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Abstract Working memory (WM) is a cognitive system
allowing short-term maintenance and processing of informa-
tion. Maintaining information in WM consists, classically, in
rehearsing or refreshing it. Chunking could also be considered
as a maintenance mechanism. However, in the literature, it is
more often used to explain performance than explicitly inves-
tigated within WM paradigms. Hence, the aim of the present
paper was (1) to strengthen the experimental dialogue between
WM and chunking, by studying the effect of acronyms in a
computer-paced complex span task paradigm and (2) to for-
malize explicitly this dialogue within a computational model.
Young adults performed a WM complex span task in which
they had to maintain series of 7 letters for further recall while
performing a concurrent location judgment task. The series to
be remembered were either random strings of letters or strings
containing a 3-letter acronym that appeared in position 1, 3, or
5 in the series. Together, the data and simulations provide a
better understanding of the maintenance mechanisms taking
place in WM and its interplay with long-term memory. Indeed,
the behavioral WM performance lends evidence to the func-
tional characteristics of chunking that seems to be, especially
in a WM complex span task, an attentional time-based mech-
anism that certainly enhances WM performance but also com-
petes with other processes at hand in WM. Computational
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simulations support and delineate such a conception by show-
ing that searching for a chunk in long-term memory involves
attentionally demanding subprocesses that essentially take
place during the encoding phases of the task.

Keywords Working memory - Chunk - Computational
model - Time-based resource sharing model - TBRS*

Working memory (WM) refers to a cognitive system devoted
to the simultaneous maintenance and processing of informa-
tion (Baddeley & Hitch, 1974). The capacity and performance
of this system is crucial because it is strongly linked to high-
level cognitive activities such as reasoning, reading compre-
hension, and problem solving (Kane, Conway, Hambrick, &
Engle, 2006; Kyllonen & Christal, 1990).

Since Daneman and Carpenter’s (1980) seminal attempt to
capture WM limitations with the reading span task, several
tasks have been developed. Among them, the computer-
paced WM complex span task (WM-CST) has been demon-
strated to be highly linked to high-level cognition (Barrouillet,
Lépine, & Camos, 2008) and very fruitful, especially in
uncovering crucial latent dimensions such as the pace at which
the concurrent activity has to be performed (Barrouillet,
Bernardin, & Camos, 2004; Barrouillet, Bernardin, Portrat,
Vergauwe & Camos, 2007; Barrouillet, Portrat & Camos,
2011). The paradigm consists of a dual task alternating be-
tween memory and processing phases, the duration of which
is controlled. Participants have to memorize series of items
(e.g., letters, digits, locations) for further immediate recall
while processing other stimuli (e.g., words, digits, squares)
interleaved between memory items. The nature of the concur-
rent processing task can be varied (e.g., reading, parity judg-
ment, spatial judgment). Hence, in the WM-CST, which is the
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base of the present study, distractors are interspersed between
memoranda.

In parallel, the exploration of limitations in the human ca-
pacity to store information was marked by the famous magical
number proposed by Miller (1956). He suggested that the
short-term capacity is limited to 7+/-2 items. But he also ob-
served that this ability is not large enough to be efficient in
daily life. For example, imagine that you have to memorize a
phone number during a conversation. It is a series of 10 digits
in France (e.g., 0165120417). Miller proposed that you are
able to group sets of familiar items and to organize them into
units called chunks. Hence, the 10 digits can be grouped in
example by identifying the birth date of your child. The result
would be only four chunks to maintain: 01 65 1204 17. For
Miller, this recoding mechanism is “an extremely powerful
weapon for increasing the amount of information that we
can deal with” (Miller, 1956, p. 95). Even if the WM storage
limitation and its value were discussed in recent decades, a
WM capacity of about three or four chunks seems now to be
widely accepted (Chen & Cowan, 2005; Cowan, 2001;
Cowan, Chen, & Rouder, 2004; Gobet & Clarkson, 2004;
Mathy & Feldman, 2012).

Chunking was initially proposed as an adaptive mechanism
based on expertise by researchers trying to explain the ex-
treme capacities of chess players (Chase & Simon, 1973;
De Groot, 1978; Gobet et al., 2001). Nowadays, the concept
has largely spread out the domain of expertise, and two types
of chunking can be distinguished (e.g., Gobet et al., 2001):
implicit chunking, especially in the expertise tradition (e.g.,
Chase & Simon, 1973) and goal-directed chunking (e.g.,
Miller, 1956). It is this latter approach that has mainly been
adopted by the WM community (e.g., Cowan, 2001, 2005a)
and in the present paper.

Even if chunking is well known, when it comes to WM
paradigms, chunking is more often used to explain data than
explicitly investigated. When studying the effects of chunks in
immediate memory,' paradigms with sequential or simulta-
neous presentation of memoranda are preferred (e.g., Bor &
Owen, 2007; Chen & Cowan, 2005; Cowan et al., 2004;
Gobet & Clarkson, 2004; Mathy & Feldman, 2012; but, see
Naveh-Benjamin, Cowan, Kilb, & Chen, 2007). The conse-
quence is that WM and chunking have been living parallel
experimental lives. Only a few studies have explicitly exam-
ined what happens when elements of a chunk are not directly
accessible together in the environment because of memory
distractors interspersed in between. Is the chunking mecha-
nism efficient enough to enhance memory capacity even when
input conditions are not favorable to grouping, as in a WM-
CST paradigm?

! Immediate memory is used as an umbrella term for short-term memory
and working memory.

The aim of this study is (1) to strengthen the experimental
dialogue between WM and chunking by studying the effect of
chunking in a computer-paced WM-CST paradigm and (2) to
formalize explicitly this dialogue within a computational mod-
el. To do so, we postulated that, in conditions where memory
items are scattered due to interleaved processing activities,
chunking would be resource demanding and its efficiency
would then depend on time constraints. We thus propose a
functional conception of the time course of such a chunking
mechanism by supplementing the time-based resource sharing
model (TBRS; Barrouillet et al., 2011) with an additional
chunking mechanism that, while being considered as a mem-
ory enhancer, would nevertheless compete with the refreshing
process because it also consumes attention. In order to better
formalize this conception, we append a chunking module to
TBRS*, a computational implementation of TBRS (Oberauer
& Lewandowsky, 2011).

