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Abstract Working memory capacity is a strong posi-
tive predictor of many cognitive abilities, across vari-
ous domains. The pattern of positive correlations across
domains has been interpreted as evidence for a unitary
source of inter-individual differences in behavior. However,
recent work suggests that there are multiple sources of vari-
ance contributing to working memory capacity. The current
study (N = 71) investigates individual differences in the
scope and control of attention, in addition to the number
and resolution of items maintained in working memory.
Latent variable analyses indicate that the scope and con-
trol of attention reflect independent sources of variance
and each account for unique variance in general intelli-
gence. Also, estimates of the number of items maintained
in working memory are consistent across tasks and related
to general intelligence whereas estimates of resolution are
task-dependent and not predictive of intelligence. These
results provide insight into the structure of working mem-
ory, as well as intelligence, and raise new questions about
the distinction between number and resolution in visual
short-term memory.
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Working memory is a limited capacity system responsible
for the active maintenance of information, as well as its

M. Chow · A. R. A. Conway (�)
Department of Psychology, Princeton University,
Princeton, NJ 08544, USA
e-mail: aconway@princeton.edu

retrieval from long-term memory. Recent work has empha-
sized the distinction between two components of working
memory: the scope and control of attention (Cowan et al.,
2005). The scope of attention refers to the amount of infor-
mation that can be actively maintained at a given time,
whereas the control of attention refers to the ability to
focus on relevant information, and away from irrelevant
information.

Working memory is an extremely active area of research
in psychology and neuroscience. One motivating factor
behind this research effort is the strength of correlations
between measures of working memory capacity and mea-
sures of higher cognitive function, such as reading com-
prehension, spatial reasoning, and fluid intelligence (Dane-
man & Carpenter, 1980; Kane et al., 2004; Kyllonen &
Christal, 1990). While research in this area has traditionally
focused on the relationship between the control of attention
and higher cognitive function, several recent studies have
linked the scope of attention to higher cognitive function
as well (Cowan et al., 2005; Fukuda, Vogel, Mayr, & Awh,
2010; Shipstead, Redick, Hicks, & Engle, 2012; Unsworth,
Fukuda, Awh, & Vogel, 2014). Moreover, the scope of atten-
tion can be fractionated into two components: the number
of items that can be maintained and the resolution, or acu-
ity, of those items. Importantly, estimates of number, but not
resolution, have been found to correlate with measures of
spatial reasoning (Fukuda et al., 2010). This apparent dis-
sociation is important because working memory tasks have
been accused of lacking discriminant validity, as they tend to
correlate with a broad range of abilities (Ackerman, Beier,
& Boyle, 2005; but see Kane, Hambrick, & Conway, 2005).
Through examining the scope of attention, the control of
attention, and ways in which both facets of working memory
are related, this dissociation within the scope of attention
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may be leveraged as a powerful tool in understanding the
working memory system.

Scope of attention

An influential theory of working memory is the Embedded
Process Model (Cowan, 1999). According to this frame-
work, capacity is constrained by the “focus of attention”,
which actively maintains items in memory and insulates
them from interference and forgetting. In order to assess
the number of items that can be simultaneously maintained
in the focus of attention, several tasks have been devel-
oped. One of the most common procedures is the “visual
array” task. For example, Luck and Vogel (1997) used a
visual array change-detection procedure, in which partici-
pants were required to maintain an array of simple objects
in memory, and then indicate whether a probe array was the
same or different from the one seen previously. Accuracy
was near ceiling when the number of objects in the array
was three or less but with four or more objects in the array,
accuracy declined. It is also important to note that this pat-
tern of accuracy in detecting changes was the same even
when objects increased in complexity. Moreover, by extend-
ing a simple model of capacity by Pashler (1988), which
takes into account guessing rates, Cowan (2001) demon-
strated that capacity estimates tend to be around four items.
Importantly, the fact that many other types of visual array
tasks, such as those which display only a single item probe,
or require the participant to estimate properties of a dis-
play item, produce similar capacity estimates and provides
strong evidence that the focus of attention can maintain
approximately 4 items (Cowan, 2001).

There is also substantial evidence that the number of
items held in memory can be distinguished from the reso-
lution, or quality of representation, for those items (Ester,
Anderson, Serences, & Awh, 2013; Zhang & Luck, 2008,
2011). Resolution in change detection tasks is often opera-
tionalized by increased similarity between probe and mem-
ory items, under the rationale that successful recognition
requires more detailed memory of the probed item. Using
the change detection paradigm, Xu & Chun (2005) found
that the intra-parietal sulcus could be functionally dissoci-
ated into two distinct regions, one that tracks the number
of items regardless of complexity, and another that tracks
the number of relevant features. In addition, Awh, Bar-
ton, and Vogel (2007) demonstrated that although measures
of number and resolution in a change detection task were
reliable across different types of stimuli, they were uncor-
related with each other. Finally, Fukuda et al. (2010) com-
pared number, resolution, and spatial reasoning measures
using structural equation modeling, and found that only
number and spatial reasoning covaried. The correlation

between resolution and spatial reasoning was near zero.
In fact, by deriving a 95 % confidence interval from their
reported standard errors, it is clear that if a non-trivial cor-
relation exists between resolution and spatial reasoning, it is
likely to be fairly weak (r between −0.05 and 0.25).

