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Abstract In recent years, several researchers have proposed
that skilled adults may solve single-digit addition problems
(e.g., 3 + 1 = 4, 4 + 3 = 7) using a fast counting procedure.
Practicing a procedure, however, often leads to transfer of
learning to unpracticed items; consequently, the fast counting
theory was potentially challenged by subsequent studies that
found no generalization of practice for simple addition. In two
experiments reported here (Ns = 48), we examined generali-
zation in an alphabet arithmetic task (e.g., B + 5 = C D E F G)
to determine that counting-based procedures do produce
generalization. Both experiments showed robust generaliza-
tion (i.e., faster response times relative to control problems)
when a test problem’s letter augend and answer letter sequence
overlapped with practiced problems (e.g., practice B + 5 = C D
E FG, test B + 3 = C D E ). In Experiment 2, test items with an
unpracticed letter but whose answer was in a practiced letter
sequence (e.g., practice C + 3 = DEF, test D + 2 = E F) also
displayed generalization. Reanalysis of previously published
addition generalization experiments (combined n = 172) found
no evidence of facilitation when problems were preceded by
problems with a matching augend and counting sequence. The
clear presence of generalization in counting-based alphabet
arithmetic, and the absence of generalization of practice effects
in genuine addition, represent a challenge to fast counting
theories of skilled adults’ simple addition.
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There is an ongoing debate in the cognitive science literature
about the processes that subserve skilled adults’ simple mental
addition (e.g., 3 + 2 = 5, 4 + 3 = 7). For years, research seemed
to support the theory that adults usually solve single-digit
addition problems by direct retrieval from associative memory
(see Ashcraft & Guillaume, 2009; Zbrodoff & Logan, 2005,
for reviews). Recently, however, several researchers have
argued that the counting process commonly used for addition
in childhood (Groen & Parkman, 1972) evolves into an auto-
matic or “compacted” counting procedure in highly skilled
adults. The present experiments were designed to investigate
if transfer of training (i.e., generalization of learning from
practiced to unpracticed problems) occurs with counting-
based procedures. If it does, this would reinforce the case that
generalization of practice provides a marker for the use of
counting procedures in mental addition.

Evidence of fast counting procedures for simple
addition by skilled adults

Fayol and Thevenot (2012) reignited the debate
(Ashcraft & Fierman, 1982; Groen & Parkman, 1972)
about the basic processes for skilled adults’ simple addi-
tion. They used an operator-priming paradigm (see also
Roussel, Fayol & Barrouillet, 2002; Sohn & Carlson,
1998) and tested engineering students in blocks of mixed
simple addition and multiplication problems. When the
operation sign (+ or ×) appeared 150 ms before the
problem operands, response time (RT) for addition prob-
lems was faster relative to simultaneous presentation; but
there was no operator preview effect for multiplication.
Fayol and Thevenot proposed that addition was solved
via a fast procedure that could be primed by a preview
of the plus sign, whereas multiplication involved direct
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memory retrieval of individual facts and therefore was
not subject to operator priming (but see Chen &
Campbell, 2015).

Subsequently, Barrouillet and Thevenot (2013; see also
Thevenot, Barrouillet, Castel, & Uittenhove 2016;
Uittenhove, Thevenot, & Barrouillet, 2016) analyzed adults’
response times (RTs) for very small additions involving the
numbers 1 through 4 and found that RT increased linearly with
the numerical size of the addends. They proposed that small
addition problems could activate a very fast counting proce-
dure (20 ms per step) that gives rise to a shallow linear prob-
lem size effect. Campbell, Chen, and Maslany (2013) provid-
ed another type of evidence that small addition problems may
be solved by fast procedures, at least in highly skilled individ-
uals. They examined Canadian and Chinese adults’ perfor-
mance in an arithmetic interference paradigm. Practicing
small multiplication problems (e.g., 2 × 3) slowed RT to an-
swer addition counterparts (2 + 3) for the Canadian group but
not for the Chinese group. As this retrieval-induced interfer-
ence effect had previously been shown to be induced by
number-fact retrieval practice but not by practice of arithmetic
procedures (Campbell & Therriault, 2013), Campbell et al.
suggested that the arithmetically superior Chinese participants
might solve small addition problems by fast procedures
whereas the Canadians used number-fact retrieval. Despite
these seemingly converging sources of evidence for fast addi-
tion procedures, there appears to be little evidence outside of
the addition domain to support the idea that mediational strat-
egies for associative learning become proceduralized with
practice (see, e.g., Kole & Healy, 2013; Rickard & Bajic,
2003). Furthermore, as we discuss next, repeated attempts
have failed to demonstrate a basic behavioral prediction of
counting procedures for simple addition.

Generalization of addition practice

To pursue the issue of fast procedures in adults’ simple addi-
tion, Campbell and Beech (2014) examined generalization of
practice. Practicing a procedural process results in its speeding
up (Singley & Anderson, 1989); consequently, speed up with
practice should generalize to different, unpracticed problems
that use that procedure. Campbell and Beech reasoned that if
simple addition was based on procedures, then practicing a
subset of problems (e.g., 4 + 3) should facilitate subsequent
performance of similar, unpracticed problems (e. g., 3 + 2).
The results showed that there was no generalization of practice
for nonzero simple addition problems, but the procedure-
based 0 + N = N problems presented clear evidence of gener-
alization (i.e., practicing a subset of 0 + N problems facilitated
a different subset of 0 + N problems). Generalization for 0 + N
problems, but no generalization for nonzero simple addition
problems has been repeatedly replicated (Campbell, Dufour,

& Chen, 2014; Campbell & Therriault, 2013; Chen &
Campbell, 2014, 2016).

If generalization is a reliable marker of procedure
use, then the null generalization results of Campbell
and Beech (2014) and similar studies (e.g., Chen &
Campbell, 2014, 2016) cast doubt on the general appli-
cability of the theory of fast procedures for simple ad-
dition. There is no direct evidence however, that
counting-based procedures do produce robust generaliza-
tion. In simple arithmetic, generalization has only been
demonstrated for problems governed by the identity
rules 0 + N = N, 1 × N = N, and 0 × N = 0. The
procedures underlying application of the identity rules
might be different in kind from the fast counting pro-
cedure proposed by Barrouillet and Thevenot (2013).
The purpose of these experiments was to find out if
practice of counting-based procedures produces
generalization.

To this end we used a version of the alphabet-arithmetic
paradigm that Logan (1988) developed to study the auto-
maticity of cognitive skills (see Zbrodoff & Logan, 2005,
for a review of research with this paradigm). Logan and
Klapp (1991, Experiment 1) assessed whether extended
practice is necessary to produce automaticity. Participants
were asked to verify equations with either the first 10 let-
ters (A–J) or the second 10 letters of the alphabet (K–T)
combined with the digit addends 2–5 (e.g., A + 2 = C, D + 4
= H). Initially, alphabet arithmetic involves counting for-
ward through the alphabet from the augend letter with step-
by-step enumeration of successive letters. The linear RT
slope as a function of addend size in the first of 12 sessions
(486 ms per addend increment) provided evidence of
counting to verify problems. Repeated practice, however,
reduced the slope to 45 ms, which is less than the alphabet
recitation time per letter recorded by the experimenters
(115 ms). Note, however, that the RT slope from +2 to +4
(i.e., excluding +5) was about 120 ms per increment
(Fig. 1, p. 182). Most important in the present context, little
transfer was observed when participants were switched to
the unstudied half of the alphabet. In Logan and Klapp’s
Experiment 3, participants were trained and tested on a
variety of alphabet-arithmetic facts. In the transfer phase,
they verified the old (i.e., trained) facts, new facts com-
posed of the old letters (new digits, old letters), and new
facts composed of new letters (new digits, new letters) to
assess transfer. The addend-size slopes for both new-new
and new-old problems were steep and did not differ from
each other suggesting that similarity (i.e., overlapping fea-
tures in trained and transfer problems) did not promote
facilitative transfer. Logan and Klapp concluded that par-
ticipants only learned the particular items that they prac-
ticed; consequently, transfer to new, unpracticed items was
weak.
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The present experiments

