc power
analysis using G*Power (Erdfelder, Faul, & Buchner,
1996) revealed that our sample size had high statistical
power (.90) to detect medium-sized effects (d = .40).

Preliminary data analyses

Signal detection Recognition proportions of old responses
were analyzed across list items, critical items, and their

Table 1 Participant characteristics for younger and older adults

Variable/Group Younger adults Older adults

N 85 78

Age (years) 21.00 (2.17) 74.58 (6.77)

Education (years) 13.52 (2.17) 15.55 (2.76)

Shipley Vocabulary 26.53 (4.47) 32.27 (5.22)

Mini Mental State Exam 28.13 (1.75) 27.14 (2.06)

Note. Mean (SD)
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respective controls. A signal-detection measure of sensitivity
was then applied to compute d′ and lambda for list items and
critical items. The d′ index computed separately for list and
critical items by taking the z score of the hit rate for each item
type (with critical items treated as hits) minus the z score of the
false-alarm rate for the appropriate control items for each par-
ticipant. The lambda index was computed by taking the z
score of 1 minus false-alarm rate for list item and critical item
controls for each participant. For lambda, higher values are
indicative of reduced false-alarm rates and greater monitoring
(see Fig. 1, top panel, for a signal-detection distribution with
parameters). Hit and false-alarm rates of 1.0 or 0 were adjusted
using Macmillan and Creelman’s (1991) 1/2n correction.

Diffusion-model fitting The diffusion model was fit to indi-
vidual participant’s data using Fast-DM Version 30.2
(Voss & Voss, 2007). Responses were trimmed by remov-
ing any that were faster than 200 milliseconds or slower
than 8,000 milliseconds. Responses were then trimmed
further by removing those that were greater than three
standard deviations from the participant’s mean response
latency. This trimming procedure removed an average of
3% of trials across item types. The Kolmogorov–Smirnov
(K–S) method was chosen as the optimization criterion.
Briefly, the program recovers the optimal model parame-
ters by minimizing the maximum distance between the
empirical cumulative density function and the one predict-
ed by the model. The upper response boundary was arbi-
trarily designated Bold^ and the bottom boundary as
Bnew^ (see Fig. 1, bottom panel). Drift rate and boundary
separation were allowed to vary across item types. In the
interest of parsimony, the other parameters were held con-
stant across conditions. Interpretation of the parameters
depends heavily upon how well the model describes the
data. Fast-DM provides an estimate of individual model fit
using the K–S statistic. With the exception of a single
older adult, model fit was acceptable (K–S; p > .05). In
order to maintain consistency with the signal detection
analyses, the poor fitting participant was retained. Mean
and median response latencies as a function of encoding
task and age group as well as plots of model fits are avail-
able in the Supplemental Materials.

Correct recognition

Proportions of correct recognition as a function of
encoding task and age group are reported in Fig. 2 (top
panel). A 3(encoding: item-specific vs. relational vs. read)
× 2(age: younger vs. older) between-subjects ANOVAwas
used to analyze the proportions of old responses to studied
list items. An effect of encoding, F(2, 157) = 23.52, mean
square error (MSE) = .02, ηp

2 = .23, revealed that correct
recognition was greater in the item-specific group than

both the read group (.85 vs. .68), t(105) = 6.34, standard
error of the mean (SEM) = .02, d = 1.24, and the relational
group (.85 vs. .80), t(107) = 2.40, SEM = .02, d = 0.46.
Further, correct recognition was also greater in the rela-
tional group than the read group (.80 vs. .68), t(108) =
4.30, SEM = .02, d = 0.83, effects consistent with deep-
processing benefits of item-specific and relational
encoding. Both the main effect of age, F(1, 157) = 1.61,
MSE = .02, p = .21, and the Encoding × Age interaction, F
< 1, failed to reach significance, demonstrating that both
age groups derived similar correct recognition benefits of
item-specific and relational encoding over reading.