However, unlike the convergent evidence for a fixed
capacity limit across a wide range of tasks, evidence for a
dissociation between number and resolution comes primar-
ily from studies that employed only one visual array task.
While illustrating this dissociation using a single task is
an important step, there is a risk that the effect is driven
by task-specific factors. Whereas change detection tasks
manipulate the degree of change on a few, discrete lev-
els, more recent tasks have required participants to estimate
some property of an item (e.g., color) in a continuous man-
ner (Wilken & Ma, 2004; Zhang & Luck, 2008). Consensus
among a range of tasks used to operationalize these con-
structs would allow for a stronger argument for dissociation.
Fortunately, many of the same tasks used to assess capac-
ity limits can be adapted to provide measures of resolution
as well.

Control of attention

While the scope of attention refers to the number and reso-
lution of representations that can be held simultaneously in
an active state, the control of attention refers to processes
that allow for the maintenance of task-relevant representa-
tions in the face of distraction (Kane, Bleckley, Conway,
& Engle, 2001), as well as selective retrieval from mem-
ory (Unsworth & Engle, 2006a). To this end, the control
of attention has largely been operationalized through tasks
that interject processing components between memoranda,
under the rationale that participants must either maintain
representations for memoranda throughout the distracting
periods, or retrieve them afterward. Such tasks are typically
referred to as complex span tasks.

Complex span task scores correlate with performance
on tasks that require the top-down guidance of attention.
For example, dichotic listening (Conway, Cowan, Bunting,
2001), Stroop (Kane & Engle, 2003), Ericson flanker (Heitz
& Engle, 2007), and anti-saccade tasks (Kane et al., 2001;
Unsworth, Schrock, & Engle, 2004) all demonstrate rela-
tionships to complex span task performance.

In addition, there is mounting evidence that complex
span tasks rely on retrieval from episodic memory (Spillers
& Unsworth, 2011; Unsworth & Engle, 2006a, b; for a
more general overview, see Postle, 2007). One source of
evidence comes from the pattern of errors committed on
complex span tasks. Consistent with the use of temporal-
contextual cues to guide memory search and retrieval, low
working memory participants are more likely to omit earlier
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list items, allow prior list intrusions for the first posi-
tion recalled, and have a broader transposition gradient
(Unsworth & Engle, 2006a). One explanation for this is that
they employ noisier memory cues. Further evidence of this
is that they show a reduced tendency to recall words in cor-
rect temporal order during delayed free recall, suggesting
that recalled words serve more poorly as cues for further
recall (Spillers & Unsworth, 2011). Furthermore, mem-
ory retrieval during complex span tasks is associated with
increased medial temporal lobe activity (Chein, Moore, &
Conway, 2011; Faraco et al., 2011). As the medial temporal
lobe is thought to be involved with the binding of material in
long-term memory (McClelland, McNaughton, & O’Reilly,
1995; O’Reilly, Bhattacharyya, Howard, & Ketz, 2011),
these tasks may rely on temporary storage and selective
retrieval from episodic memory rather than (or in addition
to) active maintenance.

Importantly, convergent evidence that complex span
tasks are associated with top-down guidance of attention
and retrieval from episodic memory comes from the use of
processing components ranging from solving basic arith-
metic to making symmetry judgments, and memoranda
ranging from letters to spatial locations. Thus, the effects
appear to be domain general (Kane et al., 2004).

Comparing scope and control tasks

While much research has focused on either the scope or
control of attention individually, there is good reason to
believe that they tap largely overlapping constructs. Specif-
ically, Cowan et al. (2005) argued that the critical factor
for a valid working memory task is its ability to pre-
vent strategic grouping and rehearsal. Under this line of
reasoning, visual array tasks prevent rehearsal by using
stimuli that are difficult to verbalize, while complex span
tasks prevent rehearsal by interjecting a processing task
that occupies attention during intervals between memo-
randa (Cowan, Saults, & Morey, 2006). Consistent with
this reasoning, even complex span tasks with a rudimentary
processing component correlate with intelligence (Lépine,
Barrouillet, & Camos, 2005). Moreover, for children who
are too young to rehearse or group items, simple digit
span tasks correlate with intelligence as well (Cowan et al.,
2005).

By comparing the scope and control of attention to mea-
sures of higher cognitive function, Cowan et al. (2005)
were able to assess whether each component contributed
unique variance to higher cognitive function. The scope
of attention was measured using a wide range of tasks,
including visual arrays, which contained only a storage
component, but were designed to reduce strategic group-
ing and rehearsal. The control of attention was assessed

using two complex span tasks. While the complex span
tasks explained more variance in higher cognitive function,
this variance was task-specific. That is, the additional vari-
ance was particular to the individual tasks. Cowan et al.
(2005) concluded that disrupting rehearsal in complex span
allows a purer estimate of the number of items in mem-
ory, implicating these tasks as measures of the scope of
attention.