For the purposes of Logan and Klapp (1991), the evidence of
poor transfer of alphabet-arithmetic practice to new problems
supported the theory that performance became automated by a
transition during practice from a counting-based algorithm to
storage and retrieval of individual facts in memory. These
findings and conclusions raise a challenge for the automatic-
counting theories of skilled simple addition (e.g., Fayol &
Thevenot, 2012), which assume that continued practice of
counting for addition during learning results in the counting
algorithm becoming automatic. The findings referred to here
were the lack of transfer observed, not the flat RT slope. Other
lines of experimental evidence also indicate a transition from
algorithmic procedures to fact retrieval as skill develops (Bajic
& Rickard, 2009; Barrouillet & Fayol, 1998; Rickard, Lau, &
Pashler, 2008; see also Kole & Healy, 2013). Nonetheless, the
results of Logan and Klapp also raise doubts that practicing a
counting algorithm necessarily leads to measurable generali-
zation of practice to new items.

In the following studies, we examined transfer of alphabet
arithmetic practice to new items after only six repetitions of
each practice item. This should permit transfer to be measured
while counting remained the predominant solution method
during the practice phase. This is important because we
wanted specifically to test transfer of counting practice to
new items also solved by counting. The stimuli used are in
Table 1. Two types of transfer items were created: augend-
sequence and sequence-only items. Augend-sequence transfer
items are composed of a practiced letter augend with an an-
swer in the practiced letter sequence. For example, B + 3 is an
augend-sequence transfer item when B + 5 is practiced. To
solve B + 5 by counting, five incremental steps through the
alphabet are required: C D E F G. Thus, B + 3 is an augend-
sequence transfer item because it shares the augend letter B
with the practiced problem and its answer (E) is in the letter
counting sequence generated by solving B + 5. In contrast, D
+ 3 is a sequence-only transfer item in relation to B + 5 be-
cause its augend letter D is not practiced, but its answer (G) is
in the practiced sequence. Use of the two sequence types (i.e.,
augend-sequence and sequence-only) allowed us to determine
if generalization of practice required transfer problems to
share both augend and answer-sequence features with prac-
ticed problems or if practicing an overlapping answer se-
quence alone would yield generalization of counting practice
to test problems.

There were four practice sets of five alphabet arithmetic
problems based on the successive letter pairs BC, HI, NO,
and TU. Each was related to one of four test sets of six prob-
lems based, respectively, on the letter pairs BD, HJ, NP, and
TV (see Table 1). In the practice problems, the augend letters
B, H, N, and T were combined with the addends +4 and +5,
and the letters C, I, O, and U combined with the

addends +1, +2, and +3. In the test problem sets, all
the letters were paired with the addends +1, +2, and
+3. As a result, for each practice set (e.g., C + 1 = D,
C + 2 = E, C + 3 = F, B + 4 = F, B + 5 = G) there were
three test problems that shared both a common augend
and answer sequence with the practice set (B + 1 = C, B
+ 2 = D, B + 3 = E) and three that overlapped with the

Table 1 The practice and test phase alphabet–arithmetic sets used in
Experiments 1 and 2

Practice Sets Test Sets

CB BD

C + 1 = D B + 1 = C

C + 2 = E Augend-sequence B + 2 = D

C + 3 = F B + 3 = E

B + 4 = F

B + 5 = G D + 1 = E

Sequence-only D + 2 = F

D + 3 = G

IH HJ

I + 1 = J H + 1 = I

I + 2 = K Augend-sequence H + 2 = J

I + 3 = L H + 3 = K

H + 4 = L

H + 5 = M J + 1 = K

Sequence-only J + 2 = L

J + 3 = M

ON NP

O + 1 = P N + 1 = O

O + 2 = Q Augend-sequence N + 2 = P

O + 3 = R N + 3 = Q

N + 4 = R

N + 5 = S P + 1 = Q

Sequence-only P + 2 = R

P + 3 = S

UT TV

U + 1 = V T + 1 = U

U + 2 = W Augend-sequence T + 2 = V

U + 3 = X T + 3 = W

T + 4 = X

T + 5 = Y V + 1 = W

Sequence-only V + 2 = X

V + 3 = Y

Note. Each practice set had a test set yoked uniquely to it by a shared
augend letter and answer sequence (augend-sequence) or answer
sequence only (sequence-only). Participants practiced two of the practice
sets for six blocks and then were tested on all of the test sets. Test
problems yoked to the practiced sets were transfer problems; the others
were control problems
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practice set only in sharing a common answer sequence
(D + 1 = E, D + 2 = F, D + 3 = G). Participants were
trained on two of the practice sets and tested on all four
test sets. The test sets related to the practiced sets by
virtue of overlapping features constituted transfer items,
and other two test sets were control items.

We also investigated possible effects of English as one’s
first and primary reading language versus English as a second-
ary language. The purpose was to explore if alphabet famil-
iarity affected transfer potential. We reasoned that RT gains
during practice might be greater when alphabet fluency was
initially relatively low, which could translate into greater
transferred gains at test. In summary, we expected generaliza-
tion of practice at test for the transfer problems relative to
control problems, assuming that transfer of counting skill
occurs between problems that share common procedural com-
ponents, but a relatively larger transfer effect for participants
with lower alphabet familiarity.

Experiment 1

Method

Participants

Forty-eight participants recruited at the University of
Saskatchewan received either course credit or $5 CAD.
Twenty-four participants reported English as their first
language (22 women, 24 right-handed, ages 17–35 years, M
= 24.2, SD = 5.4). The remaining 24 participants identified
their first language as not English (13 women, 24 right-hand-
ed, ages 19–57, M = 29.5, SD = 10.2), including 11 Chinese,
two Vietnamese, two Hindi, and one each of Bangle, German,
Hungarian, Kannada, Korean, Russian, Sinhala, Spanish, and
Urdu. Participants answered the alphabet arithmetic problems
in English.

Stimuli

There were four practice sets of five alphabet arithmetic prob-
lems based on the successive letter pairs BC, HI, NO, and TU.
Each was related to one of four test sets of six problems based,
respectively, on the letter pairs BD, HJ, NP, and TV (see
Table 1). In the practice problems, the augend letters B, H,
N, and Twere combined with the addends +4 and +5, and the
letters C, I, O, and U combined with the addends +1, +2, and
+3. In the test problem sets, all the letters were paired with the
addends +1, +2, and +3. As a result, for each practice set there
were three related test problems that shared both a common
augend and answer sequence with the practice set (augend-
sequence transfer items) and three that overlapped with the

practice set only in sharing a common answer sequence (se-
quence-only transfer items).

Participants were trained on two of the four practice sets,
one set from the first half of the alphabet (BD or HJ) and one
from the second half (NP or TV). Assignment of the two
practice sets was counterbalanced across groups of four
participants within each language group. All four of the test
problem sets were presented in the test phase. Two of these
test sets served as transfer problems that shared a common
augend and/or answer sequence with the practice problems,
whereas the other two problems sets served as control prob-
lems with unpracticed augends and unpracticed letter answer
sequences. Thus, counterbalancing of the practice sets across
participants simultaneously effected counterbalancing of
transfer and control problem sets. Augend-sequence and
sequence-only problems were defined relative to their yoked
practice set of problems; consequently, they necessarily in-
volved different problems and could not be counterbalanced.
Therefore, any overall difference in performance between
augend-sequence and sequence-only problems might be at-
tributable to intrinsic differences in item difficulty.

