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Abstract The relative importance of visual-spatial and verbal
working memory for mathematics performance and learning
seems to vary with age, the novelty of the material, and the
specific math domain that is investigated. In this study, the
relations between verbal and visual-spatial working memory
and performance in four math domains (i.e., addition, subtrac-
tion, multiplication, and division) at different ages during
primary school are investigated. Children (N = 4337) from
grades 2 through 6 participated. Visual-spatial and verbal
working memory were assessed using online computerized
tasks. Math performance was assessed at the start, middle, and
end of the school year using a speeded arithmetic test. Multi-
level Multigroup Latent Growth Modeling was used to model
individual differences in level and growth in math perfor-
mance, and examine the predictive value of working memory
per grade, while controlling for effects of classroom member-
ship. The results showed that as grade level progressed, the
predictive value of visual-spatial working memory for indi-
vidual differences in level of mathematics performance
waned, while the predictive value of verbal working memory
increased. Working memory did not predict individual differ-
ences between children in their rate of performance growth
throughout the school year. These findings are discussed in
relation to three, not mutually exclusive, explanations for such
age-related findings.
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To solve a math problem, such as 7 × 12, a child needs to hold
the relevant information in mind and manipulate this informa-
tion. For example, this problem may be solved by the strategy
to split this problem into subproblems (e.g., 7 × 10, 7 × 2 is 70
+ 14), requiring the child to keep the answer to one of the
subproblems in mind, while solving the second one, and
adding the outcomes to produce the answer to the original
problem. In addition or subtraction calculations with multiple
digits, such as 27 + 59 or 47 −19, carrying or borrowing of a
digit from one column to another also requires a child to keep
track of the manipulations and intermediate solutions. Indeed,
there is ample of evidence that children with a higher working
memory capacity have an advantage in mathematics (Friso-
van den Bos, Van der Ven, Kroesbergen, & Van Luit, 2013;
Raghubar, Barnes, & Hecht, 2010).

The most widely used model of working memory (WM)
includes several components: the central executive, phonolog-
ical loop, visual-spatial sketchpad, and episodic buffer
(Baddeley, 1986, 2000). The central executive is a domain-
general, attentional control system involved in several pro-
cesses such as the selection and execution of strategies, re-
trieval of information from long term memory, monitoring of
input, simultaneously storing and processing of information,
and the coordination of the other components of the WM
system. The visual-spatial sketchpad involves temporary stor-
age and rehearsal of visual and spatial information, while the
phonological loop involves storage and rehearsal of phono-
logical and auditory information. The episodic buffer – a
temporary storage system that is responsible for the integra-
tion of information from a variety of sources – is the third
slave system (Baddeley, 2000). Functioning of the two
domain-specific slave systems is usually measured using sim-
ple span tasks, in which increasingly longer strings of infor-
mation are immediately recalled without further processing.
Functioning of the central executive is traditionally measured
with complex span tasks, in which storage as well as
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processing or manipulation of information is required (Kail &
Hall, 2001). In other words, working memory can be distin-
guished from short-term memory, which only involves the
temporary storage of information by the slave systems, where-
as working memory involves storage as well as processing of
information. Although the central executive is a domain-
general component, the tasks used to measure its functioning
also tap into one (or both) of the domain-specific slave storage
systems. The multicomponent nature of this model allows
researchers to examine whether the use of different subcom-
ponents in mathematics vary as a function of the type of math
test, age, individual differences in ability level, and the type of
strategy used (Raghubar et al., 2010).

The central executive, as well as the visual-spatial
sketchpad and the phonological loop have been shown to be
associated with mathematics performance and learning in
children (Alloway & Alloway, 2010; Bull, Espy, & Wiebe,
2008; De Smedt et al., 2009; Friso-van den Bos et al., 2013;
Geary, 2011; Geary, Hoard, Byrd-Craven, & Catherine
DeSoto, 2004; Holmes & Adams, 2006; Imbo &
Vandierendonck, 2007; Meyer, Salimpoor, Wu, Geary, &
Menon, 2010; Raghubar et al., 2010; Swanson & Beebe-
Frankenberger, 2004; Swanson, 2006; Toll, Van der Ven,
Kroesbergen, & Van Luit, 2011; Van der Ven, Van der Maas,
Straatemeier, & Jansen, 2013). However, the strength of the
relationship between different working memory modalities
and mathematics performance is found to vary as a result of
the type of mathematics tests used, and the strategies and
mental models these tests elicit. In their recent meta-analysis,
Friso-van den Bos and colleagues (2013) found the majority
of working memory components to be more strongly associ-
ated with general mathematics tests, such as a national curric-
ulum test and composite measures, than with purely arithmet-
ical measures. General mathematics tests often include a broad
variety of problem types, requiring children to switch between
operations, strategies, and mental models. Nevertheless, even
solving basic arithmetic problems may elicit both visual-
spatial and verbal representations and strategies (Imbo &
LeFevre, 2010; Logie, Gilhooly, & Wynn, 1994). So, since
solving mathematical problems may elicit visual-spatial as
well as verbal representations and strategies, both visual-
spatial and verbal working memory components are likely to
be involved in learning mathematics.

Several studies indicate that the relationship between
working memory and mathematics changes with age
(Andersson & Lyxell, 2007; De Smedt et al., 2009; Henry
& MacLean, 2003; Holmes & Adams, 2006; Kyttälä,
Aunio, & Hautamäki, 2010; McKenzie, Bull, & Gray,
2003; Rasmussen & Bisanz, 2005; Van der Ven et al.,
2013). The results from studies during preschool, primary
school, and adolescence suggest that younger children
rely more on visual-spatial working memory when learn-
ing and applying new mathematical skills, whereas older

children rely more on verbal working memory after skills
have been learned.

