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Abstract Two experiments investigated the effects of musi-
cality and motivational orientation on auditory category
learning. In both experiments, participants learned to classify
tone stimuli that varied in frequency and duration according to
an initially unknown disjunctive rule; feedback involved
gaining points for correct responses (a gains reward structure)
or losing points for incorrect responses (a losses reward
structure). For Experiment 1, participants were told at the start
that musicians typically outperform nonmusicians on the task,
and then they were asked to identify themselves as either a
“musician” or a “nonmusician.” For Experiment 2, partic-
ipants were given either a promotion focus prime (a
performance-based opportunity to gain entry into a raffle) or
a prevention focus prime (a performance-based criterion that
needed to be maintained to avoid losing an entry into a raffle)
at the start of the experiment. Consistent with a regulatory-fit
hypothesis, self-identified musicians and promotion-primed
participants given a gains reward structure made more correct
tone classifications and were more likely to discover the
optimal disjunctive rule than were musicians and promotion-
primed participants experiencing losses. Reward structure
(gains vs. losses) had inconsistent effects on the performance
of nonmusicians, and a weaker regulatory-fit effect was found
for the prevention focus prime. Overall, the findings from this
study demonstrate a regulatory-fit effect in the domain of
auditory category learning and show that motivational

orientation may contribute to musician performance advan-
tages in auditory perception.
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cognition

Musicians have demonstrated a number of performance
advantages over nonmusician in auditory perception assess-
ments, which are typically attributed to differences in music
ability or formal music training. Some of the reported
perceptual differences include enhanced pitch discrimina-
tion (Schön, Magne, & Besson, 2004), better time and/or
rhythm discrimination (Jones & Yee, 1997; McAuley &
Semple, 1999), more automatic encoding of melodic
contour and interval structure (Fujioka, Trainor, Ross,
Kakigi, & Pantev, 2004), and more precise expectations
about musical structure (Cohen, 2000; Koelsch, Schröger,
& Tervaniemi, 1999). Formal music training has also been
shown to be associated with larger cortical volume in
primary motor, premotor, and auditory areas, and larger
corpus callosum volume (Gaser & Schlaug, 2003; Hyde,
Lerch, Norton, Forgeard, Winner, Evans, & Schlaug, 2009;
Schlaug, Jäncke, Huang, Staiger, & Steinmetz, 1995;
Schlaug, Norton, Overy, & Winner, 2005). Neuroimaging
studies have similarly revealed a number of functional brain
differences between musicians and nonmusicians that
support a music-training advantage. In particular, musicians
recruit prefrontal areas involved in working memory to a
greater degree than nonmusicians do during rhythm
learning (Chen, Penhune, & Zatorre, 2008), show decreased
motor activation relative to nonmusicians during bimanual
tapping (Jäncke, Shah, & Peters, 2000), show greater
connectivity between auditory and motor areas than non-
musicians during beat perception (Grahn & Rowe, 2009),
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and show more efficient encoding of pitch information than
nonmusicians in early stages of auditory processing,
including in the brainstem (Musacchia, Sams, Skoe, &
Kraus, 2007; Strait, Kraus, Skoe, & Ashley, 2009; Wong,
Skoe, Russo, Dees, & Kraus, 2007).

One factor that has rarely been considered in laboratory
assessments of the auditory perception skills of musicians
and nonmusicians is the role of motivation. It is evident that
participants bring different motivations to the laboratory
when they participate in behavioral experiments. In this
regard, individual differences in motivation are typically
treated as a random factor. However, when making
comparisons between musician and nonmusician, it seems
possible that differences in motivational orientation may
make systematic (rather than random) contributions to
performance. Along these lines, we have informally
observed in the lab that some highly trained musicians
appear to approach auditory perception tasks as an
opportunity to demonstrate their skill, while others treat
the same task as a test that they ought to do well on.
Similarly, some nonmusicians appear to approach auditory
perception tasks as an opportunity to meet a challenge,
while others approach the same task as a test on which they
should not perform well. Thus, it is presently not clear how
systematic differences in motivation may contribute to
auditory perception differences between musicians and non-
musicians. To begin to address this issue, the approach taken
in this study was to apply an established theoretical
framework in the motivation literature—namely, regulatory
focus theory—to the domain of auditory perceptual classifi-
cation, in order to test hypotheses about how motivational
differences between musicians and nonmusicians may interact
with task characteristics to alter performance

Regulatory focus theory and the concept
of regulatory fit

Regulatory focus theory distinguishes between two motiva-
tional orientations present to varying degrees in all people
(Higgins, 1997). People in a promotion focus are motivated
to become the person they ideally would like to be (i.e.,
fulfill their hopes and aspirations), whereas people in a
prevention focus are motivated to be the kind of person they
feel they ought to be (i.e., fulfill their duties and obligations).
Given that both promotion and prevention systems are
present in all people, it is possible for situational contingen-
cies to temporarily prime or induce a focus (see, e.g., Forster,
Grant, Idson, & Higgins, 2001; Freitas & Higgins, 2002;
Higgins, Idson, Freitas, Spiegel, & Molden, 2003).

Two differences between promotion focus and prevention
focus systems were of particular relevance for the present
study. First, during self-regulation, people in a promotion

focus are more concerned with attaining currently unattained
goals, whereas people in a prevention focus are more
concerned with maintaining currently held states (e.g.,
Brodscholl, Kober, & Higgins, 2007; Maddox & Markman,
2010). In tasks with incentives, framing the task to emphasize
attainment versus maintenance has been one common way in
which promotion and prevention orientations have been
primed. For example, participants can be told “you need to
attain X number of points to receive the reward” (promotion
prime) or “you need to maintain at least X number of points
to avoid losing the reward” (prevention prime). The second
difference, which derives from the difference in attainment
versus maintenance, is that people in each focus are sensitive
to different types of outcome information. A promotion focus
activates a mode of processing that focuses the motivational
system on the presence or absence of gains in the
environment. A prevention focus, conversely, activates a
mode of processing that focuses the motivational system on
the presence or absence of losses in the environment. Thus,
an important idea here is that a promotion focus increases
sensitivity to gains and nongains, while a prevention focus
increases sensitivity to losses and nonlosses (for reviews, see,
e.g., Cesario, Higgins, & Scholer, 2008; Higgins, 2006).