Apparatus, design, and procedure

The stimuli were presented on two CRT monitors controlled
by E-Prime 2.0 (Psychology Software Tools, Pittsburgh, PA).
One monitor was viewed by the participant, and the other by
the experimenter. The experimenter’s monitor also showed
trial and block information and a running tally of the number
of errors made by the participant. Participants sat approxi-
mately 50 cm from a monitor and spoke into a microphone
that they held. The verbal response triggered the stop signal to
a software clock accurate to ±1 ms.

Prior to the alphabet arithmetic task, participants were
instructed to recite the alphabet aloud three times, quickly
and accurately, and were timed to the nearest second. This
provided a simple measure of fluency with the English alpha-
bet sequence for the English-first and not-English-first groups.
There were six alphabet arithmetic training blocks of 10 prob-
lems followed by two test blocks of 24 problems that took
approximately 15 minutes to complete. For each participant
within each block, problem order was independently random-
ized. The problems were displayed in black, Courier New 14-
point font on a white background. The displayed problem
occupied five character spaces with the augend and addend
separated by the plus sign with adjacent spaces (e.g., B + 3).
Each trial started with a 1-s central fixation dot, then the prob-
lem appeared with the plus sign at fixation. Response timing
commenced with the appearance of the problem and was
stopped by the participant’s verbal response. Accuracy rather
than speed was emphasized in the training phase, but in the
test phase, participants were instructed to respond both quick-
ly and accurately. After the verbal response was provided, the
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experimenter entered the participant’s answer and marked
spoiled RTs when the stop signal was not activated by
response onset. The fixation dot then appeared to initiate
another trial. Participants were permitted a short break
between the training and test phase. No feedback was given
on responses for either phase.

Results

Alphabet recitation

A t test comparing the English-first and not-English-first
groups’mean times for the third (i.e., final) alphabet recitation
trial indicated faster mean recitation by the English-first
(5.1 s) compared to the not-English-first group (8.4 s),
t(45) = 3.52, p = .002, SE = .93.1

Practice phase

Median RT for correct responses received a Group (2) × Block
(6) ANOVA. The corresponding means appear in Table 2.
Greenhouse-Geisser corrected statistics are reported when
Mauchly’s test indicated violation of the sphericity assump-
tion. Despite the difference in alphabet recitation times, there
were no significant differences between the groups’ alphabet
arithmetic RT during the practice phase (all ps > .13 for
group-related tests including the linear through fifth-order
contrasts). Mean practice RT was 2,288 ms for the
English-first and 2,311 ms for the not-English-first.
Mean RT sped up by 30.3% across the six practice blocks
(2,887 ms, 2,377 ms, 2,237 ms, 2,236 ms, 2,054 ms ,and
2,012 ms), F(3.6, 166.8) = 28.75, p < .0001, MSE =
6,572,718, ηp

2 = .39. With respect to errors during practice
(see Table 2), English-first participants made fewer errors
than not-English-first in practice Block 1 (8.3% vs. 18.3%),
F(1, 46) = 4.43, p = .04, MSE = 271.01, ηp

2 = .09, but the
groups produced equivalent error rates over Blocks 2 through
6 (both 6.9%), and there were no effects of practice block on
errors over the last five blocks (all ps > .20).

We also examined effects of addend size (+1 to +5) during
practice in Group (2) × Addend (5) ANOVAs of median RT
and percentage of errors. Mean median RT increased as
addend size increased from +1 to +5 (1,195 ms, 1,745 ms,
2,438 ms, 2,805 ms, and 3,073 ms), presenting both linear,
F(1, 46) = 379.18, p < .0001, MSE = 293,439, ηp

2 = .89, and
quadratic components, F(1, 46) = 31.78, p < .0001, MSE =
87,243, ηp

2 = .40, the latter owing primarily to an inflection
point at +3. There were no effects of group (all ps > .30). To
determine if the linear and quadratic effects were present
throughout practice, or emerged as practice progressed, we

calculated the median RT for each addend combining
Blocks 1 and 2, Blocks 3 and 4, and Blocks 5 and 6 to repre-
sent early, middle, and later stages of practice, respectively.
Each of the three practice stages received an ANOVA with
addend size as a repeated-measures factor.

As Fig. 1 shows, early in practice (i.e., Blocks 1 and
2), RT increased linearly with addend size, F(1, 47) =
164.11, p < .0001, MSE = 872,528, ηp

2 = .78, and there
were no significant deviations from linearity (i.e., none
of the higher order contrasts were significant (all ps > .07; p = .55
for the quadratic contrast). The linear pattern for early practice is
consistent with exclusive use of a counting-based strategy with
each increment through the alphabet requiring about 550 ms on
average. In Blocks 3 and 4, there remained a strong linear effect
of addend size, F(1, 47) = 288.28, p < .0001, MSE =
404,627, ηp

2 = .86, but a robust quadratic component
appeared, F(1, 47) = 15.90, p = .0002, MSE = 170,674, ηp

2 =
.25, owing primarily to +5 deviating below a linear position.
Over the final two blocks of practice, beyond the linear effect,
F(1, 47) = 296.49, p < .0001, MSE = 323,815, ηp

2 = .86, there
appeared both quadratic, F(1, 47) = 27.27, p < .0001,

1 One not-English-first participant was excluded from this analysis be-
cause no time was recorded for the third alphabet recitation trial.

Table 2 Mean response time in milliseconds and mean percentage of
errors (standard errors in parentheses) in the practice phase by group and
block in Experiment 1

Block Response Time Error Percentage

English 1st Not English 1st English 1st Not English 1st

1 2947 (142) 2817 (116) 8.3 (2.1) 18.3 (4.2)

2 2325 (119) 2430 (141) 7.9 (1.9) 9.2 (2.5)

3 2250 (141) 2223 (122) 6.3 (2.2) 5.8 (1.8)

4 2267 (174) 2205 (118) 5.8 (1.9) 5.8 (2.2)

5 2010 (141) 2098 (103) 7.9 (2.3) 6.7 (2.0)

6 1929 (106) 2094 (136) 6.7 (2.5) 7.1 (1.6)

Fig. 1 Mean response time in the practice phase of Experiment 1 by
practice blocks and addend
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MSE = 271,898, ηp
2 = .37, and cubic, F(1, 47) = 9.58,

p = .0003, MSE = 237,158, ηp
2 = .17, trends owing

primarily to +4 and +5 deviating below the linear positions
expected based on mean RTs for +1 to +3. These results are
consistent with +4 and +5 problems beginning a transition
from counting-based solutions to memory-fact retrieval.

The Group × Addend ANOVA of percentage of errors
indicated only a linear effect, F(1, 46) = 17.03, p < .0002,
MSE = 145.83, ηp

2 = .27, of addend, with errors generally
increasing as addend size increased from +1 to +5 (2.4%,
6.3%, 9.7%, 9.2%, 12.3%).

Test phase

Mean median RT for correct responses confirmed a counting-
based strategy for test phase problems with RT increasing
from 1,399 to 1,877 to 2,484 ms for +1, +2, and +3, respec-
tively. The corresponding error rates were 2.7%, 5.9%, and
7.0% for +1 to +3, respectively.

To evaluate transfer, median RT for correct answers
received a Group × Sequence Type (augend-sequence vs.
sequence-only) × Transfer Type (transfer vs. control) ×
Block (1 vs. 2) mixed-factor ANOVA. The corresponding
means appear in Table 3. The group factor did not participate
in any significant effects, although the test of the main effect
suggested a small overall RT advantage for the English-first
group (1,837 ms) compared to the not-English-first group
(2,092 ms), F(1, 46) = 3.43, p = .07, MSE = 1,826,579,
ηp
2 = .07. Figure 2 presents the mean RT as a function of

sequence type, transfer type, and block averaged over the
two groups.