WM maintenance mechanisms contributing to recall
performance

Even if chunking can be considered, as in the present paper, to
be a mechanism that would participate in the recall perfor-
mance observed in WM tasks (e.g., Cowan & Chen, 2009;
Stuart & Hulme, 2009), classically, two other verbal mainte-
nance mechanisms are put forward: phonological rehearsal
and attentional refreshing. Evidence for the existence of these
two systems of maintenance in verbal WM has recently been
accumulated (Camos, Lagner, & Barrouillet, 2009; Camos,
Mora, & Barrouillet, 2013; Camos, Mora, & Oberauer,
2011; Mora, & Camos, 2013). The phonological or articula-
tory rehearsal was initially described by Baddeley (1986) and
consists of the vocal or subvocal repetition of the items to be
maintained within a loop. In accordance with Baddeley’s idea
of a WM multicomponent system, the phonological rehearsal
is a domain-specific mechanism peculiar to verbal material.
The second maintenance mechanism at hand in WM is the
attentional refreshing mechanism described as a covert retriev-
al (Cowan, Saults, & Elliott, 2002; Hudjetz & Oberauer,
2007), and viewed as a general attention-based system in sev-
eral theories (Barrouillet et al., 2011; Camos et al. 2011;
Cowan, 1999, 2005a; Johnson, 1992; Johnson et al., 2005;
Raye, Johnson, Mitchell, Greene, & Johnson, 2007). Thanks
to such a mechanism, memory traces are maintained in an
active state through attention. Focusing briefly on an item
enhances its level of activation and thus counteracts memory
loss. It has been suggested that these two classic maintenance
mechanisms, operating independently on the maintenance of
verbal information, affect different features of the memoranda
(Camos et al., 2009, Camos & Portrat, 2015).

As a memory enhancer, chunking could be most likened to
refreshing than to rehearsal because of its link to attention
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(Cowan & Chen, 2009) and because of the experimental dis-
sociation found between chunk representations and phonolog-
ical representations (Chen & Cowan, 2005; Cowan et al.,
2004). According to Cowan (1999, 2001, 2005a, 2005b), the
focus of attention is used to remember information, and the
process by which this occurs involves new long-term memory
(LTM) formation. New associations are formed between ele-
ments concurrently held in the focus of attention resulting in
new LTM information that is formed during short-term mem-
ory tasks: a chunk. The information that benefits from atten-
tional refreshing may be in a more deeply analyzed form
(Cowan & Chen, 2009) and more persistent (Camos &
Portrat, 2015) than information that is activated without the
involvement of the focus of attention, that is, by articulatory
rehearsal. Hence, associations or links between elements, that
is, chunks, are stored as a specific function of the focus of
attention (Cowan, 1999, 2001, 2005a, 2005b) and the focus
of attention would be limited to a few chunks at a time (usually
three to five chunks in adults; see Cowan, 2001).

A consequence of the attentional conception of chunks and
chunking is that to obtain a chunk effect that would enhance
memory capacity, the paradigm would have to fulfill an im-
portant condition: allowing the different constitutive elements
of a chunk to be under attentional focusing at the same time.
Hence, classically, items that constitute a chunk are either
simultaneously presented or in immediate succession (e.g.,
Bor & Owen, 2007; Cowan et al., 2004; Chen & Cowan,
2005; Gobet & Clarkson, 2004; Mathy & Feldman, 2012).
However, as we have seen earlier, a well-established WM
paradigm that has shown its ability to predict high-level cog-
nition is precisely one in which processing phases are inter-
leaved between successive memoranda. Hence, we will pres-
ent, in the next section, several assumptions that would make
it possible to study the time course of a chunking mechanism
taking place in a WM-CST paradigm and will propose their
implementation in a computational model.

The time course of chunking in a WM-CST

The time-based resource-sharing model (TBRS; Barrouillet
et al., 2004; Barrouillet et al., 2007; Barrouillet et al., 2011)
and its computational implementation (TBRS*; Oberauer &
Lewandowsky, 2011) constitute the background of our inves-
tigations because they are excellent bases for studying the time
course of mechanisms at hand in WM. TBRS describes the
functioning of WM when participants are performing a WM-
CST. This paradigm consists in a dual task in which partici-
pants memorize items while concurrently performing a
distracting activity. Participants are thus presented with mem-
ory items for further recall, each item being followed by a
concurrent processing task which could be varied (e.g., read-
ing, spatial judgment, parity judgment). The bottom part of
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Fig. 1 depicts a fictional situation in which participants have to
maintain four letters (K, P, D, and F) and concurrently to judge
the position (upper or lower part of the screen) of two succes-
sive squares appearing after each letter. Basically, TBRS sup-
poses that after being encoded, memory traces of the items to
be maintained are kept vivid through attentional focusing
(refreshing) but fade away as soon as they leave the focus of
attention. This is exactly the case when a concurrent process-
ing activity occurs because of a central bottleneck (Pashler,
1998) that allows only one elementary cognitive step to take
place at a time. Hence, during intervening activities, memory
traces suffer from a time-related decay, but they can be
refreshed through attentional focusing during short pauses that
would be freed during the processing phase. Fig. 1 shows the
time course of these processes through the evolution of the
level of activation of the four letters to be maintained in WM.
According to this functional conception, within a WM-
CST, WM performance depends on the cognitive load of the
processing task that corresponds to the proportion of time
during which controlled attention is captured by the concur-
rent activity. In other words, the more the distracting task
captures attention, the less the memory traces can be refreshed
and hence the poorer the recall performances. Several exper-
imental pieces of evidence have been collected in favor of this
theoretical model of WM via behavioral studies in adults and
children (e.g., Barrouillet et al., 2007; Barrouillet et al., 2011;
Gaillard, Barrouillet, Jarrold, & Camos, 2011; Portrat, Camos,
& Barrouillet, 2009; Vergauwe, Barrouillet & Camos, 2010).
Within such a model, three assumptions could be made
about the time course of the chunking mechanism. First of
all, chunking takes place within the focus of attention.
Hence, because of the attentional bottleneck, chunking would
occur only when no other attention-demanding activity is run-
ning. In this sense, chunking would suffer from exactly the
same constraints as the attentional refreshing described above
and would thus take place only during short pauses that would
be freed. Therefore, the two attentional maintenance mecha-
nisms, refreshing and chunking, would be in competition with
each other. Second, all the constitutive elements of a chunk
would have to be simultaneously present within the focus of
attention (Cowan & Chen, 2009). As a consequence, within a
WM-CST, at the time of encoding a given memory item, the
preceding ones would have to be reactivated for the sake of
potential chunking. It follows that the focus of attention has to
be able to handle more than one item at the same time. This
point of view is not at odds with the TBRS conception of WM
functioning. Indeed, according to Pashler (1998), TBRS pos-
tulates that a central bottleneck allows only one controlled
elementary process to take place at a time (e.g., Barrouillet
et al., 2007). However, this does not mean that each single
elementary process cannot handle several pieces of informa-
tion at the same time. This conception can also be compatible
with the concentric model of WM proposed by Oberauer
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Fig. 1 This diagram illustrates the evolution of the item/position
activation values in the TBRS* model. For the sake of clarity, several
simplifications have been made: There are only two distracting episodes
after each of the items to be maintained (instead of four in the present
study), there are no retrieving errors (while the model actually sometimes
mistakenly retrieves wrong items), and the different durations do not
correspond to the real ones (e.g., the attentional capture imposed by the
concurrent processing task during which the items decay is actually
shorter than the duration of the presentation of the distracting stimulus).
The first item to be maintained is K. The light gray area represents the
encoding step during which the activation of K is increased. The next

(2002). Because even if in this model, only one item can be
selected for processing in the focus of attention, a region of
direct access supplements the focus of attention and “holds a
limited number of chunks available to be used in ongoing
cognitive processes” (Oberauer, 2002, p. 412). In such a the-
ory, chunking would take place in that region of direct access.