Van der Ven et al. (2013) introduced three, not mutually
exclusive, explanations for the decrease in the relationship
between visual-spatial working memory and math perfor-
mance as children grow older. First, according to the
developmental explanation, younger children rely more on
visual-spatial representations (e.g., number lines) and use
more visual-spatial strategies (e.g., finger counting) (De
Smedt et al., 2009; Geary et al., 2004). As children grow
older, however, and associations between math problems
and their answers become verbally memorized (partly due to
rote-learning in school), they rely on more verbal strategies
and representations (De Smedt et al., 2009; Holmes &Adams,
2006). Second, the novelty explanation supposes the shift
from visual-spatial to verbal strategies is caused by the novelty
of the material. This explanation assumes that children of any
age, as well as adults, may rely on visual-spatial working
memory when presented with novel and challenging math
problems (Tronsky, 2005). On the other hand, research also
indicates that working memory involvement diminishes when
associations between math problems and their answers are
automatized and direct retrieval is used (Ackerman, 1988;
Ackerman & Gianciolo, 2000; Geary et al., 2004; Imbo &
Vandierendonck, 2007). Third, the [math] domain specificity
explanation predicts the relation between math and visual-
spatial working memory differs between math domains. Ac-
cording to Van der Ven and colleagues (2013), addition and
subtraction may be performed by manipulation or
visualization of the manipulation, while multiplication and
division problems are more often solved by retrieving
verbally memorized facts. Van der Ven et al. (2013) investi-
gated these three explanations in a large sample of primary
school children using an adaptive computerized test to assess
visual-spatial working memory and arithmetic abilities. Al-
though their results show a significant relationship between
visual-spatial working memory and all four different math
domains, the strength of the relationship differed with age
and across math domains. Addition and subtraction showed
the strongest relationshipwith visual-spatial workingmemory,
while the relationship with multiplication and division was
smaller, supporting the math domain specificity explanation.
In addition and subtraction, but not in multiplication and
division, the relationship with visual-spatial working memory
tended to decrease with age, supporting the developmental
explanation in the first two domains. The finding that the
relationship between visual-spatial working memory and the
different domains shows a peak at the grades in which the
domain is introduced as part of the school math curriculum
also provides some evidence for the novelty explanation.
Although these results support the notion that strategies in
addition and subtraction are later replaced by verbal strategies
and retrieval, Van der Ven et al. (2013) emphasize that mere
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rote learning could not explain their findings. As a result of
their use of an adaptive testing procedure, children were never
presented with problems they would have memorized, be-
cause these problems would be too easy. In multiplication,
verbal and retrieval strategies may already have been more
important from the beginning, since many schools apply
verbal rote memorization to learn multiplication facts.
However, since Van der Ven et al. (2013) did not include a
measure of verbal working memory, it remains uncertain how
the relationship between verbal working memory and the
different math domains changes with age. To the best of our
knowledge, it has also not been examined how visual-spatial
and verbal working memory may be differentially related to
growth in math performance during the school year(s).
Knowledge on this topic may be important for the develop-
ment of mathematics curriculum and instruction, for example
by modifying instructions and activities to reduce working
memory load or by helping children develop different strate-
gies based on their developmental stage or individual needs.

Goals of the present study

To summarize, both visual-spatial and verbal working mem-
ory seem to be involved in math abilities. However, the
relative contribution of visual-spatial and verbal working
memory to the development of math abilities seems to change
with age. Previous studies have not yet examined this in a
systematic way, including relatively small samples and a
limited age range (Andersson & Lyxell, 2007; De Smedt
et al., 2009; Henry & MacLean, 2003; Holmes & Adams,
2006; Kyttälä et al., 2010; Meyer et al., 2010; Rasmussen &
Bisanz, 2005), or lacking a measure of verbal working mem-
ory (Van der Ven et al., 2013). To investigate how these
relationships change as children go through primary school,
we need to incorporate both visual-spatial and verbal working
memory tasks and examine large samples from different
grades.

Our aim is to provide a systematic examination of devel-
opmental changes in the strength of the relationship between
visual-spatial and verbal working memory on the one hand
and children’s math ability in the four basic mathematical
domains on the other hand (i.e., addition, subtraction, multi-
plication and division). We examine the relationship using a
repeated-measures design with three measurements of
domain-specific math abilities during the school year, in
grades 2 through 6. Based on the literature, we have several
expectations. First, we expect visual-spatial and verbal work-
ing memory to be related to performance in all four domains
of mathematics (Friso-van den Bos et al., 2013). Second, we
expect visual-spatial working memory to be more strongly
related to initial performance at the start of the school year, and
verbal working memory more strongly related to

developmental rate of change during the school year (Geary
et al., 2004; Imbo & Vandierendonck, 2007). Third, the rela-
tionship between visual-spatial working memory and math
performance is expected to be strongest for addition and
subtraction compared to multiplication and division, while
the reverse is expected for verbal working memory (Van der
Ven et al., 2013). Finally, we expect the strength of the
relationship between visual-spatial working memory and
math performance to decrease in higher grades and the
strength of the relationship between verbal working memory
andmath performance to increase in higher grades (e.g., Friso-
van den Bos et al., 2013; Raghubar et al., 2010; Van der Ven
et al., 2013).

Method

Participants

Data used in this study were collected as part of a large-scale
intervention study on the effects of teacher training in differ-
entiated math education on student math performance. A total
of 4,337 children (grades 2 through 6) from 32 elementary
schools in The Netherlands participated. Children came from
185 classes, of which 47 classes were multigrade classes
consisting of children from two (e.g., grade 3 and 4) or
sometimes three grades. Parents received written information
about the study and we used a passive informed consent
procedure. Parents informed the teacher of their child or a
designated contact person at their school when they did not
want their child to participate. The study was approved by the
ethics committee of the Faculty of Social and Behavioral
Science, Utrecht University.