Participants were faster overall in test Block 2 (1,876 ms)
compared to Block 1 (2,053 ms), F(1, 46) = 24.55, p < .0001,
MSE = 122,842, ηp

2 = .35, but this was qualified by the Block ×
Transfer Type interaction, F(1, 46) = 13.20, p = .001, MSE =
116,574, ηp

2 = .22. As Fig. 2 shows, this occurred because
transfer problems were faster than control problems in Block

1 (170 ms), t(47) = 2.17, p = .03, SE = 678.43, but not in Block
2 (-83 ms), t(47) = 1.16, p = .25, SE = 71.34. Thus, the exper-
iment demonstrated transfer of learning in alphabet arithmetic
in Block 1. This effect disappeared in Block 2 because control
problems sped up substantially relative to Block 1 when they
were repeated in Block 2, whereas the transfer problems did not
show speed-up across test blocks (see Fig. 2).

Apart from these effects, augend-sequence problems were on
average 243 ms faster overall than sequence-only problems,
F(1, 46) = 53.22, p < .0001,MSE = 106,585, ηp

2 = .54, but there
was a Sequence Type × Transfer Type interaction, F(1, 46) =
4.19, p = .046, MSE = 216,849, ηp

2 = .08. This interaction oc-
curred because the RTadvantage for augend-sequence problems
compared to sequence-only problems was larger in the transfer
condition, 340ms, t(47) = 6.55, p < .0001, SE = 51.9, than in the
control condition, 146ms, t(47) = 2.29, p = .03, SE = 63.61. The
significant RTadvantage for augend-sequence problems relative
to sequence-only problems in the control condition suggests the
former were intrinsically easier. For example, the longer average
RT for sequence-only problems might reflect them involving
letters later in the alphabet relative to augend-sequence
problems.

Nonetheless, the overall advantage for augend-sequence
problems owed substantially to facilitative transfer observed
for these items. In fact, the only statistically clear transfer
effect occurred for augend-sequence problems in Block 1,
282 ms, t(47) = 2.74, p = .009, SE = 102.8, whereas
sequence-only problems did not present evidence of positive
transfer in Block 1, 59 ms, t(47) = 0.60, p = .55, SE = 98.5.

Percentage of errors during the test phase (5.2% overall)
also received a Group × Sequence Type × Transfer Type ×
Block mixed-factor ANOVA (see Table 4 for the correspond-
ing means and standard errors). The only significant effect
was the Sequence Type × Transfer Type × Block interaction,
F(1, 46) = 7.55, p = .009,MSE = 129.58, ηp

2 = .14. For augend-

Table 3 Mean response time in milliseconds and standard error
(in parentheses) in the test phase by group, block, problem type
(augend-sequence, sequence-only) and training type (control,
transfer) in Experiment 1

Augend-sequence Sequence-only

Control Transfer Control Transfer

English 1st

Block 1 1880 (96) 1711 (118) 2010 (110) 2058 (138)

Block 2 1502 (59) 1698 (119) 1831 (85) 2005 (156)

Not English 1st

Block 1 2268 (139) 1873 (117) 2396 (148) 2230 (158)

Block 2 2005 (159) 1808 (110) 2001 (149) 2158 (105)

Fig. 2 Mean response time in the test phase of Experiment 1 as a
function of sequence type, transfer type, and block. Error bars are ±1
standard error
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sequence problems there were fewer errors for transfer than
control items in Block 2 (-3.5%) but not in Block 1 (+1.0%),
whereas sequence-only problems presented the reverse pattern
(+2.8% in Block 2 vs. -1.7% in Block 1). We did not attempt
to interpret these small differences.

Discussion

RTs for the augend-sequence problems indicated robust
transfer of practice in Block 1. This confirms that practice
of counting-based processes can yield generalization effects
that facilitate related, unpracticed problems. There was no
significant transfer for sequence-only problems, however,
which suggests that the matching augend feature of augend-
sequence problems was necessary for robust transfer in
Experiment 1. The transfer effect was observed in Block 1
but not in Block 2. This occurred because control problems
sped up substantially relative to Block 1 when they were
repeated in Block 2 (304 ms), but transfer problems did not
present substantial speed-up across test blocks (50 ms; see
Fig. 2). The 304 ms of speed-up observed for control prob-
lems was similar to speed-up during practice for +1 to +3
problems from Block 1 to 2 (377 ms). For the augend-
sequence problems, these asymmetrical repetition effects
would owe, at least in part, to the substantial transfer of
learning from the practice phase, which would limit further
gains observed in Block 2 from a single repetition of these
problems in Block 1 of the test phase.

Nonetheless, the sequence-only transfer problems did not
present significant generalization of learning in Block 1, but
still showed little benefit from repetition in the test phase
compared to the sequence-only control items. This suggests
that although no significant generalization occurred for
sequence-only transfer items, practice of their answer se-
quences limited potential gains from repeating these problems
in the test phase. One possibility is that the RT gains from
repetition for control problems reflect use of episodic short-
term memory in Block 2 to directly recall the problem solving

episode for specific problems fromBlock 1 and thereby some-
times bypass slower counting-based processes. For the trans-
fer problems, exploitation of episodic memory might be more
difficult because their answers were repeatedly associated
with the practiced problems, which would introduce associa-
tive interference with memory and limit use of retrieval for
transfer problems. In Experiment 2, we introduced a
backward-counting task between blocks to reduce potential
contributions of episodic short-term memory.

Early in the practice phase (Blocks 1 and 2) RT was
strictly linear as a function of addend size from +1 to
+5. The linear pattern suggests exclusive use of a
counting-based strategy for all practice problems with
each step through the alphabet requiring about 550 ms.
In Blocks 3 and 4, however, a quadratic component
appeared owing primarily to +5 deviating below a linear
position. Over the final two blocks of practice, there
were both quadratic and cubic components owing pri-
marily to +4 and +5 deviating below the linear positions
expected based on mean RTs for +1 to +3.

The relatively greater gains for +4 and +5 across
practice blocks could reflect a fan effect because the
augend letters for +4 and +5 problems were each asso-
ciated with two problems, whereas +1, +2, and +3 prob-
lems were each associated with three problems. This
constitutes a manipulation of associative fan (e.g.,
Anderson & Reder, 1999; Pirolli & Anderson, 1985),
with +4 and +5 having smaller associative fan than +1
to +3, and therefore less potential associative interfer-
ence from related items. This would promote memoriza-
tion of +4 and +5 items relative to the small-addend
problems and lead to relative RT gains because an in-
creasing percentage of trials would be based on relatively
fast fact retrieval in place of multistep counting. Such a fan
effect has been observed previously with alphabet arithmetic
stimuli (Zbrodoff, 1995). Nonetheless, Logan andKlapp (1991,
pp. 182–183) attributed a similar discontinuity for +5 alphabet
arithmetic to a shift from counting to memory-based perfor-
mance, although fan was not manipulated in their experiments.
Perhaps because 5 is the maximum addend, +5 problems are
distinctive and promote early development of mnemonic strat-
egies for these items.

Finally, although the English-first group recited the
English alphabet faster than the not-English-first group,
there was little evidence that this difference mattered for
the alphabet arithmetic task, and there was no evidence
that practice or transfer effects differed between the
groups. Both groups apparently had sufficient familiarity
and access to the alphabet sequence to use it similarly
and perform alphabet arithmetic at the same level. As
the first-language manipulation had no apparent effects
on alphabet arithmetic performance, we did not pursue
it in Experiment 2.

