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Abstract Two experiments investigated category inference
when categories were composed of correlated or uncorrelat-
ed dimensions and the categories overlapped minimally or
moderately. When the categories minimally overlapped, the
dimensions were strongly correlated with the category label.
Following a classification learning phase, subsequent trans-
fer required the selection of either a category label or a
feature when one, two, or three features were missing.
Experiments 1 and 2 differed primarily in the number of
learning blocks prior to transfer. In each experiment, the
inference of the category label or category feature was
influenced by both dimensional and category correlations,
as well as their interaction. The number of cues available at
test impacted performance more when the dimensional cor-
relations were zero and category overlap was high.
However, a minimal number of cues were sufficient to
produce high levels of inference when the dimensions were
highly correlated; additional cues had a positive but reduced
impact, even when overlap was high. Subjects were gener-
ally more accurate in inferring the category label than a
category feature regardless of dimensional correlation, cat-
egory overlap, or number of cues available at test. Whether
the category label functioned as a special feature or not was
critically dependent upon these embedded correlations, with
feature inference driven more strongly by dimensional
correlations.

Keywords Categorization . Concepts . Inductive
reasoning . Expertise . Memory

The experimental study of human categories has an exten-
sive history, beginning with the seminal study of Hull
(1920) and continuing today into the identification of vari-
ables critical to the shaping of concepts and the develop-
ment of formal, quantitative models of classification.

Hull introduced the classification paradigm that domi-
nates most current research today. In this paradigm, the
subject initially assigns a number of patterns into designated
categories, followed by a transfer test containing old and
new instances. By manipulation of variables in the learning
phase and then evaluating transfer performance, Hull was
able to draw a number of conclusions about the learning and
representation of concepts; for example, concepts were
learned more rapidly in the order from simple to complex
rather than the reverse, transfer was better following learn-
ing of many patterns shown infrequently rather than a few
patterns presented numerous times, and so forth.

However, categories provide functions above and beyond
classification. Bruner, Goodnow, and Austin (1966) sum-
marized a number of additional utilities of categories: Once
learned, they permit generalization to novel instances, there-
by reducing the need for new learning; they simplify the
incredible complexity of the environment into a manageable
set of units, thereby facilitating a host of cognitive functions,
including logical reasoning and communication; they are
adaptive so that harmful or threatening stimuli can be
responded to appropriately; and they permit inferences of
hidden or obscure attributes when full stimulus information
is lacking.

The last property—the inference of missing or unavail-
able information—is the focus of the present study.
Inference is likely to arise whenever less than complete
information is available. For example, a physician might
suspect a disease on the basis of the presentation of initial
symptoms. Confirmation or increased confidence in diagno-
sis arises when identification of other characteristics likely

M. E. Lancaster :R. Shelhamer :D. Homa (*)
Department of Psychology, Arizona State University,
Tempe, AZ 85287, USA
e-mail: donhoma@asu.edu

Mem Cogn (2013) 41:339–353
DOI 10.3758/s13421-012-0271-8



associated with that disease is found. Swets, Dawes, and
Monahan (2000) provided numerous examples of precisely
this logic, in which accuracy of a diagnosis, such as evi-
dence of prostate cancer, is increasingly improved when
additional tests consistent with that disease are obtained.

The investigation of attribute inference has received con-
siderably less attention than has classification, with research
primarily focused on whether subjects are sensitive to the
internal correlational structure of the categories following
learning and whether the category label functions as a spe-
cial feature. Medin, Altom, Edelson, and Freko (1982) had
subjects initially study cases of a fictitious disease defined
by multiple dimensions, two of which were perfectly corre-
lated or uncorrelated. On the subsequent transfer test, sub-
jects were provided with two test pairs, one of which
preserved the correlation. In general, subjects selected, as a
member of the disease, the stimulus that preserved the
correlation, demonstrating that feature combinations were
either stored or computed at the time of decision. Lassaline
and Murphy (1996) initially presented stimuli for inspec-
tion, followed by questions about feature inference or fre-
quency; both groups then were allowed to sort the original
set into two categories that seemed most natural.
Interestingly, the prior inference task was more likely to
produce sorting that mirrored a family resemblance struc-
ture; the prior frequency task generally produced categories
in which a single dimension was used to discriminate be-
tween the two categories.

Yamauchi and Markman (1998) addressed inference in a
novel paradigm that required the subject to identify a feature
value or the category label. They noted that the two tasks
were formally identical if the category label functioned as
simply another feature. For example, stimulus i might be
represented schematically as {f1, f2, f3, . . . fn}, where the
initial feature (f1) is the category label and features f2–fn are
the presented attributes. When classification is studied, the
subject is typically given a set such as {? f2, f3, . . . fn } and
is asked to identify f1 , the category label; when given the set
{ f1, f2, ? , . . . fn }, the label and all features but one are
provided, and the subject is asked to infer the omitted
feature.1 In their task, the subject learned the categories
either by inference training or by the traditional classifica-
tion method. That is, when the subject was provided the full
feature set and asked to classify the stimulus, the task was a
standard classification task; that is, the category label had to
be inferred. In contrast, when the subject was asked to

identify a missing feature, given the category label and the
remaining features but one, the task became a feature infer-
ence task.

Inference training led to better performance on inference
transfer, and classification training produced better perfor-
mance on classification transfer. In addition, inference train-
ing led to a higher probability of inferring a prototypical
value for a missing feature than did classification training.
As a result, Yamauchi and Markman (1998) asserted that
inference training and classification training generated dif-
ferent categorical representations.

Studies following Yamauchi and Markman (1998) have
generally found that inference training generated knowledge
of within-category correlational structure but prior classifi-
cation training did not (Chin-Parker & Ross, 2002;
Sakamoto & Love, 2010). A limited awareness of within-
category structure was reported by Little and Lewandowsky
(2009, Experiment 2) when feedback in classification learn-
ing was probabilistic, rather than deterministic, presumably
because probabilistic feedback resulted in attentional
weights that were distributed more evenly across dimen-
sions. Murphy and Ross (2010) demonstrated that the cor-
relational structure was used to guide property judgments of
novel instances when the stimulus displays were observable.