We then analyzed signal detection indices to estimate the
amount of encoded memory information (d′) and amount of
memory monitoring at test (lambda) as a function of
encoding task and age group. Beginning with encoded
memory information (see Fig. 3, top panel), an effect of
encoding, F(2, 157) = 30.84,MSE = .46, ηp

2 = .28, revealed
that memory information was greater in the item-specific
group than both the read group (3.02 vs. 1.99), t(105) =

Fig. 2 Proportion of Bold^ responses to studied list items (top panel) and
critical lures (bottom panel) as a function of processing instructions and
age group. Error bars are 95% confidence intervals of the means
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8.65, SEM = .08, d = 1.69, and the relational group (3.02 vs.
2.49), t(107) = 3.75, SEM = .10, d = 0.73, and was also
greater in the relational group than the read group (2.49
vs. 1.99), t(108) = 3.72, SEM = .09, d = 0.72. The effect of
age was not reliable, F(1, 157) = 2.71, MSE = .47, p = .10,
nor was the interaction,F(2, 157) = 2.15,MSE = .47, p = .12.

Turning to memory monitoring (see Fig. 3, bottom
panel), lambda values were also found to differ as a func-
tion of encoding task, F(2, 157) = 9.97, MSE = .25, ηp

2 =
.11. Like d′, monitoring was greater following item-
specific encoding than both reading (1.88 vs. 1.47),
t(105) = 4.43, SEM = .06, d = 0.86, and relational encoding
(1.88 vs. 1.56), t(107) = 3.28, SEM = .06, d = 0.63, but
unlike d′, monitoring was equivalent between the relational
and read groups (1.56 vs. 1.47), t < 1. The effect of age was
not significant, F(1, 157) = 2.48, MSE = .25, p = .11, but a
marginal interaction was found, F(2, 157) = 2.62, MSE =
.25, p = .08, ηp

2 = .03, which reflected a greater decrease in
monitoring for older than for younger adults, following
relational encoding relative to reading (1.36 vs. 1.74),

t(54) = 2.62, SEM = .10, d = 0.71, with all other compar-
isons being nonsignificant, ts < 1.

We then analyzed two diffusion model parameters (drift
rate and boundary separation) to determine their convergence
with signal-detection estimates of encoded memory informa-
tion and memory monitoring. Beginning with list-item drift
rate (see Fig. 4, top panel), an effect of encoding was found,
F(2, 153) = 14.45, MSE = .51, ηp

2 = .16, which showed that
the drift rate was greater in the item-specific group than the
read group (1.58 vs. 0.83), t(103) = 5.44, SEM = .10, d = 1.07,
and marginally greater than the relational group (1.58 vs.
1.31), t(105) = 1.84, SEM = .10, p = .07, d = 0.36. The drift
rate was also found to be greater in the relational group than in
the read group (1.31 vs. 0.83), t(104) = 3.28, SEM = .10, d =
0.64. Unlike our d′ estimates, however, a significant effect of
age was found,F(1, 153) = 11.27,MSE = .51, ηp

2 = .07, which
indicated that memory information for list items accumulated
more quickly for younger than for older adults (1.43 vs. 1.05).
The Encoding × Age interaction was not significant, F < 1.

Fig. 4 Mean diffusion model values for list-item drift rate (top panel) and
list-item boundary separation (bottom panel) as a function of processing
instructions and age group. Error bars are 95% confidence intervals of the
means

Fig. 3 Mean signal-detection values for list-item d′ (top panel) and list-
item lambda (λ; bottom panel) as a function of processing instructions and
age group. Error bars are 95% confidence intervals of the means
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Response-caution estimates where then analyzed by
comparing boundary separation estimates across groups
(see Fig. 4, bottom panel). An effect of encoding was found,
F(2, 153) = 10.55, MSE = .24, ηp

2 = .12, which indicated
that response caution was greater following item-specific
encoding than it was for reading (2.08 vs. 1.66), t(103) =
4.14, SEM = .07, d = 0.82, and following relational
encoding than it was for reading (1.95 vs. 1.66), t(104) =
3.04, SEM = .07, d = 0.60. Response caution was equivalent
between the item-specific and relational groups (1.95 vs.
1.66), t(105) = 1.26, SEM = .08, p = .21. An effect of age
was also found, F(1, 153) = 26.57,MSE = .24, ηp

2 = .15, in
which boundary separation was greater in older adults than
in younger adults (2.10 vs. 1.70), indicating that older adults
showed greater response caution than younger adults did.
The Encoding × Age interaction was not significant, F < 1.

