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Abstract The judgement of relative order (JOR) procedure
is used to investigate serial-order memory. Measuring re-
sponse times, the wording of the instructions (whether the
earlier or the later item was designated as the target) reversed
the direction of search in subspan lists (Chan, Ross, Earle, &
Caplan Psychonomic Bulletin & Review, 16(5), 945–951,
2009). If a similar congruity effect applied to above-span lists
and, furthermore, with error rate as the measure, this could
suggest how to model order memory across scales. Partici-
pants performed JORs on lists of nouns (Experiment 1: list
lengths = 4, 6, 8, 10) or consonants (Experiment 2: list lengths
= 4, 8). In addition to the usual distance, primacy, and recency
effects, instructions interacted with serial position of the later
probe in both experiments, not only in response time, but also
in error rate, suggesting that availability, not just accessibility,
is affected by instructions. The congruity effect challenges
current memory models. We fitted Hacker’s (Journal of Ex-
perimental Psychology: Human Learning and Memory, 6(6),
651–675, 1980) self-terminating search model to our data and
found that a switch in search direction could explain the
congruity effect for short lists, but not longer lists. This sug-
gests that JORs may need to be understood via direct-access
models, adapted to produce a congruity effect, or a mix of
mechanisms.

Keywords Memory for order . Serial position effects .

Memorymodels . Congruity effect

Introduction

In remembering everyday information, such as a telephone
number, a route, or a sequence of events, order is central
(Lashley, 1951). A relatively simple test of memory for order
is the judgement of relative order (JOR) procedure (Butters,
Kaszniak, Glisky, Eslinger, & Shacter, 1994; Chan, Ross,
Earle, & Caplan, 2009; Fozard, 1970; Hacker, 1980; Hockley,
1984; Hurst & Volpe, 1982; Klein, Shiffrin, & Criss, 2007;
McElree & Dosher, 1993; Milner, 1971; Muter, 1979; Naveh-
Benjamin, 1990; Wolff, 1966; Yntema & Trask, 1963). Illus-
trated in Fig. 1, the JOR procedure tests memory for relative
order without requiring participants to produce the items from
memory. The wording of a JOR question typically takes a
form like, “Which of two people left the party more recently?”
A logically equivalent form of this question could be “Which
of two people left the party earlier?”Because, formally, all that
has changed is that the target became the nontarget and vice
versa, one might presume that these “earlier” and “later”
instructions test the same information in memory. Perhaps this
is why few studies have compared these instructions. The vast
majority have used a recency instruction—hence, the term,
judgement of relative recency (the origin of the acronym,
JOR). However, instructions do influence JOR performance
on both supra- and subspan lists. Flexser and Bower (1974)
found that their distant instruction had worse overall accuracy
than their recency instruction. More specifically, Chan et al.
(2009) found that participants’ behavior on subspan lists
resembled backward, self-terminating search for a later in-
struction, consistent with previous findings (Hacker, 1980;
Muter, 1979), but forward, self-terminating search for an
earlier instruction. Here, we ask whether this congruity effect

Electronic supplementary material The online version of this article
(doi:10.3758/s13421-014-0426-x) contains supplementary material,
which is available to authorized users.

Y. S. Liu (*) :M. Chan
Department of Psychology, University of Alberta, Edmonton,
AB T6G 2E9, Canada
e-mail: ly6@ualberta.ca

J. B. Caplan
Department of Psychology and Centre for Neuroscience, University
of Alberta, Edmonton, Alberta, Canada

Mem Cogn (2014) 42:1086–1105
DOI 10.3758/s13421-014-0426-x

http://dx.doi.org/10.3758/s13421-014-0426-x


is confined to subspan lists or generalizes to longer, supraspan
lists.

Figure 2c illustrates how hypothetical response time data
would look for a forward, self-terminating search strategy.
The vertical axis plots the behavioral measure; for illustration
purposes, we label it “error rate” or “response time,” because
speed–accuracy trade-offs notwithstanding (and we found
none in our data), one would expect response time and error
rates to vary in the same direction as one another. The left
horizontal axis plots the serial position of the earlier probe
item, and the right horizontal axis plots the serial position of
the later probe item. Note that the later-item serial position is
plotted in descending order to minimize the bars occluding
one another. In forward, self-terminating search, response
time/error rate increases as a function of the earlier probe
serial position, whereas the later probe serial position has no
influence on response time/error rate. The opposite pattern is
expected for backward, self-terminating search, where re-
sponse time/error rate increases when the later probe serial
position decreases (Fig. 2d). The effect of instruction can be
most clearly visualized if we plot the difference between the
earlier and later instruction data (Fig. 2e).

We already know that JORs for supraspan lists are qualita-
tively quite different, and two important findings may suggest
that we would not find a congruity effect at longer list lengths:
(1) a distance effect (Fig. 2a), whereby judgements are better
(faster and more accurate) as the difference in serial positions
(distance) of the two probe items increases (e.g., Bower, 1971;
Yntema & Trask, 1963), similar to the symbolic distance
effect (e.g., Banks, 1977; Holyoak, 1977; Moyer & Landauer,
1967), and (2) an inverted U-shaped serial position effect,
made up of a primacy and recency effect (Fig. 2b) (e.g.,
Hacker, 1980; Jou, 2003; Muter, 1979; Yntema & Trask,
1963). Chan et al.’s (2009) congruity effect was found for
response times, suggesting that instruction influenced access
speed as a function of serial position. For supraspan JORs,
error rate is also a useful dependent measure. As list length
increases above span, error rate increases; in an extreme case,
with a list length of 90 words, accuracy approached chance
levels, rising to 60 % accuracy only for very large lags

(distance of 36 words; Klein et al., 2007). Primacy and recen-
cy effects may seem at odds with self-terminating search
models that are reasonable accounts of subspan data (Chan
et al., 2009). However, Hacker (1980) suggested that, in the
case of imperfect item memory, U-shaped serial position
effects due to item memory might distort self-terminating
search patterns in JORs, an idea he incorporated into his
self-terminating search model. The distance effect is also
incompatible with self-terminating search, because the posi-
tion of the unreached probe item should not affect the outcome
of the JOR decision. These arguments might lead one to
expect no congruity effect in long lists.

On the other hand, there are reasons to expect there should
be a congruity effect at long list lengths. Evidence suggests
there is no clear distinction between short- and long-term
order memory (McElree, 2006). Moreover, Muter (1979)
found a backward self-terminating search pattern extending
to lists of 10 items (supraspan). Hacker’s (1980) data did not
show obvious break points of his “availability” parameter
(representing item memory) that could have distinguished a
working memory from a long-termmemory. This is consistent
with extensive evidence suggesting that memory is scale
invariant (Brown, Neath, & Chater, 2007; Crowder, 1982;
Howard & Kahana, 1999; Nairne, 2002). We suggest that it
is possible that both long and short list lengths are governed
by the samememorymechanisms and that the congruity effect
will generalize from short to longer list lengths.

In addition, the self-terminating search model has been
fitted to long-list JOR data with success (Hacker, 1980;
McElree & Dosher, 1993). It is possible that a self-
terminating search model operating in the forward, rather than
the backward, direction could explain the earlier instruction
data and, thus, account for the congruity effect. Thus, the
earlier instruction might induce a dominant primacy effect
even for longer lists. In serial-recall procedures, forward recall
shows a dominant primacy effect, whereas backward recall
shows a dominant recency effect (Beaman, 2002; Hulme
et al., 1997; Li et al., 2010; Li & Lewandowsky, 1993,
1995; Madigan, 1971; Richardson, 2007; Rosen & Engle,
1997; Thomas, Milner, & Haberlandt, 2003), suggesting that
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Fig. 1 Time course of one example experimental trial in Experiment 1
(list length = four nouns) with both instructions. At test, two nouns from
the list are presented in random order, and the participant is asked to
respond to the probe stimulus that occurred earlier (“earlier” instruction)

or later (“later” instruction) in the just-presented list. The correct response
item is depicted on a dark background in this figure only, not in the
experiment itself. The keyboard key that the participant would press to
select each probe item is depicted underneath the probe items
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if forward search is based on serial recall, this kind of mecha-
nism might be applicable even for longer lists. At present,
published studies of supraspan JORs have mainly used a
recency instruction to look at serial-position effects, similar to
our later instruction (Butters et al., 1994; Chan et al., 2009;
Fozard, 1970; Hacker, 1980; Hockley, 1984; Hurst & Volpe,
1982; Klein et al., 2007;McElree&Dosher, 1993;Milner, 1971
Muter, 1979; Naveh-Benjamin, 1990; Wolff, 1966; Yntema &
Trask, 1963). Wyer, Shoben, Fuhrman, and Bodenhausen
(1985) used both sooner and later instructions with probes
derived from a social-action script (e.g., going to a restaurant)

and found a response time congruity effect, but not for events
that were specific to the example story. A similar response time
congruity effect was found for personal life events in a subset of
experimental conditions (Fuhrman & Wyer, 1988). These con-
gruity effects for action scripts and personal life events may
reflect supraspan phenomena, but both types of material are
arguably tapping into semantic, not episodic, temporal order.
We wondered if the JOR congruity effect would generalize
above span, with response time as the measure.