A related issue is whether the category label functions as
a special feature. Yamauchi and Markman (2000) found
across four experiments that subjects were more likely to
endorse a feature value consistent with the category label
when given an inference test. When given a classification
test—that is, the full set of feature values were provided, and
the category label was absent—the proportion of category
accordance responses was determined by the number of
feature matches with a prototype.

In the present study, category and feature inference and
whether the category label functions as a special feature were
addressed, but within the context of other variables that should
be important: (1) whether inference is affected by the correla-
tional structure of the critical dimensions defining each stim-
ulus; (2) whether inference is further modulated by degree of
category overlap (discriminability); and (3) whether the num-
ber of cues available at the time of test affects feature inference
and classification in the same way. By dimensional structure,
we mean whether the dimensions take on values that are
highly correlated or uncorrelated with each other. By categor-
ical structure, we mean whether the categories are separated or
overlap with each other. Critically, the correlation between the
dimensional values and the category label is larger when the
categories have few overlapping features. By number of cues,
we mean whether a later transfer test is composed of a stim-
ulus set lacking one, two, or three features, where one of those
features could be the category label itself. The theoretical
importance of each of these manipulations is addressed in
turn.

1 This assumes that a stimulus can be defined by listing its presumed
features, a description that is likely adequate when feature values vary
along well-defined dimensions, as was used in the present study as
well. However, this representation is likely inadquate when ill-defined
categories (Neisser, 1967) are used in which the dimensions may be
obscure and the appearance of an object may be driven by generative
principles that are hidden (e.g., Gelman, 2004).
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Logically, feature inference should be contingent upon
the level of correlation among the dimensions defining each
stimulus. Biological categories (and perhaps most others as
well) likely have this property. Thus, nonvenomous snakes
usually have a round pupil in the eye, whereas venomous
snakes have a heavy triangular head and elliptical eyes;
signs of diabetes include unexplained weight loss, unusual
fatigue, and a tingling in the hands or feet; meat is likely
spoiled if it smells rancid and has a slimy texture to it. That
these features tend to co-occur is one reason why feature
inference is possible; without these correlations, inference
from a given set of features to an omitted attribute cannot
occur. This assertion is assumed by Yamauchi and Markman
(1998): “In inference, subjects tend to pay particular atten-
tion to relationships between exemplars within a category”
(p. 125); and in their later study, Yamauchi and Markman
(2000) stated that “current research identifies at least three
crucial factors that govern inductive judgments using cate-
gories . . . (including) . . . correlation of features across
category members” (p. 776).

Interestingly, the dimensions defining the categories in
the experiments of Yamauchi and Markman (1998, 2000)
were weakly correlated. In Yamauchi and Markman (1998),
subjects observed four stimuli in each of two categories,
with each stimulus defined by binary values along four
dimensions; in Yamauchi and Markman (2000), there were
five stimuli in each of two categories, with each stimulus
defined by five binary dimensions. Table 1 summarizes
these correlations, as well as specifying the various charac-
teristics of each experiment. Although category 1 was pri-
marily composed, schematically, of feature values 1 and
category 2 by feature values 0, the dimensions themselves
were minimally correlated.2 However, each dimension was
positively correlated with its category label. What seems
likely is that the results of Yamauchi and Markman (1998,
2000) were, therefore, driven by the relationship between
individual dimensions and the category label and not the
relationship among dimensions.

In the present study, the correlations among the features
on each dimension, as well as the correlation between the
category label and any dimension, were manipulated. The
reason it is critical to separate dimensional feature correla-
tions from the correlation of the category label with its

dimensions is that, at a minimum, feature inference should
be driven by the former and label inference should be
influenced by the latter. Figure 1 shows a schematic for a
category representation. The instances of a particular cate-
gory A experienced by the subject are represented by {A1,
A2, . . . , An}; the features of these stimuli are represented by
{f1, f2, . . . , fn}. In theory, the features may be either
correlated or not with the category label (rAf1, rAf2 . . .)
and may or may not be correlated with each other (rf1f2,
rf1f3, . . .).

Figure 2 shows a schematic of the four between-subjects
conditions in the present study, determined by dimensional
correlations that were either high or zero and high or low
category overlap. Although this figure captures the variables
of dimensional correlation and category overlap, it fails to
capture the fact that four, rather than two, dimensions de-
fined each stimulus in the present study. Critically, when
category overlap was minimal, the two categories were
better separated, and the correlation between each dimen-
sion and its category label was high; when category overlap
was moderate, this correlation was low. To calculate the
correlations between dimensions and between category

2 When variables are binary, the phi coefficient was computed, al-
though the identical value is returned when computed as a standard
Pearson product–moment correlation. These correlations are unaffect-
ed by the small number of patterns per category, since increasing the
number of patterns per category (as in multiple learning trials) leaves
the correlation unchanged as long as the same sitmulus values are
maintained. Similarly, substituting any continuously variable set of
values around 1 or 0 minimally alters the dimensions to dimension
correlation. In sum, the correlation is not the result of the use of a small
number of binary valued stimuli; rather, it arises from the choice of
structure.

Table 1 Correlations between category dimensions and between di-
mension and category label in Yamauchi and Markman (1998, 2000)
and the present study

Dim (x,y) Dim x, Cat y

Yamauchi & Markman (1998) r 0 .333 r 0 .500

Yamauchi & Markman (2000) r 0 .250 r 0 .600

Present Study:
Low OL, High Corr r 0 .729 r 0 .707

Low OL, Low Corr r 0 .000 r 0 .707

High OL, High Corr r 0 .729 r 0 .447

High OL, Low Corr r 0 .000 r 0 .447

Dim (x,y) is the correlation between dimensions of the same category;
Dim x, Cat y is the correlation between a dimension and its category
label. Dimension values were labeled 1–6, and category labels were
labeled as 1 or 2. OL 0 category overlap

Fig. 1 Schematic representation of a category (A), the instances of
category A in learning (A1, A2, . . .), and the features (f1, f2, . . .) that
occur within category A

Mem Cogn (2013) 41:339–353 341



labels and dimensions, each dimensional value was assigned
a numerical label from 1 to 6, and category labels were
assigned a numerical label, 1 or 2 (see the Appendix for
values of learning stimuli). For the high dimensional corre-
lation conditions, the correlation between any two of the
four dimensions within each category varied from r 0 .625
to .875, with a mean correlation of r 0 .729; for the low-
correlation conditions, these values ranged from r 0 −.250 to
.250, with a mean correlation of r 0 .000. When the two
categories were combined, the mean correlation between the
two dimensions for the high-correlation condition was
maintained (r 0 .783); for the uncorrelated, the overall
correlation remained at zero. Importantly, these correlations
were generated even though the same stimulus values were
used in the high and low dimensional correlational condi-
tions; only their ordering for each stimulus was varied to
produce the requisite correlations.