The third and final assumption is related to the time
constraints that are inherent to the WM-CST. As is the case
in several models including a chunking mechanism (e.g.,
Jones, Gobet, & Pine, 2007; Richman, Staszewski, &
Simon, 1995; Waters & Gobet, 2008), we postulate that the
chunking mechanism would involve several sub-processes
like reactivation of previous memory items, comparison with
LTM knowledge, chaining and recoding, each of them being
time-consuming.

TBRS*, the computational implementation of TBRS, is fed
with behavioral data collected from a WM-CST (Oberauer &
Lewandowsky, 2011; Portrat & Lemaire, 2015). Basically,
this model is made up of a data structure and four basic oper-
ations. The data structure of the model is a two-layer connec-
tionist network in which one layer is dedicated to the memory
items and the other layer represents the position of each item
in the series. The two layers are fully interconnected. The four
operations enable the model to (i) encode an item at a given
position, (ii) process distractors, (iii) refiesh memory traces,
and finally (iv) recall items. Our goal was to supplement
TBRS* with a chunking mechanism in order to replicate the
behavioral memory performance of participants in a WM-
CST favoring chunking. This goal had to be reached with as
few modifications as possible compared with the original
model. To this end, the original data structure remained the
same without creating any new units in the item layer that
would have represented chunks. However, the four basic func-
tions were adapted to allow the grouping of isolated items into
chunks when necessary.

white area represents the time devoted to refreshing items. Since there is
only one item (K) encoded so far in WM, the activation value continues to
increase until a distracting episode occurs (horizontal hatching area):
activation decays. The task then alternates between free time
(refreshing) and distractors (decay) until a new item, P, occurs. During
the free time following the encoding of P, as well as during the free time
following a concurrent processing episode, the two items (P and K) are
refreshed in turn: When one is refreshed, the other one decays. And so on
until the end of the series. The magnifying circle at the right side of the
diagram emphasizes the refreshing of the four items, one after the other

In the original TBRS* model (Oberauer & Lewandowsky,
2011), each position is coded by a subset of position units, so
that two adjacent positions share a proportion of P units.
Encoding (i) is modeled as a process of connecting positions
with items, by Hebbian learning. The strength of the increase
of a connection weight (w) depends on a strength parameter
() and it is bound by an asymptote L.

Aw = (L — w)n. (1)

The strength 1 depends on the time (t) devoted to encoding
as well as a stochastic parameter (r) modeling human variabil-

ity:
n=1-e", (2)

with r = N(R, ¢%). Usually, R =6, 0 = 1, and t = 500 ms.
For instance, if the sequence to be memorized is KPDF (as
in Fig. 1), K is first encoded which results in strengthening the
links between item K and the nodes coding for Position 1.
When participants have to process distractors (ii), attention
is captured by the other task, and those link values (w) de-
crease according to an exponential function (decay):

w(t) = woe ™. (3)

D is usually set at '%.

When attention is redirected toward the memory task, a
refreshing process (iii) takes place and leads to an increase
of the w values. Each atomic refreshing follows Eq. 2 but with
a much shorter time Tr (usually 80 ms), compared with the
initial encoding (t = 500 ms). Following a classic loop con-
ception, all items are successively considered, starting with
the first one and this process cycles until a new activity re-
quires attention. To pursue our example, when P is encoded,
activation values between the node representing P and the
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nodes representing Position 2 are strengthened (while in the
meantime, the activation values of K are decreased). If there is
time for refreshing, it is done alternately between P and K. Ina
recent modified version of TBRS*, we demonstrated that this
classic loop conception of refreshing is not suitable to account
for serial position curves observed on adults’ recall (Portrat &
Lemaire, 2015). Hence, we proposed an alternative to the
purely sequential refreshing mechanism handling one item at
a time during an average duration of Tr ms: up to four items
can be refreshed at the same time. The duration of each re-
freshing step is still set at Tr ms (80 ms) but the strength of the
links between the items and their position units (parameter 1
in Eq. 1) is therefore divided by the number of items simulta-
neously handled, since the attention involved in such con-
trolled processes is a limited resource (e.g., Barrouillet et al.
2007; Engle, Kane, & Tuholski, 1999).

When it is time to recall items (iv), the one most connected
with the position at hand is recalled. To minimize the accessi-
bility of that item later in the same series, all its connections to
the position layer are decreased by Hebbian antilearning.

In this model, apart from the successive positions that
shared common units, there is no consideration for associa-
tions between memory items. Hence, chunking cannot be di-
rectly simulated in such a framework. Yet, in memory tasks as
well as in, particular, WM-CST’s, memory items are obvious-
ly linked to each other, over and above their specific position.
It is very likely that, even if memory items are scattered, items
themselves, rather than their position in the list, are more or
less linked together to form meaningful groups (i.e., chunks).
Hereafter, we will propose some modifications to the original
mechanisms that would make it possible to simulate
chunking.

Implementation of the chunking process
in a complex span task: TBRS*C

Chunking is a process that relies on a storage system, external
to WM, which maintains known sequences of items (Gobet
et al., 2001). There is a long history of research aiming at
modeling the relationship between chunking and this LTM
storage system. This line of research gave birth to computa-
tional models such as Soar (Laird, Rosenbloom, & Newell,
1986), ACT-R (Anderson et al. 2004) or CHREST (Gobet
etal., 2001). These models consider that chunking is a general
learning mechanism of human cognition that tends to group
and memorize, in LTM, units that occurred frequently or ac-
tions that happened to be successful. Modeling the storage and
retrieval into LTM is therefore crucial for those models. Our
goal is somehow different because our focus is on WM.
Although we obviously need to implement an LTM system,
the storage and retrieval into that structure were not investi-
gated in the present study. Therefore, our model describes an
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LTM as simple as possible consisting of a list of objects that
correspond to groups of letters such as PDF or JPG. When
simulating a specific experiment, this list is initialized with all
sequences of the experimental material that participants are
likely to recognize as chunks. Figure 2 depicts the time course
of processes taking place in TBRS*C (for TBRS* with
chunks) when submitted to a WM-CST in which there are
acronyms.