Table 4 Mean error rate and standard errors (in parentheses) in the test
phase for group, block, problem type (augend-sequence, sequence-only)
and training type (control, transfer) in Experiment 1

Augend-sequence Sequence-only

Control Transfer Control Transfer

English 1st

Block 1 4.2 (1.8) 4.9 (2.1) 5.6 (1.9) 6.3 (2.2)

Block 2 6.9 (2.4) 2.1 (1.1) 4.2 (1.5) 7.6 (2.0)

Not English 1st

Block 1 5.6 (1.9) 6.9 (2.6) 9.0 (2.8) 4.9 (1.9)

Block 2 4.9 (2.1) 2.8 (1.9) 2.8 (2.1) 4.9 (1.6)
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Experiment 2

The only significant procedural difference between Experiment
1 and Experiment 2 was the introduction of a backward-
counting task between blocks. At the end of each block, partic-
ipants immediately saw a three-digit number andwere instructed
to count backwards by threes until the cue for the next trial
appeared 10 seconds later. This modification was motivated by
two considerations. First, during the practice phase in
Experiment 1, there were no planned breaks between blocks
and participants usually proceeded immediately to the next
block. As a result of this, participants sometimes would have
been able use episodic or short-term memory to directly retrieve
a recent previous episode with a given problem and bypass
counting. This would work against finding transfer in the test
phase because it is specifically counting-related transfer that we
attempted to measure. The 10-second interpolated counting task
would flush working memory contents and prevent possible
memory rehearsal of previous items between blocks.

Second, during the test phase in Experiment 1, control
problems presented substantial speed up across blocks relative
to transfer problems. For control items, it might have been
relatively easier to use episodic short-term memory from
Block 1 to solve some problems in Block 2, whereas episodic
memory for transfer items would encounter interference from
the practice of related problems during the training phase. The
countdown task potentially could reduce the contribution of
episodic retrieval strategies in Block 2 of the test phase.

Method

Forty-eight participants who had not participated in
Experiment 1 were recruited at the University of
Saskatchewan and received course credit or $7.50 CAD.
The increase in monetary compensation relative to $5.00 in
Experiment 1 reflected new participant compensation stan-
dards. There were 13 men and 35 women with a mean age
of 20.5 years (SD = 3.24). Forty-four were right-handed and
four were left handed. Thirty-six participants reported English
as their first language, and 12 reported English as not first,
including eight Chinese, two Arabic, and one each of French
and Hindi.

The stimuli, design, apparatus and procedure were the
same as Experiment 1, except for the following things. First,
to check the sensitivity of the microphone, participants per-
formed an eight-trial word-naming task before experimental
trials. Second, to reduce potential use of short-termmemory or
episodic memory across successive blocks, a 10-second
count-down task was performed by the participant after each
practice block and between the two test phase blocks.
Specifically, participants were required to count backwards
by threes from the number 100 plus the block number (101,
102, 103, etc.). The starting number for the countdown was

displayed on the screen immediately after the response to the
last trial in a block.

Results

Alphabet recitation

Mean time for the final (i.e., third) alphabet recitation trial was
5.5 s (SE = 0.26), similar to the mean alphabet recitation time
for the English-first group in Experiment 1 (5.1 s).

Practice phase

Median RT for correct responses received an ANOVA with
practice block as a repeated-measures factor. MeanRTsped up
by 30.9% across the six practice blocks with means of 2,926
ms, 2,471 ms, 2,365 ms, 2,215 ms, 2,185 ms, and 2,022 ms,
F(2.8, 133.67) = 26.54, MSE = 316,767, p < .0001, ηp

2 = .36.
The error rate was 18.3% in Block 1, but errors were less
frequent in Blocks 2 to 6 (12.1%, 12.3%, 9.2%, 8.1%,
10.2%), F(5, 235) = 6.38, p < .0001, MSE = 99.23, ηp

2 = .12,
for the main effect of block.

With respect to effects of addend size during practice,
averaging across all six blocks, mean RT increased as addend
size increased from +1 to +5 (1,295 ms, 1,860 ms, 2,422 ms,
2,829ms, 2,980ms), presenting both linear, F(1, 47) = 203.44,
p < .0001,MSE = 444,173, ηp

2 = .81, and quadratic, F(1, 47) =
20.48, p < .0001, MSE = 161,961, ηp

2 = .30, components, the
latter reflecting a deviation below linearity owing pri-
marily to +5. As in Experiment 1, to determine if this
RT pattern was present throughout practice, or emerged
across practice blocks, we calculated the median RT for
each addend combining Blocks 1 and 2, Blocks 3 and 4,
and Blocks 5 and 6.

As Fig. 3 shows, early in practice, RT increased linearly
with addend size, F(1, 47) = 102.22, p < .0001, MSE =

Fig. 3 Mean response time in the practice phase of Experiment 2 by
practice blocks and addend
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1,001,282, ηp
2 = .69, and there were no significant deviations

from linearity (i.e., none of the higher order contrasts were
significant; all ps > .07). This linear pattern is consistent with
exclusive use of a counting-based strategy with each increment
requiring a constant amount of time (about 460 ms). In Blocks
3 and 4, there remained a strong linear effect,F(1, 47) = 165.66,
p < .0001, MSE = 504,765, ηp

2 = .78, but a statistically clear
quadratic component also emerged, F(1, 47) = 13.25, p = .001,
MSE = 391,409, ηp

2 = .22, owing primarily to an inflection at +4
with +5 deviating below the linear positions predicted
by +1 to +4. The pattern was the same for the final
two practice blocks with both linear, F(1, 47) = 146.44, p <
.0001, MSE = 494,390, ηp

2 = .76, and quadratic, F(1, 47) =
6.60, p = .01, MSE = 374,643, ηp

2 = .12, components and no
other significant higher order trends. Thus, +5 problems present-
ed greater speed up across practice blocks relative to other
addend sizes.

As in Experiment 1, the percentage of errors during prac-
tice in Experiment 2 presented a linear effect of addend size,
F(1, 47) = 6.77, p = .01, MSE = 253.77, ηp

2 = .13, with error
rates higher for larger addend sizes from +1 to +5 (9.9%,
7.6%, 10.4%, 14.8%, and 15.8%); but the error rate dip at +2,
combined with higher error rates for +4 and +5 compared to +1
to +3, yielded amarginally significant cubic contrast,F(1, 47) =
4.09, p = .05,MSE = 81.56, ηp

2 = .08. We do not think the weak
cubic contrast (i.e., there were two inflections in the effects of
addend size on errors) is theoretically telling and do not con-
sider it further.

Test phase

Mean median RT for correct responses confirmed a counting-
based strategy for test phase problems with RT increasing
from 1,372 to 1,793 to 2,346 ms for +1, +2, and +3, respec-
tively. The corresponding error rates were 11.0%, 10.5%, and
14.1% for +1 to +3, respectively.

To assess transfer effects, median RT for correct answers
received a Sequence Type (augend-sequence vs. sequence-on-
ly) × Transfer Type (transfer vs. control) × Block (1 vs. 2)
mixed-factor ANOVA. Figure 4 presents the mean median
RT as a function of sequence type, transfer type, and block.
Participants were faster overall in test Block 2 (1,810 ms)
compared to Block 1 (1,971 ms), F(1, 47) = 9.83, p = .003,
MSE = 264,095, ηp

2 = .17, but this was qualified by the Block ×
Transfer Type interaction, F(1, 47) = 37.16, p < .0001,MSE =
82,311, ηp

2 = .44. As in Experiment 1, this occurred because
transfer problems were faster than control problems in Block 1
(300 ms), t(47) = 4.39, p < .0001, SE = 68.38, but not in Block
2 (-57 ms), t(47) = 0.88, p = .38, SE = 64.16. Again, as in
Experiment 1, the transfer of learning in Block 1 disappeared
in Block 2 because control problems sped up relative to Block
1 when they were repeated in Block 2 (342 ms, somewhat less
than 543 ms speed up for +1 to +3 practice problems),

whereas the transfer problems did not show speed up across
test blocks (-14 ms; see Fig. 4). The transfer effect in
Block 1 occurred both for augend-sequence problems,
411 ms, t(47) = 4.15, p = .0001, SE = 98.96, and
sequence-only problems, 190 ms, t(47) = 2.15, p = .037,
SE = 88.52.