In the low-overlap condition, the two categories were
composed of dimensional values that were minimally
shared; the resulting correlation between the category
label and any dimension was moderately high, r 0
.707. In the high-overlap condition, the two categories
were composed of dimensional values that were partial-
ly shared, resulting in a correlation between any dimen-
sion and its category label of r 0 .447. Manipulation of
category overlap was achieved by adjusting the stimulus
values on each dimension of one of the categories.
Therefore, to produce the high-overlap categories, each
dimension of one of the categories in the low-overlap
condition was incremented by one value, thereby reduc-
ing its separation from the other category. The end
result was that within-category similarity remained the
same but between-category similarity was modified,
thereby reducing the ratio of within-category to
between-category similarity, a ratio that we have previ-
ously used to define category structure (Homa, Rhodes,
& Chambliss, 1979). Importantly, the effect of reducing
category overlap had the effect of increasing the

correlation between the category label and its dimen-
sions.3 We should note that the categories in the low-
overlap condition were not linearly separable in any two
dimensions but were in four dimensions. When the
categories had high overlap, 2 of the 16 learning stimuli
were slightly more similar to the alternate category.

Our initial hypothesis was that these two correlations—
within-category dimensional correlation and the correlation of
the category label with its dimensions—should selectively
influence feature and category inference, respectively. In gen-
eral, feature inference should be driven by dimensional corre-
lation and category inference by overlap. The major caveat is
that the two influences could interact with the number of cues
available at the time of test. When the dimensions were
correlated, feature inference was expected to be less reliant
on number of features available at the time of test, since each
feature is a moderate predictor of other feature values. When
the dimensions were uncorrelated and the label was tested, we
expected that number of features provided at the time of test
would be more important for either or both of two reasons:
With the number of cues increased, the test stimulus increas-
ingly matches an item in memory; and the informational
weight of the sum of independent cues should carry equal or
more information than the sum of correlated cues.

In addition, the impact of dimensional correlation might
be reduced if the category overlap was extreme at either end;
if overlap is high, learning might be so difficult as to
preclude better than chance performance on either a feature
or a label test. In contrast, making the two categories so
distinct would trivialize transfer, making all judgments too
easy. Our goal was to gain empirical knowledge with this
manipulation using a best guess of what overlap might be
illuminating. F\inally, in each experiment, a brief recogni-
tion test of old, new, and prototype stimuli was provided
following classification judgments on the transfer test. In

Fig. 2 Schematic representation showing categories with high or low
dimensional correlation for categories that have low or high overlap.
Both dimensions were manipulated in Experiment 1 and Experiment 2

3 The relationships between category overlap and the correlation be-
tween the dimensions of a category to its label are intrinsically bound
together. Our previous measure of structural ratio of a category (Homa
et al., 1979)—the ratio of within- to between-category distances or
dissimilarities—is similar but not identical to the correlation of a
category’s dimensions to its label. If similarity is analytically defined
by the number of feature matches between any two patterns, then the
structural ratios for correlated low overlap, correlatead high overlap,
uncorrelated low overlap, and uncorrelated high overlap were .447,
.773, .475, and .868, respectively. When categories were defined as
low overlap, the categories overlapped on each dimension but were
linearly separable in four dimensions. When categories were defined as
high overlap, the categories were not linearly separable, since two
patterns in each category were closer to members of the alternate
category. As was noted by one of the reviewers, the high- and low-
overlap conditions share similarities to the probabilistic and determin-
istic feedback manipulation in Little and Lewandowsky (2009). As
such, these authors would likely predict that within-category correla-
tional structure should be realized to a greater extent under the high-
overlap condition.
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most inference studies, recognition judgments have not
been used. Since a number of researchers (e.g., Chin-
Parker & Ross, 2002; Murphy & Wisniewski, 1989)
have argued that classification learning fosters aware-
ness of categorically distinctive properties but not within-
category correlational structure, recognition discrimination of
old training patterns from novel patterns belonging to the
same category should be poor or absent. Recognition accura-
cy, therefore, provides converging support that classification
learning results in the storage of within-category structure
above and beyond categorically distinctive properties, in the
form of specific members stored in memory, a summary
representation like a prototype, or sufficient partial exemplar
knowledge that preserves some of the dimensional
correlations.

Two experiments are reported that differed in the number
of learning blocks prior to transfer. In Experiment 1, simulta-
neous arrays of all category members were presented for
study, mirroring the procedure of Yamauchi and Markman
(1998). In Experiment 2, the number of learning blocks was
increased from 4 to 12 blocks, since we anticipated that the
increased learning might foster transfer performance that
reflected more strongly the influence of dimensional correla-
tion and category overlap. Each experiment used stimuli that
captured the morphological properties of bacteria, with each
bacterium containing a membrane, a polar flagellum, nucle-
oid, and pili. Each dimension had six variations—for exam-
ple, six increasing levels of membrane thickness. Figure 3
shows a typical stimulus and test trial in the learning phase. In
each experiment, the subject was told to learn which charac-
teristics defined the two classes of bacteria.

Experiment 1

All subjects received a booklet that contained the 8 stim-
uli belonging to category A on the left page and the
8 stimuli of B on the right side. After a study phase, the
subject turned to the next page, which asked the subject to
identify the category of each stimulus. There were four
study/test blocks prior to transfer. Following learning, sub-
jects received a transfer test requiring feature and label
identification for 24 stimuli, followed by a brief recog-
nition test.