Right after encoding a new item, TBRS*C searches to see
whether this item, when concatenated with the previous ones,
would form a chunk. In the experiment presented below,
chunks could only be three letters long, and there could be
only one chunk in each of the series to be maintained.
Therefore, the current version of TBRS*C initiates this search
only after three items have been encoded and if no chunks
have been identified so far. In these cases, TBRS*C first re-
trieves items in positions N-2 and N-1. These retrievals are
made, as usual, by activating the corresponding position units
and selecting the most activated item. These reactivations of
previously encoded memory items correspond to our above
assumptions according to which the constitutive items of a
given chunk should be readily accessible to allow the
chunking process. This implementation implies, as proposed
by Cowan (2005a, b) and as we already modeled (Portrat &
Lemaire, 2015), that the focus of attention can handle more
than one item at a time. Then, the LTM knowledge component
is queried with this sequence of three items. As mentioned
previously, this process takes time and its duration is con-
trolled by a parameter called chunk Search Duration (cSD).
LTM chunk retrieval does not always succeed. Therefore, we
defined a parameter called Probability of Chunk Retrieval
(PCR) which controls the likelihood of a sequence of items
existing in LTM being recognized as a chunk. For example, if
PCR is set to .33 and “JPG” has been defined as an LTM
chunk, the model would recognize the sequence J-P-G as a
chunk in only one case out of three. It is worth noting that
these two free parameters (¢SD and PCR) are independent of
each other with their own raison d’étre. On the one hand, ¢SD
is a way by which we modeled the time constraints and the
resource consuming assumptions inherent to the chunking
mechanism described above. On the other hand, PCR is nec-
essary to model the fact that chunks are not always retrieved.
One might have thought that ¢SD and PCR values were ines-
capably dependent on each other, since a longer time spent
searching for a chunk would lead to an increased probability
of retrieving it. However, we opted for a separate PCR param-
eter because it is also possible to spend a long time searching
for a chunk without necessarily finding it when, for example,
the acronym is rare. Even if this factor has not been investi-
gated in the present study, the current model is already able to
tackle this issue.

When the LTM knowledge component returns that the se-
quence of items is known, that chunk is now considered as a
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TBRS*C

[ Concurrent processing

Fig. 2 This figure illustrates how TBRS*C works, in comparison with
TBRS*. The evolutions of activation values are identical until three items
have been encoded. After D has been encoded, TBRS*C spends time
checking whether the preceding three items (K, P, and D) form a chunk.
LTM is thus queried and the answer is no because this three-letter series is
not stored in the LTM component. During that searching time
(corresponding to the cSD parameter), the activation values of the three
letters already encoded decay. Indeed, no item can be refreshed during the
chunk search. In this particular (and fictional) situation, the remaining

single item and reencoded in the position of its first item. For
instance, consider the sequence KPDF as in Fig. 2. K, P and D
have already been encoded, and F is now presented. Suppose
also that after encoding F, P has been retrieved in Position 2 as
well as D in Position 3. The LTM knowledge component is
queried with “PDF,” which returns true, and the chunk “PDF”
is reencoded in Position 2. The three items constituting the
chunk are then chained together within the item layer in order
to be retrieved as a single objet.

To counteract memory loss, a refreshing mechanism occurs
when attention is not captured by concurrent processing activ-
ities. Each position is activated in turn, starting with the first
one, exactly like refreshing in TBRS*. If what is retrieved is a
chunk, it is refreshed exactly as a single item. This feature of
TBRS*C is akin to the one proposed in EPAM 1V, in which
the short-term memory component is limited by the need to
rehearse chunks before they fade from memory (Richman
et al., 1995); in CHREST, in which representations linked to
chunks decay if not refreshed (Waters & Gobet, 2008); as well
as in EPAM-VOC, in which the information, such as a chunk,
held in phonological WM is subject to decay within 2 seconds
(Jones et al., 2007). It is worth noting that a previously
encoded chunk is not always retrieved at the time of refreshing
because of the random noise or the overlapping of adjacent
positions, two phenomena that generate possible memory
loss. After a chunk is refreshed, the next position under con-
sideration is the current position + 3 (or the Position 1 if the
end of the sequence is reached). For instance, if the current
sequence is KPDFV, and Position 2 is activated, and “PDF” is
retrieved and refreshed, the next position considered for re-
freshing is Position 5, which would probably retrieve V. Since
the attentional focus size is four, both K, PDF, and V are within

s | TM: y€S

- M ltem encoding
TBRS*C: Is PDF a chunk ? Free time
[“2 Chunk search

short free time after searching for a chunk allows only the first two
items to be refreshed: D still decays and cannot be refreshed. Right
after encoding F, a new query is made and the answer is positive: PDF
belongs to LTM. The three items are then chained together. Only two
units now have to be maintained: K and PDF. The magnifying circle at
the right side of the diagram illustrates that point: D and F are no longer
refreshed as single items and they decay. Only K and P (chained with D
and F) are considered and refreshed in turn

the focus (together they all represent only three units) and
refreshed together. It is worth noting that the links between
Position 3 and D, as well as between Position 4 and F, are no
longer reactivated and would decay over time. Like other
items, chunks decay over time with the same decay rate as
single items.

We also implemented the fact that participants would
search, too, for chunks during free time in between successive
processing activities. For instance, if we consider that four
items have been encoded so far, free time would be occupied
as such: retrieving items at Positions 1, 2, 3, and 4, refreshing
them, querying the LTM knowledge component to check
whether the two 3-item sequences (in Positions 1, 2, and 3
and Positions 2, 3, and 4) form a chunk, and so forth. We
therefore defined a third parameter, chunk Search Duration
in Refresh (cSDR), controlling the duration of that search pro-
cess during the processing phase.

These subprocesses that supplemented the original TBRS*
to manage with the chunking mechanism are in line with our
theoretical assumptions. According to these assumptions,
chunking, when inserted in a WM paradigm, is a process that
takes time and competes with distracting processing activities
and item refreshing. To sum up, chunking is considered as a
maintenance mechanism that enhances memory performance.
It consists in grouping together several pieces of information
in order to constitute a unique significant unit. We propose
that chunking is composed of subprocesses: a recognition
process that requires a reactivation of previously encoded
items associated with a maintenance of the detected chunk
in memory. We propose that within a WM-CST, with scattered
presentation of memoranda, chunking is not an automatic
mechanism but is instead constituted of subprocesses that rely
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on controlled attention. This activity should therefore compete
for this limited resource with the other demanding activities at
hand in WM-CST: maintaining memory items and processing
concurrent information. Moreover, its efficiency should de-
pend on the time available for maintenance mechanisms with-
in the task.