Augend-sequence problems were on average 267 ms faster
overall than sequence-only problems, F(1, 47) = 22.22, p <
.0001, MSE = 308,776, ηp

2 = .32, but there was a Sequence
Type × Transfer Type interaction, F(1, 47) = 4.85, p = .03,
MSE = 236,957, ηp

2 = .09, which occurred because the RT
advantage for augend-sequence problems compared to
sequence-only problems was larger in the transfer condition
(377 ms), t(47) = 5.49, p < .00001, SE = 68.65, than in the
control condition (158 ms), t(47) = 1.94, p = .059, SE = 81.59.
Thus, as in Experiment 1, the overall RT advantage for
augend-sequence problems owed, in part, to the greater facil-
itative transfer observed for these items.

Percentage of errors during the test phase also received a
Sequence Type × Transfer Type × Block repeated-measures
ANOVA. This revealed fewer errors in Block 2 (9.6%) than in
Block 1 (14.1%), F(1, 47) = 15.61, p = .0003,MSE = 125.35,
ηp
2 = .25. There also were fewer errors overall for augend-
sequence problems (9.4%) than sequence-only problems
(14.4%), F(1, 47) = 12.67, p = .001,MSE = 192.02, ηp

2 = .21.

Discussion

Given that Experiment 2 closely replicated the major
results of Experiment 1, we focus here only on the
important differences in results. One important differ-
ence was that statistically significant transfer occurred
both for augend-sequence and sequence-only problems,
whereas it occurred only for the former in Experiment
1. Nonetheless, transfer was still greater for augend-

Fig. 4 Mean response time in the test phase of Experiment 2 as a
function of sequence type, transfer type, and block. Error bars are ±1
standard error
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sequence than sequence-only problems in Experiment 2.
This reinforces the conclusion from Experiment 1 that
having a common augend in practice and test items
enhances transfer of practice in alphabet arithmetic.
Another difference in results between experiments was
that transfer effects were substantially larger in
Experiment 2 than Experiment 1: For augend-sequence
problems in Block 1, the transfer effect was 411 ms
compared to 282 ms in Experiment 1. For sequence-
only problems in Block 1 of Experiment 2, the transfer
effect was 190 ms compared to 59 ms in Experiment 1.
This could be a result of the interpolated counting task
between blocks in Experiment 2, which we introduced
to limit use of episodic working memory of the preced-
ing block to solve problems. In theory, this would
increase prac t ice of the count ing s t ra tegy in
Experiment 2 relative to Experiment 1, which would
be expressed as greater transfer observed in the
counting-based performance of new items encountered
in the test phase in Experiment 2. Regardless of the
cause of the difference, the overall enhanced transfer
effect in Experiment 2 made it possible to detect signif-
icant generalization of practice for sequence-only trans-
fer items. This is important because it demonstrates that
the conditions for generalization of counting practice are
quite minimal, requiring only strengthening of access to
the relevant counting sequence and does not require
practice of a particular starting point (i.e., augend) in
the sequence.

Reanalysis of published addition generalization
experiments

Our results showed that augend-sequence matches can
contribute to robust generalization of practice in
counting-based tasks. Our previous addition generaliza-
tion experiments (Campbell & Beech, 2014; Chen &
Campbell, 2014, 2016) examined generalization between
items within the simple-addition problem categories
identified by Fayol and Thevenot (2012), but we did
not analyze for effects of augend-sequence matches be-
tween practiced and tested problems. To pursue this, we
conducted new analyses that combined all the data from
the three published addition generalization studies. All
three experiments were conducted at the University of
Saskatchewan, used the same design, procedure and
computer-displayed stimuli, but differed in the popula-
tions sampled. Campbell and Beech recruited 64 student
volunteers from the psychology participant pool, Chen
and Campbell (2014) tested 36 Canadian and 36
Chinese adults recruited through the participant pool or
by on-line advertisements, and Chen and Campbell
(2016, Experiment 2) tested 36 engineering and

computer science students analogous to the engineering
students tested by Fayol and Thevenot (2012,
Experiment 1). The combined studies totalled 172 par-
ticipants. The problem sets tested included single-digit
plus single-digit addition problems including 0 + N, 1 +
N, N + N (ties), other small nonties with sums ≤10 and
large nonties. Each experiment consisted of two blocks
of 48 trials. The first randomly selected half of each
problem type encountered within each block constituted
Subblock A and the second half was Subblock B (for
full details of the methods, see Campbell & Beech,
2014; Chen & Campbell, 2014, 2016). Problem order
was randomized for each participant; consequently,
Subblock A and Subblock B for each problem type
(i.e., the first half vs. the second half of each problem
type encountered within the block) had random assign-
ment of problems to the two subblocks. In all three of
the experiments, only the 0 + N problems presented
evidence of generalization of practice across subblocks
(i.e., across different problems within each problem
type; e.g., practicing 0 + 3 facilitated subsequent perfor-
mance of 0 + 8).

The reanalysis was particularly focussed on small,
nontie additions with sums ≤10 (including 1 + N prob-
lems), which may be the more likely candidates for fast
counting-based procedures. The analysis program identi-
fied small nontie additions that were preceded earlier in
a trial block by one or more small nontie problems that
had the same larger addend and the smaller addend was
larger (e.g., 6 + 1 preceded by 6 + 3 or 6 + 2). These
cases are directly analogous to our alphabet arithmetic
stimuli with an augend-sequence match. Maximum
search depth was half a block (24 trials), which yielded
similar mean numbers of augend-sequence practiced
(6.0) and unpracticed (8.4) problems in each of the
two trial blocks. Among the 4,980 trials in the analysis,
the RTs for 3.4% were marked as spoiled by the exper-
imenter and discarded owing to failures of the micro-
phone to detect the onset of a participant’s verbal re-
sponse. The mean error rate was very low for these
problems (0.9% for augend-sequence unpracticed prob-
lems and 1.1% for augend-sequence practice problems).
For trials with correct answers, in Block 1 the RT
means for augend-sequence practiced and unpracticed
problems were 736 ms and 736 ms, respectively, and
in Block 2 they were 711 ms and 697 ms, respectively.
A 2 × 2 ANOVA indicated no main effect of augend-
sequence practice or an interaction (both ps > .11 and
ηp
2 ≤ .015), but there was a main effect of block with

mean RT 33 ms faster in Block 2 when the identical
problems were repeated, F(1, 171) = 44.49, p < .00001,
MSE = 4072, ηp

2 = .21. Thus, there was no evidence
that having recently practiced one or more problems
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with a matching augend and counting sequence facilitat-
ed addition performance, but there was robust speed up
when the identical problem was repeated. This would be
expected if performance of the small nontie additions
was based on item-specific fact retrieval.2

General discussion

These experiments sought evidence that practice of counting-
based procedures can produce generalization of learning to
new unpracticed items. This issue is relevant to recent claims
that skilled adults’ simple addition may be based on fast, au-
tomatic counting procedures (e.g., Barrouillet & Thevenot,
2013; Fayol & Thevenot, 2012; Uittenhove et al., 2016) rather
than on direct fact retrieval. These experiments demonstrated
strong generalization when counting was surely involved;
therefore, if a counting process is involved in solving
simple-addition facts, there should be comparable, observable
transfer, but several experiments have failed to observe such
generalization. Campbell and Beech (2014; see also
Campbell, Dufour, & Chen, 2014; Chen & Campbell, 2014)
showed that practicing the addition identify rule (N + 0 = N)
on one set of problems facilitated performance for other,
unpracticed identity-rule problems, but nonzero addition
problems presented no evidence of generalization. The
absence of generalization for nonzero additions potentially is
evidence against the automatic counting theory, but there was
no direct evidence that practice of counting-based procedures
should be expected to generalize. In fact, previous research
examining alphabet arithmetic problems such as B + 3 = E
found little evidence of transfer of learning to new problems
(Logan & Klapp, 1991).