On this view, in any performance situation both the
orientation/regulatory focus of the individual (promotion/
prevention) and the reward structure of the task (e.g., gains/
losses) are operative. Regulatory fit (see Higgins, 2000;
Higgins et al., 2003) occurs when task incentives are
framed in the manner that is preferred by a person’s current
orientation—that is, when individuals in a promotion focus
are given gains task incentives (a gains reward structure),
and individuals in a prevention focus are given losses task
incentives (a losses reward structure). Conversely, individ-
uals with a promotion or prevention focus experiencing a
losses or a gains reward structure, respectively, experience a
state of regulatory nonfit. When outcomes are described in
a way that is preferred by a person’s regulatory focus (i.e.,
regulatory fit), the result is enhanced motivational strength
and greater valuation of the outcome. Considerable research
has supported this prediction across a wide range of
domains (e.g., Cesario & Higgins, 2008; Higgins et al.,
2003; Latimer, Rivers, Rench, Katulak, Hicks, Hodorowski,
& Salovey, 2008; Spiegel, Grant-Pillow, & Higgins, 2004;
Werth & Foerster, 2007; for summaries, see Cesario et al.,
2008; Higgins, 2000, 2006). Regulatory fit and nonfit,
therefore, have important implications for performance on
different types of tasks, a possibility to which we now turn.

Regulatory fit and perceptual category learning

Regulatory focus theory has recently attracted substantial
attention within cognitive science in the area of visual
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category learning (Maddox, Baldwin, & Markman, 2006;
Maddox & Markman, 2010). The present study extends this
research to the auditory domain to begin to examine
possible interactions between regulatory focus and musi-
cality. In perceptual category-learning tasks, individuals
learn to classify stimuli into two or more categories
according to an initially unknown rule. Classification tasks
of this sort have, in general, been of interest to researchers
because of the ability of such tasks to address questions
related to multiple category-learning systems (Ashby &
Maddox, 2005; Erickson & Kruschke, 1998; Kéri, 2003).
One influential model is the competition between verbal and
implicit systems (COVIS) model proposed by Ashby and
colleagues (Ashby, Alfonso-Reese, Turken, & Waldron,
1998). The COVIS model distinguishes between an explicit,
hypothesis-testing learning system and an implicit,
procedural-based learning system. COVIS assumes that
performance on perceptual category-learning tasks in which
the correct classification rule can be expressed in words (e.g.,
“Category A consists of short blue lines and long red lines,
while Category B consists of short red lines and long blue
lines”) relies primarily on the explicit hypothesis-testing
system, whereas performance on perceptual category-
learning tasks in which the correct classification rule requires
the integration of information in a manner that cannot be
readily described by the participant (e.g., a category
boundary that is the diagonal in a two-dimensional percep-
tual space) relies on the implicit procedural-based learning
system.

Extending work on regulatory focus theory, Maddox and
colleagues (Grimm, Markman, Maddox, & Baldwin, 2008;
Maddox et al., 2006; Worthy, Markman, & Maddox, 2009)
provided evidence that regulatory fit increases cognitive
flexibility and leads to better performance (relative to
regulatory nonfit) on rule-based visual category-learning
tasks that require cognitive flexibility (i.e., participants need
to explore the space of possible rules to arrive at the correct
solution), and worse performance (relative to regulatory
nonfit) on information integration tasks in which cognitive
flexibility is not beneficial. For the latter task, there is not a
rule that can be readily expressed in words, and the
exploration of different rule-based strategies will not help
participants perform well on the task.

Representative of this line of research, Maddox et al.
(2006) randomly assigned participants to either to a
promotion focus condition emphasizing the attainment of
a desirable state or to a prevention focus condition
emphasizing the maintenance of a desirable state. Specif-
ically, in the promotion focus condition, participants were
informed that if they exceeded a performance criterion they
would gain entry into a drawing for a 1-in-10 chance of
winning $50; in the prevention focus condition, they
initially received an entry into the drawing, but they were

told that they would lose the entry if they failed to maintain
a criterion level of performance. (See Brodscholl et al.,
2007, and Maddox et al., 2006, for demonstrations that
these conditions induce promotion and prevention foci.)
Participants then either gained points for correct responses
or lost points for incorrect responses. For a rule-based
visual perceptual classification task in which cognitive
flexibility was beneficial, individuals with a regulatory fit
learned the rule more quickly than (and outperformed)
individuals with a regulatory nonfit. Conversely, for an
information integration task in which cognitive flexibility
was a disadvantage, participants with a regulatory nonfit
learned the rule more quickly than (and outperformed)
individuals with a regulatory fit. Converging evidence for
the observed regulatory fit/nonfit effects was found by fitting a
number of decision bound models (cf. Ashby & Maddox,
1993; Maddox et al., 2006) to the data on a block-by-block
basis. Notably, the proportion of participants who were best
fit by the optimal classification rule when cognitive
flexibility was beneficial was larger in regulatory-fit con-
ditions than in regulatory-nonfit conditions; conversely,
participants in a regulatory fit were slower to converge to
the optimal classification rule for information integration
tasks in which cognitive flexibility was a disadvantage.