In order to tap the chunking mechanism, acronyms were
inserted within strings of letters to be remembered. First, when
acronyms are present in the memoranda, memory perfor-
mance should be better than when they are not. In fact, instead
of refreshing three dissociated elements, only one element (the
chunk) needs attention. This simple effect is hereafter called
the chunking effect. Second, we hypothesized that the position
of the acronym in the series should have an effect on recall
performance. Indeed, we postulated that the earlier the acro-
nym was presented within the serial positions, the more ben-
eficial the chunking should be because there are more oppor-
tunities to find a chunk and to refresh one element (the chunk)
instead of three. Finally, the classic pace effect that reveals
time-based switching between processing and maintenance
activities should be observed in the conditions with no acro-
nyms as well as in the conditions with acronyms, since the
chunking process is, especially in the present paradigm, an
attention demanding processing that would take place only
when attention is not captured by another activity (processing
distractors or refreshing individual memoranda).

To test these hypotheses, we proposed to adult participants
a computer-paced WM-CST in which they had to remember
series of seven letters while performing a concurrent inter-
leaved location judgment task consisting in evaluating the
relative position of four black squares that appeared succes-
sively on screen after each letter (Portrat et al., 2008). In some
cases, the memoranda contained three-letter acronyms while
in other cases acronyms were deliberately avoided. Moreover,
to test the time-based hypothesis, we manipulated the pace at
which the concurrent processing task had to be performed
(fast or slow pace) as well as the position of the acronym
within the series (beginning, middle, end).

Experiment
Method

Participants Thirty-nine undergraduate psychology students
at the University of Grenoble (23 women) received partial
course credit for participating. Their mean age was 21.6 years
(SD = 2.2), and 89% were right-handed. Seven participants
were excluded from the following analyses (more details are
given in the “results” section).

Materials We created specific material for the memory task
that included three-letter French acronyms. First of all, 100
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students, who were not engaged in the rest of this study, were
asked to evaluate 68 acronyms according to this grid:
unknown, known but not able to define, and known and able
to define. From this pretest, the 24 acronyms that received the
most known and able to define responses were selected to
constitute the acronyms of the WM-CST. The chunk recogni-
tion rate was from 100% (PSG for Paris Saint Germain) to
82% (BSR for Brevet de Sécurité Routiére) with an average at
96%.

For the WM-CST, participants had to perform three
trials for each of the eight experimental conditions
resulting from the orthogonal manipulation of the two
variables in a within-subject design: the Pace factor
(slow and fast) and the Acronym factor, according to
which a three-letter acronym was either absent, in the
first, third, or fifth position within the memoranda. The
24 series of seven consonants were obtained by adding
four consonants to each acronym with the following
restrictions: no W (which is trisyllabic in French), no
repetitions, no other acronyms, and no alphabetically
ordered strings. Moreover, each consonant used was
equally distributed across all conditions and appeared
equally across all series. Eight counterbalanced sets of
24 series were thus created. The condition with no ac-
ronym was constructed by changing the order of the
three letters of a given acronym and spreading these
letters through the series (see Fig. 3).

The processing task consisted in a location judgment in
which participants had to decide whether a displayed square
was located in the upper or lower part of the screen. The
stimuli of this processing task were the same as those used
in Barrouillet et al. (2007, Experiment 2, distant condition)
and Portrat et al. (2008). They consisted in black squares (side
= 18 mm subtending 2° in visual angle, for a participant who
was seated about 60 cm from the computer screen) centered
on one of two possible locations, either in the upper or the
lower part of the screen. The two locations were 68 mm apart
(6.5° in visual angle). Squares were randomly displayed in
both locations with the same frequency.

absent C L F \) D H P

Ist position | P D||F L{|C||H||V

3rdposition | L ||V |IPI|IDI/Fl|Cc||H

Sthposition |H||L||V||C||IP||D||F

Fig. 3 Example of series to be maintained across the four conditions of
the Acronym factor (absent, present in the first, third or fifth position).
Each type of series was used in the two Pace conditions and
counterbalanced across participants
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Procedure This experiment was administered individually on
a computer using the PsyScope software (Cohen,
MacWhinney, Flatt, & Provost, 1993). Participants were pre-
sented with the 24 series of seven consonants to be remem-
bered. Each consonant was followed by a series of 4 squares
successively displayed on the screen. Each series began with a
first screen indicating the Pace condition during 1,500 ms
(rapide [fast] or lent [slow]). After a blank screen of 500 ms,
the first letter was displayed on screen for 1,500 ms, followed
by a 500 ms delay. After this postletter delay, the four succes-
sive squares were displayed on screen for 520 ms followed by
a 660 ms or a 260 ms postsquare delay for the slow and the
fast Pace condition, respectively. Then, the next consonant
appeared for 1,500 ms and so on up to the end of the series.
At this moment, the word rappel [recall] appeared on screen,
and the participants were asked to recall letters in forward
order by typing them on the computer keyboard. Then, to
ensure that a goal-directed chunking mechanism had effec-
tively taken place, participants had to say whether they had
found an acronym in the series, and to recall it if such were the
case. As participants are asked whether they found acronyms,
they are more likely to actively and deliberately search for
them. All the recall procedure was self-paced, participants
pressing the space bar to go forward. Besides the letters and
the chunks recalled, reaction times and accuracy during the
location task were recorded.

Participants were asked to read aloud and to memorize each
letter when it appeared and to judge the location of each
square as quickly as possible without sacrificing accuracy,
by pressing either the left-handed key “Q” or the right-
handed key “M” of an “azerty” keyboard for the lower and
the upper locations respectively.

The experimental session was preceded by familiarization
phases. Participants familiarized themselves with the location
task on 64 stimuli at slow pace first and then at fast pace. In
these two training phases, participants heard a beep if they
made a mistake or if they were too slow in responding (i.e.,
longer than the sum of the presentation duration and the
postsquare delay). If they did not reach 90% correct responses,
they had to perform again the same series of 64 squares with a
maximum of three training phases. The last training phase
aimed at familiarizing participants with the WM-CST and
consisted of two trials: a slow pace / no acronym and a fast
pace / acronym in third position.

Results

All the participants took part in the experimental phase, but
seven of them were excluded from the following analyses:
three participants because of technical problems and four
others because they did not perform the concurrent processing
task properly with a mean score above 80% in judging the
location of squares. The remaining 32 participants performed

pretty well the concurrent task with a mean score of
96% (SD = 3%) that did not vary as a function of the
experimental conditions, F(1.93) < 1 and F(3.93) < 1
for the Pace and the Acronym factors respectively.

Correct recall of letters

We performed an ANOVA on the number of letters recalled in
the correct order (out of seven letters) with the Pace conditions
(fast and slow) and the Acronym conditions (absent, first,
third, and fifth positions) as within-subject factors (see Fig. 4).

Overall, the two variables at hand had an effect on recall
performances with a significant Pace effect, F(1, 31) = 10.71,
MSe =841 p =.002,* = .26, as well as a significant Acronym
effect, F(3, 93) = 11.94, MSe = 1.088, p = .000001, 1> = .27,
but these effects did not interact, (3, 93)=1.31, MSe = 1.185,
p=.276,1> = .04. Furthermore, we performed several compar-
isons to decompose the main effect of the Acronym variable.