Materials

Working memory Two online computerized working memory
tasks suitable for self-reliant administration in the classroom
were administered, the Lion game and the Monkey game. The
Lion game is a visual-spatial complex span task, in which
children have to search for colored lions (Van de Weijer-
Bergsma, Kroesbergen, Prast, & Van Luit, 2014). Children
are presented with a 4 × 4 matrix containing 16 bushes. In
each trial, eight lions of different colors (red, blue, green,
yellow, purple) are consecutively presented at different loca-
tions in the matrix for 2000 ms. Children have to remember
the last location where a lion of a certain color (e.g., red) has
appeared and use the mouse button to click on that location
after the sequence has ended. The task consists of five levels
each of four items, in which working memory load is manip-
ulated by the number of colors – and hence, the number of
locations – children have to remember and update. No cut-off
rules were applied; all children finished all 20 items. We
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scored the proportion of items recalled in the correct location.
The Lion game has excellent internal consistency (Cronbach’s
α between .86 and .90), satisfactory test-retest reliability (ρ =
.71), and good concurrent and predictive validity (Van de
Weijer-Bergsma et al., 2014).

The Monkey game is a verbal span-backwards task, in
which children have to remember and recall different words
backward. Children hear spoken words (i.e., moon, fish, rose,
eye, house, ice, fire, cat, coat). In Dutch, these words (i.e,
maan, vis, roos, oog, huis, ijs, vuur, poes, jas) are some of the
words first learned in reading by children in the first grade.
Children have to remember the words and recall them back-
wards, by clicking on the written words presented visually in a
3 × 3 matrix. The task consists of five levels each of four
items, in which working memory load is manipulated by the
number of words children have to remember and recall back-
ward, ranging from two words in level 1 to six words in level
5. No cut-off rules were applied; all children finished all 20
items.We scored the proportion of items recalled in the correct
order. The Monkey game has excellent internal consistency
(Cronbach’s α between .78 and .89) and shows good concur-
rent and predictive validity (Van de Weijer-Bergsma,
Kroesbergen, & Van Luit, 2014). Several studies have shown
that backward span tasks require executive processing in
children, and can therefore be considered a measure of work-
ing memory during childhood (Alloway, Gathercole, & Pick-
ering, 2006; Gathercole, Brown, & Pickering, 2003).

Math fluency The Arithmetic Tempo Test (ATT; De Vos,
1992) is a standardized paper-and-pencil test frequently used
in Dutch and Flemish education to measure math fluency. Its
psychometric value has been established in a sample of
10,059 Flemish children (Ghesquière & Ruijssenaars, 1994).
Five sets of 40 formal math problems are presented, respec-
tively in the domains of addition (+), subtraction (−), multi-
plication (×), division (÷), and a mixture of the four domains
(+, −, ×, ÷). In each set, children have to solve as many
problems as possible within 1 minute. All problems consist
of two-operand equations with an outcome smaller than 100
and both operands ranging between 0 and 90. The total
number of problems answered correctly for each domain
was used as a domain score. In our study, test-retest reliability
for the different domains ranged from ρ = .84 to .87 (one-
sided p < .001) after 4 months, and from ρ = .82 to .86 (one-
sided p < .001) after 8 months. Additionally, the total num-
ber of solved problems was strongly associated with per-
formance on a national mathematics test consisting of
primarily context problems (ρ = .74, one-sided p <
.001). A principal component analyses showed that, in
each grade and at each measurement, performance of the
four domains loaded onto a single factor. The variance
explained by this factor, which we call ‘math fluency,’
varied between 59.5 % (in grade 2, where only addition

and subtraction were administered) and 79.8 % (in grade
6, where all four domains were administered).

Procedure

Measurements took place on three occasions during the school
year of 2012–2013: in September–October 2012 (T1), in
January–February 2013 (T2), and in May–June 2013 (T3).
At T1, visual-spatial WM was assessed using the Lion game
in grades 2 through 6. Teachers received an e-mail containing
login information for their class of children and were asked to
let all students finish the task within a period of three weeks.
At T2, we assessed verbal WM using the Monkey game in
grades 2 through 6. The ATTwas administered by the teacher
at T1, T2, and T3 in grades 2 through 6. Children in grade 2
finished only the first two ATTcolumns since multiplication is
introduced only later during the school year of grade 2 and
division is introduced in grade 3. Children from grades 3
through 6 finished all five ATT columns.

Missing values Because of the large scale of the study, no
information about missing data was collected. For the ATT, 53
children (13, 17, 10, 6, and 7 children from grades 2, 3, 4, 5,
and 6, respectively) had missing data on all three measure-
ments. Most of these children changed schools during the
study. We used ATT data for the remaining 4,285 children in
the analyses (see Table 1 for sample characteristics), with
74 % of children providing data on all three measurements,
22 % of children providing data for two measurements, and
4 % of children providing data for only one measurement.
Data in most cases were missing due to absence from school
(e.g., in case of sickness) at the time of assessment. In three
cases, children failed to make one or two of the ATT columns
for unknown reasons. Of the 4,285 children, a total number of
3,830 children (89 %) provided data on visual-spatial working
memory, while 3,499 children (82 %) provided data on verbal
working memory, of which 3,234 children (75 %) provided
both.