Method

Subjects Two hundred thirty-four undergraduates at Arizona
State University selected from introduction to psychology
classes participated in the experiment. For the correlated and
high-overlap, correlated and low-overlap, uncorrelated and
high-overlap, and uncorrelated and low-overlap conditions,
there were 55, 61, 61, and 57 subjects, respectively.

Materials and stimulus design Each bacterium contained
four features: a membrane, polar flagellum, nucleoid, and
pili. Six size variations of each feature were constructed.
The incremental differences between the values were scaled
using a variation of Weber’s law where a value of 6 0

100 %, 5 0 90 %, 4 0 81 %, and so forth. The scaling was
important to ensure that each value could be visually dis-
cerned as unique. All stimuli were created with iDraw to
conform to exact pixel specifications. The pili of each bac-
terium were placed at five locations about the membrane.
Bacteria were created using values for each of the four
features, with a value of 1 being the smallest and 6 being
the largest. Size values were selected to achieve either
correlated or uncorrelated and high-overlap or low-overlap
feature attributes. Each condition contained two categories
of bacteria, those belonging to Group A and those belonging
to Group B. A complete listing of the learning stimuli for the
conditions of dimensional correlation and category overlap
is contained in the Appendix.

Each booklet included instructions, four learning study–test
trials, and the transfer test. In both learning and transfer, the
subject selected either of two alternatives, either A or B in the
learning phase, one of two numbers during the transfer test,
and either old or new for the recognition test. During the study
phase for each of the four learning trials, the stimuli for Groups
A and B were arranged such that the two groups were side by
side in the test booklet—each group entirely on its own page.
The order of all stimuli was randomized for each learning
study–test phase and transfer test for each condition so as to
minimize order effects. Subjects were sequenced through the
booklet at the same rate via navigation cues at the bottom right
of each page (e.g., “continue” or “pause here”).

Procedure Groups of up to 12 subjects were run simulta-
neously in a classroom setting. Subjects were allowed
1.5 min to study the eight bacteria belonging to each group
(A and B) during the learning phase, followed by the test
phase. In the test phase, subjects identified the same bacteria
as belonging to Group A or B and recorded this information
in their data booklet. This sequence was repeated three more
times, for a total of four study–test phases.

Subjects were given 8 min to complete the 24 questions
in the transfer portion of the experiment. During the transfer
phase, subjects answered either feature inference or category
inference questions. Counting the category label, each bac-
terium had five total features (membrane, flagellum, nucleoid,
pili, and category label). During the transfer phase, bacteria
missing one, two, or three features were presented. On feature
inference questions, the category label feature was always
present, and subjects had to choose one of two highlighted
feature values for one of the missing features. For category
inference questions, subjects responded with the appropriate
category label value on the basis of the remaining features
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presented. On the feature test, one feature had a value that
clearly placed it within the domain of its category; the other
feature was always outside this domain. An example of a
typical feature test is shown in Fig. 4, in which the category
label and the tested feature are shown.

A brief recognition test was provided following the trans-
fer classification test. On the recognition test, six stimuli
were shown, three to a page, and the subject was instructed
to simply indicate whether the stimulus had appeared in the
learning phase (old) or not (new). Of the six stimuli, two
were old (training), two were new, and two were the cate-
gory prototypes. The presentation order of the stimuli on the
recognition test was randomized.4

Results

Learning Figure 5 shows the mean proportions of correct
classification across the four learning blocks, separately for
each condition. Each of the main effects was significant:
Performance improved across blocks, F(3, 690) 0 30.32, η2 0
.116, MSE 0 2.33, and learning was affected by dimensional
correlation, F(1, 230) 0 98.63, η2 0 .300, MSE 0 4.10, and
category overlap, F(1, 230) 0 405.78, η2 0 .638, all ps < .001.
In addition, the correlational structure × level of overlap inter-
action was significant, F(1, 230) 0 43.30, η2 0 .158, MSE 0

4.10, p < .001, and reflected the fact that learning difference
between high and low correlational dimensional structures was
more affected by low-overlap structure than by high overlap.
Although the level of improvement across blocks was slight,
averaging about 8 %–10 %, terminal level of learning was
moderately high, ranging from 70 % to 90 %. A Bonferroni
subsequent test revealed that overall, learning accuracy was

__________________________________________________________________________________

Sample Test Page Following Learning

Fig. 3 Sample learning sheet
(top half) and a sample test page
(bottom) following a learning
block

4 The transfer test also included confidence values and a final proto-
type test in which the subject was required to a select a best example
for each category, one the modal prototype and one a near foil.
However, the results of these tests were not informative across con-
ditions. Consequently, these results are not reported.
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ordered as follows: uncorrelated low overlap > correlated low
overlap > uncorrelated high overlap 0 correlated high overlap
(p < .05).

Transfer: classification Overall, accuracy on the transfer
test was affected by condition, F(3, 230) 0 45.68, η2 0
.373, MSE 0 3.769, p < .001. A Bonferroni test with a

significance level of .05 revealed that performance was
ordered as follows: correlated low overlap (.868) > correlat-
ed high overlap (.818) 0 uncorrelated low overlap (.812) >
uncorrelated high overlap (.641).

Structure, feature tested, and number of available cues on
inference Figure 6 shows how overlap, dimensional corre-
lation, and number of features available at test impacted
inference; the left panel shows performance for the label
test, and the right panel shows performance for the feature
test. Overall, subjects were more accurate in inferring the
category label (.808) than a category feature (.761), F(1,
230) 0 18.04, MSE 0 2.05, η2 0 .073, p < .001.5 In addition,
category overlap, F(1, 230) 0 55.41, η2 0 .199, p < .001, and
dimensional correlation, F(1, 230) 0 60.03, η2 0 .207, were
each significant, as was their interaction, F(1, 230) 0 16.44,
η2 0 .067, MSE 0 1.256, all ps < .001. Overall, inference
decreased by 10 % when category overlap was high and by
14 % when the dimensions were uncorrelated. The interaction
between category overlap and dimensional correlation
revealed that overlap had little impact on accuracy when the
dimensions were highly correlated but significantly impacted
transfer when the dimensions were uncorrelated. The effect of
reducing the number of features at the time of test decreased
performance by nearly 20 %, F(2, 460) 0 142.60, η2 0 .383,
MSE 0 0.48, p < .001.