Concerning the Acronym dimension, the chunk effect com-
paring the condition with no acronym to the three acronym
conditions in a planned comparison was significant, F(1,31)=
16.53, MSe = 1.29, p = .0003, n2 = .35. Moreover, the bene-
ficial effect of the presence of acronyms with the memoranda
varied as a function of its position in the series. Indeed,
Position 1 was more favorable than Positions 3 and 5, F(1,
31)=16.08, MSe = 0.985, p = .0003, 1)* = .34. Positions 3 and
5 did not lead to different recall performances, F(1,31)=1.14,
MSe = 0.987, p = .294, n* = .03. Participants recalled on
average 5.36 letters out of seven when acronyms were in
Position 1 while they recalled only 4.85 and 4.66 when acro-
nyms were in Positions 3 and 5, respectively.

In order to analyze the results more deeply, we separated
two dimensions that were entangled in the previous analysis,
the recall of isolated items and the recall of acronyms.

Number of letters recalled in correct order
F
-

35 1 —8= Participants (Slow pace)
-~ &= Participants (Fast pace)

0 1 3 5

Acronym conditions

Fig.4 Mean number of letters recalled in correct order out of seven (error
bars are standard deviations) as a function of the Pace conditions (fast and
slow) and the Acronym conditions (absent, first, third, and fifth positions)
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Correct recall of isolated items

An ANOVA was performed on the number of isolated letters
recalled in correct order (out of four letters) with the Pace
conditions (fast and slow) and the Acronym positions (first,
third, and fifth positions) as within-subject factors. Especially
of interest here, the Pace effect when tested only on the iso-
lated letters was still significant, F(1, 31) = 4.60, MSe = .423,
p = .04, n* = .13. Concerning the rest of the analysis, the
Acronym factor was also significant, F(2, 62) = 9.48, MSe =
549, p = .0003, n* = .23 and no interaction was found, F(2,
62)=0.81, MSe = .883, p = .449, n* = .03.

Correct recall of acronyms

We also performed an ANOVA on the number of acronyms
correctly recalled with the Pace conditions (fast and slow) and
the Acronym position (first, third, and fifth positions) as
within-subject factors. The best score on this variable is three
since each participant performed three trials under each con-
dition (see Fig. 5). The position of the acronym within the
series had a large effect on performance, F(2, 62) = 42.46,
MSe = 0.617 p = .0000001, > = .58. Overall, participants
recalled 2.58 acronyms out of three when the acronym was
in the first position, while they recalled only 1.55 and 1.41
acronyms out of three when they were in the third and the fifth
positions, respectively. Planned comparisons revealed again
the superiority of the first position, F(1, 31) = 86.09, MSe =
.601 p < .0000001, n? = .73, and no difference between
Positions 3 and 5, F(1, 31) = 1.00, MSe = .6328, p = .3250,
n° =.03. However, results did not show a significant effect of
Pace, F(1,31)=.82, MSe = .4086, p = .3734, n2 =.03, nor an
interaction between Pace and Acronym position, F(2, 62) =
38, MSe = .5099, p = .6868, 1> = .012.

Number of acronyms recalled

0.5 1 —— Participants (Slow pace)

-8 Participants (Fast pace)

1 3 5

Acronym positions
Fig. 5 Mean number of acronyms recalled out of three (error bars are
standard deviations) as a function of the Pace conditions (fast and slow)

and the position of the Acronym in the series to be maintained (first, third,
and fifth positions)
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Simulations

As mentioned earlier, we supplemented the original TBRS*
with a mechanism to deal with chunks, using three new pa-
rameters: the duration of the process of searching for chunks
after encoding a new item (¢SD), the duration of the process of
searching for chunks during the refreshing phases (¢cSDR) and
the probability of recognizing a chunk in LTM (PCR).

In order to assign relevant values to the three new param-
eters, we performed a grid search in this three-dimensional
space, using the default values of the original TBRS* model
parameters. Parameter ranges were the following; ¢SD € [0
ms, 200 ms, 400 ms, . . ., 2,000 ms], ¢cSDR € [0 ms, 50 ms,
100 ms],PCR€[1,.9,.7,.5, .3, .1]. Weran 10,000 simulations
for each combination of parameters and computed the likeli-
hood of each one given the experimental data. Computing
likelihoods requires defining probability distributions.
Following Lewandowsky and Farrell (2011), we computed
for each of the eight conditions (fast or slow pace, chunk
absent or in Position 1, 3, or 5) and each of the seven item
positions (from 1 to 7), a probability distribution across the
number of correctly recalled items at the current position over
the three trials, using a binomial data model on the average
percentage of correct responses for the model under consider-
ation. For instance, the model M(cSD = 600 ms, cSDR =0 ms,
PCR = .5) has an average percentage of correct responses in
Position 4 of 40.35% in a given condition (fast pace,
chunk at Position 3). Figure 6 presents the probability
distribution for that model having a mean performance
of 40.35% of letters recalled in that position in this
condition. According to the binomial distribution, the
probability of recalling only one item correct out of
the three trials for that particular model is .43, which
is the most probable outcome (cf. Fig. 6). However,
recalling all the three items is much less likely to hap-
pen (p = .066).>

These probability distributions obtained for each condition
in each position had been used together with the recall perfor-
mance of each participant to compute the likelihood of each
model. For instance, if participant #1 has correctly recalled the
3 items out of the 3 trials in position 4 in the condition de-
scribed previously, that likelihood would be .066, which
would not be a positive contribution to that model. On the
contrary, if participant #2 has correctly recalled only one item
out of the 3 trials, the specific likelihood would be .431 which
would be a much more positive contribution to the overall
likelihood. The likelihood of a given model corresponds to
the product of the individual likelihoods. The higher that val-
ue, the better the fit. However, as is usually done, log-

2 As a reminder, the probability of recalling exactly & items out of
n, given the probability p of correctly recalling a single item, is

Cm:; k). p“.(1-p" "
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Number of items correctly recalled out of 3

Fig. 6 Probability of correctly recalling N out of three items when the
proportion of correct responses at a given position is p =.4035

likelihoods are considered instead of simple likelihoods and
thus, the best models are the ones which have the lower neg-
ative log-likelihoods (Lewandowsky & Farrell, 2011).

Once the log-likelihoods were computed for all models
(each one corresponding to a different combination of param-
eters), we analyzed these data. First, all models spending time
to search for chunks during the refreshing phases (cSDR > 0),
whatever the two other parameters, show log-likelihoods that
are worse than all models which do not search for chunks
during refreshing. In other words, chunks should be searched
for right after encoding an item but not during the free time in
the processing phase. The reason is that refreshing is a crucial
step which has to consider all items in turn in order to increase
slightly their activation value. Spending time searching for
chunks therefore has a detrimental effect on the maintenance
of single items and leads to performance that does not mimic
that of the participants. Thus, only two parameters remain to
be investigated. Figure 7 shows the negative log-likelihoods
as a function of these parameters.