Data-analysis In step 1, we fitted four overall (i.e., for the
whole sample) Univariate Latent Growth Curve Models to
investigate the level and growth rate of math fluency in each
domain (i.e., addition, subtraction, multiplication, and divi-
sion) as well as the association between level and growth rate.
The Mplus statistical package (Version 7; Muthén & Muthén,
1998-2010) was used. A full estimation maximum likelihood
(MLR)methodwas applied, since it is robust to non-normality
and can handle missing data. Usually in linear growth models,
regressions weights for T1, T2, and T3 are fixed at 0, 1, and 2,
and as a result, the intercept is mainly estimated based on T1.
However, since one of our predictors (i.e., verbal working
memory at T2) cannot be used to predict past performance
at T1, we used a centered growth model. In each model,
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measurement at T2 was chosen as time point zero, and regres-
sion weights for the slope were fixed at −1 for the measure-
ment at T1 and 1 for the measurement at T2. As a result, level
of performance is mainly estimated based on T2 performance,
but also influenced by T1 and T3 performance. Although no
attempt was made to explain variance at the classroom level,
in all models the standard errors were corrected for the nested
structure using an automatic multilevel modeling setup
(Stapleton, 2006). Applying the Mplus statement “type is
complex” ensures that part of the model-variance is attributed
to between-class variance (i.e., variance in achievement out-
come existing between classrooms) rather than only to within-
classroom variance. We evaluated model fit with the compar-
ative fit index (CFI), Tucker-Lewis index (TLI), and root
mean square error of approximation (RMSEA). CFI and TLI
are good if > .95 and acceptable if > .90. RMSEA is good if <
0.05 and acceptable if ≤ 0.80 (Browne & Cudeck, 1993).
Because of the large sample size however, we expect the χ2

tests to be significant.
In step 2, after determining which type of overall growth

model fitted the data best, we performed Multigroup Latent
Growth Curve analyses on the univariate models with a
within-level grouping command to estimate parameters (inter-
cept and slope) for each grade separately (i.e., grades 2, 3, 4, 5,
and 6 for addition and subtraction, grades 3, 4, 5, and 6 for
multiplication and division). We used a within-level grouping
command, since some classes are multigrade classes (Muthen
& Asparouhov, 2011). In these multigroup analyses, we
allowed intercept and slope means and variances to be freely
estimated for each grade. We used Wald χ2 tests to test for
differences in parameter values between the two highest and
lowest grades (i.e., grade 2 and 6 or grade 3 and 6) only, to
limit the number of comparisons.

In step 3, we extended the four overall models from step 1
with visual-spatial and verbal working memory as predictors
to test whether individual differences in the level of perfor-
mance (intercept) and the rate of growth (slope) in math
fluency were predicted by working memory, and whether
these models provided a good fit. Also, visual-spatial and
verbal working memory were allowed to co-vary.

In step 4, a within-level grouping command (i.e., grade)
was added again to examine age-related differences in the
predictive value of visual-spatial and verbal working memory.

In this step of the analyses, working memory was only
regressed on intercepts and slopes in those grades with signif-
icant variation in step 2. Steiger’s Z (ZH) was used to test if
differences within grades in dependent standardized estimates
of visual-spatial versus verbal working memory are statisti-
cally significant (Steiger, 1980; Hoerger, 2013), taking into
account the covariance between the two working memory
tasks. To test whether differences in independent standardized
estimates and covariances between the lowest and highest
grades are statistically significant, we used the Fisher r-to-z
transformation (Lowry, 2013; Steiger, 1980).

When multiple comparisons are made (in step 2 and 4),
Holm’s correction was applied to ensure that the chance for a
Type I error did not exceed the .05 level. In Holm’s procedure,
first the p-values of the relevant test outcomes are ranked from
the smallest to the largest. The smallest outcome p-value
needs to be smaller or equal to α/k (where α = .05 and k is
the number of tests). The second smallest p-value is compared
to α/(k-1). This sequence is followed until a corrected p-value
becomes larger than .05. For example, when three compari-
sons are made, testing at the .05 level, in order to be able to
speak of a significant difference, the smallest initial p-value
needs to be ≤ .017, while the second smallest p-level needs to
be ≤ .025, and the final p-value needs to be ≤ .05 (Holm,
1979).

Results

Descriptive results for visual-spatial and verbal workingmem-
ory and math fluency in the four domains are presented in
Table 2. No univariate or multivariate outliers were identified
using Z-scores and mahalanobis distances, respectively. Nor-
mality of distributions of the variables was examined by
calculating the standardized skewness and kurtosis index (sta-
tistic divided by standard error). Skewness and kurtosis indi-
ces were found to be higher than 3 for the Lion game (−17.8
and 4.5, respectively) and the Monkey game (−23.9 and 4.0,
respectively) scores, indicating that the distributions differed
significantly from normal. Skewness and kurtosis indices for
the ATT domain scores were also sometimes found to be
higher than 3 (values ranging from 0.1 to 7.3). Non-
normality was taken into account in all statistical analyses.

Multigroup latent growth curve modeling

Overall growth models of math fluency In step 1, in all four
overall univariate multilevel latent growth models (i.e., addi-
tion, subtraction, multiplication, and division), we found a
non-significant covariance between intercept and slope. Re-
moval of the non-significant covariances did not result in a
significant decrement, Δχ2 = 1.68, 0.90, 3.49, 0.06,

Table 1 Sample
characteristics n % of boys

Grade 2 835 54.1

Grade 3 836 51.1

Grade 4 853 48.9

Grade 5 848 49.9

Grade 6 913 49.7

Total 4,285 50.7
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respectively, all df = 1, all p = n.s., and provided good to
acceptable fit indices for the multilevel latent growth models
for addition, χ2(2) = 8.89, p = .012, CFI = .999, TLI = .999,
RMSEA = .03, subtraction, χ2(2) = 16.32, p = .000, CFI =
.999, TLI = .998, RMSEA = .04, multiplication χ2(2) = 32.07,
p = .000, CFI = .993, TLI = .989, RMSEA = .06, and division,
χ2(2) = 39.71, p = .000, CFI = 1.000, TLI = .999 RMSEA =
.07. Unstandardized estimates for intercepts and slopes within
these models are presented in Table 3.