False recognition

The proportion of falsely recognized critical lures are re-
ported in Fig. 2 (bottom panel), and were analyzed using
the same ANOVA. An effect of encoding was found, F(2,
157) = 13.69, MSE = .03, ηp

2 = .15. Consistent with item-
specific effects in the DRM paradigm, false recognition
was lower following item-specific encoding relative to
both relational encoding (.24 vs. 42), t(107) = 5.09, SEM
= .02, d = 0.98, and reading (.24 vs. .31), t(104) = 2.07,
SEM = .02. Importantly, false recognition was greater in
the relational group relative to the read group (.42 vs. .31),
t(108) = 2.92, SEM = .02, d = 0.56, a novel pattern (cf.
Huff & Bodner, 2013). The effect of age was right at the
level of conventional significance, F(1, 157) = 3.84, MSE
= .03, p = .05, ηp

2 = .02, in which false recognition was
greater in older adults than in younger adults (.35 vs. .30).
The interaction was not reliable, F < 1, demonstrating that
encoding tasks produced similar effects in both age groups.

Signal-detection analyses were similarly applied to eval-
uate encoding and monitoring contributions in false recog-
nition. For encoded memory information (see Fig. 5, top
panel), an effect of encoding was found, F(2, 157) = 10.35,
MSE = .25, ηp

2 = .12. Follow-up tests revealed that item-
specific encoding significantly reduced the amount of
encoded memory information for critical lures relative to
relational encoding (1.05 vs. 1.30), t(107) = 2.59, SEM =
.07, d = 0.51, a pattern that was similarly found between
the read and relational groups (0.87 vs. 1.30), t(108) =
4.73, SEM = .07, d = 0.91. Encoded memory information
was marginally lower in the read group than in the item-
specific group (0.87 vs. 1.05), t(105) = 1.88, SEM = .07, p
= .06, d = 0.37. The effect of age and the interaction were
not significant, Fs < 1.

For lambda monitoring estimates (Fig. 5, bottom panel),
an effect of encoding was found, F(2, 157) = 7.66, MSE =

.32, ηp
2 = .09, which revealed that monitoring was greater

in the item-specific group than both the read group (1.85 vs.
1.44), t(105) = 3.07, SEM = .08, d = 0.60, and the relational
group (1.85 vs. 1.55), t(107) = 2.92, SEM = .07, d = 0.56.
Monitoring between the relational and read groups was
equivalent (1.55 vs. 1.44), t < 1. Neither the effect of age,
F(1, 157) = 2.05, MSE = .32, p = .16, nor the interaction,
F(2, 157) = 1.19, MSE = .32, p = .31, were reliable.

Diffusion-model parameters were then analyzed for re-
sponses to critical lures. When computing drift rates, since
most responses to critical lures across participants were
Bnew,^ the diffusion model provides average drift-rate es-
timates in the direction of Bnew^ responses (see Fig. 6, top
panel), which are negative, indicating that larger values
(i.e., being more negative) reflect an accumulation rate
that is faster toward making a new response and rejecting
the critical lure, and smaller values (i.e., being less nega-
tive), reflect an accumulation rate that is slower toward
making a new response.

Fig. 5 Mean signal-detection values for critical-lure d′ (top panel) and
critical-lure lambda (λ; bottom panel) as a function of processing instruc-
tions and age group. Error bars are 95% confidence intervals of the means

Mem Cogn (2018) 46:1287–1301 1295



Our drift-rate analysis again revealed an effect of
encoding, F(2, 153) = 10.56, MSE = . 29, ηp

2 = .12.
Follow-up tests revealed that the accumulation of memory
evidence to reject critical lures as newwas faster in the item-
specific than in the relational group (−0.80 vs. −0.33),
t(105) = 4.60, SEM = .07, d = 0.90, and similarly faster in
the read group relative to the relational group (−0.66 vs.
−0.33), t(104) = 2.84, SEM = .08, d = 0.56. There was no
difference in drift rates between the item-specific and read
groups (−0.80 vs. −0.66), t(103) = 1.42, SEM = .07, p = .16.
The effect of age, F(1, 153) = 2.32,MSE = .29, p = .13, and
the interaction, F < 1, were not reliable.