The present extension of regulatory focus theory to the
auditory domain to examine effects of musicality was
modeled after Grimm, Markman, Maddox, and Baldwin
(2009, Exp.2). Grimm et al. demonstrated that different
motivational orientations (i.e., regulatory foci) could be
primed in male and female participants by emphasizing
gender differences on a visual category-learning task.
Specifically, participants were told that the test was
diagnostic of gender differences in spatial abilities. It was
then explained to participants prior to testing that the test
that they were about to take was one on which (1)women
typically outperform men, or on which (2)men typically
outperform women. Then, participants performed the
category-learning task while either gaining points for
correct responses (a gains condition) or losing points for
incorrect responses (a losses condition). The visual stimuli
were lines that varied on three dimensions (length,
orientation, and position), and optimal performance was
achievable by learning to classify stimuli according to a
two-dimensional conjunctive rule. Grimm et al. hypothe-
sized that men and women given positive stereotypes
would focus on goal attainment and adopt a promotion
focus, while men and women given negative stereotypes
would focus on avoiding poor performance and adopt a
prevention focus. Consistent with a regulatory-fit interpre-
tation, the authors found that women given a positive
stereotype outperformed men given a negative stereotype
for the gains condition, while the effect was reversed when
the primed stereotypes were reversed for men and women.
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Present study

Here, we applied the approach of Grimm et al. (2009) to the
auditory domain in order to investigate the contributions of
motivational orientation to musician/nonmusician differences
in auditory skills. Participants were first told that they would
take a listening test that musicians typically perform better
on than nonmusicians and were then immediately asked to
identify themselves as a musician or a nonmusician. The
type of test we chose to examine was an auditory category-
learning task, which required participants to learn to
correctly classify tone stimuli that varied along two acoustic
dimensions (frequency and duration). Optimal performance
on the task required learning a verbalizable exclusive
disjunctive rule that required cognitive flexibility and for
which regulatory fit was hypothesized to be advantageous
(see Fig. 1). Tones short in duration and low in pitch or long
in duration and high in pitch belonged to Category A, while
tones short in duration and high in pitch or long in duration
and low in pitch belonged to Category B.

With respect to the effect of musicality, we hypothesized
that priming self-identified musicians with a positive
stereotype and then giving them a novel and challenging
task would lead musicians to focus on goal attainment and
adopt a promotion focus. From a regulatory fit perspective,
this means that musicians should perform better in the gains
condition (a regulatory fit) than in the losses condition (a
regulatory nonfit). In contrast, for nonmusicians, it seemed
possible that the prime (“musicians typically perform better
on the test than nonmusicians) might have weak or null
effects. Notably, previous research on stereotype threat has

shown that the effectiveness of priming a negative
stereotype depends on the importance that individuals place
on the ability in question (e.g., women primed with a
negative stereotype about math performance were more
affected by the prime if they assigned high importance to
mathematical ability; Cadinu, Maass, Frigerio, Impagliazzo,
& Latinotti, 2003). Thus, extending this idea to a
consideration of music expertise suggests that if self-
identified nonmusicians assign less importance to musical
ability than do musicians, they might also be less likely to
be influenced by the performance prime. This implies that
for the comparison between musicians and nonmusicians,
the effects of the prime on performance differences between
groups should be driven primarily by the musicians.
Moreover, from a regulatory-fit perspective, group differ-
ences, if present, should be larger in the gains condition (a
regulatory fit for the musicians) than in the losses condition
(a regulatory nonfit for the musicians).

A second experiment was conducted (1)to more directly
examine the role of regulatory fit in auditory perceptual
classification and (2)to provide converging evidence for the
hypothesis that musicians adopted a promotion focus in
Experiment 1. Experiment 2 replicated Experiment 1, but
rather than comparing musicians and nonmusicians, we
explicitly primed promotion and prevention foci using a
raffle ticket manipulation (Maddox et al. 2006). Participants
with a regulatory fit (promotion–gains, prevention–losses)
were predicted to achieve higher levels of classification
accuracy and to learn the disjunctive classification rule
better than participants with a regulatory nonfit (promo-
tion–losses, prevention–gains).

Fig. 1 Distributions of Catego-
ry A and Category B stimuli.
Tones low in pitch and short in
duration or high in pitch and
long in duration were assigned
to Category A (black circles),
whereas tones low in pitch and
long in duration or high in pitch
and short in duration were
assigned to Category B (white
circles), forming an exclusive
disjunctive classification rule.
Tone duration ranged between
100 and 900 ms, and tone
frequency was varied in log-
frequency units using a semitone
scale over an octave range be-
tween E4 (329 Hz) and E5
(658 Hz). The optimal decision
bound for the exclusive dis-
junctive rule is shown by the
dotted lines
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Experiment 1

Method

Design and participants

The experiment had a 2 (musicality: self-identified musi-
cians vs. self-identified nonmusicians) × 2 (reward struc-
ture: gains vs. losses) × 8 (block) mixed factorial design.
Musicality and reward structure were between-subjects
factors, while block was a within-subjects factor. A group
of 56 individuals from a large Midwestern university
community participated in return for extra credit in a
psychology course or a cash payment. Participants were
randomly assigned to either the gains condition, in which
they gained points for correct responses, or a losses
condition, in which they lost points for incorrect responses.
After being told that the task was diagnostic of their music
ability, participants were then asked to self-identify as
musicians or nonmusicians. Overall, fewer participants self-
identified as musicians (n = 17) than as nonmusicians (n =
39). This yielded four between-subjects conditions (musi-
cians–gains, n = 8; musicians–losses, n = 9; nonmusicians–
gains, n = 21; nonmusicians–losses, n = 18).