Multigroup growth models of math fluency In step 2, multi-
group analysis revealed a negative and non-significant slope
variance for grade 5 in the domain of addition and for grade 6
in the domain of subtraction. Therefore, these slope variances
were fixed to zero (Muthen & Asparouhov, 2011). For all
other domains, no such problems arose. Multigroup estimates
(see Table 3) show that the intercept means differ significantly
from zero in each grade for addition, subtraction, multiplica-
tion, and division. Wald tests show that the mean intercept
increases significantly (after Holm’s correction) between the
lowest and highest grade, Wald(1) ranges from 275.39 to
1221.73, all p-values < .001, indicating that children in higher
grades perform better in all four domains. In addition, the
significant intercept variances indicate that within in each
grade, there are significant individual differences between
children in their level of performance on addition, subtraction,
multiplication, and division problems. In general, individual
variation in the level of performance seems to increase in
higher grades in each domain. Wald tests show that this
increase in variation is significant (after Holm’s correction)

when comparing the lowest to the highest grade in subtraction,
Wald(1) = 6.96, p < .01, multiplication, Wald(1) = 26.98, p <
.001, and division, Wald(1) = 54.99, p < .001, but not in
addition, Wald(1) = 0.26, p = .61.

Furthermore, we found the mean slope for all four
math domains differed significantly from zero in every
grade. So, on average, children in each grade show a
significant mean increase in their ability to add, subtract,
multiply, or divide throughout the school year. When we
look at differences between grades in slope means (see
Table 3), we can see that the mean rate of change during
the school year decreases with age, and is lowest in grade
6 in all of the domains. This decrease from grade 2 or 3 to
grade 6 is significant (after Holm’s correction) in the
domains of subtraction, multiplication, and division,
Wald(1) ranges from 20.47 to 28.08, all p-values < .001,
but not in addition, Wald(1) = 2.38, p = .12. Slope vari-
ances are significant in the domains of addition and sub-
traction in children within lower grades (i.e., 2, 3, and 4),
indicating that they show significant individual differ-
ences in their rate of change, but not for children in higher
grades (i.e., 4, 5, and 6). In the domains of multiplication
and division, however, children within each grade show
significant individual differences in their rate of change,
although the variation does seem to become smaller in
higher grades. Overall, slope variance seems to decline in
higher grades in all domains. Wald tests show that these
differences are significant (after Holm’s correction) be-
tween the lowest and highest grades in addition, Wald(1)
= 8.20, p < .01, subtraction, Wald(1) = 13.21, p < .001,

Table 2 Descriptives for the domains of the Arithmetic Tempo Test and Working Memory tasks for grades 2 through 6

Grade 2 Grade 3 Grade 4 Grade 5 Grade 6

n mean SD n mean SD n mean SD n mean SD n mean SD

Addition T1 777 14.87 4.45 789 18.64 5.15 769 21.70 4.94 793 25.07 4.61 836 27.67 4.75

T2 748 16.46 4.78 769 19.79 4.89 823 23.69 4.83 824 26.55 4.97 847 28.86 4.64

T3 704 17.33 5.09 686 21.07 5.33 719 24.60 4.88 709 27.23 4.73 764 29.40 4.71

Subtraction T1 780 11.99 4.50 789 16.36 5.23 769 19.20 5.12 793 22.12 5.09 837 25.34 5.15

T2 733 13.64 4.85 769 17.77 5.34 823 20.68 5.09 824 23.67 5.34 848 26.20 5.21

T3 703 14.82 5.34 686 18.51 5.44 718 21.35 5.21 709 24.12 5.17 764 26.24 5.41

Multiplication T1 - - - 787 16.18 4.64 769 19.46 5.29 793 22.28 5.51 837 25.12 5.73

T2 - - - 769 18.20 4.98 823 20.65 5.34 823 23.33 5.71 848 26.49 5.86

T3 - - - 685 18.56 5.20 718 21.13 5.43 709 23.72 5.66 764 25.81 6.07

Division T1 - - - 767 7.98 5.29 769 12.67 5.97 793 16.53 6.63 837 20.90 7.21

T2 - - - 767 10.93 5.72 823 14.86 6.49 822 18.45 6.79 848 22.54 7.32

T3 - - - 682 11.81 6.11 717 16.18 6.43 708 19.48 6.85 764 22.27 7.89

Visual-spatial WM 754 .56 .18 745 .65 .17 744 .71 .15 787 .74 .13 800 .77 .13

Verbal WM 727 .46 .15 641 .51 .14 725 .56 .12 698 .58 .13 708 .62 .13

T1 = beginning of school year, T2 = mid school year, T3 = end of school year, WM = working memory
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and division, Wald(1) = 15.33, p < .001, but not in
multiplication after Holm’s correction, Wald(1) = 6.49,
p = .019 > Holm’s corrected p-value of .016.

Overall predictive value of visual-spatial and verbal working
memory for math fluency In step 3, adding visual-spatial and
verbal working memory as predictors resulted in good fit
indices for the models in the domains of addition, χ2(4) =
13.85, p = .008, CFI = 1.000, TLI = .999, RMSEA = .02,
subtraction, χ2(4) = 24.43, p = .000, CFI = .998, TLI = .996,
RMSEA = .03, multiplication, χ2(4) = 49.47, p = .000, CFI =
.993, TLI = .985, RMSEA = .05, and division, χ2(4) = 58.40,
p = .000, CFI = .996, TLI = .991, RMSEA = .05. Standardized
estimates are presented in Table 4. From this table, we see that
in the overall models, visual-spatial and verbal working mem-
ory explained a significant amount of variation in the intercept
in each math domain. However, when variation in the slope

was significant it could not be significantly explained by
visual-spatial and verbal working memory.