However, Shipstead et al. (2012) highlight an issue that
arises from claiming the scope of attention is necessary
for explaining the relationship between complex span task
performance and higher cognitive function. Namely, for
short list lengths, in which the amount of information to be
retained falls below capacity estimates for most participants,
ceiling effects in measuring capacity should reduce the cor-
relation between complex span and high-order cognition.
However, the correlation between complex span and gen-
eral intelligence remains equally strong across a wide range
of list lengths (Bailey, Dunlosky, & Kane, 2011; Salthouse
& Pink, 2008; Unsworth & Engle, 2006b). Through reex-
amining two datasets that contained a visual array task in
addition to complex span and general intelligence measures,
they concluded that the scope and control of attention rep-
resent distinct but largely overlapping constructs. Moreover,
the variance shared between visual array and general intel-
ligence measures was largely explained by complex span.
However, one limitation they mention is the use of a single
visual array task, which is likely to induce a large degree of
task-specific variance.

In spite of the strong evidence for overlap between the
scope and control of attention, comparisons between the
two constructs have yet to address the role of resolution.
If resolution is uncorrelated with measures representing
the control of attention as well, it represents a fairly
astounding finding because over a century of psychometric
research suggests that two similar cognitive ability measures
should reveal a strong positive correlation, or at the very
least, a weak positive correlation. It is extremely rare to find
completely uncorrelated variables when testing cognitive
ability (Ackerman et al., 2005).

The current study

The present study extends recent work (Fukuda et al., 2010;
Shipstead et al., 2012) by administering multiple types of
visual array tasks to represent the scope of attention and by
administering a broad range of reasoning tasks to provide an
accurate assessment of general intelligence. By using mul-
tiple measures to reflect the number and resolution of items
in the scope of attention, we can reduce the proportion of
task-specific variance in that factor, allowing a stronger test
of whether it is distinct from the control of attention, and a
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more clear view of its shared variance with general intelli-
gence (for an example using many tasks to examine number,
but not resolution, see Unsworth et al., 2014). Moreover,
assessing and validating resolution from those tasks allows
for the opportunity to test whether orthogonality between
measures of number and resolution is a general property of
visual short-term memory, or a task-specific phenomenon.
In addition, it allows for novel comparisons between resolu-
tion and the control of attention. If resolution is orthogonal
to the control of attention as well, then it could serve as
a starting point for development of analogous measures in
tasks designed to measure the control of attention.

Method

Participants

Participants (N = 71) were recruited from Princeton Uni-
versity and the surrounding community. Students recruited
from the Psychology Department participated in exchange
for course credit (n = 55). Students and community mem-
bers recruited from the University participant pool (n = 16)
were compensated $12/h for their participation.

Procedure

Each participant completed a battery of tasks designed
to measure working memory capacity and general intel-
ligence. The tasks were completed in two sessions that
lasted approximately two hours each. Breaks were allowed
between tasks. General intelligence measures were split
evenly between the two sessions. Complex span tasks were
administered in the first session, while visual array tasks
were administered in the second session. All participants
completed general intelligence and working memory tasks
in the same, alternating order. In the first session, tasks
were administered to groups of up to six participants. In the
second session, tasks were administered individually.

Visual array (VA) tasks

Change detection The change detection procedure was
based on a task previously developed by Fukuda et al.
(2010). For each trial, participants viewed an array of rect-
angles and ovals. Each shape contained one of two different
internal patterns. Participants viewed each array for 500 ms,
and after a blank interval of 1,000 ms, were shown a sin-
gle probe shape with a pattern inside. They then responded
as to whether the probe shape was identical to the one
they had viewed in the visual array at that location. The
probe could either be identical (no change), a different
shape (big change), or the same shape but with a different

internal pattern (small change). Arrays contained either 4
or 8 items.

Within each block, half of the trials were no-change tri-
als. For each change trial, there was a 2/3 chance it would
be a big change, and a 1/3 chance it would be a small
change. Sixteen trials for each set size were interleaved ran-
domly in each block. The total task consisted of nine blocks,
and four practice trials at each set size, yielding 296 trials
total.

From large change conditions, the number of items in
memory was estimated using the formula given by Cowan
(2001): k = set size ∗ (correct hits – false alarms), where k

is the total items in memory, set size is the size of the initial
array, correct hits is the proportion of correct change trials,
and false alarms are the proportion of incorrect no-change
trials. From small change conditions, the resolution of items
in memory was calculated in the same way. This was done
for each set size. Note that the same no-change trials were
used in calculating number and resolution. This is consis-
tent with estimation methods in previous studies (Awh et al.,
2007; Fukuda et al., 2010).

Color estimation The color estimation procedure was based
on a task previously developed by Zhang and Luck (2008).
On each trial, participants viewed an array of 4 or 6 col-
ored squares for 100 ms. Following a 1,000 ms interval, the
squares were presented again without color, and a single
probe square was outlined in bold. Participants estimated
the original color of the probe by selecting from a continu-
ous color wheel, which surrounded the array. As in Zhang
and Luck (2008), for each set size, maximum likelihood
estimation over a mixture of a von Mises and uniform dis-
tribution were used to determine the number and resolution
of items simultaneously. Number was represented by the
weight given to the von Mises distribution, while resolu-
tion was estimated by its dispersion parameter, with greater
dispersion parameters representing poor resolution.