Stimuli and equipment

Two-thousand single sine tones were generated that varied
along two stimulus dimensions: frequency and duration.
The stimuli were sampled from uniform distributions that
formed an exclusive disjunctive classification rule; half of
the tones were Category A stimuli, and half were Category
B stimuli. Figure 1 shows a scatterplot of the stimuli along
with solid lines marking the optimal disjunctive rule.
Frequency varied on a log-frequency scale over an octave
range between 329 Hz (E4) and 658 Hz (E5). The
frequency value that maximally separated stimulus catego-
ries was 466 Hz. Duration varied in milliseconds over an
800-ms range between 100 and 900 ms. The duration value
that maximally separated stimulus categories was 500 ms.
Category A stimuli consisted of either short-duration low-
frequency tones (100–475 ms, 329–450 Hz) or long-
duration high-frequency tones (525–900 ms, 482–
658 Hz). Category B stimuli consisted of either short-
duration high-frequency tones (100–475 ms, 482–658 Hz)
or long-duration low-frequency tones (525–900 ms, 329–
450 Hz). The stimuli were generated offline using Praat
software (Boersma & Weenink, 2005) and presented during
the experiment at a comfortable listening level over
Sennheiser HD-280 Pro headphones (Old Lyme, CT);
stimulus presentation and response collection were con-
trolled by E-Prime software (Psychology Software Tools,
Inc.) running on a Dell PC computer.

Procedure

Participants were first administered a number of surveys
assessing whether the self-identified musician and nonmu-
sician groups were a priori different with respect to a
number of self-report measures, including “motivation to
do well on the task.” Following Grimm et al. (2009), all
participants initially completed the Regulatory Focus
Questionnaire (RFQ: Higgins et al., 2001), the Beck
Anxiety Inventory (BAI: Beck, Epstein, Brown, & Steer,
1988), and the Penn State Worry Questionnaire (PSWQ:
Meyer, Miller, Metzger, & Borkovec, 1990). The RFQ was
used to assess potential differences between musicians and
nonmusicians in chronic regulatory focus. It assesses an
individual’s history of promotion success and prevention
success by asking them to rate how often certain events
have happened in their past (e.g., “How often did you obey
rules and regulations that were established by your
parents,” “Not being careful enough has gotten me into
trouble at times”). The BAI and PSWQ were administered
because they measure two constructs, anxiety and worry,
respectively, which have the potential to be related to a
chronic prevention focus. The BAI asks participants to
indicate how much they had been bothered by a variety of
symptoms in the last week (e.g., “nervous,” “faint,” “terri-
fied”). Cronbach’s alpha coefficient for the BAI was .84. The
PSWQ asks participants to rate how typical of them they
consider statements about worrying (e.g., “My worries
overwhelm me,” “When I am under pressure I worry a
lot.”). Responses on the BAI range from 0 = Not at all to 3 =
Severely, I could barely stand it. Responses on the PSWQ
range from 1=Not at all typical of me to 5=Very typical of
me. Cronbach’s alpha coefficient for the PSWQ was .93.

Participants were next told the following: “This is an
experiment testing musical training differences in listening
abilities. Previous research has shown that musicians
perform better than nonmusicians on tests of listening
ability.” Participants were then asked to identify themselves
as either a musician or a nonmusician by pressing the “M”
or “N” key on the computer keyboard, respectively. Next,
participants were asked to provide ratings in response to the
following questions: “How well do you think you will
perform on this test” (1 = very badly, 9 = very well), “How
well do you think you will like the test” (1 = not at all, 9 =
very much), and “How motivated are you to do well on the
test” (1 = not at all, 9 = very motivated). Participants then
completed the Positive Affect Negative Affect Schedule
(PANAS: Watson, Clark, & Tellegen, 1988), which is a 20-
adjective checklist that asks participants to rate the degree
to which each adjective on the list describes their current
emotional state. Responses range from 1 = Very slightly or
not at all to 5 = Extremely. The PANAS yields a positive
affect (PA) scores and a negative affect (NA) score. An
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example of a PA item is “enthusiastic,” while an example of
an NA item is “irritated.”

During testing, participants were presented with a single
tone on each trial that was randomly sampled from the
stimulus space shown in Fig. 1, and they indicated whether
the tone was from Category A or B by pressing one of two
labeled response box buttons. Throughout the experiment, a
point meter was displayed on the right side of the screen
that tracked the number of points gained or lost, and
additionally displayed the to-be-achieved or to-be-avoided
criterion score. Participants given the gains reward structure
gained 2 points for each correct response and 0 points for
each incorrect response, with a to-be-achieved criterion
score of +58 points (at least 80.5% correct). For correct
responses, the computer screen displayed “+2,” the point
meter increased to show participants that they were closer
to the to-be-achieved criterion score, and participants heard
a cash register (“ka-ching”) sound to increase the saliency
of the point reward. For incorrect responses, the computer
screen displayed “+0” and the point meter did not change.
Participants given the losses reward structure lost 3 points
for each incorrect response and 1 point for each correct
response, with a to-be-avoided criterion score of −58 points
(no worse than 80.5% correct). For incorrect responses, the
computer screen displayed “–3,” the point meter decreased
to show participants that they were closer to the to-be-
avoided criterion score, and participants heard a “buzzer”
sound to increase the saliency of the point loss. For correct
responses, the computer screen displayed “–1” and the
point meter decreased by a smaller amount than when
losing 3 points. Once a participant had completed a trial
block, he or she was given feedback about the status of the
performance on the task; participants were told whether or
not they had successfully achieved the criterion score (gains
condition) or avoided the criterion score (losses condition)
and were reminded that for this test musicians were
generally successful in achieving or avoiding the criterion
score, respectively. In total, there were eight blocks of trials,
with 36 trials per block; participants did not know how
many blocks they would complete.