Since we expected error rate to be an informative depen-
dent measure for these lists, we wondered whether instruction

Fig. 2 Schematic depictions of hypothesized serial position effects. The
dependent measure (error rate or response time) is plotted as a function of
both the earlier probe item’s serial position (“Earlier Item”) and the later
probe-item’s serial position (“Later Item”). a Serial position effects ex-
pected due to the distance effect. b Serial position effects expected due to
the primacy and recency effects. c Serial position effects for forward, self-
terminating search, as was found in subspan lists using the “earlier”
instruction (Chan, Ross, Earle, & Caplan, 2009). d Serial position effects
for backward, self-terminating search, as was found in subspan lists using

the “later” instruction (Chan et al., 2009). e The difference between (a)
and (b), which we use to isolate the congruity effect. f Our hypothesized
serial position effects for the “earlier” instruction for supraspan lists: an
average of recency, distance, and instruction-based bias across the list. g
Our hypothesized serial position effects for the “later” instruction, as an
average of recency, distance, and instruction-based bias across the list.
Note that the hypothesis for the difference between instructions for
supraspan lists remains as in (e), except that edge effects are expected
to produce bow-shaped, rather than linear, congruity effects
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would affect the quality of information in memory
(availability), measured by error rate, or just accessibility,
measured by response time. An error rate congruity effect
has been found in autobiographical order tasks with yes/no
judgements (Skowronski et al., 2007; Skowronski, Walker, &
Betz, 2003); however, participants’ confirmation bias (toward
selecting “yes” rather than “no”) might underlie that result.We
found no clear published error rate congruity effect for
temporal-order memory, although error rate congruity effects
have occasionally been found for perceptual comparative
judgements (Petrusic, 1992). We therefore hypothesized that
a similar congruity effect would be observed in supraspan
JOR data, but with the addition of recency, primacy, and
distance effects, with both response time and error rate as
measures. If we assume that the primacy, recency, and dis-
tance effects are approximately constant between instructions,
we can isolate the congruity effect by analyzing the difference
between instructions (Fig. 2e), which would then look similar
to that observed in subspan response time data (Chan et al.,
2009). We test these hypotheses in two experiments, always
manipulating instruction between subjects. Experiment 1 used
lists of nouns and manipulated list length (4, 6, 8, and 10)
within subjects. Experiment 2 used consonant lists and ma-
nipulated list length (4 and 8) between subjects. The experi-
ments produced similar results, suggesting broad boundary
conditions for the congruity effect. Experiment 2 used the
same materials and presentation rate as Chan et al.’s
experiment.

To broaden the theoretical implications of our results, we
evaluated our findings with respect to Hacker’s (1980) self-
terminating search model. Hacker developed this model spe-
cifically to explain JORs, but it has not been tested on the
congruity effect. We hypothesize that the congruity effect can
be explained by a difference in the direction of search associ-
ated with each instruction. Participants may perform forward,
self-terminating search with the earlier instruction, and back-
ward, self-terminating search with the later instruction, and
we test this with fits of models based on Hacker’s model after
presenting the results of both experiments. We also discuss
whether other existing memory models for the JOR paradigm
could account for the congruity effect in their current form or
could be easily adapted to do so.

Experiment 1

Method

Participants

Fourteen participants were recruited from the University of
Alberta community. Participants gave informed consent and
were paid at a rate of $12 for each of five 1-h sessions,

conducted on 5 consecutive days. All had normal or
corrected-to-normal vision and had learned English before
the age of 6. Participants were randomly assigned to the
earlier or later group in alternating testing order. One partic-
ipant in the later instruction did not attend the last session, so
for that participant, only the first four sessions were included
in the analyses.

Materials

The stimuli were 1,316 nouns generated from the MRC Psy-
cholinguistic Database (Wilson, 1988) with word length re-
stricted to three to eight letters, two syllables, and Kučera–
Francis written frequency above 6 per million, displayed in all
capital letters. Nouns that we subjectively determined might
be confused with verbs were manually removed from the list.
Each trial was randomly drawn from list length 4, 6, 8, and 10,
counterbalanced within session. There was no within-session
repetition of words, but words were reused across sessions.
All participants were tested using an A1207 iMac computer
with an Apple Macintosh A1048 Pro keyboard.

Procedure

The experiment was implemented with the Python
Experiment-Programming Library (PyEPL; Geller, Schleifer,
Sederberg, Jacobs, & Kahana, 2007) and modified from Chan
et al.’s (2009) experiment (Fig. 1). Probes were pairs of items
drawn from the just-presented list, and all possible combina-
tions were equally probable and counterbalanced within sub-
jects and within list length. Participants in the two groups
received slightly different instructions: (1) excerpt from the
earlier instruction: “. . . judge which of the two nouns came
earlier on the list you just studied. Press the ‘/’ key if the earlier
item is presented on the right side of the screen and the ‘.’ key
if the earlier item is on the left side of the screen. . . ” (2)
Excerpt from the later instruction: “. . . judge which of the two
nouns came later on the list you just studied. Press the ‘/’ key if
the later item is presented on the right side of the screen and
the ‘.’ key if the later item is on the left side of the screen. . . .”
Participants were instructed to respond as quickly as they
could without compromising accuracy. A session consisted
of nine blocks with 20 trials in each block. The first block of
each session was a practice block, excluded from analyses,
composed of 8 trials, to familiarize (or refamiliarize) partici-
pants with the task. The computer provided immediate accu-
racy feedback after each trial in practice block (“correct” or
“incorrect”), and average response time (in milliseconds) and
accuracy (percentage correct) at the end of each experimental
block. Each trial began with a fixation asterisk, “*,” in the
center of the screen, followed by a word list presented sequen-
tially in the center of the screen. Items were presented for
1,500 ms each with an interstimulus interval (ISI) of 175 ms.
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This is slower than the rate Chan et al. used (575-ms presen-
tation time and 175-ms ISI), due to the greater stimulus
complexity of nouns, than consonants (e.g., Sternberg,
1975). After a 2,500-ms delay, participants were presented
with a single probe consisting of two words from the just-
presented list and were asked which itemwas presented earlier
or later, depending on group, by pressing the “.” key (for the
left-hand probe item) or the “/” key (for the right-hand probe
item). After a 500-ms delay, participants could press a key to
start the next trial.

Data analysis

Trials with response times less than 200 ms and above three
standard deviations from a participant’s mean response time
were removed from the data (1.3 % of responses). A linear
mixed effects (LME) model (Baayen, Davidson, & Bates,
2008; Bates, 2005) was used to analyze our data. We adopted
LME analysis because, as compared with ANOVA, LME
handles unbalanced designs, can fit individual responses with-
out the need for averaging of the data, and protects against
type II error due to increased power (Baayen et al., 2008;
Baayen & Milin, 2010). LME analyses were conducted in R
(Bates, 2005), using the LME4 (Bates & Sarkar, 2007),
L a n g u a g e R ( B a a y e n , 2 0 0 7 ) , a n d
LMERConvenienceFunctions (Tremblay, 2013) libraries.
The “lmer” function was used to fit the LME model. The
“pamer.fnc” function was used to calculate the p values of
model parameters. Eight fixed factors were used as predictors,
including instruction (earlier, later), linear and quadratic com-
ponent of later probe serial position (serial position of the
probe item that appeared later from the presented list), dis-
tance (absolute value of the difference between two probe’s
serial positions), intact/reverse (whether probe order was con-
sistent or inconsistent with presentation order, respectively),
trial number, session number, and list length. The linear and
quadratic components of the later probe serial position are
orthogonal to each other, generated with the “poly” function in
R. We included the quadratic term to account for expected
primacy and recency effects. Participant was included as a
random effect on intercept. Instruction and intact/reverse were
treated as categorical factors. All other factors were scaled and
centered before being entered in the model. Response time
was analyzed for correct trials only and was log-transformed
to reduce skewness. The error rate data were fitted with
logistic regression since it is a binary variable (“correct” vs.
“incorrect”). LME estimates random effects first, followed by
fixed effects. In the results tables, the “Estimate” column
reports the corresponding regression coefficients, along with
their standard errors. For the purposes of reporting the LME
results, the intact condition and the earlier instruction were set
as the reference levels for the intact/reverse and instruction
factors, respectively. The best fits of LME models were

obtained by conducting a series of iterative tests comparing
progressively simpler models with more complex models
using the Bayesian information criterion (BIC). We used
BIC because it penalizes free parameters more than the
Akaike information criterion (AIC), making it conservative
and resistant to overfitting (Motulsky & Christopoulos, 2004;
Zuur, Leno, Walker, Saveliev, & Smith, 2009). This approach
is adopted to remove interactions and variables that do not
explain a significant amount of variance (Baayen et al., 2008).
We used the LMERConvenienceFunctions (Tremblay, 2013)
library to conduct fitting of fixed effects systematically. In this
approach, for each condition, we started with a model that
included all factor combinations and interactions, with two
exceptions. (1) The quadratic component of later probe serial
position was not allowed to interact with the linear component
of later probe serial position because both were derived from
the later probe serial position. (2) Any interaction term for
which one or more levels had no data was not included.
Starting with the complete model, the highest-order terms
are considered first, progressing to the lowest-order terms.
At each stage, considering a given order of interaction, the
term with the lowest p value is identified, and a model without
this term is compared with the original model using BIC. The
term is kept if it improves BIC based on a threshold of 2 or if
the term is also contained within a higher-order interaction.
When all terms are tested for the highest-order interaction, the
comparison process continues to the term with lowest p value
in the next highest-order interaction, and so on. The process
iterates until all interaction terms have been tested, ending
with main effects (Tremblay, 2013).