Complex span (CS) tasks

Three automated complex span tasks were administered
(Unsworth, Heitz, Schrock, & Engle, 2005; see also Redick
et al., 2012). On each trial of these tasks, participants alter-
nated between performing a secondary task and viewing a
to-be-remembered (TBR) item. After a number of rounds,
participants reported as many TBR items as possible, in the
same order they were presented, by selecting the items from
a grid. A point was awarded for each TBR item recalled
in correct serial order, which is often referred to as partial
credit load scoring Conway et al. (2005). Participants were
instructed to click a button labeled “blank” to skip a serial
position.
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Operation span The operation span (OSPAN) consisted of
solving basic arithmetic, followed by a TBR letter. Set sizes
ranged from 3 to 7 items. Each set size was completed 3
times.

Reading span The reading span (RSPAN) consisted of indi-
cating whether a sentence was grammatical, followed by a
TBR letter. Set sizes ranged from 3 to 7 items. Each set size
was completed 3 times.

Symmetry span The symmetry span (SSPAN) task con-
sisted of solving for whether an 8×8 grid of black and white
squares was symmetrical, followed by a TBR blue square
presented on a 4×4 grid. Set sizes ranged from 2 to 6 items.
Each set size was completed 3 times.

Intelligence tasks

All measures of intelligence were administered on paper.
Before each task, an experimenter reviewed the instructions
aloud, went through practice problems, and asked partici-
pants whether they had any questions. For each task, one
point was awarded for each correct response.

Raven’s advanced progressive matrices, set II In this task,
a 3×3 matrix has 8 images in it, while the bottom-right cell
is missing in each problem. Participants indicate which of
eight options would complete the matrix by looking at the
relations among the images across the rows and down the
columns. After completing the first two problems from Set
I as practice, participants were given the 18 odd numbered
problems from Set II, and had 15 min to complete the task.

Cattell’s culture fair task This task consisted of four sub-
tests. In the first, a row of three boxes and an empty box
were shown, and participants chose which option best com-
pletes a pattern shown in the first three boxes. In the second,
five boxes were shown and participants indicate which two
boxes do not belong to the pattern made by the other three
boxes. In the third, images fill a 2 × 2 or 3 × 3 matrix
of boxes, but the bottom-right box was empty. Participants
chose, from a number of options, the box that best com-
pleted the pattern. Finally, the last test consisted of an image
containing a number of shapes and a dot. The goal of this
test was to choose from different configurations of shapes,
the one in which a dot could be placed in a similar location
relative to the shapes (e.g., encompassed by a triangle, but
not by a circle). In some instances, the images contained two
dots, and participants were to follow a similar rule in choos-
ing responses. The number of items for each subtest were
13, 14, 13, and 10, respectively. Scores for each subtest were
summed to create one overall score.

DAT space relations test For each item, flat shapes were
presented along with five printed 3-dimensional depictions
of what each shape might look like when folded along its
edges. Participants chose the 3-dimensional depiction that
could be made from the flat shape. This test consisted of 18
items.

ETS surface development For each item, a flat shape was
presented along with an accurate 3-dimensional depiction of
that shape folded along its edges and rotated. Lines on the
flat shape were numbered, while lines on the folded shape
had letters next to them. Participants indicated which num-
bers on the flat shape corresponded to letters on the folded
shape. This test consisted of 5 shapes with 5 items each,
yielding 25 items total.

AFQT reading comprehension For each item, participants
read short paragraphs and chose from five options the one
that best completed each paragraph. This test consisted of
15 items.

AFQT analogies For each item, participants were pre-
sented with an incomplete analogy (e.g., QUART is to
LITER as INCH is to) and chose from five options the one
that best completed each analogy. This test consisted of
18 items.

Results

Data screening

Participants with scores greater than 4 standard deviations
on any measure were considered univariate outliers and dis-
carded. From this procedure, 2 participants were removed.
In addition, the mvoutlier package in R was used to plot the
ordered, robust Mahalanobis distance against the quantiles
of the Chi-squared distribution. Participants who deviated
largely from the expected quantiles were removed and the
plot was reconstructed until there appeared to be no substan-
tial curvature. From this procedure, 2 additional participants
were discarded as multivariate outliers.

Statistical procedures

A series of latent variable models (aka confirmatory fac-
tor analyses) were conducted. Multiple indices of fit are
reported for each model. First, the Chi-square statistic mea-
sures the mismatch between the observed and reconstructed
covariance matrices. Higher values indicate greater mis-
match. However, moderate to large sample sizes may lead to
statistically significant differences, even when the discrep-
ancy between covariance matrices is slight. So in addition,
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we report the root mean square error of approximation
(RMSEA), standardized root mean square residual (SRMR),
non-normed fit index (NNFI), comparative fit index (CFI),
and Akaike’s information criterion (AIC). Following the
suggestion of Hu and Bentler (1999), we consider the fol-
lowing to be evidence of good fit: RMSEA < .08, SRMR
< .08, NNFI > .95, CFI > .95. AIC is a measure of
parsimony used for model comparisons, with lower AIC
indicating a better fit after applying a penalty for free
parameters.

All analyses were performed using the R software
language (R Core Team 2012). In addition to the
base R libraries, custom libraries were used for general
data processing (Wickham, 2007, 2011), outlier detection
(Filzmoser & Gschwandtner, 2013), and structural equation
models (Rosseel 2012).