Multigroup predictive value of visual-spatial and verbal work-
ing memory for math fluency In step 4, we again performed
multigroup analysis. Standardized estimates for each grade are
presented in Table 4. For the domain of addition, visual-spatial
working memory predicted level of performance in grades 2,
3, 4, and 5, but not grade 6. Verbal working memory on the
other hand predicted level of addition performance in each
grade (2-6). For subtraction, visual-spatial working memory
predicted performance level in grades 2, 3, and 4, but not
grades 5 and 6, while verbal working memory predicted
performance level in each grade (2–6). With regard to multi-
plication, visual-spatial working memory predicted level of
performance in grade 3, but not grades 4, 5, and 6. Verbal
working memory predicted level of multiplication perfor-
mance in each grade (3–6). With regard to division, visual-
spatial working memory predicted performance level in
grades 3, 4, and 5, but not grade 6. Verbal working memory
predicted performance level in division in each grade (3–6).
The amount of variation in level of performance explained by
visual-spatial and verbal working memory combined is sig-
nificant in each grade and each domain, except for multipli-
cation in grade 4. The amount of variation in the rate of
developmental change in math fluency explained by visual-
spatial or verbal working memory was not significant in any
of the domains or grades (see Table 4).

Inspection of Table 4 reveals a pattern with regard to
differences in the predictive value of visual-spatial work-
ing memory and verbal working memory within grades.
Within grades 2–4, visual-spatial and verbal working
memory were equally predictive for performance in all
four math domains (see Table 4 for ZH-scores for within
grade comparisons). In grades 5 and 6, however, the
predictive value of verbal working memory becomes
significantly larger than the predictive value of visual-
spatial working memory for level of performance in all
four domains.

Inspection of Table 4 also reveals several patterns of
differences between grades. The predictive value of
visual-spatial working memory for level of addition and
subtraction performance increases somewhat from grade
2 to grade 3, but then declines from grade 3 onwards for
all math domains, with standard estimates becoming
smaller and significance levels becoming higher or be-
coming non-significant (see Fig. 1 for a visual presenta-
tion of these results). The decline between grade 2 and
grade 6 in addition is significant, but in subtraction this
is not significant (see Table 5 for Z-scores from between
grade comparisons), but this is not surprising because of
the initial increase from grade 2 to grade 3. Therefore, in
the domains of addition and subtraction we also

Table 3 Unstandardized estimates for Univariate Multilevel Latent
Growth Models of math fluency for the total sample and for the grades
separately

Intercept Slope

Math domain mean variance mean variance

Addition

Overall model 22.98*** 37.11*** 1.18*** 1.02

Grade 2 16.15*** 15.36*** 1.21*** 2.83***

Grade 3 19.89*** 19.04*** 1.23*** 2.75***

Grade 4 23.32*** 17.59*** 1.43*** 1.21*

Grade 5 26.26*** 17.99*** 1.13*** 0

Grade 6 28.65*** 16.33*** 0.90*** 0.70

Subtraction

Overall model 20.24*** 40.03*** 1.09*** 1.17*

Grade 2 13.46*** 17.22*** 1.50*** 1.53***

Grade 3 17.64*** 21.98*** 1.21*** 1.47***

Grade 4 20.45*** 20.58*** 1.10*** 0.29

Grade 5 23.30*** 21.13*** 1.11*** 0.34

Grade 6 25.90*** 22.49*** 0.56*** 0

Multiplication

Overall model 21.30*** 37.82*** 0.85*** 1.43*

Grade 3 17.61*** 18.38*** 1.28*** 1.63***

Grade 4 20.45*** 22.87*** 0.86*** 1.20*

Grade 5 23.11*** 26.25*** 0.82*** 0.92

Grade 6 25.74*** 29.52*** 0.47*** 0.49

Division

Overall model 15.91*** 57.82*** 1.51*** 2.06*

Grade 3 10.22*** 23.25*** 2.08*** 3.45***

Grade 4 14.60*** 31.81*** 1.68*** 2.14**

Grade 5 18.11*** 37.97*** 1.56*** 2.10**

Grade 6 21.86*** 48.51*** 0.86*** 0.98

*** p < .001, ** p < .01, * p < .05
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compared standardized estimates between grades 3 and 6.
Indeed, from grade 3 to grade 6 the declines are signifi-
cant in each domain (see Table 5). The predictive value of
verbal working memory for level of performance shows
an opposite pattern, with standard estimates becoming
larger and significance levels becoming lower from grade
2 to grade 6 for addition and subtraction, or from grade 3
to grade 6 for multiplication and division. Although the
increases from the lowest to the highest grade are signif-
icant initially, some of the results fail to be significant
after Holm’s correction for multiple comparisons (see
Table 5) is applied. Interestingly, the predictive value of
verbal working memory shows a small dip in grade 4 for
the domains of subtraction and addition (see Fig. 1).

Growth rate in math fluency Visual-spatial working memory
significantly predicted children’s rate of change in

performance of addition in grade 2, but not in any of the other
grades or math domains. Verbal working memory was a
significant predictor of grade 2 children’s rate of change in
subtraction performance, but not in any of the other grades or
domains. However, although standardized estimates of the
relationships mentioned above were significant, the variance
explained in the slope failed to reach significance.

Covariance between visual-spatial and verbal working
memory The covariance between visual-spatial and ver-
bal working memory is significant in each grade (all p-
values < .001), but the strength of the relationship seems
to increase in higher grades, standard estimate = .22, .25,
.41, .39, .41 in grades 2, 3, 4, 5, and 6 respectively.
Fisher’s r-to-z transformation shows that this increase
from grade 2 to 6 is significant, Z = -4.4, p < .001 (after
Holm’s correction).