Response caution for critical lures as estimated through
boundary separation was similarly analyzed (see Fig. 6,
bottom panel). An effect of encoding was found, F(2, 153) =
9.26, MSE = .34, ηp

2 = .11, which revealed that response
caution was greater in the item-specific group relative to the
read group (2.41 vs. 1.94), t(103) = 4.03, SEM = .08, d = 0.79,
and also greater in the relational than in the read group (2.28

vs. 1.94), t(104) = 2.99, SEM = .07, d = 0.59. Response cau-
tion was equivalent between the item-specific and relational
groups (2.40 vs. 2.28), t < 1. As was found for list items, an
effect of age was also found, F(1, 153) = 19.63, MSE = .34,
ηp

2 = .11, in which caution was greater for older than for
younger adults. The interaction was not significant, F(2,
153) = 1.16, MSE = .34, p = .32.

General discussion

The purpose of the present experiment was to compare
item-specific and relational processing effects to a read-
only control on correct and false recognition and to deter-
mine whether these effects yield age-related differences.
Compared with relational processing and reading, item-
specific processing produced a mirror effect pattern: in-
creased correct and decreased false recognition. In con-
trast, relational processing produced an increase in correct
recognition relative to reading, but also produced the ex-
pected increase in false recognition. Thus, despite relation-
al processing producing deep semantic encoding which
benefitted correct recognition, it compromised memory ac-
curacy. Importantly, equivalent patterns were found in
younger and older adults, demonstrating that both age
groups show the benefits and costs associated with item-
specific and relational processing.

We then estimated the contributions of encoding and
monitoring processes that contributed to correct and false
recognition. A signal-detection analysis provided d′ and
lambda, which were used to estimate the quantity of
encoded memory information and monitoring, respectively
(based on Gunter et al., 2007; Huff & Bodner, 2013). The
diffusion model was then used to derive estimates of drift
rate and boundary separation to provide separate estimates
of encoding and monitoring processes to provide compli-
mentary evidence of these processes.

The application of signal detection and the diffusion
model revealed relatively consistent bases for the recogni-
tion patterns. For correct recognition, item-specific and
relational processing both produced an increase in encoded
memory information (through d′ and drift rate) and an in-
crease in monitoring processes (through lambda and
boundary separation), and these patterns were similar
across younger and older adults. For false recognition, re-
lational processing produced an increase in encoded mem-
ory information as evidenced by an increase in d′ and a less
negative drift rate, indicating that relational processing de-
creased the rate in which critical lures were rejected. The
reduced drift rate following relational processing suggests
that participants had to overcome elevated levels of
encoded memory information to successfully reject critical
lures as new. For monitoring, item-specific and relational

Fig. 6 Mean diffusion model values for critical-lure drift rate (top panel)
and critical-lure boundary separation (bottom panel) as a function of
processing instructions and age group. Negative drift-rate values reflect
that the majority of critical-lure recognition responses were new (vs. old).
Error bars are 95% confidence intervals of the means
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processing generally increased monitoring relative to read-
ing as indicated by increased lambda and boundary sepa-
ration estimates. These findings demonstrate that item-
specific processing reduces false recognition relative to
relational processing by disrupting encoding of implicit
activation of critical lures (i.e., impoverished relational
encoding; Hege & Dodson, 2004) and by increasing mon-
itoring consistent with the distinctiveness heuristic
(Schacter et al., 1999). Monitoring was similarly elevated
following relational processing but failed to reduce false
recognition, demonstrating that monitoring, particularly
following relational processing, may be ineffective at re-
ducing false recognition. When compared with the read
group, however, item-specific processing only produced
an increase in monitoring, but not encoding, which may
explain why item-specific processing yielded only a mod-
est reduction in false recognition.