Descriptive statistics

Descriptive statistics for all measures are provided in
Table 1. All meet the acceptable criteria suggested by Kline
(2011) for latent variable model analyses (absolute skew
<3; kurtosis <10). The full correlation matrix is provided
in Table 2.

Resolution and number for visual arrays

We tested whether measures for number and resolution in
the scope of attention load on distinct factors, and whether
resolution is task dependent, by contrasting three models.
In the first model, all visual array measures loaded on a
single factor. In the second model, measures of resolution
and number loaded on separate factors. The third model
was similar to the second, except that the resolution factor
was split into two, so that each task loaded onto a separate
resolution factor.

Fit indices are provided in Table 3. All models failed to
meet any of the criteria for a good fit to the data. In order
to address whether the poor fit was because of task-specific
covariance among measurements, new models were con-
structed, which allowed residuals to covary. Specifically, for
each task and each measure (either number or resolution),
the residuals were allowed to covary across the two set sizes.
However, all fit indices for these models also failed to meet
the criteria for a good fit.

All three of our theoretically motivated models failed to
fit the data. In an attempt to find a model that could fit
the data, we considered a four-factor model, consisting of
two factors for number and two factors for resolution. This

Table 1 Descriptive statistics

mean sd min max skew kurtosis

sspan 31.15 7.67 13.00 42.00 −0.47 −0.81

rspan 62.12 10.48 24.00 75.00 −1.58 3.20

ospan 63.54 9.61 36.00 75.00 −1.05 0.61

cd 4 num 2.96 0.57 1.46 3.89 −0.86 −0.03

cd 8 num 3.65 1.45 0.31 6.59 −0.05 −0.92

cd 4 res 1.59 0.75 −0.25 3.52 −0.09 −0.27

cd 8 res 1.37 1.18 −1.38 3.64 −0.04 −0.44

color 4 num 66.96 17.38 21.82 92.30 −0.72 −0.09

color 6 num 47.91 15.14 5.40 78.84 −0.43 0.23

color 4 res 19.97 3.90 8.56 33.15 0.35 1.43

color 6 res 21.99 7.38 5.73 52.99 1.01 3.16

ravens 13.70 2.36 8.00 18.00 −0.27 −0.54

cft 31.12 3.82 21.00 39.00 0.01 −0.38

surfdev 20.43 4.93 6.00 25.00 −1.10 0.33

spacerel 13.40 2.94 6.00 18.00 −0.52 −0.36

readcomp 11.69 2.05 6.00 14.00 −0.74 −0.25

analogy 13.19 2.07 8.00 17.00 −0.40 −0.34

rspan = reading span; sspan = symmetry span; ospan = operation span; cd-4-num = change detection (number), set size 4; cd-8-num = change
detection (number), set size 8; cd-4-res = change detection (resolution); cd-8-res = change detection (resolution); color-4-num = color estimation
(number), set size 4; color-6-num = color estimation (number), set size 6; color-4-res = color estimation (resolution), set size 4; color-6-res = color
estimation (resolution), set size 6; ravens = Raven’s Advanced progressive matrices; cft = Cattel’s culture-fair test; surfdev = surface development;
spacerel = space relations; analogy = anology battery; readcomp = reading comprehension
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Table 3 Fit indices for all visual array tasks

model chisq df pvalue rmsea srmr nnfi cfi aic

1 vstm.1f 108.91 20.00 0.00 0.26 0.15 0.42 0.59 1410.44

2 vstm.2f 87.54 19.00 0.00 0.23 0.15 0.53 0.68 1391.07

3 vstm.3f.2res 58.17 17.00 0.00 0.19 0.09 0.69 0.81 1365.71

4 vstm.4f 44.51 18.00 0.00 0.15 0.09 0.81 0.88 1350.04

rmsea = root mean square error of approximation; srmr = standardised root mean square residual; nnfi = non-normed fit index; cfi = comparative
fit index; aic = Akaike’s information criterion

model provided a better fit than the other models but still
did not satisfy our criteria for adequate fit (see Table 3).

An examination of the correlation matrix shows that mea-
sures of resolution are correlated within each task (change
detection, r = .58, p < .001; color estimation, r =
.47, p < .001). However, the correlations between number
and resolution across tasks is complicated. For the change
detection task the correlations between number and resolu-
tion are positive at small and large set sizes. In contrast, for
color estimation, the correlations between number and res-
olution vary as a function of set size. Different patterns of
correlation across set sizes within the visual array tasks are
not predicted by any of the models, which helps to explain
the relatively poor fit of our three theoretically motivated
models.

One vs. two factors of working memory capacity

In order to assess whether visual array and complex span
tasks are better represented by distinct components, we
compared a single-factor model to a two-factor model. In
the single-factor model, visual array and complex span
tasks loaded on the same factor. In the two-factor model,
visual array tasks loaded on one factor, while complex span
tasks loaded on another. Consistent with previous modeling
efforts using automated span tasks (Shipstead et al., 2012),
residuals for OSPAN and RSPAN were allowed to covary in
each of the models.