A major concern was whether the number of available
features at the time of test differentially affected feature and
label inference. The number of missing features interacted
with both dimensional correlation, F(2, 460) 0 32.41, η2 0
.123,MSE 0 0.48, p < .01, and category overlap, F(2, 460) 0
7.35, η2 0 .031, MSE 0 0.48, p < .01. The most striking
result was that the number of available features at the time of
test affected performance more when the dimensional cor-
relation was low. For the label test, performance on the high
dimensional correlation conditions dropped by about 10 %
when the number of missing features at the time of test was
increased from one to three cues; when the dimensional
structure was uncorrelated, performance dropped by about
30 %. A similar outcome occurred when inference of a
feature was assessed: Performance dropped by about 10 %
when the stimulus dimensions were correlated; when they
were uncorrelated, decreasing the number of cues at the time
of test decreased performance by about 25 %.

The impact of overlap was less striking. When the cate-
gory label or category feature was tested, performance
dropped by 24 % and 17 %, respectively, when the number
of missing features increased from one to three and the
category overlap was low; when the category overlap was

Select one of the circled features that best fits the bacterium

Fig. 4 Sample test following the learning phase, Experiment 1

Fig. 5 Mean learning rate when categories contained correlated (C) or
uncorrelated (U) dimensions for categories having low (LO) or high
(HO) overlap, Experiment 1

5 When restricted to one missing feature, a condition that mirrored that
in Yamauchi and Markman (1998), inference of the category label
exceeded that of a category feature (p < .01).
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high, inference of the category label and category feature
dropped by 16 % and 18 %, respectively, as the number of
cues was reduced.

Recognition Regardless of condition, subjects discriminated
old from new patterns with moderate accuracy; the propor-
tion of old, new, and prototype stimuli called “old” was
.725, .539, and .834, respectively. Table 2 shows the mean
hit and false alarm rates for the old, new, and prototype
stimuli as a function of training condition. Overall, recogni-
tion was more accurate following training on correlated
dimension categories (mean hit rate 0 .778; mean false
alarm rate 0 .505) than on uncorrelated dimension catego-
ries (mean hit 0 .672; mean false alarm 0 .572).

Discussion

Experiment 1 demonstrated that category and feature infer-
ence are influenced by both category overlap and dimensional
structure. Additionally, each variable strongly interacted with
the number of cues available at the time of test, such that cue

restriction had less impact when the category dimensions were
correlated. In general, subjects were more accurate in inferring
the category label than a feature, although the difference was
slight. As was predicted, the number of available cues at the
time of test had a reduced impact on accurate inference when
the dimensions were highly correlated; this was true for the
both label test and the feature test. When the category dimen-
sions were composed of features that were uncorrelated, in-
ference dropped substantially when the number of missing
feature was increased. Category overlap, which modulated the
correlation between the category dimensions and the category
label, also impacted inference, being additive with dimension-
al correlation when the label was tested. When a feature was
tested, category overlap interacted with dimensional correla-
tion such that category overlap had little effect on feature
inference when the dimensions were highly correlated. It
was only when the categories were composed of uncorrelated
dimensions that category overlap affected feature inference.

On the recognition test, subjects discriminated old from new
stimuli, although this discrimination was reduced by dimen-
sional correlation. For all conditions, the category prototype
was identified as old more frequently than either the old or new
stimuli. The fact that recognition discrimination between old
and new stimuli was more accurate when the stimulus dimen-
sions were correlated lends support to the hypothesis not only
that category training sensitized subjects to the within-category
structure, but also that this outcome was not due simply to
memorization of the patterns; otherwise, subjects would have
recognized patterns in the uncorrelated conditions as well as in
the correlated conditions, which was not the case.

Before we discuss feature and category inference in more
detail, Experiment 1 was replicated but with additional
learning trials prior to transfer. One anticipated result that
was not obtained was the importance of dimensional corre-
lation on feature and label inference. In particular, we had
anticipated that dimensional correlation would affect feature

   TEST LABEL    TEST FEATURE 
Fig. 6 Mean accuracy on label
inference (left panel) and
feature inference (right panel),
as a function of overlap,
dimensional correlation, and
number of features missing at
test, Experiment 1

Table 2 Probability that a transfer item was called “old,” as a function
of stimulus type, condition, and experiment

Condition Experiment 1 Experiment 2

Old New Proto Old New Proto

C-LO .755 .490 .850 .725 .600 .875

C-HO .800 .520 .850 .900 .525 .825

Correlated .778 .505 .818 .812 .562 .850

U-LO .695 .595 .840 .800 .625 .750

U-HO .650 .550 .795 .675 .575 .825

Uncorrelated .672 .572 .818 .738 .568 .838

Mean .725 .539 .834 .775 .581 .819
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inference more than it would affect inference of the category
label. Although both factors produced strong main effects,
the interaction between type of inference (label, feature) and
correlational structure was not significant, F < 1. This out-
come in Experiment 1 may have been due to the relatively
restricted number of learning blocks prior to transfer. For
subjects to acquire knowledge about the dimensional corre-
lated structure of a category, additional learning blocks
might be critical.

Experiment 2

Experiment 2 replicated Experiment 1, but with the number
of learning blocks increased from 4 to 12 prior to transfer. In
addition, subjects were run individually, and all stimuli were
shown on a computer screen, rather than in booklets.
Otherwise, the learning procedure and transfer test were
identical to those used in Experiment 1.

Method

Subjects The subjects were 80 undergraduates drawn from
the introductory psychology pool at Arizona State University,
randomly assigned to one of four conditions: correlated high
overlap, correlated low overlap, uncorrelated high overlap,
and uncorrelated low overlap. The sole restriction was that
20 subjects were run in each condition, with approximately
the same number of males and females in each condition.

Procedure The subjects either received 12 learning blocks
or reached 100 % correct in any one block. Each learning
block consisted of two parts, study and test. During the
study part, subjects saw all 16 learning stimuli grouped by
category. There were four different ordering of the stimuli,
and each ordering was seen 3 times in random order. In each
block, the subjects saw one ordering for 30 s. After the study
part of each learning block, the learning stimuli were pre-
sented one at a time in a random order, and subjects had to
classify the item as belonging to category A or B. Each
response was followed by correct feedback for 1 s.