Results and discussion

Error rate and response time, averaged across participants, are
plotted as functions of serial position of the earlier and later
probe items in Figs. 3 and 4. We isolated the congruity effect
by plotting the difference between the earlier and later in-
structions after first removing the overall mean for each par-
ticipant (right-hand columns). The best-fitting LME model is
reported in Tables 1 and 2. To better visualize the pattern of
serial-position effects, the overall mean was removed to cor-
rect for the mean difference between the earlier and later
instructions.

Error rates

First, we replicated the known effects of bow-shaped serial-
position effects and distance effects. At all list lengths and for
both instructions, the error rate data (Fig. 3) showed a distance
effect (Fig. 2a), supported by a significant main effect of
distance, and a bow-shaped serial-position effect involving
both primacy and recency (Fig. 2b), supported by significant
quadratic component of the later probe serial position in the
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best-fitting LME model (Table 1). The later instruction
(Fig. 3, middle column) broadly resembled the earlier instruc-
tion (Fig. 3, left-hand column), except that the recency effect
was more pronounced for the later instruction.

We next asked whether, despite the presence of distance
and serial-position effects, there might also be a congruity

effect. The difference bar graph (Fig. 3, right-hand column)
shows that instruction indeed interacted with probe serial
positions, supported in the LME analysis by interactions be-
tween instruction and the linear component of later probe
serial position (Table 1). This interaction was due to the
earlier instruction producing better performance at earlier

Fig. 3 Error rate (Experiment 1) as a function of both probe items’ serial position (earlier item and later item, respectively) broken down by list length in
rows, and instruction (earlier, later and the difference, earlier − later, corrected for mean error rate) in columns
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serial positions and the later instruction producing better
performance at later serial positions, in line with our predicted
congruity effect (Fig. 2e).

Additional findings of interest that emerged from the best-
fitting LME model were main effects of list length, intact/
reverse, trial, and session. More error was associated with

greater list length, reverse probe presentation order, lower trial
number, and lower session number.

Importantly, list length did not interact with the congruity
effect, suggesting that the congruity effect on error rate is
replicated at all list lengths and does not change substantially
across our four list lengths. We found a significant trial ×

Fig. 4 Response time (Experiment 1) as a function of both probe items’ serial position (earlier item and later item, respectively) broken down by list
length in rows, and instruction (earlier, later, and the difference, earlier − later, corrected for mean response time) in columns
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session interaction. The interaction is consistent with learning-
to-learn effects; larger trial numbers have fewer errors, and
this effect is reduced in later sessions. Importantly, trial and
session both did not interact with the congruity effect, show-
ing that the congruity effect generalizes across these factors.

Finally, a significant interaction was found for instruction ×
intact/reverse. This is a second kind of congruity effect be-
tween instruction and reading order: Intact probes were judged
better for the earlier instruction and worse for the later in-
struction. Reverse probes had the opposite relationship to
instruction. If participants read from left to right, this would
indicate better performance when the target was read first.

Response times

First, as with error rate, for all list lengths and both instruc-
tions, the response time data (Fig. 4) had significant distance
and bow-shaped serial-position effects (Fig. 2a), supported by
a significant main effect of distance and the quadratic compo-
nent of later probe serial position, respectively, in the best-
fitting LME model (Table 2).

Turning to the congruity effect, as with error rate, the
difference bar graph (Fig. 4, right-hand columns) shows the
predicted congruity effect, supported in the LME analysis by
significant interactions between instruction and the linear
component of later probe serial position (Table 2). Again, in

line with our predicted congruity effect (Fig. 2e), the earlier
instruction produced better performance at earlier serial posi-
tions, and vice versa for the later instruction.

We further checked whether the congruity effect was qual-
ified by significant three-way interactions in the best-fitting
LMEmodel. The three-way instruction × linear component of
later probe serial position × distance interaction showed that
increasing distance was associated with a decrease in the slope
of the linear component of later probe serial position for both
instructions (see Fig. 1 in the supplementary materials). How-
ever, the rate of the linear component of later probe serial
position function’s slope decrease was steeper for the earlier

Table 1 Best-fitting LME model for Experiment 1 error rate

Estimate (SE)

Main effects

Intercept −2.99 (0.29)∗

Intact/reverse 0.531 (0.090)∗

Later probe serial position (quadratic) −51.4 (5.7)∗

Instruction 0.61 (0.39)

Distance −0.612 (0.061)∗

Trial −0.082 (0.032)∗

List length (LL) 1.225 (0.055)∗

Session 0.086 (0.032)∗

Later probe serial position (linear) −79.8 (8.0)∗

Interactions

Intact/reverse × instruction −1.32 (0.13)∗

Trial × session 0.122 (0.032)∗

Instruction × later probe serial position (linear) −35.4 (6.9)∗

Distance × later probe serial position (linear) 26.5 (5.3)∗

LL × later probe serial position (linear) 42.4 (6.0)∗

Note. The congruity effect is in bold. The “Estimate” column reports the
corresponding regression coefficient, along with its SE (standard error).

Significant effects are denoted *p < .05

Table 2 Best-fitting LME model for Experiment 1 response time

Estimate (SE)

Main effects

Intercept 7.24 (0.072)∗

List length (LL) 0.277 (0.011)∗

Instruction 0.01 (0.10)

Intact/reverse 0.038 (0.013)

Trial −0.0147
(0.0063)∗

Distance −0.125 (0.012)∗

Session −0.141 (0.006)∗

Later probe serial position (linear) −17.5 (1.5)

Later probe serial position (quadratic) −18.1 (1.3)∗

Interactions

LL × instruction 0.056 (0.013)∗

LL × distance −0.015 (0.011)

LL × session 0.0300 (0.0063)∗

LL × later probe serial position (linear) 10.7 (1.2)∗

Instruction × intact/reverse −0.082(0.018)∗

Instruction × trial −0.03217
(0.0089)∗

Instruction × distance 0.089 (0.016)∗

Instruction × session −0.0842
(0.0089)∗

Instruction × later probe serial position (linear) −13.7 (1.7)∗

Trial × session 0.0190 (0.0045)∗

Distance × later probe serial position (linear) 7.7 (1.2)

Session × later probe serial position (linear) −2.65 (0.62)∗

LL × later probe serial position (quadratic) 3.25 (0.76)∗

Instruction × later probe serial position (quadratic) 10.9 (1.25)∗

Instruction × distance × later probe serial position
(linear)

−6.1 (1.2)∗

LL × instruction × later probe serial position
(quadratic)

−6.3 (1.0)∗

Note. The congruity effect is in bold. The “Estimate” column reports the
corresponding regression coefficient, along with its SE (standard error).

Significant effects are denoted *p < .05
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instruction than for the later instruction. The differential rate
of slope decrease, thus, does not contradict the congruity
effect. The instruction × quadratic component of later probe
serial position × list length interaction showed a pattern of
decreasing quadratic component of later probe serial-position
slope for the later instructions and increasing quadratic com-
ponent of later probe serial-position slope for the earlier
instruction, as list length increases (see Fig. 2 in the supple-
mentary materials). This interaction suggests that the differ-
ence in the primacy and recency effects between instructions
decreases as list length increases.

Similar to the error rate results, we found trial × session and
instruction × intact/reverse interactions. Instruction also
interacted with trial, session, and distance. Response time in
the later instruction improved more with practice than that in
the earlier instruction. The later instruction also had a smaller
distance effect than the earlier instruction. List length
interacted with instruction, session, and later probe serial
position. To summarize this effect, increasing list length was
associated with longer response times for the later instruction,
higher session number, and larger later probe serial position.

In sum, Experiment 1 replicated the typical primacy, recen-
cy, and distance effects (Hacker, 1980; Jou, 2003; Muter,
1979; Yntema & Trask, 1963) and extended Chan et al.’s
(2009) congruity effect finding from subspan (e.g., list length
4) to supraspan (up to list length 10) data. The congruity effect
appeared in both error rate and response time measures.

Experiment 2

One potential confound in Experiment 1 is that participants
were given four list lengths, intermixed. It is possible that that
the congruity effect is, in fact, a subspan—not supraspan—
phenomenon but that the inclusion of some subspan lists (list
length 4) influenced participants to apply a subspan strategy to
supraspan lists. Thus, perhaps our congruity effect in
supraspan lists is a special case. To address this, list length
was a between-subjects factor in Experiment 2. In addition, to
test for boundary conditions of the congruity effect, we
switched from nouns to consonants and to a faster presentation
rate (similar to the one used by Chan et al., 2009). If the
congruity effect were found regardless of practice effects,
stimulus type, and presentation rate, the generality of the
congruity effect would be further supported.