Table 4 Standardized estimates and explained variance (R2) of visual-spatial (VS) working memory and verbal (VE) working memory from multilevel
regression model to predict intercept and slope in math fluency, and difference between standardized estimates (ZH)

intercept slope

VS VE R2 ZH
a VS VE R2

Addition

Overall model .33*** .31*** .31*** - .02 -.00 .00

Grade 2 .14** .14* .05* 0.0 .14** -.00 .02

Grade 3 .18*** .19*** .08*** -0.2 -.01 -.01 .00

Grade 4 .16** .16** .07* 0.0 .06 .04 .01

Grade 5 .10 .24*** .08** -3.8*** - - -

Grade 6 -.01 .28*** .07** -8.2*** - - -

Subtraction

Overall model .33*** .33*** .32*** - -.14 -.00 .02

Grade 2 .14** .20** .07** -1.4 .03 .16* .03

Grade 3 .22*** .22*** .12*** 0.0 -.02 .04 .00

Grade 4 .18** .21*** .11** -0.8 - - -

Grade 5 .08 .25*** .09*** -4.6*** - - -

Grade 6 .05 .29*** .10** -6.8*** - - -

Multiplication

Overall model .24*** .27*** .19*** - -.05 -.00 .00

Grade 3 .18*** .10* .05** 1.9 .09 -.01 .01

Grade 4 .10 .13* .04 -0.8 -.09 .18 .03

Grade 5 .05 .17*** .04* -3.2** .14 -.07 .02

Grade 6 -.02 .24*** .05** -7.3*** .02 .19 .04

Division

Overall model .28*** .30*** .26*** - -.08 .03 .00

Grade 3 .22*** .15** .09** 1.7 .04 .02 .00

Grade 4 .17*** .17*** .08** 0.0 .03 .11 .01

Grade 5 .13* .21*** .08** -2.5* .01 .05 .00

Grade 6 .06 .29*** .10*** -6.6*** -.02 .23 .05

Two-sided p-values: *** p < .001, ** p < .01, * p < .05
aHolm’s correction for multiple comparisons has been applied
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Discussion

The aim of this article was to examine age-related changes in
the predictive value of visual-spatial and verbal working
memory for level and developmental change in mathematics
performance on addition, subtraction, multiplication, and di-
vision problems. The results indicate that visual-spatial and
verbal working memory predict individual differences in chil-
dren’s level of performance in each math domain, but are not
predictive of individual differences in growth rate over the
school year.

Our results provide strong evidence for the develop-
mental explanation. Overall, the predictive value of
visual-spatial working memory for level of performance
increases somewhat from grade 2 to grade 3 for addition

and subtraction, but declines from grade 3 onwards in all
math domains. Visual-spatial working memory is no lon-
ger a significant predictor of addition, subtraction, and
multiplication in grade 5, nor of division in grade 6. The
predictive value of verbal working memory, on the other
hand, increases from grade 2 onwards in each math do-
main, except for a temporary drop in grade 4 for addition
and subtraction. Until grade 4, visual-spatial and verbal
working memory are equally strong predictors of perfor-
mance, but in grades 5 and 6, verbal working memory
takes over. These results are in line with previous studies
indicating an age-related shift from visual-spatial repre-
sentations and strategies to verbal representations and
strategies (De Smedt et al., 2009; Geary et al., 2004). It
is sometimes assumed that direct retrieval of math facts
requires less working memory capacity (Ackerman, 1988;
Ackerman & Gianciolo, 2000; Geary et al., 2004), and it
has been shown that working memory is less involved in
arithmetic as children grow older, presumably as a result
of changes in strategy efficiency and selection (Imbo &
Vandierendonck, 2007). However, in our study, we found
no declining influence of working memory with age. In
contrast, the influence of verbal working memory in-
creased over age and the percentage of variance explained
by working memory remained stable from grade 2 to
grade 6. However, this could be a result of the speeded
nature of the arithmetic test that was used. Although
children all solved the same math problems, children
who solve math problems more efficiently (e.g., by direct
retrieval) will progress further through the test, encoun-
tering increasingly difficult problems, which probably
elicit more procedural strategies.

Our results do not provide evidence for differential contri-
butions from visual-spatial and verbal working memory to the

Table 5 Z-scores for comparison between lowest and highest grades of
standardized estimates indicating predictive value of workingmemory for
mathematical fluency in four domains

Grade 2 versus 6 Grade 3 versus 6

Visual-spatial WM

Addition 3.2** 4.0***

Subtraction 1.9 3.6***

Multiplication - 4.2***

Division - 3.4***

Verbal WM

Addition -3.1** -

Subtraction -2.0a -

Multiplication - -3.0**

Division - -3.1**

Two-sided p-values: *** p < .001, ** p < .01, a p-value of .045 > Holm’s
corrected p-value .025

Fig. 1 The predictive value of visual-spatial (left) and verbal (right) working memory for level of performance in the different grades per mathematical
domain
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different math domains. The changes in the relationships
across age between the two measures of working memory
and math performance are similar in all four math domains.
These results are in contrast with the findings of Van der Ven
et al. (2013), who did not find a decreasing age-trend for the
predictive value of visual-spatial working memory for multi-
plication and division. Based on our results, we assume that
the procedural strategies that are used in all domains impose a
load on visual-spatial working memory initially, but are re-
placed by verbal strategies and retrieval. Furthermore, there
are no clear indications that the timing of such replacement
differs between domains. An exploratory factor analysis re-
vealed that all four domains loaded onto one factor. Although
this may indicate that all four domains reflect math fluency,
children will not have memorized all the problems they
solved, and the different types of calculations may require
different abilities.