Immediately after learning, a two-part transfer test was
given, with a format and procedure identical to those in
Experiment 1: an initial inference test (12 with the label
available and 12 with the label missing), followed by the
recognition test. The 24 stimuli on the inference test were
presented in a random order.

Results

Learning Figure 7 shows the mean proportion correct on
each learning block, separately for each condition. As was
the case in Experiment 1, both learning blocks and

conditions were significant (both ps < .001). A Bonferroni
subsequent test (p < .05) revealed that learning accuracy was
ordered as follows: uncorrelated low overlap > correlated
low overlap > uncorrelated high overlap > correlated high
overlap; this ordering mirrored that in Experiment 1,with
terminal levels of learning ranging from .68 to .94. The
terminal levels of learning due to the increased learning
blocks were only marginally improved, relative to
Experiment 1, and were confined to the low-overlap
conditions.6

Transfer: classification Accuracy on the inference test for
each condition mirrored that found in Experiment 1, with
highest performance on the high correlation low overlap >
high correlation low overlap > low correlation low overlap >
low correlation high overlap (all ps < .05, Bonferroni). This
orderingmatched that in Experiment 1, with the exception that
the high correlational structure condition with high overlap
resulted in significantly better performance than did the low
correlation. Overall, dimensional correlation enhanced infer-
ence, and high overlap reduced it (both ps < .001).

With few exceptions, the patterning of results replicated
the findings of Experiment 1. Figure 8 shows mean infer-
ence accuracy as a function of type of test (label vs. feature),

6 Only 3 subjects (out of 60) reached a learning criterion of 100 % in
the correlated conditions and in the uncorrelated high-overlap condi-
tion. In contrast, nearly 50 % of the subjects achieved criterion in the
uncorrelated low-overlap condition. However, number of correct clas-
sifications or recognition on the transfer test was uncorrelated with
learning performance, where learning performance was defined by the
overall accuracy of learning across the training blocks, either overall or
assessed by condition. The unexpected finding that learning was easier
in the uncorrelated conditions in each experiment, regardless of over-
lap, is addressed in the General discussion section.
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dimensional correlation, category overlap, and number of
cues available at the time of test.

The main effect for each factor was statistically significant:
number of features available at test, F(2, 152) 0 39.50, η2 0
.342,MSE 0 .029; correlated versus uncorrelated dimensional
structure, F(1, 76) 0 49.72, η2 0 .395,MSE 0 .049; low versus
high category overlap, F(1, 76) 0 21.94, η2 0 .224,MSE .049,
p < .001; and label versus no label,F(1, 76) 0 23.84, η2 0 .239,
MSE 0 .032, all ps < .001. The interaction between number of
missing features and dimensional correlation was again sig-
nificant, F(2, 152) 0 7.46, η2 0 .089, MSE 0 .029, p < .01, as
was the interaction between type of test (label vs. feature) and
number of missing features at test, F(2, 152) 0 5.50, η2 0 .105,
MSE 0 .030, p < .01. When the features were uncorrelated,
performance was increasingly degraded as the number of
features available was reduced; when the category dimensions
were highly correlated, the number of missing features at test
had a substantially reduced impact on inference.

Experiment 2 produced two outcomes different from those
of Experiment 1. First, the interaction between type of test
(label, feature) and dimensional structure (correlated, uncor-
related) was significant, F(1, 76) 0 6.12, η2 0 .074, MSE 0

.032, p < .02, reflecting the greater benefit of dimensional
correlation on feature inference (.840 vs. 656) than on label
inference (.879 vs. 777). Second, the interaction between
dimensional correlation and overlap was not significant, F(1,
76) 0 2.88, MSE 0 .142, p 0 .09. However, the patterning of
performance was similar to that obtained in Experiment 1 in
that overlap had a minimal effect on inference when the
dimensions were correlated (.890 vs. .829) and a larger effect
(.781 vs. .652) when they were uncorrelated.

Recognition The likelihood that the old, new, and prototype
stimuli were called “old” on the transfer test is shown on the
right panel of Table 2. As was the case in Experiment 1,
subjects demonstrated reasonable accuracy in distinguishing
old from new stimuli (.775 vs. .581), with the caveat that the

prototypes of each category were incorrectly called “old” at
the highest rate (.819). Discrimination accuracy again fa-
vored the correlated conditions, as compared with categories
composed of uncorrelated dimensions.

Discussion

The effect of increasing the number of learning blocks only
slightly improved learning and was beneficial only when the
category overlap was low. Nonetheless, Experiment 2 rep-
licated the major findings of Experiment 1. In addition, the
prediction that correlated dimensional structure would affect
feature inference more than label inference was supported,
perhaps reflecting the increased number of training blocks
prior to transfer. Otherwise, the only other disparity was that
the interaction between overlap and degree of dimensional
correlation was significant in Experiment 1 but not in
Experiment 2. However, even here, the patterning of perfor-
mance was similar, with overlap having a reduced effect on
inference when the dimensions were correlated and a larger
effect when the dimensions were uncorrelated.

General discussion

Three major results were found in the present study. First, both
dimensional correlation within a category and the degree of
category overlap affected subsequent category and feature
inference on a later transfer test. Although category overlap
has been demonstrated to affect category classification
(Goldman & Homa, 1977) and, possibly, the learning strategy
adopted by subjects (Ell & Ashby, 2006), the role of dimen-
sional correlation on feature and category inference is novel. In
each experiment, transfer was most accurate overall when the
category dimensions were highly correlated, and category
overlap was low and poorest when the category dimensions
were uncorrelated and category overlap was high. These