It turns out that there is a set of models that have low
negative log-likelihoods. They lie along a valley that stretches
diagonally: either a short duration of searching for a chunk
with a low probability of recognizing it or a long duration of
searching for a chunk with a high probability of recognizing it.
The models which search for chunks for a long time without
recognizing it or those which do not spend time searching but
still easily find chunks do not fit well the behavioral data (the
two hills on the left and right sides of Fig. 7). There are thus
two kinds of best models. The first one (Model M1 hereafter)
spends almost all the time between encoding an item and the
first following distractor searching to see whether the current
three-item-long sequence is an acronym or not. And, it has a
high probability of recognizing a chunk if it exists. The benefit
of the chunk therefore compensates the higher decay of the
other items to be maintained that occurred during that long
search process. The second kind of good model (Model M2
hereafter) does not spend much time searching for a chunk and

it does not find it very often. It could use the remaining time
left free before the first distractor to refresh individual items
which guarantee a reasonable performance though.

In order to select which of these two models M1 (PCR = .8,
¢SD = 1,800 ms, cSDR = 0) or M2 (PCR =.1, ¢SD = 600 ms,
c¢SDR = 0) better reproduces human behavior, we assessed
their ability to reproduce the data presented above: the
seven-item recall, the recall of chunks, as well as the recall
of isolated letters. We computed the root mean square error
(RMSE) between models and data as well as the log-
likelihood (-LogL), using a binomial data model as presented
above, except that it is based on four data per trial for isolated
letters and one datum per trial for chunks.

It turned out that the two models are equivalent with respect
to the recall of chunks (RMSE =.128, -logL. = 283.47 for M1,
RMSE = .128, -logL = 282.73 for M2). With respect to the
recall of isolated letters, Model M1 (RMSE = .123, -logL =
936.94) appeared to be better than Model M2 (RMSE =.123, -
logL = 961.22). Finally, the measures of fit performed on the
entire seven-item recall data indicated that the best fitting of
human performance is also obtained by Model M1 which
searches for a long time with a high probability of recognizing
a chunk (RMSE = .110, -logL = 2,208.83). Model M2 with a
low probability of recognizing a chunk, fits less well with the
behavioral data (RMSE =.113, -logL = 2,226.49). The default
parameters we suggest for our chunking module are therefore
those of the model M1: PCR = .8, ¢SD = 1,800 ms, cSDR =0
ms.

Moreover, the serial position curves (SPC) illustrate well
the superiority of that model M1 having a high probability of
recognizing a chunk (see Fig. 8). Indeed, overall, TBRS*C
produced nice SPCs’ that replicate the classic recency and
primacy effects also observed on behavioral data. Most im-
portantly, the model M1 with PCR = .8 and ¢SD = 1,800 ms is
able to replicate very well the specific plateaus observed in
human behavior for Positions 1, 2, and 3 when the acronym
appeared at the beginning of the series. Hence, as shown in the
middle panel of Fig. 7, this model replicates well several as-
pects observed in human behavior: primacy, recency, and the
facilitatory effect of acronyms in Position 1. This is not the
case for the Model M2 with PCR = .1 and ¢SD = 600 ms (see
Fig. 8, bottom panel).

Discussion

The aim of the present paper was (1) to strengthen the exper-
imental dialogue between WM and chunking, by studying the
effect of acronyms in a computer-paced WM-CST and (2) to
formalize explicitly this dialogue within a computational mod-
el. Broadly speaking, our main conclusions are the following.
The behavioral WM performance lends evidence to the func-
tional characteristics of chunking, which seems to be,
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Fig.7 Negative log-likelihood as
a function of the duration of the
process of searching for chunks
after encoding a new item (cSD)
and the probability of recognizing
a chunk in LTM (PCR)

-Log-likelihood

TTTTTTITT1

especially in a WM-CST, an attentional time-based mecha-
nism that certainly enhances WM performance but also com-
petes with other processes at hand in WM. Computational
simulations support and delineate such a conception by show-
ing that searching for a chunk in LTM involves attentionally
demanding sub-processes that essentially take place during
the encoding phases of the task. However, during the process-
ing phase, chunk maintenance appears to be roughly similar to
individual item maintenance. The particular implications of
these behavioral and computational results are discussed
hereafter.

First of all, behavioral data confirmed that chunking en-
hances WM performance even in a situation in which the
dispersed inputs do not favor grouping individual elements
into a significant memory unit. In fact, results showed that,
in a WM-CST in which each memory item is interleaved with
processing phases, recall performance was better in conditions
with acronyms than in a standard condition with no acronyms.
The present experimental finding is thus in accordance with
Cowan’s theory (1999, 2001, 2005a, b) and supports the idea
that chunking is a general maintenance mechanism that does
not require the simultaneity of inputs.

Second, the advantage of forming chunks within a series to
be maintained depended on temporal factors specific to the
task at hand. A crucial temporal factor was the moment at
which the chunk could be formed. We postulated that the
earlier chunking arises within a series to be maintained, the
greater the number of opportunities of refreshing one chunk
instead of refreshing three independent elements, and hence
the greater the benefit to be observed on recall performance.
Behavioral results showed a superiority of acronyms in the
first position compared with the third and fifth positions which
did not differ from each other. Thus, the nice putative gradient
of benefit increasing from later to earlier positions was not
observed. A possible explanation could be made in reference
to the well-known primacy and recency effects that boost per-
formance in first and final positions, respectively (Murdock,
1962). These boosting effects observed in the present data and
classically obtained in WM-CSTs (e.g., Oberauer &
Lewandowsky, 2011; Portrat & Lemaire, 2015) could have
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thus altered the postulated gradient by increasing even more
the advantage of an acronym presented in the first positions
but flattening, however, the difference between the middle and
last positions.