Logan and Klapp (1991) were interested in the develop-
ment of automaticity of alphabet arithmetic and measured
transfer after participants had likely transitioned from
counting to memory retrieval to solve individual problems.
This potentially made their experiment relatively insensitive
to possible generalization of counting practice to new prob-
lems. In contrast, we designed the present alphabet arithmetic
experiments specifically to measure generalization of
counting practice and measured transfer when participants
were still relying primarily on counting to solve practice items.
Under these conditions, robust generalization of practice was
observed in both experiments when practiced problems and
new unpracticed test problems shared a common augend letter
and the test problems’ answer was within the letter-counting

sequence of practiced problems. In Experiment 2, a significant
generalization effect also was observed when only a test prob-
lems’ answer was in one of the letter-counting sequences prac-
ticed, thereby demonstrating that a common augend is not
necessary to observe transfer from counting practice.

Nonetheless, transfer effects in mean RT for augend-
sequence problems were larger relative to sequence-only
problems in both experiments. This is consistent with
the view that generalization of practice to new test
items increases as the number of common elements or
processes shared by practice and test items increases
(Singley & Anderson, 1989). Our results reinforce the
conclusion that counting-based procedures would be ex-
pected to yield generalization and reinforces the conclu-
sion that an absence of generalization in adults’ nonzero
addition (e.g., Chen & Campbell, 2014) represents a
genuine challenge to the view that skilled adults’ simple
addition is based on counting.

Furthermore, our results reinforced the conclusion of
Logan and Klapp (1991) that practicing a counting-based pro-
cedure leads to memorization of the individual items, rather
than automatization of the counting procedure. Although we
expected relatively little memorization of the 10 practice items
in only six blocks of training, the stimulus set of practice items
had a built-in memory-related bias (a manipulation of associa-
tive “fan”) to favor memorization of +4 and +5 problems
because their augend letters were associated with fewer differ-
ent problems (two each) than +1, +2, or +3 problems (three
each). In both experiments, RT as a function of addend size
was strictly linear early in practice (Blocks 1 and 2), but de-
veloped a marked quadratic component later in practice owing
to +4 and +5 problems’ mean RT falling below the linear
positions predicted by +1, +2, and +3 problems. This would
occur if +4 and +5 problems had begun to transition from
counting to fact retrieval sooner than +1 to +3, possibly owing
to the lower associative fan for the former.

There could be other reasons for the departure from linearity
(e.g., +5problemscould bemore distinctive and easier tomem-
orize for reasons other than lower fan; see Logan & Klapp,
1991), but the fact that mean RT for +4 and +5 in both exper-
imentswas practically identical late in practice is not consistent
withperformancebased exclusively oncounting,which should
always yield slower average times for +5 than +4. Therefore,
the nonlinear effects of addend size that emerged as practice
proceeded are strong evidence that transition to retrieval had
begun to occur for +5 and perhaps +4 problems. Therefore, the
current results provided new evidence that training of a
counting-based procedure on a restricted set of items leads to
memorization of individual facts rather than to automatization
of the procedure. Logan and Klapp used a true–false verifica-
tion paradigm to study alphabet arithmetic; thus, the current
results extend the evidence that counting-based processes are
replaced by fact retrieval to a paradigm that required

2 Uittenhove et al. (2016) proposed that a compacted counting procedure
may only develop for the 12 nontie additions with both addends ≤4.
Restricting the reanalysis of the three generalization studies to only these
items depleted the sample size from 172 to only 65 because of empty
cells, greatly reducing the power of the analysis. It is worth mentioning,
however, that the results were statistically the same as those reported for
all small-nontie problems.
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participants to produce the correct answers. The production
task may be more relevant in relation to acquisition of skill in
addition, because answerproductionwould beamore common
context for learning addition than learning to discriminate true
and false simple addition equations.

In the practice phase of both experiments, the +1, +2, and +3
problems sped up more or less in parallel across practice blocks
(see Figs. 1 and 3). If the counting procedure usedwas speeding
up with practice then we might expect greater speed up as the
number of incrementing steps increased. Given the structure of
our practice sets (e.g., C + 1=D,C+ 2=E,C+ 3=F), however,
+1 problems are embedded in both +2 problems and +3 prob-
lems, and +2 problems are embedded in +3 problems. As a
result, in each practice block, the +3 sequences (e.g., count
through CDEF) were practiced once, +2 sequences were prac-
ticed twice (e.g., count through CDE in both C + 3 and C + 2),
and the +1 sequences were effectively practiced thrice (e.g.,
count through CD in C + 3, C + 2, and C + 1). RT benefits
owing to such embedding is exactly the augend-sequence gen-
eralization effect observed in both experiments in the test phase.
It will require further experiments, however, to understand the
parallel speed up observed across addend size.

In the test phase of both experiments, control problems sped
up substantially relative to Block 1 when they were tested again
inBlock 2, but transfer problems showed no speed up inBlock 2
relative to Block 1.We suggested that for control items in Block
2, participants might have sometimes employed relatively fast
episodic recall of items fromBlock 1,whereas episodicmemory
for transfer itemswould encounter interference from the practice
of related problems during the training phase so that perfor-
mance of transfer problems relied more or less entirely on
counting in both test blocks. This strategy asymmetry would
afford RT gains for control problems relative to transfer prob-
lems in Block 2.

Introducing the countdown task between blocks in
Experiment 2 was intended to inhibit episodic retrieval strat-
egies in Block 2 of the test phase. The same pattern nonethe-
less emerged whereby transfer problems presented no RT ben-
efit of item repetition across test blocks, whereas control prob-
lems presented substantial speed up owing to item repetition.
For augend-sequence transfer problems, repetition gains
might not occur because generalization of learning from the
practice phase limited further opportunities for RT gains, at
least given only a single repetition of an item during the test
phase. This explanation, however, does not extend to
sequence-only problems, which exhibited much smaller gen-
eralization effects, but nonetheless showed little or no benefit
of a repetition.

One possibility is that the countdown task in Experiment 2
was inadequate to prevent an episodic memory strategy that
favoured control items in Block 2, or perhaps the effect is
owed to some other mechanism. For example, for transfer
problems but not control problems, highly accessible (i.e.,

practiced) procedural components at test may discourage at-
tempts at direct answer retrieval that would exploit episodic
memory or alternatively might discourage associating the pre-
sented problem with the answer generated by the procedure.
We can only speculate about its cause at this point,
but as this unexpected effect (i.e., the Transfer Type ×
Block interaction) was robust in both experiments, it
is apparently a salient phenomenon of this paradigm.
Although novel and interesting in its own right, it is
important to emphasize that it has no direct bearing
on the evidence for generalization observed in Block
1 of the test phase.