Immediately after completing the perceptual classifica-
tion task, participants completed the PANAS for a second
time; for the PANAS, the alpha coefficients for the PA
measure were .83 and .86 for the pre- and posttest
assessments, respectively, while those for the NA measure
were .79 and .78 for the pre- and posttest assessments,
respectively. Participants also responded to a series of
music-related statements on a scale ranging from 1 =
strongly disagree to 9 = strongly agree. These appeared in
the following order: “I am good at music,” “It is important
to me that I am good at music,” “My musical ability is
important to my identity.” Participants were next asked to
make ratings in response to the following questions, on a

scale ranging from 1 = very badly to 9 = very well: “How
well do you believe you performed overall on the test,”
“How well do you think you performed compared to
musicians,” and “How well do you think you performed
compared to nonmusicians.” Finally, participants completed
a posttest questionnaire that assessed their ratings of natural
musical ability (1 = very poor, 6 = very good), level of effort
(1 = I did not try at all, 6 = I tried my best), level of attention
(1 = I did not pay attention, 6 = I paid full attention), level of
task difficulty (1 = not difficult at all, 6 = very difficult),
and level of task understanding (1 = I did not understand
at all, 6 = I understood exactly what to do). The
experiment lasted approximately 90 min.

Results

Comparison of self-identified musician and nonmusician
samples on self-report measures

Tables 1 and 2 report means and standard deviations for all
pre- and posttest items and scores for the different survey
measures for the sample of self-identified musicians (n =
17) and the sample of self-identified nonmusicians (n = 39).
As expected, the self-identified musicians and nonmusi-
cians differed in their responses to a number of self-report
items concerning musical ability and general interest in
music. Musicians reported receiving more years of formal
musical training (M = 7.5 years, SD = 2.8) than non-
musicians (M = 1.1 years, SD = 2.1), t(54) = 9.53, p < .001.
Ratings for the statement “I am good at music” were
significantly higher for musicians (7.0 ± 1.9) than for
nonmusicians (3.4 ± 1.9), t(54) = 6.61, p < .001. Musicians
also judged that it was more “important to be good at
music” than did nonmusicians (6.7 ± 1.9 vs. 3.2 ± 2.0),
t(54) = 5.99, p < .001; provided higher ratings to “musical
ability is important to my identity” (6.0 ± 1.8 vs. 2.5 ±
1.7), t(54) = 6.76, p < .001; and rated their natural musical
ability as higher than that of nonmusicians (4.5 ± 1.2 vs.
2.5 ± 1.0), t(54) = 5.83, p < .001.

Next, the self-identified musician and nonmusician sam-
ples were compared in their responses to the pretest questions.
Just after being told that musicians tended to perform better
than nonmusicians on the test that they were about to take,
self-identified musicians judged that they would perform
better than the nonmusicians (musicians, M = 6.3, SD = 1.4;
nonmusicians, M = 5.1, SD = 1.7), t(54) = 2.64, p = .01; felt
than they would like the test more than did the nonmusicians
(musicians, 6.6 ± 1.7; nonmusicians, 5.2 ± 1.5), t(54) = 3.13,
p = .01; and were slightly more motivated than the
nonmusicians to do well on the test (musicians, M = 7.5 ±
1.4; nonmusicians, M = 6.6 ± 1.8), t(54) = 1.75, p = .09.
Musicians and nonmusicians did not differ in chronic
promotion focus, chronic prevention focus, PSWQ scores,
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BAI scores, or PA and NA scores on the PANAS assessed
either before or after completion of the tone classification
task (all ps > .2).

The musician and nonmusician samples also did not
differ in their posttest ratings of effort expended, attention
to the task, task difficulty, or task understanding (all ps >
.13) or in their self-assessments of how they performed on
the task relative to musicians and nonmusicians (all ps >
.1). Additional comparisons on posttest items showed no
effects of reward structure and no interactions between
musicianship and reward structure (all ps > .2).

Perceptual classification performance

Accuracy analyses Figure 2 shows proportions of correct
tone classifications (PC) as a function of trial block for self-
identified musicians (solid lines) and nonmusicians (dotted
lines), given a gains reward structure (filled markers) and a

losses reward structure (open markers). In line with the
hypothesis that musicians primed with a positive stereotype
would adopt a promotion focus and experience regulatory fit
in the gains condition, musicians in the gains condition
showed a tendency to outperform all other groups. To assess
the reliability of this trend, PC values were initially subjected
to a 2 (musicality) × 2 (reward structure) × 8 (block)
ANOVA, with participants’ responses to the three statements
on the pretest (“How well do you think you will perform on
the test?”, “How much do you think you will like the test?”,
“How motivated are you to perform well on the test?”) that
differed between musicians and nonmusicians included as

Table 1 Mean ratings (± SD)
for self-report items for
musicians and nonmusicians

Significant differences: *p < .05,
**p < .01.

Pretest Items Musicians Nonmusicians

How well do you think you will perform on this test? 6.3 (1.4)** 5.1 (1.7)

How well do you think you will like the test? 6.6 (1.7)** 5.2 (1.5)

How motivated are you to do well on the test? 7.5 (1.4) 6.6 (1.8)

Posttest Items

Formal music training (years) 7.5 (2.8)** 1.1 (2.1)

I am good at music. 7.0 (1.9)** 3.4 (1.9)

It is important for me to be good at music. 6.7 (1.9)** 3.2 (2.0)

My musical ability is important to my identity. 6.0 (1.8)** 2.5 (1.7)

How well did you perform overall? 3.7 (2.4) 4.4 (2.3)

How well did you perform compared to musicians? 4.3 (2.5) 3.1 (2.2)

How will did you perform compared to nonmusicians? 5.7 (2.3) 5.5 (2.2)

Natural musical ability 4.5 (1.2)** 2.5 (1.0)

Level of effort 5.3 (0.9) 4.8 (1.2)

Level of attention 4.7 (1.2) 4.5 (1.1)

Level of task difficulty 4.6 (1.2) 4.5 (1.3)