Method

Participants

A total of 385 undergraduate students from introductory
psychology courses at the University of Alberta

participated in exchange for partial course credit. Partici-
pants gave informed consent, had normal or corrected-to-
normal vision, and had learned English before age 6. We
included two between-subjects factors: list length (4, 8) ×
instruction (earlier, later). Participants were run in groups
of about 10–15, with all participants within a testing group
being assigned to a single experimental group; experimen-
tal group cycled across testing groups. Forty-four partici-
pants were excluded because their error rate was close to
chance (≥40 %). The number of excluded versus included
participants in each condition is summarized in Table 5.

Materials

The materials were the same as those used by Chan et al.
(2009). The stimuli were 16 consonants (excluding S, W, X,
and Z) from the English alphabet displayed in capital letters.
Each list comprised 4 or 8 (depending on group) consonants
drawn at random without replacement from the stimulus pool,
with the restriction that they did not appear in the two preced-
ing lists. Probability was equal for each consonant/serial-
position combination. All participants were tested using a
group of 15 computers (custom-built PCs) with identical
hardware, identical Samsung SyncMaster B2440 monitors,
and Logitech K200 keyboards. Therefore, both instruction
groups were exposed to the same hardware precision variabil-
ities (Plant & Turner, 2009); thus, we do not expect any bias in
our between-subjects design.

Procedure

The experiment was again created and run using the Python
Experiment-Programming Library (Geller et al., 2007). A
single session lasted approximately 1 h. The session started
with a practice block of 8 trials, followed by nine blocks of 20
trials each for list length 4, and six blocks of 20 trials each for
list length 8. The different number of blocks ensured that all
participants could finish within 1 h. The computer provided
online correctness feedback after each trial in practice block
(“correct” or “incorrect”) and average response time (in mil-
liseconds) and accuracy (percentage correct) at the end of each
block. The instructions were the same as in Experiment 1,
except that the word “nouns”was replaced with “consonants.”
For each trial, participants were first presented with a fixation
asterisk, “*,” in the center of the screen, then followed by a
consonant list that was presented sequentially on the center of
the screen, with list items presented for 575 ms each with an
ISI of 175 ms. After a 2,500-ms delay, participants were
presented with a two-item probe that consisted of two conso-
nants from the just-presented list and were asked which item
was presented earlier/later in the list by pressing the “.” (for
the left-hand item) or “/” key (for the right-hand item). Each
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response was followed by a 500-ms delay before participants
could press any key to start the next trial.

Data analysis

Trials with response times less than 200 ms and above
three standard deviations from a participant’s mean re-
sponse time were removed from the data (1.35 % of all
trials). We adopt the same data representation as in Exper-
iment 1. Error rate and response time (correct trials) data
were analyzed at each list length separately.

Results and discussion

Error rates

First, because performance was near ceiling, we could not
analyze error rates at list length 4 (Fig. 5, top row) in any
meaningful way. Out of 171 participants for both list length 4
earlier and later instructions, 89 participants had overall ac-
curacy greater than 95 %, and only 18 participants scored
below 90 %. We restrict our error rate analyses to list length
8 only.

The list length 8 data (Fig. 5, bottom row) showed a
congruity effect consistent with the pattern observed in Ex-
periment 1 (Fig. 2e), with the earlier instruction resulting in
more errors than the later instruction as later probe serial
position increased, supported by a significant instruction ×

later probe serial position (linear component) interaction in the
best-fitting LME model (Table 4). For this LME model-
selection, based on the BIC values, we cannot differentiate
the lowest BIC model that included instruction × later probe
serial position (the congruity effect) and the same model
without the congruity effect term, because Δ BIC< 2. How-
ever, because the model that included the congruity effect was
nominally better by the BIC, we further compared the two
models using other fitness criteria. The model that included
the congruity effect was reliably selected on the basis of both
AIC and log-likelihood (Table 3). For this reason, we report
the model including the congruity effect. Importantly, the
congruity effect did not interact significantly with trial, dis-
tance, or intact/reverse, suggesting that it generalizes across
these factors (Tables 4 and 5).

One can observe an overall recency effect at both list
lengths (Fig. 5), supported by significant later probe serial
positionmain effect in the LMEmodel, showing that error rate
decreased as later probe serial position increased. The distance
effect (Fig. 2a) was also found, supported by a significant
main effect of distance in the best-fitting LME model. There
was also a significant main effect of intact/reverse and of
instruction; intact probes were better judged than the reverse
probes, again suggesting a reading-order effect. Probes in the
earlier instruction were better judged than in the later instruc-
tion. This is despite more poor performers having been ex-
cluded for the later instruction (Table 5); thus, this indicates an
overall advantage of the earlier instruction over the later

Fig. 5 Error rate (Experiment 2) as a function of both probe items’ serial position (earlier item and later item, respectively) broken down by list length in
rows and instruction (earlier, later, and the difference, earlier − later, corrected for mean error rate) in columns
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instruction. Replicating Experiment 1, the intact/reverse ×
instruction congruity effect was also significant; intact probes
were judged better for the earlier instruction and worse for the
later instruction. Reverse probes had the opposite relationship
to instruction.

Response time

First, as with Experiment 1 error rates and response time
results, visual inspection of list length 4 earlier instruction
found a pattern consistent with forward self-terminating
search (Fig. 2c) and list length 4 later instruction found a
pattern consistent with backward self-terminating search, in
line with Chan et al.’s (2009) results. For list length 8, the
earlier instruction pattern resembled a distance effect with an
overall primacy and recency effect (Fig. 2f). The later instruc-
tion resembled a backward self-terminating pattern combined
with distance, primacy, and recency effects (Fig. 2g). The
distance, primacy, and recency effects for both list lengths
are supported by a significant main effect of distance and

quadratic component of later probe serial position, respective-
ly, in the best-fitting LME models.

Again, replicating the Experiment 1 results, the response
time data for both list length 4 and list length 8 (Fig. 6) showed
a congruity effect (Fig. 2e). The congruity effect is supported
in the best-fitting model by a significant instruction × later
probe serial position (linear component) interaction (Table 6).
The two-way interaction is qualified by a significant four-way
list length × instruction × later probe serial position × intact/
reverse interaction. We conducted additional analyses on four
subgroups of the data: list length 4 intact, list length 4 reverse,
list length 8 intact, and list length 8 reverse (see Tables 2, 3, 4,
and 5 in supplementary materials). The two-way instruction ×
later probe serial position (linear component) interaction was
significant for all four groups, and the effects were consistent
in direction. In addition to the four-way interaction, the con-
gruity effect also interacted with distance and trials. The three-
way interactions can be understood as increasing trial number,
distance all selectively facilitating the later instruction re-
sponse times at later probe serial positions and having the
opposite effect on the earlier instruction response time at later
probe serial positions. In other words, the linear later probe
serial position curve associated with the earlier instruction is
less affected by reverse presentation order, practice effect, and
increasing distance.

Replicating the Experiment 1 response time results, the
best-fitting LMEmodel also revealed other effects not observ-
able on the data plots, including main effects of list length,
instruction, trial, and intact/reverse. Longer list length, later
instruction, reverse presentation order, and larger trial number
corresponded with longer response time. The two-way in-
struction × intact/reverse interaction was also significant, sug-
gesting a reading-order effect.

In sum, we found a congruity effect on error rate in list
length 8 and a response time congruity effect at both list
lengths. This challenges the argument that the findings in
Experiment 1 were a consequence of mixing subspan lists in
with supraspan lists within subjects. Thus, the congruity effect
in JORs persists in supraspan lists, despite differences be-
tween Experiments 1 and 2, including presentation rate, stim-
ulus materials, and varied versus fixed list lengths.

Table 4 Best-fitting LME model for Experiment 2 list length 8 error
rates

Estimate (SE)

Main effects

Intercept −1.51 (0.064)∗

Intact/reverse 0.405 (0.052)∗

Later probe serial position (linear) −40.9 (6.2)∗

Instruction 0.735 (0.088)∗

Distance −0.266 (0.019) ∗

Trial −0.134 (0.025)∗

Interactions

Intact/reverse × instruction −1.047 (0.074)∗

Instruction × later probe serial position (linear) −27.3 (8.2)∗

Note. The congruity effect is in bold. The “Estimate” column reports the
corresponding regression coefficient, along with its SE (standard error).