TEST LABEL TEST FEATURE
Fig. 8 Impact of reduced cues
on inference, shown separately
for feature versus label test,
category overlap, and
dimensional correlational
conditions, Experiment 2
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findings are at variance with numerous studies that have dem-
onstrated sensitivity to within-category correlations following
inference but not classification training (e.g., Chin-Parker &
Ross, 2002; Sakamoto & Love, 2010). Second, restricting the
number of cues available at the time of test for a category test
or dimensional feature impacted performance, especially when
the category dimensions were uncorrelated. This outcome is
potentially tempered by the fact that the overall level of per-
formance was quite high with minimal cues when the dimen-
sions were correlated and, therefore, less opportunity for
improvement existed with additional cues. Nonetheless, when
the category dimensions were correlated, both classification
and feature inference were high even with three missing cues;
with additional cues, performance improved by an additional
10 %. In contrast, when the dimensions were uncorrelated,
performance was near chance when the number of cues was
minimal, especially when the categories overlapped to a mod-
erate degree. Our initial expectation was that, in the uncorre-
lated dimension conditions, category identification, but not
feature inference, would improve with additional cues, since
a mild correlation existed between each feature and the label
even in the high-overlap condition. We suspect that the reason
that feature inference was increasingly enhanced with addi-
tional cues when the dimensions were uncorrelated with each
other is due to the mediating role of the category label. That is,
even with uncorrelated cues provided, each cue increasingly
highlights the complex of cues associated with one category
rather than the other; as category determination improves, so
does inference of a missing feature, since these cues were
associated to the category label during learning. Third, perfor-
mance on identification of the category label was slightly but
significantly better than identification of a category feature,
regardless of category overlap, dimensional structure, or num-
ber of available cues at the time of transfer.

One reason why strong category and feature inference was
revealed following category learning, whereas its effect was
absent in numerous previous studies, may be because the cate-
gory structure in our experiments contained patterns from cor-
related dimensions that were highly variable; that is, the values
on each dimension were multivaried rather than binary. In
previous studies exploring category and feature inference, small
sets of binary-valued stimuli were used, and the correlation
among the dimensions was minimal. For example, in the study
by Sakamoto and Love (2010), subjects learned two categories
either by inference or by classification training, followed by a
transfer test. However, the computed correlation between the
dimensions was weak; for example, the correlation between
dimensions 1 and 2 was .403; between dimensions 2 and 3
and between dimensions 2 and 5, each correlation was .167.
Although their results found greater sensitivity of the internal
category structure following inference versus classification train-
ing, the internal structure in terms of correlated dimensions was
weak. A similar analysis of other studies (e.g., Chin-Parker &

Ross, 2002; Yamauchi&Markman, 1998, 2000) reveals that the
dimensions are, at best, weakly correlated with each other.
Although inference training may better reveal the internal struc-
ture of categories, as compared with classification training, this
conclusion may be restricted to small sets of binary-valued
stimuli whose dimensions are weakly correlated.

We believe that the related conclusion, that classification
training highlights only diagnostic category information and
not its internal structure (e.g., Chin-Parker & Ross, 2002;
Little & Lewandowsky, 2009), is also questionable. If only
diagnostic information were stored following classification
training, recognition of training patterns should be poor. In
particular, subjects should be unable to discriminate old training
patterns from new category patterns that contain identical diag-
nostic features. However, subjects in the present study made
this discrimination withmoderate accuracy, especially when the
dimensions were highly correlated, regardless of the degree of
category overlap. It is also likely that subjects stored more than
the specific training stimuli, since recognition would then be
driven more by category overlap than by dimensional correla-
tion. As a result, recognition performance, combined with
robust feature inference performance following classification,
converges to the same conclusion: Classification training can
foster knowledge of within-category structure. We should note
that experiments using continuously variable stimuli, such as
distorted forms (Homa, 1978), dot patterns (Posner & Keele,
1968, 1970), and schematic faces (Homa, Smith, Macak,
Johovich, & Osorio, 2001), routinely find high levels of recog-
nition following classification training (e.g., Homa, Goldhardt,
Burruel-Homa, & Smith, 1993). It is also the case that the
internal structure of categories is revealed by shaping variables
that primarily highlight within-category structure. For example,
when category size and pattern distortion are manipulated
within the learning phase, transfer performance is dramatically
changed (Homa, 1984). These variables are easily introduced
with more variable stimuli; with binary-valued stimuli, shaping
variables can, at best, be weakly incorporated into the experi-
mental design. In conclusion, subjects in the present study
clearly learned the internal, correlational structure of categories
following classification learning, an outcome likely contingent
upon the use of stimuli that are more complex than small sets of
binary-valued stimuli.7

7 An interesting exception was recently provided by Jones and Ross
(2011), who used actual photographs of birds that belonged to one of
six categories, where each category was associated with two features.
Following classification or inference learning, subjects were required
to classify photographs of novel members. Inference learners better
classified photographs, suggestive of enhanced stimulus structure fol-
lowing infernce learning. However, accuracy in classification was poor
in each condition (.26 vs. .19 in Experiment 1 and .28 vs. .19 in
Experiment 2, where chance in each experiment was .167). These
slight differences may have occurred because subjects in the inference
condition viewed each photograph with its associated label for a longer
period of time than did subjects in the classification condition.
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The finding that the number of cues affected both category
and feature inference was expected. However, the fact that
category and feature inference were equally affected by this
manipulation and that the number of cues impacted categories
defined by uncorrelated dimensions was not. In general, when
the dimensions were correlated with each other and with the
category label, minimal cues were sufficient to accurately
identify a queried feature or category label. In contrast, when
the dimensions were uncorrelated with each other and weakly
correlated with the category label, the reduction of cues pro-
duced performance that was near chance. The simplest expla-
nation is that the subject acquires during learning both
knowledge of cue values associated to each label as well as,
when the dimensions are correlated, knowledge that each cue
(feature) value is correlated with other features. When the
category label is tested and the cues are restricted, evidence
for a given category is low; with additonal cues, evidence is
cumulated to improve the accuracy of judgment, modulated
by the higher evidence when category overlap is low. When
the dimensions are correlated and a feature test is required,
subjects can use their knowledge that the feature value on a
particular dimension or dimensions is associated the value of
the queried feature. Again, the greater the number of cues, the
more evidence that is available to make a judgment.