Level of task understanding 3.9 (1.7) 3.7 (1.5)

Table 2 Mean scores (± SD) for each survey measure for the samples
of self-identified musicians and nonmusicians

Survey Measure Musicians Nonmusicians

RFQ (promotion) 18.8 (2.1) 19.6 (2.3)

RFQ (prevention) 15.2 (2.5) 14.9 (2.9)

BAI 9.7 (6.6) 8.2 (6.4)

PSWQ 48.1 (18.5) 47.3 (13.5)

PANAS PA (pre) 32.2 (8.2) 29.8 (6.8)

PANAS NA (pre) 13.2 (2.9) 13.4 (4.3)

PANAS PA (post) 19.8 (7.2) 20.6 (8.1)

PANAS NA (post) 17.6 (5.4) 16.5 (5.3)

See text for test abbreviations. pre, pretest; post, posttest
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covariates. The ANOVA on PCs revealed a main effect of
reward structure, F(1, 49) = 7.5, p < .01, and a marginally
significant three-way interaction between musicality, reward
structure, and block, F(7, 343) = 1.93, p = .06. There were
also interactions between participants’ pretest ratings of
motivation and block, F(7, 343) = 2.18, p < .05, and their
pretest ratings of how much they thought they would like the
test and block, F(7, 343) = 2.17, p < .05. There were no
other main effects or interactions (all ps > .2). An ANOVA
on d′ rather than PC revealed a similar pattern of results,
including a significant three-way interaction between musi-
cality, reward structure, and block, F(7, 343) = 2.25, p = .03.

To unpack the three-way interaction between musicality,
reward structure, and block, PC values were regressed on
block (1–8) for each participant in order to obtain a slope
estimate (rate of change in PCs across block) for each
participant. For this analysis, large values for the estimated
slope indicated greater improvement in performance over
blocks. Of primary interest was a comparison of slopes across
conditions. The estimated slopes were subjected to a 2
(musicality) × 2 (reward structure) ANOVA,with participants’
responses to the three statements on the pretest (“Howwell do
you think you will perform on the test?”, “How much do you
think you will like the test?”, “How motivated are you to
perform well on the test?”) included as covariates. There was
no main effect of musicality, F(1, 48) = 0.22, p = .64, and no
main effect of reward structure, F(1, 48) = 0.36, p = .55, but
a two-way interaction between musicality and reward
structure, F(1, 48) = 4.67, p = .036, was in the hypothesized
direction. Consistent with the hypothesis that musicians
primed with a positive stereotype would adopt a promotion
focus and experience regulatory fit with a gains reward
structure, musicians showed greater improvement over

blocks (i.e., a larger slope) in the gains condition (M = .03,
SD = .024) than in the losses condition (M = .010, SD = .016),
t(11) = 2.00, p = .03, one-tailed. Furthermore, single-
sample t-tests revealed that the estimated slope for
musicians in the gains condition was significantly greater
than zero, t(7) = 3.42, p = .01, whereas the slope for
musicians in the losses condition was not different from
zero, t(8) = 1.79, p = .11. Nonmusicians, in contrast, did not
show any difference in their degree of improvement over
blocks in the two reward structure conditions (gains, M =
.013, SD = .027; losses, M = .02, SD = .027), t(33) = −0.69,
p = .50); the direction of the observed slope difference was
opposite to that observed for musicians, and thus consistent
with a prevention focus rather than a promotion focus.

Model-based analyses To supplement the accuracy analyses
and to examine what participants were learning when making
tone classifications, we fit a number of different decision
bound models (DBMs) to the choice data at the individual-
participant level on a block-by-block basis. DBMs describe
how participants perceive a stimulus in multidimensional
space and how they ultimately make a categorization decision
based on where that perception falls in the perceptual space.
For the present data set, three classes of models were of
interest: (a) a class of unidimensional models, (b) a class of
disjunctive models, and (c) a random-responder model (see
Table 3). The unidimensional models assume that partic-
ipants make a categorization decision on the basis of one
dimension only: frequency or duration. For each stimulus
dimension, we fit two unidimensional models. One version
assumed that participants would respond with Category A if
the perceived stimulus’s first dimension value were less than
the criterion, or otherwise they would respond with Category

Table 3 Descriptions of the decision bound models that were fit to the data

Model Description Parameters

Unidimensional Duration 1 Participants responded with Category A if the duration of the stimulus
was below criterion λd

Noise parameter σ, Decision criterion
on duration dimension λd

Unidimensional Duration 2 Participants responded with Category B if the duration of the stimulus
was below criterion λd

Noise parameter σ, Decision criterion
on duration dimension λd

Unidimensional Frequency 1 Participants responded with Category A if the frequency of the stimulus
was below criterion λf

Noise parameter σ, Decision criterion
on frequency dimension λf

Unidimensional Frequency 2 Participants responded with Category B if the frequency of the stimulus
was below criterion λf

Noise parameter σ, Decision criterion
on frequency dimension λf

Disjunctive: Suboptimal Participants separately determined the value of the duration relative to
criterion λd and the value of the frequency relative to criterion λf, then
combined the representations before choosing a response. Participants
set the location of the criteria.

Noise parameter σ, Decision criterion
on duration dimension λd, Decision
criterion on frequency dimension λf

Disjunctive: Optimal Participants separately determined the value of the duration relative to
criterion λd and the value of the frequency relative to the criterion λf,
then combined the representations before choosing a response.
Participants used the optimal criteria that maximized proportion correct.

Noise parameter σ

Random Responder Participants responded with Category A with probability p; otherwise,
they responded with Category B.