Although our signal-detection and diffusion-model anal-
yses showed close correspondence, we do note one discrep-
ancy between the estimates. Specifically, for correct recog-
nition drift rate and boundary separation, we found that
both diffusion model indices showed an effect of age,
whereas the signal-detection indices did not. This age effect
occurred despite all encoding task effects producing similar
effects across encoding groups. This finding may suggest
that the diffusion model is more sensitive to age-related
differences due to the use of response latencies versus ac-
curacy to compute the parameters. Consistent with other
speeded tasks, such as Stroop’s color naming, we note that
age-related differences in accuracy are sometimes small
between younger and older adults, but differences in re-
sponse latencies can be large, even when controlling for
age-related slowing (Spieler, Balota, & Faust, 1996).
Thus, age differences found between signal-detection and
diffusion-model estimates may reflect the differences in the
sensitivity of accuracy and response latencies in revealing
age differences. Indeed, the age effects found in our data set
(reduced correct recognition drift rate and greater boundary
separation in older adults) have similarly been reported in
other recognition analyses that did not use associative lures
(Ratcliff et al., 2004). Yet, despite these main effects, the
patterns found across the different encoding tasks were
quite consistent (as evident by null interactions across anal-
yses), providing convergent evidence for the use of both
analyses in examining encoding and retrieval processes
across processing types.

Our experiment stems from Huff and Bodner (2013),
who similarly compared item-specific and relational pro-
cessing to a read control using the DRM paradigm. We
extend this previous research with several novel additions
including a comparison between younger and older
adults, the use of categorized word lists and critical lures,
and the inclusion of diffusion modeling to separate

encoding and retrieval contributions. Despite these differ-
ences, the data patterns and conclusions were largely sim-
ilar, providing greater generalization of this early work.
There was, however, a notable difference. Specifically,
Huff and Bodner did not find an increase in false recog-
nition following relational processing over reading,
whereas our younger and older adult relational processing
groups did show an increase in false recognition over
reading. We suggest that this difference may be due to
the detectability of lures in Huff and Bodner’s DRM lists
and our categorized lists. In DRM lists, all items con-
verged to a single lure, whereas categorized list items
were related to, but did not directly converge on, five
different lures. Evidence for differences in lure detection
have been illustrated in two prior studies conducted by
the first author. In these studies, participants studied
DRM lists (Coane, Huff, & Hutchison, 2016) or catego-
rized lists (Huff et al., 2016) constructed identically to the
present lists and were asked to explicitly guess what the
critical lure(s) was after study. Participants were more
likely to correctly guess DRM lures (.36) than categorized
lures (ranging from .20 to .23 across experiments), sug-
gesting that DRM lures are indeed easier for participants
to generate and possibly detect on a later test. Given these
detection rates, relational processing may therefore facil-
itate detection of DRM lures at study, reducing the like-
lihood that relational processing would inflate false rec-
ognition over reading.

Our study further sought to evaluate the effectiveness of
item-specific processing in younger and older adults. As
mentioned above, previous literature has been mixed re-
garding the benefits of item-specific processing in older
adults. In our study, older adults showed a mirror effect
following item-specific processing, which held when com-
pared with either the read or relational processing groups.
The item-specific benefit to false recognition is particular-
ly noteworthy because this pattern occurred despite older
adult’s greater false recognition rates overall compared
with younger adults. Older adults reduced false recogni-
tion following item-specific processing contrasts with
Butler et al. (2010), who reported elevated false recall
rates for older adults using item-specific instructions com-
pared with a read control. We argue that this discrepancy
may reflect differences in how effectively participants
were utilizing item-specific processing. Specifically,
Butler et al. instructed participants to state each item-
specific characteristic aloud during study, but reported that
older adults would often list characteristics that were con-
vergent with the list theme rather than unique, suggesting
use of relational processing. In contrast, our item-specific
participants completed a practice list aloud with feedback
to discourage the use of relational characteristics at study.
Further, Butler et al. used strongly associated DRM lists
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compared with our categorized lists, which may have been
more difficult to promote unique characteristics at study
and used free recall rather than recognition. Several differ-
ences may therefore contribute to the discrepancies,
though our experiment suggests that older adults show
similar benefits as younger adults and through similar
mechanisms, provided item-specific processing is effec-
tively deployed at study.