Less obvious is why increasing the number of cues was
instrumental in improving feature inference when the
dimensions were uncorrelated. One possible explanation is
to assume that, during learning, the subject stores each
category as a label that is embedded within a network of
associated cues. At the time of test, this network of associ-
ations is activated either weakly or strongly on the basis of
the number of provided cues. Even when the dimensions are
uncorrelated, the category label is positively correlated with
each dimension, especially when the category overlap is
low. Identification of a feature then arises via mediation
through the category label, and the more cues there are,
the more the category label and its complex of associated
dimensional values are activated

The issue of whether the category label is a special
feature was one of the issues addressed by Yamauchi and
Markman (2000). Evidence that the label functioned as a
special feature was provided because classification—that is,
identification of the category label—was more affected by a
low similarity match in their study than was the inference of
a category feature. However, two concerns should be noted.
First, the subject made these decisions, not from memory
and following a learning phase, but with a sample sheet
available. That is, the subject was free to compare each
stimulus with a visually available set of patterns belonging
to the two categories. Whether the same response patterns
would emerge following a learning phase involving these
categories and testing that restricted decisions from memory
was not addressed. Second, as was noted in the introduction,

an analysis of the categorical structure in their experiments
revealed that the features were correlated to the category
label, but not with each other. As a consequence, it is not
surprising that the proportion of category accordance
responses was different in the classification (category label)
and feature inference conditions.

An alternative approach to this question can be addressed
by two alternative criteria: Are subjects less likely to identify a
feature than the category label, and does inference of the
category label or feature interact with other variables that
strongly determine inference? Given the confines of the pres-
ent study, the answer is mixed. Regardless of condition—that
is, whether the categories were composed of stimuli whose
stimulus dimensions were correlated or not and whether the
features were highly or weakly correlated with the category
label—subjects significantly identified the category label with
greater accuracy than a category feature. Although the differ-
ence favoring classification of the category label was slight in
a numerical sense, this advantage was statistically significant
in each experiment. In addition, the type of test (label vs.
feature) interacted with stimulus structure and number of cues
in each experiment. In effect, there was some evidence that the
category label functioned unlike its features.

The theoretical importance of a category label might be
better realized by using categories that include a generative
component—that is, a prototypical form that constrains each of
its members (Posner & Keele, 1968, 1970). Gelman has con-
sistently demonstrated that young children ascribe to some
categories a primitive and hidden essence that is distinct from
its external features (Gelman, 2004; Rhodes & Gelman, 2009;
Waxman & Gelman, 2009), although Deng and Sloutsky
(2012) have shown that, for children and less so for adults, a
particularly salient feature may guide inference. The assump-
tion that categories possesss a hidden core or essence may arise
implicitly when dimensions are correlated, perhaps further
augmented when overlap is minimal. Consistent with this view
is the finding by Billman and Knutson (1996), who found that
inference was enhanced when the category was defined by
three intercorrelated dimensions, as compared with a condition
where the number of correlated dimensions was the same but
were otherwise uncorrelated with each other. Their conclusion
that complexity facilitates learning when the dimensions are
organized in a coherent manner may arise because the inter-
correlated complex generates a prototype-like representation or
integrated unit that better maintains memory for later judg-
ments that tap these relations. The introduction of shaping
variables (Homa, 1984), such as category size, pattern vari-
ance, and so forth, and the manipulation of the types of
associated features, such as causal links (Rehder & Kim,
2009), when combined with categorical structure variables as
in the present study, might further elucidate conditions that
foster the category label as a special feature. A theoretically
productive line of research might be to build in feature
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correlations, as in the present study, modified (perhaps by
instructions) such that some, but not all, features were causal.

One unexpected finding was that categories composed of
uncorrelated dimensions were learned slightly faster than
those composed of correlated dimensions. This occurred
regardless of overlap and in spite of clear evidence that
inference on the transfer test was strongly facilitated by
the correlational dimensional structure. Whether this reflects
a general bias by subjects for unidimensional solutions (e.g.,
Ashby, Queller, & Berretty, 1999), which would preclude
discovery of correlational structure, is unclear. Insight into
this issue might be gained by systematically varying the
degree of correlational structure in a categorical paradigm.

Finally, we agree with Yamauchi and Markman (1998) that
a richer theory of categorization requires paradigms that ex-

plore phenomena other than classification and that inference
has received far too little focus. However, the claim that
“distinct representations arise if people learn categories by
inference or by classification” (p. 143) seems artificial, since
it presumes that we can order our experiences accordingly. In
effect, we accept whatever nature randomly provides—some-
times complete information requiring classification and, other
times, partial information requiring feature inference. Given
the chaotic and random temporal encountering of objects of all
types in the world, positing two distinct representations, one
marked as reflecting categorical judgments and the other as
experiences based on feature inference, seems unlikely.
Rather, we suspect that categorical knowledge arises as a
primary outcome, with our representation supplemented by
later judgments requiring feature inference.

Table 3 Design of 64 stimuli used in all conditions

Condition Stimulus number Structure Overlap Group Membrane Flagellum Nucleoid Pili Prototype

1 1 Correlated High A 1 2 1 1 3333
2 Correlated High A 2 1 2 2

3 Correlated High A 3 3 4 4

4 Correlated High A 3 3 3 4

5 Correlated High A 3 4 3 3

6 Correlated High A 4 3 4 3

7 Correlated High A 4 4 3 4

8 Correlated High A 4 4 4 3

9 Correlated High B 2 3 2 2 4444
10 Correlated High B 3 2 3 3

11 Correlated High B 4 4 5 5

12 Correlated High B 4 4 4 5

13 Correlated High B 4 5 4 4

14 Correlated High B 5 4 5 4

15 Correlated High B 5 5 4 5

16 Correlated High B 5 5 5 4

2 1 Correlated Low A 1 2 1 1 3333
2 Correlated Low A 2 1 2 2

3 Correlated Low A 3 3 4 4

4 Correlated Low A 3 3 3 4

5 Correlated Low A 3 4 3 3

6 Correlated Low A 4 3 4 3

7 Correlated Low A 4 4 3 4

8 Correlated Low A 4 4 4 3

9 Correlated Low B 3 4 3 3 5555
10 Correlated Low B 4 3 4 4

11 Correlated Low B 5 5 6 6

12 Correlated Low B 5 5 5 6

13 Correlated Low B 5 6 5 5

14 Correlated Low B 6 5 6 5

15 Correlated Low B 6 6 5 6
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