Significant effects are denoted *p < .05

Table 3 Model comparison of best BIC model with best BIC model plus instruction × linear component of later probe serial position

BIC AIC Log-Likelihood Degrees of Freedom

Best BIC model + congruity effect 10,119 19,048 −9,515.0 9

Best BIC model 10,120 19,057 −9,520.6 8

Model difference −1 −9 5.6 1

Note. For BIC and AIC, lower numbers indicate better fit but for log-likelihood, higher numbers indicate better fit. The log-likelihood ratio test using a
χ2 test was significant (χ2 = 11, p < 0.05).
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Hacker’s backward self-terminating search model

The congruity effect may present a new challenge to mathe-
matical models of serial-order memory. Only a few models
have been fit to JOR data (e.g., Brown, Preece, & Hulme,
2000; Hacker, 1980; Lockhart, 1969; McElree & Dosher,
1993). Hacker’s model was designed to explain JOR data with
a recency instruction and makes predictions about both re-
sponse time and error rate. We ask whether Hacker’s model
can already explain the congruity effect in its currently pub-
lished form. If not, we ask whether the model can be modestly
modified to explain the congruity effect.

Hacker (1980) proposed that JOR performance is driv-
en by the loss of some items from memory and backward,
self-terminating search of the remaining, available items.
The serial comparison process was assumed to start at the
end of the list, progressing toward the beginning (hence,
backward), ending when a match to a probe items was
found (hence, self-terminating). If an item were “unavail-

able” due to item loss, the item would not be encountered
during search. Probability of a correct JOR (1 − error
rate), Pij, can be computed:

Pij ¼ αi þ 1

2
1−αið Þ 1−α j

� �
; ð1Þ

where i and j are the study–test lags of the more recent and less
recent probe items, respectively. αi is the probability that item i is
available in memory, and Hacker treated αi as free parameters.
The first term reflects the case in which the later item is available
(a correct response), and the second term represents the case in
which both probe items are unavailable, and the response ismade
by guessing (probability correct = .5). Hacker went on to model
response times on correct trials as follows, assuming that if an
item is unavailable, it does not add to the response time1:

response timeij ¼ bþ αi
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where b is a base-level response time for “overhead” process-
es unrelated to memory and s is the rate to search and compare
each available item. The term in the leftmost square bracket
represents the expected response time when search ends in a
correct match, equal to the summed availability of items less
than i that must be compared at rate s ms/item. The sum is
incremented by 1 because i must be available to make a
correct response (if not a guess). The other term is for the
condition when both probes are unavailable, in which case
search is exhaustive, summing the availability of all serial
positions, excluding the probe serial positions i and j (because

they are unavailable), at a rate of s ms/item. The matches and
guesses are normalized by the Pij for that comparison.

Note that the same αi values are used to calculate error
rate and response time. For the parameter search, we
wanted to avoid finding a model that fit the earlier and
later instructions individually while failing to capture the
difference due to instruction. We therefore opted for a
fitness measure that weighted the earlier data, the later
data, and the difference pattern equally. Thus, we fitted
Hacker’s (1980) model by minimizing the summed BIC
of the earlier instruction, the later instruction, and the
difference between earlier and later instruction2 (both error

1 Hacker (1980) applied his model only to JORs of the last seven list
items. He needed an additional parameter, g, to account for additional
searching time toward the beginning of the list after the 7th-back itemwas
reached. Because we applied the model to search through the whole list,
we no longer need the “shortcut” parameter g, so we set g = 0 to obtain
Equation 2.

2 Note that BIC is a penalized log-likelihood criterion, expressed as −
2(log−likelihood)+k∗log(n), where k represents the number of parame-
ters and n represents the number of observations. Because k and n are
constant in our parameter search, the parameter search results should be
equivalent to log-likelihood optimization.

Table 5 Number of participants rejected for analysis (error rate ≥ 40 %) versus total number of participants in each condition

Earlier List Length 4 Later List Length 4 Earlier List Length 8 Later List Length 8

Error rate ≥ 40 % 2 11 12 19

Total 92 92 99 102

Note. A chi-square test found differences between number of included participants for list length 4 and list length 8 were both significant
(χ2 = 41.2, df = 1, p < .001, and χ2 = 4.05, df = 1, p < .05, respectively).
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rate and response time). To compare models from different
parameter searches, we recalculated BIC without the redun-
dant earlier − later terms. We follow the rule of thumb that
a change in BIC (ΔBIC) of less than 2 is considered a
nonsignificant difference between models. For error rate,
we used the variant of BIC that applies to the special case
of least-squares estimation with normally distributed errors
on mean performance (Anderson & Burnham, 2004;
Burnham & Anderson, 2002).

Fitting was done in MATLAB (The Mathworks, Inc.
Natick, MA) with the SIMPLEX algorithm (Nelder &
Mead, 1965). With all model fits presented here, the initial
parameters were randomly chosen from a range of 0–1 for
α and 0–2,000 for b and s, and the best-fitting model was
the best of 500 executions of the SIMPLEX with different
random starting values.

Both list lengths were fit separately. Visual inspection
of the simulated data produced by the best-fitting models
(Fig. 7; cf. Figs. 5 and 6) suggests that although the model
can reproduce some important features of the data, it does
not capture list length 4 error rate pattern well, producing
a ceiling error rate for the later instruction. The model
also cannot account for the earlier instruction response
time pattern at both list lengths; in particular, it had
trouble producing the primacy-dominant pattern in the
response time measure. However, the model produced
differences between instructions that resemble the empir-
ical congruity effect qualitatively, and with approximately
the same magnitude (cf. Figs. 3 and 5).

Table 6 Best-fitting LME model for Experiment 2 response time

Estimate (SE)

Main effects

Intercept 6.756 (0.053)∗

List length 0.439 (0.046)∗

Instruction 0.564 (0.036)∗

Intact/reverse 0.138 (0.031)∗

Trial −0.0324 (0.0088)∗

Distance −0.232 (0.014)∗

Later probe serial position
(linear)

−29 (17)∗

Later probe serial position
(quadratic)

−85.5 (7.8)∗

Interactions

Instruction × later probe serial position
(linear)

−53.7 (4.4)∗

Trial × later probe serial position (linear)
× instruction

−6.0 (1.5)∗

Intact/reverse × later probe serial position
(linear) × instruction

−109.5 (7.2)

Distance × later probe serial position
(linear) × instruction

−8.5 (2.1)∗

List length × intact/reverse × instruction ×

Later probe serial position (linear) 95.7 (5.5)∗

Note.The best-fitting LME model for experiment 2 response time. The
congruity effect is in bold. The “Estimate” column reports the corre-
sponding regression coefficient, along with its SE (standard error). Sig-
nificant effects are denoted *p < .05 Due to space constraints, this table
reports interactions relevant to the Instruction × Later Probe Serial Posi-
tion (Linear) only; see supplementary materials Table 1 for the full model.

Fig. 6 Response time (Experiment 2) as a function of both probe items’ serial position (earlier item and later item, respectively) broken down by list
length in rows and instruction (earlier, later, and the difference, earlier − later, corrected for mean response time) in columns
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In summary, Hacker’s (1980) backward self-terminating
search model ran into problems fitting serial-position effects
that have been suggested to reflect forward search, particularly

for the list length 4, earlier data. Therefore, we next consid-
ered whether a forward self-terminating search model would
address this limitation.

Fig. 7 Hacker’s (1980) model error rate (top half) and response time
(bottom half), fit to Experiment 2, as a function of both probe items’ serial
position (earlier item and later item, respectively) broken down by list
length in rows and instruction (earlier, later, and the difference, earlier −
later, corrected for mean response time) in columns. *Note: The list

length 4 error rate later instruction is plotted on a different scale than
the earlier instruction because this model produced very high values; it
could not simultaneously account for both instructions’ empirical pattern
and their difference pattern
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A forward-directed variant of Hacker’s self-terminating search
model

To implement forward, self-terminating search, for error rate
(Equation 1), we changed the first αi to αj:

Pij ¼ α j þ 1

2
1−αið Þ 1−α j

� � ð3Þ

Similarly, for response time (Equation 2), we changed the
first αi term to αj and changed the limits of summation over k.
We first asked whether this forward search model would
account better for the earlier instruction data than would
the backward search model. The best-fitting model pa-
rameters from the best-fitting models are summarized in
Table 7, along with ΔBIC values comparing the forward
model and backward models.

The forward model fit the earlier data better than did the
backward model for list length 4, but for list length 8, the
backward model fit better (lower ΔBIC) and did so by cap-
turing the early-serial-position advantage that presented a
problem for the backward model (Fig. 8). Fitting the earlier
data with the forward model and the later data with the
backward model also improved fit of the congruity effect
qualitatively (cf. Figs. 5 and 6).