We found some evidence for the novelty explanation.
There was an initial increase from grade 2 to grade 3 in the
predictive value of visual-spatial working memory for perfor-
mance in addition and subtraction. However, we found no
peaks in the relationship between visual-spatial working
memory and performance in the grades in which that domain
was introduced. Although the grade 4 ‘dip’ in the predictive
value of verbal working memory for performance in addition
and subtraction was non-significant, it is clear that the predic-
tive value was stable between grades 3 and 5. However,
apparently in grade 4, addition and subtraction facts are au-
tomatized to a certain extent, where individual differences in
working memory play a smaller role. Increased attention for
rote learning may temporarily reduce the influence of individ-
ual differences in verbal working memory (Geary et al., 2004;
Imbo & Vandierendonck, 2007; Tronsky, 2005). In fact, the
predictive value of both visual-spatial and verbal working
memory was lowest in multiplication, which could reflect
the fact that verbal rote memorization is applied more often
for multiplication than for any of the other domains in the
school curriculum. Indeed, the Dutch government has set
attainment targets for primary mathematics education, which
have been formulated into indications for (the timing of)
specific content and activities by the Netherlands Institute
for Curriculum Development (Ministerie van Onderwijs,
Cultuur en Wetenschap, 2006). In grades 3 and 4,
increased attention for learning math facts is advised.
However, the fact that this ‘dip’ was not found in
multiplication and division may indicate that these do-
mains are less automatized in grade 4, perhaps because
they are introduced later. The data also suggest that
automatization for addition and subtraction waned in
the higher grades, since the predictive value of verbal
working memory increases again in grades 5 and 6.

Both visual-spatial and verbal working memory did not
predict individual differences in the rate of developmental

change in math performance. This is in contrast with previous
studies, in which working memory was found to be predictive
of mathematics achievement growth during primary school
(Hecht, Torgesen, Wagner, & Rashotte, 2001; Swanson,
Jerman, & Zheng, 2008). However, these studies modeled
growth over longer periods of time (e.g., first to fifth grade),
while in our study growth within one school year was
modeled. In some domains, such as addition and subtraction,
older children did not differ in their rate of change. However,
in other domains, children did differ significantly in their rate
of change, but perhaps that individual variation in the rate of
change was too small over such a short period of time to find a
relationship with working memory. It might also be possible
that while individual variation in the level of mathematics
performance is influenced largely by individual differences
in cognitive processes, developmental change during the
school year(s) is influenced mainly by classroom factors, such
as the quality of instruction given by the teacher or the time
spent on rote learning in a classroom (Crosnoe et al., 2010). In
line with this, a study by Geary et al., (1996) showed that
Chinese students showedmore improvement on direct retriev-
al strategies, which in large part could be explained by a larger
quantity of instruction and exposure to math in Chinese
schools.

Another interesting finding is that the strength of the
relationship between visual-spatial and verbal working
memory increased with age. Previous studies found
mixed results with regard to this issue (Alloway,
Gathercole, & Pickering, 2006; Gathercole, Pickering,
Ambridge, & Wearing, 2004). Whereas Alloway and
colleagues (2006) did find the strength of the associa-
tion between verbal and visual-spatial short term mem-
ory to increase with age, Gathercole et al. (2004) did
not. Alloway et al. (2006) believe their findings indicate
that older children increasingly use verbal labels to
recode even visual information, although the other way
around could also be argued – that children visualize
verbal information during working memory tasks.

Interestingly, while individual differences in level of per-
formance increased over grades in all domains, except addi-
tion, individual differences in rate of growth decreased over
grades in all four domains. So our data indicates that students’
arithmetical problem-solving is more similar to one another at
the beginning of primary school, and that individual differ-
ences become larger over the school years with some students
showing faster rate of growth than others. Despite such indi-
vidual differences, however, rate of growth becomes more
comparable between children over the school years, indicating
that individual differences at the end of primary school be-
come more stable. These findings may reflect developmental
processes, but also show how changes in math education are
deployed throughout primary school grades. It is known that
early numeracy, during the first primary school years,
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provides an important base for later mathematical learning and
thinking (Siegler, 2009; Toll & Van Luit, 2014). Perhaps more
attention is paid to individual differences and remediation at
the beginning of primary school, while in higher grades indi-
vidual differences may be considered more crystallized and
taken as a given. However, since these comparisons are par-
tially cross-sectional, it may well reflect increased awareness
for tailoring education to individual differences and needs.
Perhaps children in grade 6 started primary school at a time
when it was still more standardized practice to bring all
students to the same level of performance.

This study has several strengths and weaknesses that are
worth mentioning. The strengths are the large sample size and
inclusion of children from a wide range of grades, making it
possible to systematically examine the changes in predictive
value of working memory for mathematics throughout prima-
ry school. A limitation of this study is that visual-spatial and
verbal working memory were each assessed with only one
test. Also, although we tried to minimize the influence of
reading ability, it is possible that individual differences in
reading ability influenced performance on the Monkey game.
Future studies may use several tests for each component, and
use a latent variable approach for more reliable measurement.
Another limitation is that only a speeded arithmetic test was
used, which is a limited measure of mathematics performance.
This timed element of the test may have increased the influ-
ence of processing speed, which also plays a role in perfor-
mance on working memory tests (Conway, Cowan, Bunting,
Therriault, & Minkoff, 2002), and may therefore have con-
founded associations between the two. On the other hand, our
results are similar to findings from other studies in which no
timed math tests were used (De Smedt et al., 2009; Geary
et al., 2004), and we would expect processing speed to influ-
ence both visual-spatial and verbal working memory tasks.
Therefore, processing speed as a possible confounding factor
cannot account for the age-related shift that was found. Future
studies should also include other types of math tests, in which
a broader range of mathematics abilities are assessed. Finally,
althoughwe used a longitudinal design, the period of the study
was too short to find a large enough variation in the rate of
growth over the school year. In future research, longitudinal
measures over longer periods of time (e.g., several school
years) are recommended.
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