Probability of responding with
Category A
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B; the other version assumed the opposite mapping. For the
class of disjunctive models, we fit an optimal model, in
which the two decision criteria were set at the optimal
locations used to assign category labels in the experiment,
and a suboptimal model that allowed the two decision
criteria parameters to vary. Note that the term optimal does
not imply that if a participant used the optimal disjunctive
rule he or she would obtain 100% accuracy. The model is
stochastic, so optimality implies that the participant would
have the highest level of accuracy obtainable given his or her
level of perceptual and/or criteria variability. Finally, we
considered a random-responder model in which the proba-
bility that a participant would indicate Category A or B was
set equal to the observed relative frequency of choosing that
category.

Of central interest was whether participants would learn
to classify the tones according to the optimal disjunctive
rule, and how quickly they would do so. The regulatory-fit
hypothesis predicted that the use of a disjunctive rule
should be discovered and applied more quickly for
individuals in a regulatory fit as compared to those in a
regulatory nonfit (Maddox et al., 2006). Therefore, if
musicians did experience regulatory fit with a gains reward
structure, we expected that the percentage of participants
using the optimal DBM would be higher for musicians in
the gains condition than in the losses condition. To assess
this hypothesis, the seven DBMs were fit to the choice data
for each participant using the Bayes information criterion

(BIC) as the goodness-of-fit measure (Kass & Raftery,
1995; Raftery, 1995; Wasserman, 2000). Model fits were
performed on the choice data (1)on a block-by-block basis,
to examine changes in the decision rule across blocks, and
(2)collapsed across blocks, to consider the best-fitting
model overall. For the model fits, a 1:1 mapping between
the physical stimulus in multidimensional frequency–
duration space and perceptual space was assumed, but we
allowed for trial-by-trial (unbiased) variability in the
percept. The smaller the value of the BIC, the better the
fit of the model, regardless of the number of free
parameters; see the Appendix for additional modeling
details. To further quantify how quickly each participant
learned the optimal disjunctive rule, we identified for each
participant the total number of blocks and the first block for
which the optimal disjunctive model best fit the data; for
the first-block measure, participants whose data were never
fit best by the optimal disjunctive model were coded as a 9.

The models fit the data well, explaining 83.5% of
variance. Table 4 summarizes the percentages of partic-
ipants in each block best fit by the optimal disjunctive
model, the suboptimal disjunctive model, the unidimen-
sional frequency model, the unidimensional duration
model, and the random-responder model. To facilitate
comparisons with the accuracy data reported in Fig. 2,
Fig. 3 shows the percentages of participants best fit by the
optimal disjunctive model for each block for musicians
(gains vs. losses) and nonmusicians (gains vs. losses).

Table 4 Percentages of self-
identified musician and
nonmusician participants in
the gains and losses incentive
conditions in Experiment 1 for
which an optimal, a suboptimal,
a unidimensional (UD)
frequency, a unidimensional
duration, or a random-responder
model best fit the accuracy (as
percentages correct) data
according to the BIC metric

Block

Model Condition 1 2 3 4 5 6 7 8

Optimal Musician gains 62.5 71.4 50.0 50.0 87.5 100.0 50.0 62.5

Musician losses 33.3 44.4 33.3 44.4 11.1 55.6 22.2 33.3

Nonmusician gains 33.3 38.1 57.1 42.9 42.9 42.9 52.4 33.3

Nonmusician losses 11.1 5.6 33.3 27.8 44.4 50.0 27.8 11.1

Suboptimal Musician gains 12.5 14.3 12.5 25.0 0.0 0.0 25.0 12.5

Musician losses 11.1 22.2 0.0 0.0 22.2 0.0 11.1 11.1

Nonmusician gains 28.6 28.6 9.5 19.0 28.6 23.8 14.3 28.6

Nonmusician losses 22.2 22.2 16.7 11.1 11.1 11.1 22.2 22.2

UD Freq Musician gains 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Musician losses 11.1 0.0 11.1 0.0 0.0 0.0 0.0 11.1

Nonmusician gains 0.0 0.0 4.8 0.0 0.0 4.8 0.0 0.0

Nonmusician losses 5.6 0.0 0.0 0.0 5.6 0.0 0.0 5.6

UD Dur Musician gains 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0

Musician losses 0.0 11.1 0.0 0.0 0.0 0.0 0.0 0.0

Nonmusician gains 0.0 4.8 0.0 0.0 0.0 4.8 0.0 0.0

Nonmusician losses 5.6 5.6 0.0 0.0 5.6 11.1 5.6 5.6

Random Musician gains 25.0 14.3 25.0 25.0 12.5 0.0 25.0 25.0

Musician losses 44.4 22.2 55.6 55.6 66.7 44.4 66.7 44.4

Nonmusician gains 38.1 28.6 28.6 38.1 28.6 23.8 33.3 38.1

Nonmusician losses 55.6 66.7 50.0 61.1 33.3 27.8 44.4 55.6

Mem Cogn (2012) 40:231–251 239



Overall, the pattern of changes across blocks in the
percentages of participants best fit by the optimal disjunc-
tive model paralleled the pattern of change in accuracy
across blocks shown in Fig. 2. Notably, musicians given the
gains reward structure showed a larger increase over blocks
in the use of the optimal disjunctive rule than did musicians
given the losses reward structure. This was not evident in a
difference in the first block that the optimal disjunctive
model fit the musicians’ data best (p > .05), but musicians
with a gains reward structure were best fit by the optimal
disjunctive model in more blocks (M = 4.75 blocks) than
were musicians with a losses reward structure (M = 2.67
blocks), t(15) = 1.96, p < .05, one-tailed. Less consistent
differences between gains and losses were observed for
nonmusicians, for whom the numbers of blocks best fit by
the optimal disjunctive model did not differ, t(37) = 1.7, p >
.05.