For more insight, note that for the forward model, the
earlier instruction fit by decreasing αi over serial position
(Fig. 9a), whereas the later instruction fit by increasing αi

over serial position (Fig. 9b). When both earlier and later
instruction fit by the backward model, the αi values were less
steeply sloped for the earlier than for the later instruction. It
may seem surprising that certain values of αi were near-zero.
We understand this as follows. In the earlier instruction, the
last item of the list can never be a target. Since participants

Table 7 Parameter summary of the Hacker forward versus backward
self-terminating search model fitted for the earlier instruction

List Length Forward Backward ΔBIC

b s b s

List length 4 748.45 316.60 1,241.83 0.00 −8.35
List length 8 1,882.04 114.96 2,069.74 41.01 3.04

Note. Parameter summary of the Hacker forward versus backward self-
terminating search model fitted for the “earlier” instruction. Parameters b
and s are presented for each model (forward/backward) separately (units
of milliseconds). Hacker’s forward directional search BIC–backward
directional search BIC is presented in the last column. Although the
best-fitting models were identified using a BIC measure that weighted
the earlier, later, and earlier − later instructions equally, ΔBIC in this
table is computed with the earlier instruction data only. A negativeΔBIC
indicates that the forward instruction fit better

Fig. 8 The best-fitting Hacker’s model generated plot using forward
direction search for earlier instruction (a, d) and backward direction
search for earlier instruction (b, e). The right-hand columns (c, f)

represent the Hacker’s model generated earlier − later difference pattern
when fitting the earlier instruction with forward directed search and later
instruction with the backward directional search
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have very good memory of this last item (McElree, 2006),
they may easily rule it out as the target and respond correctly.
Because Hacker’s (1980) model selects the item it terminates
on as its target, if the αListLength item were “available,” then
paradoxically, the response would be incorrect. Thus, it ap-
pears that in fitting the model, αListLength took on a near-zero
level as a means of producing very high accuracy for this kind
of probe (and likewise for the backward model).

In summary, Hacker’s (1980) model can fit shorter lists
using forward self-terminating search for the earlier instruc-
tion and backward search for the later instruction. This rever-
sal of search direction does not appear to extend to longer list
lengths. For the longer list lengths, direction of search had to
be backward for both instructions, but the degrees of freedom
contained within the backward, self-terminating search model
were sufficient to produce a qualitatively and quantitatively
reasonable congruity effect. We discuss alternative model
accounts in the General discussion section.

General discussion

In Experiment 1, we found that the congruity effect in the JOR
task generalizes to supraspan noun lists, along with the usual
distance, primacy, and recency effects and an intact/reverse
congruity effect. The presence of a congruity effect in error
rate suggests that instruction affects not only order memory
retrieval speed, but also the quality of order information that
can be retrieved from memory. Experiment 2 replicated the
Experiment 1 findings, but with consonants and a between-
subjects manipulation of list length, suggesting that

presentation of varied list lengths within subjects does not
explain the congruity effect. The fits of Hacker’s (1980) model
and the forward-directed variant suggested that the congruity
effect may arise for different reasons at different list lengths; at
short list lengths, the earlier instruction might, in fact, reverse
the direction of self-terminating search, but at longer list
lengths, if search is in any sense directional, our model fits
suggest that search is backward for both instructions.

Congruity effect across list length

Our results differ from the list length 4 data reported by Chan
et al. (2009) in several ways. Chan et al. did not find distance
effect or an intact/reverse effect, all of which we found in
Experiment 2, presumably due to higher power and the LME
analyses. The finding of long-list-like features like a distance
effect may not be surprising, since McElree and Dosher
(1993) also found signs of a distance effect in relative short
lists using a similar JOR response-signal speed–accuracy
trade-off (SAT) procedure. Thus, our findings replicate and
extend the congruity effect in subspan lists reported by Chan
et al. (2009).

Extrapolating, one might expect that a congruity effect will
always be present, even at extremely long list lengths. Alter-
natively, the congruity effect might become vanishingly small
as list length increases. Visual inspection of the data suggests
that the overall difference in response time remained relatively
constant across list lengths. Confirming the visual inspection,
LME analysis found that the congruity effect did not interact
with list length in both the response time and error rate data in

Fig. 9 Availability (αi) parameter values plotted as functions of serial position
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Experiment 1. This suggests that the congruity effect is a
general phenomenon that may apply to arbitrarily long lists.

JORs as comparative judgements

Congruity effects similar to ours have been found in closely
related paradigms, known as comparative judgements (for
reviews, see Birnbaum & Jou, 1990; Petrusic, 1992; Petrusic,
Shaki, & Leth-Steensen, 2008), in which a pairwise compar-
ison is made on any of a broad range of stimulus dimensions,
including perceptual judgements (e.g., brightness, loudness)
and symbolic judgements (e.g., comparing animal size on the
basis of animal name). Distance effects, bowed serial-position
effects, and congruity effects were found in our temporal-
order judgement data and have been commonly found in
comparative judgement studies (Banks, 1977). This suggests
that JORsmay be viewed as a specific instance of comparative
judgements, supporting Brown et al.’s (2007) suggestion that
temporal order information is processed like magnitude-order
information in humans. Thus, congruity effects in JORs may
occur for the same reason as they do in other comparative
tasks.

Despite the similarities, evidence suggests that episodic
(temporal order) and semantic judgements of order are not
identical. In one study (Jou, 2003), the first nine letters of the
English alphabet were the list, and participants were asked to
choose either the letter that appears “earlier” or “later” in the
alphabet. The nine-item alphabet condition is very similar to
our list length 8 JOR task in Experiment 2, both with short lists
of letters and with the earlier versus later instruction. Jou
found a main effect of instruction, with earlier response times
shorter than later response times but no congruity effect.
These results, inconsistent with our findings, could be attrib-
uted to the overlearning of the alphabet or to the fact that the
forward recall direction is hard to overcome due to the alpha-
bet being highly practiced in that direction.

One further reason for caution in relating the memory JOR
congruity effect to congruity effects in comparative judge-
ments is that our subspan results are consistent with sequen-
tial, self-terminating search, but to our knowledge, sequential
self-terminating search accounts have not been considered for
comparative judgements.

Comparison with forward and backward serial recall

The most common procedure used to investigate memory for
order is serial recall, where both item and order memory are
tested (Kahana, 2012; Murdock, 1974). Could serial recall be
the basis of the self-terminating search strategy thought to
support JORs? In forward serial recall, participants recall from
the beginning toward the end of a list, whereas backward
recall starts from the end of the list. At first blush, backward
serial recall seems approximately like a mirror-image of

forward serial recall, with forward serial recall being domi-
nated by a primacy effect and backward serial recall being
dominated by a recency effect (Madigan, 1971; Manning &
Pacifici, 1983). Our JOR congruity effect suggests a similar
mirroring of serial-position effects as forward versus back-
ward serial recall: The earlier instruction produced better
judgements at earlier serial positions (primacy effect), whereas
the later instruction produced better judgements at later serial
positions (recency effect). However, there are several empir-
ical dissociations that suggest that forward and backward
serial recall may rely on different cognitive mechanisms (see
Richardson, 2007, for a review). Backward serial recall may
rely on more visuospatial processing than forward serial recall
(Li & Lewandowsky, 1993, 1995; Reynolds, 1997). Thomas
et al. (2003) found a response time pattern that suggested
simple sequential search of the items in forward recall, but
for backward recall, a U-shaped response time curve sug-
gested that participants may have used multiple forward re-
calls when recalling backward.

Another interesting set of findings that may inform our
results comes from a comparison of free recall with forward
serial recall (Ward, Tan, & Grenfell-Essam, 2010). Because
free recall does not dictate order of report, participants are free
to initiate recall at any serial position.Ward et al. found that for
shorter list lengths, the free-recall order resembled their for-
ward serial-recall results; thus, participants prefer to recall
short lists in the forward direction. In contrast, at long list
lengths, participants chose to initiate recall with one of the last
four items, which, although not identical, is more like back-
ward than forward serial recall. This may indicate that a
forward search strategy is available and convenient for JORs,
but more so for short than for long lists, which is consistent
with our model fits. Thus, JORs might be carried out using a
covert serial-recall-like strategy, especially at shorter list
lengths. This hypothesis leads to interesting, testable predic-
tions. If JORs rely on serial recall, the manipulations that
previously dissociated forward from backward serial recall
(Beaman, 2002; Li & Lewandowsky, 1993, 1995; Madigan,
1971; Manning & Pacifici, 1983; Reynolds, 1997; Thomas
et al., 2003) should produce analogous dissociative effects on
JOR behavior comparing the earlier versus later instructions.

Models of order memory and the congruity effect

Although a full consideration of the implications of our find-
ings for models of order memory is beyond the scope of this
article, there are some points we can make clearly that speak to
the inadequacies of current models and possible future direc-
tions for model development in light of our findings.

We first consider Hacker’s (1980) model, an implementa-
tion of sequential, self-terminating search. We considered this
model in depth because it has been successfully applied,
several times, to JOR data. We asked whether this preexisting
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model could already produce a congruity effect. Although it
could not, an adaption of Hacker’s model could capture the
congruity effect in subspan lists—namely, assuming forward
directional search for the earlier instruction and backward
directional search for the later instruction. For short lists, then,
there may be no effect of instruction on the underlying pro-
cesses generating the behavior, apart from a reversal of search
direction. However, the forward directional search model was
not compatible with earlier instruction data of the supraspan
lists, even despite this model’s large number of degrees of
freedom, which becomes larger as list length increases. This
may indicate that a single explanation of the congruity effect is
not possible for both short and long lists. Rather, it may be that
the mechanism shifts at some critical list length; but if so, it
remains to be determined what principle governs that switch
in search direction. Finally, it is important to note that, because
we only fit a single model to our data, that does not mean that
the model is confirmed. It is quite plausible that a different
model (possibly variants of the models we review in this
section) would produce a better fit, both quantitatively and
qualitatively. The level of success of this model, therefore,
should not be taken as support for this particular model over
other models.