Conclusions

Like common counting strategies initially used for sim-
ple addition, alphabet arithmetic involves enumeration
of successive elements in an ordered list. These com-
monalities make alphabet arithmetic a potentially use-
ful proxy for memory and learning processes that me-
diate counting strategies in genuine ari thmetic
(Zbrodoff & Logan, 2005). These experiments provid-
ed in-principle evidence that counting-based procedures
can produce generalization of learning to unpracticed
items. The significant generalization of practice for
sequence-only transfer items in Experiment 2 showed
that the conditions for generalization of counting prac-
tice are quite minimal, requiring only strengthening of
access to the local counting sequence, and do not re-
quire practice of counting from a particular starting
point (i.e., augend). This suggests that generalization
of practice owing to use of a counting strategy for
simple addition, if it were used by the majority of par-
ticipants, could be relatively easy to observe, especially
when practice and test problems overlap both with re-
spect to the augend and count sequence. Our reanalysis
of the previously published addition generalization ex-
per iments (Campbel l & Beech, 2014; Chen &
Campbell, 2014, 2016; combined n = 172), however,
found no evidence of facilitation when small nontie
problems were preceded by problems with a matching
augend and counting sequence. Performance of the
small additions is not so fast or automatic that they
could not benefit from transfer effects. N + 1 prob-
lems, for example, display robust speedup when they
are tested a second time (Campbell et al., 2013; Chen
& Campbell, 2014, 2015), demonstrating that they
clearly benefit from practice. Given this, they should
similarly be susceptible to generalization effects if
they existed. Thus, there remains no evidence of the
generalization of practice that might be expected if
counting procedures mediated adults’ simple addition.

Mem Cogn (2016) 44:1288–1300 1299



Author note This research was supported by a grant from the Natural
Sciences and Engineering Research Council of Canada to Jamie
Campbell.

References

Anderson, J. R., & Reder, L. M. (1999). The fan effect: New results and
new theories. Journal of Experimental Psychology: General, 128,
186–197.

Ashcraft, M. H., & Guillaume, M. M. (2009). Mathematical cognition
and the problem size effect. In B. Ross (Ed.), The psychology of
learning and motivation (Vol. 51, pp. 121–151). Burlington, VT:
Academic Press.

Ashcraft, M. H., & Fierman, B. A. (1982). Mental addition in third,
fourth, and sixth grades. Journal of Experimental Child
Psychology, 33, 216–234.

Bajic, D., & Rickard, T. C. (2009). The temporal dynamics of strategy
execution in cognitive skill learning. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 35, 113–121.

Barrouillet, P., & Fayol, M. (1998). From algorithmic computing to direct
retrieval: Evidence from number and alphabetic arithmetic in
children and adults.Memory & Cognition, 26, 355–368.

Barrouillet, P., & Thevenot, C. (2013). On the problem-size effect in small
additions: Can we really discard any counting-based account?
Cognition, 128, 35–44.

Campbell, J. I. D., & Beech, L. C. (2014). No generalization of practice
for non-zero simple addition. Journal of Experimental psychology:
Learning, Memory, and Cognition, 40, 1766–1771.

Campbell, J. I. D., Chen, Y., & Maslany, A. J. (2013). Retrieval-induced
forgetting of arithmetic facts across cultures. Journal of Cognitive
Psychology, 25, 759–773.

Campbell, J. I. D., Dufour, K. D., & Chen, Y. (2014). Retrieval-induced
forgetting of multiplication facts and identity rule. Memory &
Cognition. doi:10.3758/s13421-014-0483-1

Campbell, J. I. D., & Therriault, N. H. (2013). Retrieval-induced forgetting
of arithmetic facts but not rules. Journal of Cognitive Psychology, 25,
717–724.

Chen, Y., & Campbell, J. I. (2014). Generalization effects in Canadian
and Chinese adults’ simple addition. Canadian Journal of
Experimental Psychology, 68, 152–157.

Chen, Y., & Campbell, J. I. D. (2015). Operator and operand preview
effects in simple addition and multiplication: A comparison of
Canadian and Chinese adults. Journal of Cognitive Psychology,
27, 326–334.

Chen, Y., & Campbell, J. I. D. (2016). Operator priming and generaliza-
tion of practice in adults’ simple arithmetic. Journal of Experimental

Psychology: Learning, Memory, and Cognition, 42, 627–635.
doi:10.1037/xlm0000196

Fayol, M., & Thevenot, C. (2012). The use of procedural knowledge in
simple addition and subtraction problems.Cognition, 123, 392–403.

Groen, G. J., & Parkman, J.M. (1972). A chronometric analysis of simple
addition. Psychological Review, 79, 329–343.

Kole, J. A., & Healy, A. F. (2013). Is retrieval mediated after repeated
testing? Journal of Experimental Psychology: Learning, Memory,
and Cognition, 39, 462–472.

Logan, G. D. (1988). Toward an instance theory of automatization.
Psychological Review, 95, 492–527.

Logan, G. D., & Klapp, S. T. (1991). Automatizing alphabet arithmetic: I.
Is extended practice necessary to produce automaticity? Journal of
Experimental Psychology: Learning, Memory, & Cognition, 17,
179–195.

Pirolli, P., & Anderson, J. R. (1985). The role of practice in fact retrieval.
Journal of Experimental Psychology: Learning, Memory, and
Cognition, 11, 136–153.

Rickard, T. C., & Bajic, D. (2003). Automatic mediation or absence of
mediation? Commentary on Crutcher and Ericsson (2000). Journal
of Experimental Psychology: Learning, Memory, and Cognition, 29,
1381–1386. doi:10.1037/0278-7393.29.6.1381

Rickard, T. C., Lau, J. S., & Pashler, H. (2008). Spacing and the transition
from calculation to retrieval. Psychonomic Bulletin & Review, 15,
656–661.

Roussel, J. L., Fayol, M., & Barrouillet, P. (2002). Procedural vs. direct
retrieval strategies in arithmetic: A comparison between additive and
multiplicative problem solving. European Journal of Cognitive
Psychology,14, 61–104. doi:10.1080/09541440042000115

Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill.
Cambridge, MA: Harvard University Press.

Sohn, M.-H., & Carlson, R. A. (1998). Procedural frameworks for simple
procedural skills. Journal of Experimental psychology: Learning,
Memory, and Cognition, 24, 1052–1067.

Thevenot, C., Barrouillet, P., Castel, C., & Uittenhove, K. (2016).
Ten-year-old children strategies in mental addition: A counting
model account. Cognition, 146, 289–303.

Uittenhove, K., Thevenot, C., & Barrouillet, P. (2016). Fast automated
counting procedures in addition problem solving:When are they used
and why are they mistaken for retrieval? Cognition, 146, 289–303.

Zbrodoff, N. J. (1995). Why is 9 + 7 harder than 2 + 3? Strength and
interference as explanations of the problem-size effect. Memory &
Cognition, 23, 689–700.

Zbrodoff, N. J., & Logan, G. D. (2005). What everyone finds: The
problem-size effect. In J. I. D. Campbell (Ed.), Handbook of mathe-
matical cognition (pp. 331–345). New York, NY: Psychology Press.

1300 Mem Cogn (2016) 44:1288–1300

http://dx.doi.org/10.3758/s13421-014-0483-1
http://dx.doi.org/10.1037/xlm0000196
http://dx.doi.org/10.1037/0278-7393.29.6.1381
http://dx.doi.org/10.1080/09541440042000115

	Transfer of training in alphabet arithmetic
	Abstract
	Evidence of fast counting procedures for simple addition by skilled adults
	Generalization of addition practice
	The present experiments 
	Experiment 1
	Method
	Participants
	Stimuli
	Apparatus, design, and procedure

	Results
	Alphabet recitation
	Practice phase
	Test phase

	Discussion

	Experiment 2
	Method
	Results
	Alphabet recitation
	Practice phase
	Test phase

	Discussion
	Reanalysis of published addition generalization experiments
	General discussion
	Conclusions

	References