The second temporal factor that could have influenced
chunking benefit is the Pace of the concurrent activity. Its
impact on the letter and acronym recall performance appeared
to be more complex than anticipated. While chunking could
be seen as a maintenance mechanism beneficial to WM per-
formance, it is probably not competing with other attentional
mechanisms in a simple manner. Indeed, the classic Pace ef-
fect favoring the slow pace was observed, as usual, in the
condition with no acronym as well as in the conditions with
acronyms whatever their position. According to the TBRS
theory, this Pace effect marks a trade-off between attention-
demanding processes that compete for the same limited
amount of resource (e.g., Barrouillet et al., 2011). Thus, con-
sidering these behavioral outcomes, one could argue that
chunking competes with other attentional processes, such as
refreshing. However, considering now the TBRS*C parame-
ters leads us to reconsider this simple trade-off conclusion
between chunking and refreshing. Indeed, in the best model,
chunking appeared to occur only during the encoding periods
of the task. The model spends 1,800 ms after each new
encoded letter to search for a chunk, by reactivating previous-
ly encoded letters and querying LTM for items chained togeth-
er. On the contrary, the parameter controlling the process of
searching for a chunk during the processing phase is set at
zero. Hence, the Pace effect observed with acronyms is most
probably not due to a competition between chunking and the
concurrent processing activity. This interpretation is in turn
confirmed by behavioral results showing that the Pace did
not affect the recall of acronyms themselves, while on the
contrary, the pace did have a classic effect on the isolated
letters recalled in conditions with acronyms. The present out-
comes give support to models using the idea that retrieving
and using a chunk have a (time) cost, which competes with
other processes that also have a time cost (Jones et al., 2007;
Richman et al., 1995; Waters & Gobet, 2008). However, our
results also specify that, depending on the time course of the
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Fig. 8 The proportion of letters correctly recalled as a function of the ~ produced by the model M1 (¢SD = 1.800 ms, PCR = .8) (middle panel)
serial position in the list (from P1 to P7) and the Acronym condition (no ~ and by the model M2 (¢SD = 600 ms, PCR = .1) (bottom panel)
acronym, in Positions 1, 3, and 5) observed in humans (top panel),
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task at hand, chunking is not likely to be in competition with
all the time-consuming processes. Chunking, a mechanism
that links WM to LTM, seems to do so mainly at the precise
moment when information has to be encoded. This outcome
seems to be highly consistent with the widespread conception
of WM as an activated part of LTM (e.g., Anderson, Reder, &
Lebiere, 1996; Barrouillet et al., 2004; Cowan, 2005a; Just &
Carpenter, 1992; Oberauer, 2002). Actually, these models
have been called “LTM-based WM models” (Guida et al.,
2013a, b). Encoding information in WM for short-term reten-
tion corresponds to reactivating LTM knowledge, this knowl-
edge obviously includes groups of individual items.
Moreover, we also postulated that chunking is a mainte-
nance mechanism that could be likened to refreshing.
However, while certainly being a memory enhancer for the
reasons described above, it should most probably not be con-
sidered as a maintenance mechanism per se. Two pieces of
evidence run counter to such an account. First of all, the pace
has no effect on the recall of acronyms. Hence, since the pace
effect is a marker of a maintenance mechanism appearing
during processing activity, chunking should not be considered
as such. Moreover, according to the simulation, after chunking
has taken place, the resulting chunk has to be maintained.
TBRS*C refreshes chunks by attentional focusing able to re-
activate four items (acronyms or single letters) at a time.
Finally, chunking appears to be a specific mechanism that
is not similar to the other maintenance mechanisms at hand in
WM. Chunking does not suffer from exactly the same con-
straints as the attentional refreshing described in TBRS. On
the contrary, the idiosyncrasy of chunking is that it allows a
solid bridge between WM temporary content and LTM per-
manent knowledge. The literature on expertise should be en-
lightening in this regard. It is important to acknowledge ex-
plicitly the difference between two different processes that are
both often named chunking—chunk creation and chunk re-
trieval—but that do not intervene at the same moment during
the learning process (Guida, Gobet, Tardieu, & Nicolas, 2012;
Guida, Gobet, & Nicolas, 2013). Chunk creation takes place
first and starts when novices execute a novel task several
times, with no expertise. They start binding together separate
elements. This is thought to occur in WM (Oakes, Ross-
Sheehy, & Luck, 2006; Wheeler & Treisman, 2002) and more
precisely in the focus of attention (Cowan, 1999, 2001,
2005a), as already seen. As practice progresses, the binding
process is repeated numerous times, the same elements always
being chunked together. It results in a chunk creation, which is
stored in semantic LTM. Once chunks have been created and
thus stored in LTM, the second phase can start: chunk retriev-
al. Once a chunk is simply retrieved, chunking can be consid-
ered as a process that would not impose substantial cognitive
cost but would constitute an important memory enhancer. Our
experimental paradigm could be considered as a
microreproduction of the aforementioned chunking process

@ Springer

including two steps. On the one hand, even if acronyms are
already known and stored in LTM, a chunk creation stage is
mandatory because of the scattered presentation of memory
items. This chunk creation stage (that corresponds to the ¢SD
parameter of the model) seems to occur especially during the
encoding of new items and is supported by attention. On the
other hand, when the chunk is created, i.e., when multiple
elements are reencoded as one element, its retrieval (for re-
freshing or recall) does not seem to be particularly demanding.

The present work is the first attempt to supplement the
well-known TBRS model with a chunking mechanism able
to provide predictions on a given experiment. TBRS*C has to
be tested with more data, in order to confirm the default pa-
rameters that we suggested. Moreover, the listing view of the
LTM component is not as sophisticated, nor as psychological-
ly plausible, as it should be. Other models such as EPAM
(Elementary Perceiver and Memorizer; Feigenbaum &
Simon, 1984) and its variants including CHREST (De Groot
& Gobet, 1996) should be taken as fruitful backgrounds to
improve TBRS*C in future research. In these models, LTM
is represented as a discrimination net that is an efficient way of
inserting and retrieving items. Our next step is to improve our
LTM component in order for it to account for the increase of
knowledge/expertise. Currently, the LTM component is a lim-
ited pool of 24 chunks. The size of the pool could be varied in
order to adapt to the knowledge of participants. Moreover, we
intend to instantiate and manipulate factors that could influ-
ence the probability of accessing a chunk, such as the frequen-
cy of use of acronyms. For example, a score of frequency
could be computed for each acronym through a survey pro-
posed to a large sample of French speakers and then imple-
mented into our model. Our final goal would be to simulate
well-known features of expertise, such as false recognition
(Arkes & Freedman, 1984; Baird, 2003; Castel, McCabe,
Roediger, & Heitman, 2007), which, for the moment, the
model cannot handle. This could be implemented by a search
for chunks that could start before the presentation of the third
letter. Doing so, the model would anticipate and, in some cases
(that need to be determined) of wrong anticipation, an antici-
pated acronym could be recalled (because more active) instead
of the letters presented.

To sum up, together, the data and simulations provided a
better understanding of the maintenance mechanisms taking
place in WM. We believe that the experimental protocol we
used, especially asking participants whether they found acro-
nyms, encouraged them to deliberately search and form
chunks, which gives us more assurance that our approach
really concerns goal-directed chunking. Of particular impor-
tance, the present results lend evidence to the functional char-
acteristics of chunking that seems to be, especially in a WM-
CST, an attentional time-based mechanism that certainly en-
hances WM performance but also competes with refreshing,
especially during encoding. We believe that this last element is
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important for the WM community, which is more familiar
with chunking as a memory enhancer.
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