Fit indices are provided in Table 4. A direct compar-
ison of the models favored the two-factor model (χ2 =
9.47, p < 0.01). All fit statistics for the single-factor model
failed to meet the criteria listed in the Statistical Procedure

Table 4 Fit indices for working memory tasks

model chisq df pvalue rmsea srmr nnfi cfi aic

1 1.factor 22.67 12.00 0.03 0.12 0.08 0.90 0.94 1178.05

2 2.factor 13.94 11.00 0.24 0.06 0.06 0.97 0.98 1171.33

rmsea = root mean square error of approximation; srmr = standard-
ised root mean square residual; nnfi = non-normed fit index; cfi =
comparative fit index; aic = Akaike’s information criterion

section, indicating a poor overall fit to the data. However,
all fit statistics for the two-factor model met or exceeded the
same criteria, indicating a good overall fit. The two-factor
model is displayed in Fig. 1. Consistent with Shipstead et al.
(2012), the latent variable for visual array tasks is labeled
VA, while the latent variable for complex span tasks is
labeled CS.

Model of intelligence and g

The battery of intelligence tests consisted of verbal, spatial,
and fluid reasoning tasks. The battery consisted of only 6
tests but we tapped different domains in order to estimate a
general factor of intelligence. Indeed, a one-factor model of
the 6 intelligence tests proved to be sufficient. The model
is illustrated in Fig. 2. All fit statistics satisfied the criteria
listed in the Statistical Procedure section, indicating a good
overall fit of the model.

The relationship of VA and CS to g

The models tested thus far suggest that (a) VA and CS are
separate but related factors; and (b) a strong general factor
emerged from the battery of intelligence tests we adminis-
tered. Based on these results, we tested the hypothesis that
VA and CS each account for unique variance in g by com-
puting factor scores for VA, CS, and g (based on the models
reported above) and then conducting a multiple regression
analysis with g as the outcome variable and VA and CS
as the predictors. A summary of the regression analysis is
reported in Table 5. Our prediction that VA and CS account
for independent sources of variance in g was supported. The
regression coefficients for both VA and CS were significant
(for both, p < .05) and together VA and CS accounted for
85 % of the variance in g.

Finally, to be consistent with prior work, we considered
models that included all manifest variables from the entire
study. Based on Shipstead et al. (2012), we tested three mod-
els. The first model predicts that VA is the primary source
of variance in g. The second model predicts that CS is the
primary source of variance in g. The third model, which we
prefer, and which is consistent with our regression analysis,
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Fig. 1 Two factor model for working memory tasks. est-4 = color estimation, set size 4; est-6 = color estimation, set size 6; cd-4 = change
detection, set size 4; cd-8 = change detection, set size 8; rspan = reading span, sspan = symmetry span, ospan = operation span

assumes that both VA and CS account for unique variance in
g. The fit statistics for these models are provided in Table 6,
and SEM parameter estimates for the third model are pre-
sented in Fig. 3. The second and third models are clearly
superior to the first but the distinction between model 2 and
model 3 is less clear. While model 2 is more parsimonious,
we are hesitant to conclude that CS is essential and VA
is irrelevant. The above regression analysis, and previous
work, suggests that both CS and VA contribute to variability
in general intelligence. The lack of discrimination between
models 2 and 3 in the current study may be due to the small
sample and/or the limited sample of tasks for both CS and
VA.

In order to ensure that the current findings are not a result
of the large number of measurements, relative to number
of participants, the same latent variable models were exam-
ined, but with measures that came from the same type of
visual short-term memory task (either change detection or
color estimation) averaged together. This is known as mea-
surement parceling, and is done to both reduce the number
of free parameters, as well as increase the test reliability
of each resulting measurement (Little, Cunningham, Sha-
har, & Widaman, 2002). Consistent with advice given by

Table 5 Summary of Multiple Regression Analysis for g

predictor β SE(β) t Sig. (p)

VA .158 .065 2.41 .018

CS .808 .065 12.32 < .001

R2 = .851. VA = visual array (capacity) tasks; CS = complex span tasks

Little et al., (2002) for reducing subfactors to parcels,
in order to gain a general, unidimensional measure of g,
each pair of tasks were averaged within the spatial, for-
mal inductive, and verbal reasoning domains. Complex span
tasks were not parceled, so that overall there were eight
measurements. Comparisons among the models with mea-
surement parcels were consistent with the original models.
See Table 7 for model fits, and Fig. 4 for SEM estimates of
the model with both CS and VA as predictors of intelligence.

Discussion

Relationship between VA and CS

The current results provide further support for the argument
that visual array tasks and complex span tasks tap distinct
but related constructs, replicating and extending recent stud-
ies by Shipstead et al. (2012) and Unsworth et al. (2014).
Critically, the use of visual array tasks that are common in
research, as well as a broad set of intelligence measures
provides convergent evidence for an important distinction
between these two task paradigms. Moreover, the latent
correlation between VA and CS observed here was inter-
mediate to those obtained by Shipstead et al. (2012) from
two separate data sets (r = .64 compared to r = .61 and
r = .69). Though the visual array tasks used here differed
from Shipstead et al. (2012) in several critical ways, and
intelligence measures from three subdomains were used,
these findings replicate the same pattern of results from their
two-factor working memory models.
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Fig. 2 One factor model of intelligence. ravens = Ravens Advanced progressive matrices; cft = Cattel’s culture-fair test; spacerel = space
relations; analogy = anology battery; readcomp = reading comprehension