At first glance, a self-terminating search mechanism pre-
sented in Hacker’s (1980) model could be compatible with
other models of order memory applied to serial recall—for
example, associative chaining models, where each item is
associated with the previous item in the list to form a chain
(e.g. Kleinfeld, 1986; Lewandowsky & Murdock, 1989;
Riedel, Kühn, & van Hemmen, 1988; Sompolinsky & Kanter,
1986; Wicklgren, 1966), and positional coding models, where
item position is used to probe each item (e.g., Burgess &
Hitch, 1999; Henson, 1998). Both chaining and positional
coding mechanisms could be used to model self-terminating
search. However, a key assumption of Hacker’s model differs
from chaining and positional coding models: that an item can
be skipped without any impact on response time, which is
howHacker’s model produces a distance effect. To our knowl-
edge, both chaining and positional coding models have not
been implemented in such a way that they save processing
time for a missed item. Chaining models may handle a missed
item by probing with the previously retrieved vector even if
the correct response could not be made (e.g., Lewandowsky&
Murdock, 1989). Positional coding models continue to probe
with the subsequent position, regardless of accuracy of the
previous recall (e.g., Burgess & Hitch, 1999; Henson, 1998).
Thus, current models of serial-order memorywould need to be
modified to incorporate Hacker’s mechanism.

Even if an account based on Hacker’s (1980) model is
correct, this model was only developed to explain the JOR
task; in its current formulation, it does not do other order
memory tasks, like serial recall. Rather than start with a model
of JORs and figure out how to develop it into a full-fledged

memorymodel, one could consider models that were designed
to explain serial-recall data and ask how such models might
handle the JOR task. OSCillator-based Associative Recall
(OSCAR; Brown, Preece, & Hulme, 2000) is a model of serial
recall that has actually been fit to JOR data with some success.
In this model, items are assumed to be associatedwith the state
of an internal context signal (activation values of a bank of
sine-wave oscillators), and retrieval of items requires rein-
statement of the context. The authors applied OSCAR to the
JOR task (Hacker’s 1980 data) by probing with the end-of-list
context vector. More recent items tend to be more similar to
the end-of-list context. The strongest activated list item was
compared with the probe items; if a match was found, the
search terminated; if no match was found, the next-highest
activated item was considered next, and so on. It is not
obvious to us how the congruity effect could be explained
with this approach. At the very least, to explain the subspan
earlier data, the model might need to be able to substitute the
start-of-list context, and the congruity effect in supraspan lists,
dominated by an overall recency effect, would still remain to
be explained.

TODAM is another model that has been fit to JOR data
(Murdock, Smith, & Bai, 2001). In this version of the
model (TODAM2), recency was judged on the basis of
the strength of the item-memory terms (not the association
terms that are used in serial recall), and more recent items
had greater strength. This could explain serial-position
effects that are dominated by recency, such as we found
in supraspan lists, but it is not obvious how this mechanism
could be adapted to produce the primacy-dominant pattern
found for list length 4. Furthermore, the congruity effect in
supraspan lists would still need to be explained. Finally,
TODAM was implemented only for error rates and not
response times, so additional modifications would be nec-
essary to explain the response time data.

SIMPLE, a scale-invariant model that assumes that
memory is driven by discriminability of presentation
times of items (Brown et al., 2007), produces bow-
shaped serial-position effects and a distance effect, but
it remains unclear how the model might account for the
congruity effect. One might assume that different in-
structions can systematically distort the representation
of time either directly or by influencing judgements on
a separate, serial-position dimension. An interesting pos-
sibility is that the congruity effect might be produced by
participants encoding list position differently, depending
on instruction (Neath & Crowder, 1996)—for example,
with the first item first for the earlier instruction and
the last item first for the later instruction. Although
promising, the current version of SIMPLE does not
model response time data, which means more work is
required to adapt SIMPLE to explain the full pattern of
JOR data reported here.
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In short, to our knowledge, no model of serial recall in its
current form is sufficient to explain the JOR congruity effect
across list lengths.

Conclusion

In sum, the pattern of both speed and errors depends on how
the order judgement question is asked. If the target is the
earlier item, judgements are better at earlier serial positions,
whereas if the target is the later item, judgements are better at
later serial positions, reminiscent of congruity effects found in
comparative judgements. A self-terminating search model
could account for subspan data by a reversal of search direc-
tion between instructions, but longer-list data demanded a
different account (both backward-search). Direct-access ac-
counts hold promise, but it is unclear how they could capture
the full pattern of serial-position effects in both error rate and
response time measures, across list lengths. Thus, although
instruction has a similar effect across list length, either the
underlying mechanisms driving the congruity effect change
with list length, or a unified account may need to combine
elements of both types of model.

Acknowledgments We would like to thank Dr. Harald Baayen for
statistics consultation and Christopher Madan for feedback on an earlier
draft of the manuscript. We would also like to thank the Natural Sciences
and Engineering Research Council of Canada (NSERC) and the Alberta
Ingenuity Fund for funding support.

References

Anderson, D. R., & Burnham, K. P. (2004). Multimodel inference:
Understanding AIC and BIC in model selection. Sociological
Methods and Research, 33, 261–304.

Baayen, R. H. (2007). LanguageR (R package on CRAN version 1.1)
[Computer software and manual]. http://cran.r-project.org/web/
packages/languageR/index.html

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects
modeling with crossed random effects for subjects and items.
Journal of Memory and Language, 59, 390–412.

Baayen, R. H., & Milin, P. (2010). Analyzing reaction times.
International Journal of Psychological Research, 3, 12–28.

Banks,W. P. (1977). Encoding and processing of symbolic information in
comparative judgments. In G. H. Bower (Ed.), Psychology of learn-
ing and motivation (Vol. 11, p. 101–159). Academic Press.

Bates, D. M. (2005). Fitting linear mixed models in R. R News, 5, 27–30.
Bates, D. M., & Sarkar, D. (2007). lme 4: Linear mixed-effects models

using s4 classes (version 0.999375-39) [Computer software and
manual]. http://cran.r-project.org/web/packages/lme4/

Beaman, C. P. (2002). Inverting the modality effect in serial recall. The
Quarterly Journal of Experimental Psychology, 55A(2), 371–389.

Birnbaum, M. H., & Jou, J. (1990). A theory of comparative response
times and “difference” judgments. Cognitive Psychology, 184–210.

Bower, G. H. (1971). Adaptation-level coding of stimuli and serial
position effects. In M. H. Appley (Ed.), (p. 175–201). New York:
Academic Press.

Brown, G. D. A., Preece, T, & Hulme, C. (2000). Oscillator-
based memory for serial order. Psychological Review, 107,
127–181.

Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model
of memory. Psychological Review, 114(3), 539–576.

Burgess, N., & Hitch, G. J. (1999). Memory for serial order: A network
model of the phonological loop and its timing. Psychological
Review, 106(3), 551–581.

Burnham, K. P., & Anderson, D. R. (2002). Model selection and
multimodel interference (2nd ed.). New York: Springer-Verlag.

Butters, M. A., Kaszniak, A.W., Glisky, E. L., Eslinger, P. J., & Schacter,
D. L. (1994). Recency discrimination deficits in frontal lobe pa-
tients. Neuropsychology, 8(3), 343–353.

Chan,M., Ross, B., Earle, G., & Caplan, J. B. (2009). Precise instructions
determine participants’ memory search strategy in judgments of
relative order in short lists. Psychonomic Bulletin & Review, 16(5),
945–951.

Crowder, R. G. (1982). The demise of short-term memory. Acta
Psychologica, 50, 291–323.

Flexser, J., & Bower, G. H. (1974). How frequency affects recency
judgments: A model for recency discrimination. Journal of
Experimental Psychology, 103(4), 706–716.

Fozard, J. L. (1970). Apparent recency of unrelated pictures and nouns
presented in the same sequence. Journal of Experimental
Psychology: Human Learning and Memory, 86(2), 137–143.

Fuhrman, R.W., &Wyer, J. R. S. (1988). Event memory: Temporal-order
judgments of personal life experiences. Journal of Personality and
Social Psychology, 54(3), 365–384.

Geller, A. S., Schleifer, I. K., Sederberg, P. B., Jacobs, J., & Kahana, M. J.
(2007). PyEPL: A cross-platform experiment-programming library.
Behavior Research Methods, 39(4), 950–958.

Hacker, M. J. (1980). Speed and accuracy of recency judgements for
events in sort-term memory. Journal of Experimental Psychology:
Human Learning and Memory, 6(6), 651–675.

Henson, R. N. A. (1998). Short-term memory for serial order: The start-
end model. Cognitive Psychology, 36(2), 73–137.

Hockley,W. (1984). Analysis of response time distribution in the study of
cognitive processes. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 10, 598–615.