Our study also highlights the importance of both signal
detection and the diffusion model for providing estimates
of encoding and retrieval processes that are often of inter-
est to researchers. These analyses, either individually or in
tandem, are advantageous over other methods such as in-
clusion instructions or within-subjects designs because
they allow for the possibility that encoding and retrieval
processes contribute to item-specific and relational pro-
cessing effects in recognition, as found in our analyses.
Of course, signal detection and diffusion modeling analy-
ses are not beyond reproach. For instance, they do not
provide qualitative information about precisely how indi-
viduals are encoding items at study or how monitoring is
conducted at test, and only provide quantitative estimates.
Qualitatively, we assume that encoded memory informa-
tion refers to memory strength for list items when applied
to correct recognition, and either the amount of associa-
tive activation (Roediger et al., 2001) or thematic gist
(Brainerd & Reyna, 2002) encoded for critical items when
applied to encoded false recognition. Similarly, we as-
sume that monitoring indices for correct and false recog-
nition refer to diagnostic monitoring processes (e.g.,
Gallo, 2004, 2010) that allow participants to effectively
filter studied versus nonstudied items. Our quantitative
estimates do not assess these fine-grained processes, and
therefore we are careful to make specific claims.

Future research should examine how quantitative esti-
mates of encoding and monitoring correspond to qualita-
tive processes and should also test the validity of these
estimates in other domains. For instance, determining
whether estimates of encoding and retrieval are sensitive
to manipulations that directly affect these processes would
promote validity of the indices. To provide some exam-
ples, disrupting attention at encoding (Craik & McDowd,
1987) or utilizing speeded response deadlines at test
(Benjamin, 2001) would be expected to decrease encoding
and retrieval estimates, respectively, whereas repeating
items at study and providing warning instructions at test
would be expected to increase them. Carefully evaluating
both signal-detection and diffusion-modeling parameters
under these conditions would provide a stronger test re-
garding the validity of these measures.

Further, it should also be clear that our item-specific and
relational tasks are not process pure and only bias the

relative amount of item-specific or relational processing
relative to reading. There is always a concern that a given
encoding task does not recruit the anticipated type of pro-
cessing (e.g., Butler et al., 2010), and therefore we are
cautious regarding our processing claims. The consistency
of our findings with other experiments (Huff & Bodner,
2013; McCabe et al., 2004; Thomas & Sommers, 2005)
provide increased confidence that younger and older adults
in our experiment are engaging in the expected processing
type in the absence of a direct measure.

Assuming our processing tasks do indeed recruit the
expected processing type, one important pattern worth em-
phasizing is the benefits of item-specific processing in
both age groups. Our data revealed that item-specific pro-
cessing produced a mirror effect relative to reading and
performing relational processing (cf. Butler et al., 2010).
This pattern is important because it demonstrates that older
adults can improve memory accuracy despite potential
age-related declines. Although participants were utilizing
item-specific processing on categorized lists, a context of
similarity that may have made item-specific processing
more successful, we believe that the application of item-
specific processing to benefit memory for real-world ma-
terials may be effective, particularly in older adults. For
instance, applying imagery (e.g., Foley et al., 2006) to
encode unique visual features of grocery-list items or fa-
cial features of newly introduced acquaintances may facil-
itate memory for those materials. Further, item-specific
strategies may also reduce commission errors for related
items or names/faces. Of course, future research will need
to explore precisely how item-specific processing may be
adapted beyond word lists, but the benefits shown by older
adults suggest that item-specific processing may be a use-
ful encoding strategy.

In sum, we suggest that signal-detection and diffusion
modeling analyses can be useful tools for determining the
contributions of encoding and retrieval processes in study
tasks and in younger and older adults. Through these anal-
yses, we found that both older and younger adults improve
recognition accuracy through item-specific over relational
processing and reading, and this improvement reflects a
combination of both encoding and retrieval processes.
Further, we found that relational processing can inflate
false recognition over reading despite elevated rates of
memory monitoring. Thus, monitoring may be ineffective
following high rates of relational processing.
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