Moreover, the constructs underlying visual array tasks
and complex span tasks each account for unique vari-
ance in general intelligence. This finding supports argu-
ments that there are multiple sources of variance underlying
intelligence and working memory capacity. This result is
inconsistent with unitary source models of general cog-
nitive ability. The idea that there are multiple sources
of variance underlying general cognitive abilities such as
working memory capacity and intelligence has a long his-
tory (e.g., Thurstone, 1931, 1938) and is consistent with
multi-component models of working memory (Baddeley &
Hitch, 1974), as well as prior investigations of individual
differences in working memory capacity that have posited
multiple pools of resources (Daneman & Tardiff, 1987;
Shah & Miyake, 1996). Indeed, the current results are con-
sistent with the notion that there are multiple sources of
variation across both task domains and cognitive processes
(Conway & Kovacks, 2013; Logie, 2011; Oberauer, Süss,
Wilhelm, & Wittmann, 2008).

Orthogonality of number and resolution

Contrary to previous studies (Awh et al., 2007; Fukuda
et al., 2010; Scolari, Vogel, & Awh, 2008), which did not

Table 6 Fit indices for model of intelligence

model chisq df pvalue rmsea srmr nnfi cfi aic

1 sem.va 75.86 60.00 0.08 0.06 0.08 0.94 0.95 2178.06

2 sem.cs 69.48 60.00 0.19 0.05 0.07 0.96 0.97 2171.69

3 sem.both 67.57 59.00 0.21 0.05 0.07 0.97 0.97 2171.77

rmsea = root mean square error of approximation; srmr = standard-
ised root mean square residual; nnfi = non-normed fit index; cfi =
comparative fit index; aic = Akaike’s information criterion

find evidence of correlation between measures of number
and resolution, our change detection and color estimation
tasks showed moderately strong correlations between res-
olution and number, though the color estimation task did
so only at set size 6. If accurate, these results go beyond
suggesting that the orthogonality of number and resolu-
tion may be task specific, and question the validity of the
number and resolution constructs, as they were measured
in these tasks. Given that the correlations appear selec-
tive to different set sizes, it appears that the relationship
between number and resolution may not be as straightfor-
ward as previous accounts have claimed. While previous
findings suggest that resolution and number are uncorre-
lated in change detection tasks, some degree of caution
seems warranted. That number and resolution are corre-
lated in the current change detection task is puzzling, as it
was constructed using the stimuli and procedures given by
Fukuda et al. (2010). However, there were a few differences
between their study and the current procedure, which may
help explain the conflicting outcomes.

First, unlike Fukuda et al. (2010), which averaged
Cowan’s k scores across set sizes, the current study aver-
aged scores across stimuli, before calculating Cowan’s k
for each set size. Averaging across set sizes is problematic
in that capacity estimates at set sizes that do not exceed
a participant’s capacity are necessarily biased downward
(Rouder, Morey, Morey, & Cowan, 2011). However, cal-
culating Cowan’s k in the manner of Fukuda et al. (2010)
still produced significant correlations between number and
resolution measures.

Second, although the stimuli for both versions of the task
were the same, the exact instructions differed. Thus, it is
possible that a large subset of participants misunderstood
task instructions and performed poorly in all aspects of the
task. This could induce correlation between all measures.
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Fig. 3 Full model. est = color estimation; cd = change detection;
rspan = reading span; sspan = symmetry span; ospan = operation
span; ravens = Raven’s Advanced progressive matrices; cft = Cattel’s

culture-fair test; spacerel = space relations; analogy = anology battery;
readcomp = reading comprehension

However, the number of capacity estimates that were at
or below zero, which indicates performance around chance
levels, in this task appears comparable to Fukuda et al.
(2010). It is worth noting that in both studies a substantial
number of participants fell near or below zero for resolution
estimates.

A third possibility, which addresses the large number of
low or negative resolution estimates, is that mixing small
and large change trials in the same blocks produces capac-
ity estimates which may not correctly control for response
bias due to guessing. This is because Cowan’s k only takes
into account response bias in the case where an object (or

Table 7 Fit indices for model of intelligence with measure parcels

model chisq df pvalue rmsea srmr nnfi cfi aic

1 sem.va 32.34 17.00 0.01 0.12 0.08 0.87 0.92 1365.10

2 sem.cs 24.95 17.00 0.10 0.08 0.07 0.93 0.96 1357.71

3 sem.both 22.63 16.00 0.12 0.08 0.07 0.94 0.97 1357.39

rmsea = root mean square error of approximation; srmr = standard-
ised root mean square residual; nnfi = non-normed fit index; cfi =
comparative fit index; aic = Akaike’s information criterion

relevant feature) is retained in memory or lost completely
(Rouder et al., 2011). While information about whether a
single feature of an object is present in a probe may be suf-
ficient to detect a change from sample to test, both features
of the object are necessary to determine whether there was
no change. Thus, while the model takes into account only
a single guessing rate, participants may employ a guessing
rate based on whether they retained only the probed shape in
memory, and a separate guessing rate if they retained neither
relevant feature in memory. A participant could strategi-
cally reduce overall false alarms at the expense of change
detection accuracy for small changes by always indicat-
ing “no change” if they only know that a large change
has not occurred. This might occur, for example, if the
participant found the small change component to be too
difficult.