Holyoak, K. J. (1977). The form of analog size information in memory.
Cognitive Psychology, 9, 31–51.

Howard,M.W., & Kahana,M. J. (1999). Contextual variability and serial
position effects in free recall. Journal of Experimental Psychology,
25(4), 923–941.

Hulme, C., Roodenrys, S., Schweickert, R., Brown, G. D. A., Martin, S.,
& Stuart, G. (1997). Word-frequency effects on short-term memory
tasks: Evidence for a redintegration process in immediate serial
recall. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 23(5), 1217–1232.

Hurst, W., & Volpe, B. T. (1982). Temporal order judgements with
amnesia. Brain and Cognition, 1, 294–306.

Jou, J. (2003). Multiple number and letter comparison: Directionality and
accessibility in numeric and alphabetic memories. The American
Journal of Psychology, 116, 543–579.

Kahana, M. J. (2012). Foundations of human memory. New York, NY:
Oxford University Press.

Klein, K. A., Shiffrin, R. M., & Criss, A. H. (2007). Putting context
in context. In J. S. Nairne (Ed.), The foundations of remember-
ing: Essays in honor of Henry L. Roediger III: Psychology
Press.

Kleinfeld, D. (1986). Sequential state generation by model neural net-
works. Proceedings of the National Academy of Sciences of the
United States of America, 83, 9469–9473.

1104 Mem Cogn (2014) 42:1086–1105

http://cran.r-project.org/web/packages/languageR/index.html
http://cran.r-project.org/web/packages/languageR/index.html
http://cran.r-project.org/web/packages/lme4/


Lashley, K. S. (1951). The problem of serial order in behavior. In L. A.
Jeffress (Ed.), (p. 112–131). New York: Wiley.

Lewandowsky, S., & Murdock, B. B. (1989). Memory for serial order.
Psychological Review, 96, 25–57.

Li, S. C., Chicherio, C., Nyberg, L., von Oertzen, T., Nagel, I. E.,
Papenberg, G., & Bäckman, L. (2010). Ebbinghaus revisited:
Influences of the BDNFVal66Met polymorphism on backward se-
rial recall are modulated by human aging. Journal of Cognitive
Neuroscience, 22(10), 2164–2173.

Li, S. C., & Lewandowsky, S. (1993). Intralist distractors and recall
direction: Constraints on models of memory for serial recall.
Journal of Experimental Psychology: Learning, Memory, and
Cognition, 19(4), 895–908.

Li, S. C., & Lewandowsky, S. (1995). Forward and backward recall:
Different retrieval processes. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 21(4), 837–847.

Lockhart, R. S. (1969). Recency discrimination predicted from absolute
lag judgements. Journal of Experimental Psychology: Human
Learning and Memory, 6, 42–44.

Madigan, S. A. (1971). Modality and recall order interactions in short-
term memory for serial recall. Journal of Experimental Psychology,
87(2), 294–296.

Manning, S. K., & Pacifici, C. (1983). The effects of a suffix-prefix on
forward and backward serial recall. The American Journal of
Psychology, 96(1), 127–134.

McElree, B. (2006). Accessing recent events. In B. H. Ross (Ed.), (Vol.
46, p. 155–200). Academic Press.

McElree, B., & Dosher, B. A. (1993). Serial retrieval processes in the
recovery of order information. Journal of Experimental Psychology:
General, 122(3), 291–315.

Milner, B. (1971). Interhemispheric differences in the localization of psy-
chological processes in man. British Medical Bulletin, 27, 272–277.

Motulsky, H., & Christopoulos, A. (2004). Fitting models to biological
data using linear and non-linear regression. A practical guide to
curve fitting. Oxford, UK: Academic Press.

Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of
numerical inequality. Nature, 215, 1519–1520.

Murdock, B. B. (1974). Human memory: Theory and data. Potomac,
MD: Lawrence Erlbaum.

Murdock, B., Smith, D., & Bai, J. (2001). Judgments of frequency and
recency in a distributed memory model. Journal of Mathematical
Psychology, 45(4), 564–602.

Muter, P. (1979). Response latencies in discriminations of recency.
Journal of Experimental Psychology: Human Learning and
Memory, 5(2), 160–169.

Nairne, J. S. (2002). Remembering over the short-term: The case
against the standard model. Annual Review of Psychology, 53,
53–81.

Naveh-Benjamin, M. (1990). Coding of temporal order information: An
automatic process? Journal of Experimental Psychology: Learning,
Memory, and Cognition, 16(1), 117–126.

Neath, I., & Crowder, R. G. (1996). Distinctiveness and very short-term
serial position effects. Memory, 4(3), 225–242.

Nelder, J. A., & Mead, R. (1965). A simplex method for function
minimization. The Computer Journal, 7(4), 308–313.

Petrusic, W. M. (1992). Semantic congruity effects and theories of the
comparison process. Journal of Experimental Psychology: Human
Perception and Performance, 18, 962–986.

Petrusic, W. M., Shaki, S., & Leth-Steensen, G. (2008). Remembered
instructions with symbolic and perceptual comparisons. Perception
& Psychophysics, 70, 179–189.

Plant, R. R., & Turner, G. (2009). Millisecond precision psychological
research in a world of commodity computers: New hardware, new
problems? Behavior Research Methods, 41(3), 598–614.

Reynolds, C. R. (1997). Forward and backward memory span should not
be combined for clinical analysis. Archives of Clinical
Neuropsychology, 12, 29–40.

Richardson, J. T. (2007). Measures of short-term memory: A historical
review. Cortex, 43, 635–650.

Riedel, U., Kühn, R., & van Hemmen, J. L. (1988). Temporal sequences
and chaos in neural nets. Physical Review A, 38, 1105–1108.

Rosen, V.M., & Engle, R.W. (1997). Forward and backward serial recall.
Intelligence, 25, 37–47.

Skowronski, J. J., Ritchie, D. T., Walker, W. R., Sedikides, C.,
Bethencourt, L. A., & Martin, A. L. (2007). Ordering our world:
The quest for traces of temporal organization in autobiographical
memory. Journal of Experimental Social Psychology, 43, 850–856.

Skowronski, J. J., Walker, W. R., & Betz, A. L. (2003). Ordering our
world: An examination of time in autobiographical memory.
Memory, 11(3), 247–260.

Sompolinsky, H., & Kanter, I. (1986). Temporal association in asymmet-
ric neural networks. Physical Review Letters, 57, 2861–2864.

Sternberg, S. (1975). Memory scanning: New findings and current con-
troversies.Quarterly Journal of Experimental Psychology, 27, 1–32.

Thomas, J. G., Milner, H. R., & Haberlandt, K. F. (2003). Forward and
backward recall: Different response time patterns, same retrieval
order. Psychological Science, 14(2), 169–174.

Tremblay, A. (2013). LMERConvenienceFunctions: a suite of functions
to back-fit fixed effects and forward-fit random effects, as well as
other miscellaneous functions (version 2.5) [Computer software and
manu a l ] . h t t p : / / c r a n . r - p r o j e c t . o r g /w eb / p a c k a g e s /
LMERConvenienceFunctions/index.html

Ward, G., Tan, L., & Grenfell-Essam, R. (2010). Examining the relation-
ship between free recall and immediate serial recall: The effects of
list length and output order. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 36(5), 1207–1241.

Wicklgren, W. A. (1966). Associative instructions in short-term recall.
Journal of Experimental Psychology, 72, 853–858.

Wilson, M. D. (1988). The MRC psycholinguistic database: Machine
readable dictionary, version 2. Behavior Research Methods, 20, 6–11.

Wolff, P. (1966). Trace quality in the temporal ordering of events.
Perceptual and Motor Skills, 22(1), 283–286.

Wyer, R. S., Jr., Shoben, E. J., Fuhrman, R.W.,&Bodenhausen, G.V. (1985).
Event memory: The temporal organization of social action sequences.
Journal of Personality and Social Psychology, 49(4), 857–877.

Yntema, D. B., & Trask, F. P. (1963). Recall as a search process. Journal
of Verbal Learning and Verbal Behavior, 2(1), 65–74.

Zuur, A. F., Leno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G.
M. (2009). Mixed effects models and extensions in ecology with
R. New York: Springer.

Mem Cogn (2014) 42:1086–1105 1105

http://cran.r-project.org/web/packages/LMERConvenienceFunctions/index.html
http://cran.r-project.org/web/packages/LMERConvenienceFunctions/index.html

	Generality of a congruity effect in judgements of relative order
	Abstract
	Introduction
	Experiment 1
	Method
	Participants
	Materials
	Procedure
	Data analysis

	Results and discussion
	Error rates
	Response times


	Experiment 2
	Method
	Participants
	Materials
	Procedure
	Data analysis

	Results and discussion
	Error rates
	Response time


	Hacker’s backward self-terminating search model
	A forward-directed variant of Hacker’s self-terminating search model

	General discussion
	Congruity effect across list length
	JORs as comparative judgements
	Comparison with forward and backward serial recall
	Models of order memory and the congruity effect

	Conclusion
	References