Differential strategy use of this nature could artificially
reduce or eliminate correlations between number and reso-
lution, while keeping both reliable across set sizes. More-
over, in reanalyzing the change detection data of Fukuda et
al. (2010), a pattern emerges which seems to be consistent
with this explanation. Specifically, residuals for the linear
models regressing resolution on number appear U-shaped
(see Fig. 5), with a cluster of participants who scored near
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Fig. 4 Full model using measure parcels. est = color estimation; cd = change detection; rspan = reading span; sspan = symmetry span; ospan =
operation span; verb = verbal intelligence parcel; space = spatial intelligence parcel; fluid = fluid intelligence parcel

Fig. 5 Resolution (small change k) regressed on number (cd 8) for
set size 8 of a change detection task from Fukuda et al (2010). Panel A
shows a scatter plot with the best fitting linear model in blue. Panel B

shows the residuals versus fitted values from the linear model. A clear
U-shaped pattern can be observed in the residuals
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Fig. 6 Plot taken from Cokely et al. (2006) that shows a distinct U-
shaped pattern. After questioning participants about their strategy use,
they discovered that high performers on complex span tasks had used a
strategy which negated the effect of their partial list cueing paradigm.
The solid line traces the best fitting linear model, while the dotted line
traces the best fitting quadratic model

zero for resolution, but high for number. It is possible that
high capacity participants enhanced number estimates by
sacrificing performance on small change trials. Intriguingly,
a similar issue arose in an experiment by Cokely, Kelley,
and Gilchrist (2006), which related complex span perfor-
mance to a partial list cueing paradigm. Initially, complex
span performance was found to be uncorrelated with a par-
tial list cueing effect. However, the authors discovered that
high complex span participants were engaging in a strat-
egy that negated the anticipated effect, creating U-shaped
residuals (see Fig. 6). Upon controlling for strategy use, a
correlation between complex span and the partial list-cuing
paradigm emerged.

However, the finding that resolution estimates in the
color estimation task were reliable within task, but cor-
related neither with number nor resolution in the change
detection task raises the possibility that the change detection
task used in the current study failed to yield valid measures
of resolution. However, this explanation fails to account for
the correlation between resolution and number at set size 6
in the color estimation task.

Whether the cluster of participants observed in the
change detection data of Fukuda et al. (2010) represent a
meaningful pattern, or the current study failed to accurately
tap into resolution and number estimates is unclear. Fur-
ther control and replication are necessary to clarify whether
resolution and number are correlated. One possibility for
controlling the potential contributions of strategy use in the
change detection paradigm would be to administer blocks
with only one type of change trial in addition to mixed
blocks. Blocks with one trial type would allow for an unbi-
ased assessment of resolution and number, as participants

would have little incentive to reduce resolution perfor-
mance. Moreover, performance on these blocks could be
compared with mixed blocks, to assess whether participants
make strategic trade-offs.

Finally, there is a long-standing debate over whether
performance on the change detection and color estimation
tasks is better reflected by the slot-based models used in
the current study, where items are remembered in an all-or-
nothing fashion, or models in which a continuous memory
resource is distributed across items (Bays & Husain, 2008;
Cowan & Rouder, 2009; Luck & Vogel, 1997; Rouder et
al., 2011; van den Berg, Shin, Chou, George, & Ma, 2012).
While previous studies examining the relationship between
visual working memory capacity and intelligence (Fukuda
et al., 2010; Shipstead et al., 2012; Unsworth et al., 2014)
have also assumed that the slot-based models are valid, the
failure to find support for these models in our simple latent
variable analyses of resolution across tasks raise the pos-
sibility that other accounts may be more useful. This is
especially important to note when considering the findings
of Unsworth (2014), as they (presumably) used measures
where capacity and resolution are often estimated simul-
taneously using slot-based models (as in Zhang & Luck,
2011), but make no mention of resolution estimates. It
would be interesting to see whether they find a common
factor underlying resolution estimates across tasks. Another
worthwhile avenue of research would be to investigate how
these alternative models account for individual differences
in visual working memory performance. Evidence in favor
of models that distribute a continuous memory resource
across items was reviewed recently by Ma, Husain, and
Bays (2014).

Conclusions

The current study replicates and extends recent findings
by Shipstead et al. (2012) suggesting that the scope and
control of attention contribute independent sources of vari-
ance to working memory capacity and general intelligence.
These findings support multiple source theories of capac-
ity and intelligence and are inconsistent with general ability
models (cf., Conway & Kovaks, 2013; Logie, 2011; Ober-
auer et al., 2008). The current study failed to replicate
certain aspects of Fukuda et al. (2010) with respect to
the relationship between number and resolution measures
derived from visual array tasks. Several possibilities, includ-
ing differential strategy use across studies, might explain
these differences. However, it is clear that more work is nec-
essary to leverage individual differences in order to assess
the validity of number and resolution as conceptualized
by slot-based models of visual short-term memory, as well
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as the claim that resolution and number in the scope of
attention are orthogonal.
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