With respect to the overall best-fitting model (i.e., for
choice data collapsed across blocks), the disjunctive models
(optimal and suboptimal) were found to fit best for 67.9%
of participants, the unidimensional models (duration and
frequency) fit best for only 7.1% of participants, and the
random-responder model fit best for 25% of participants,
χ2(1) = 7.14, p < .01. This shows, more broadly, that
although the task was difficult (i.e., 25% of the participants
were best fit by the random-responder model), more
participants were best fit by a disjunctive rule model than
by any other rule. When self-identified musicians and
nonmusicians were considered separately, 76.5% of the
musicians were found to be best fit by the optimal model,
while only 46.2% of the nonmusicians were best fit by the
optimal model, χ2(1) = 4.40, p < .05, thus showing an
overall musicality effect. When musicians were further

separated according to gains and losses, 100% of the
musicians with the gains reward structure were found to be
best fit by the optimal disjunctive model, while only 55%
of the musicians with the losses reward structure were best
fit by the optimal disjunctive model, χ2(1) = 4.65, p < .05.
Recall, as explained earlier, that the stochastic nature of the
optimal model does not imply that a participant would have
perfect accuracy, only that he or she would obtain the
highest level of accuracy given the level of noise in their
decision process. In contrast, no effect of reward structure
was found on the percentages of nonmusicians best fit by
the optimal disjunctive model (nonmusician gains, 42.9%;
nonmusician losses, 50%), χ2(1) = 0.2, n.s.

Relationship between self-report measures and perceptual
classification performance

Finally, Table 5 summarizes the relationship between the
pretest and posttest self-report measures and perceptual
classification performance for the musician and nonmusi-
cian samples. There were no reliable correlations between
responses to pretest questions and tone classification
performance for musicians, but the pretest motivation rating
was moderately correlated with performance for nonmusi-
cians (r = .36, p < .05). As expected, posttest measures of
level of effort, attention, task difficulty, and task under-
standing tended to be correlated with performance, but not
to the same degree for musicians and nonmusicians (see
Table 5). With respect to the RFQ, PSWQ, BAI, and
PANAS measures, there were two reliable relationships
with tone classification performance: Better classification
performance was associated with higher posttest positive
affect (PA) scores (r = .49, p < .01) and lower posttest
negative affect (NA) scores (r = −.33, p < .05).

Discussion

Self-identified musicians and nonmusicians completed a
single-tone category-learning task that they were told was a
test that musicians typically do better on than nonmusi-
cians. Optimal classification performance required partic-
ipants to learn an exclusive disjunctive classification rule,
such that tones that were high in pitch and short in duration
or low in pitch and long in duration were in one category,
while tones that were low in pitch and short in duration or
high in pitch and long in duration were in the other
category. Musicians and nonmusicians were affected by the
reward structure manipulation differently. Consistent with
the hypothesis that musicians primed with a positive
stereotype would adopt a promotion focus, musicians in
the gains condition achieved higher accuracy levels and
discovered the optimal disjunctive rule more readily than
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did musicians in the losses condition. Conversely, non-
musicians showed minimal effects of the reward structure
manipulation on performance. Comparing musicians and
nonmusicians revealed that the musicians showed a
performance advantage over nonmusicians for the gains
reward structure, but not for the losses reward structure.

To provide a more direct test of the regulatory-fit
hypothesis in the domain of auditory category learning, a
second experiment was conducted in which we used the
same task and reward structure manipulation, but directly
primed regulatory focus. A promotion focus was primed by
telling participants that good performance on the task
would gain them entry into a raffle, while a prevention
focus was primed by requiring participants to avoid poor
performance on the task in order to maintain raffle entry. A
regulatory-fit hypothesis predicted that promotion-primed
participants would perform better with a gains reward
structure than with a losses reward structure, while
prevention-primed participants would perform better with
a losses reward structure than with a gains reward structure.

Experiment 2

Method

Participants and design

A group of 58 undergraduate students with self-reported
normal hearing from a large Midwestern university com-
munity participated in return for course credit in an
undergraduate psychology course. The experiment had a 2
(regulatory focus: promotion vs. prevention) × 2 (reward
structure: gains vs. losses) × 8 (block) mixed factorial

design. Regulatory focus and reward structure were
between-subjects factors, while block was a within-
subjects factor. Participants were randomly assigned to
either the gains condition, in which they gained points for
correct responses (n = 27), or a losses condition, in which
they lost points for incorrect answers (n = 31), and were
primed with either a promotion focus (n = 29) or a
prevention focus (n = 29), yielding four between-subjects
conditions (promotion–gains, n = 13; promotion–losses, n =
16; prevention–gains, n = 14; prevention–losses, n = 15).

Stimuli and equipment

The stimuli and equipment were identical to those of
Experiment 1.

Procedure

The primary change in Experiment 2 was that, rather than
telling participants that musicians typically outperformed
nonmusicians on the task and then having them identify
themselves as either a musician or a nonmusician, we
randomly assigned participants to one of two regulatory
focus conditions. Participants given the promotion focus
prime were told that they would earn a raffle ticket with a
1-in-20 chance of winning a $50 cash prize if they
performed well enough on the final block of the task.
Participants given the prevention focus prime received a
raffle ticket with a 1-in-20 chance of winning a $50 cash
prize at the start of the experiment and were told that they
would lose their raffle ticket if they failed to perform well
enough in the final block of the task.

Participants then completed eight blocks of the tone
classification task used in Experiment 1. After each block

Table 5 Pearson correlations
between responses to pre-
and posttest items and overall
proportions of correct tone
classifications for musicians
and nonmusicians

Significant differences: *p < .05,
**p < .01.

Pretest Items Musicians Nonmusicians

How well do you think you will perform on this test? .03 .10

How well do you think you will like the test? .18 .27

How motivated are you to do well on the test? −.40 .36*

Posttest Items

I am good at music. –.12 .26

It is important for me to be good at music. –.30 .12

My musical ability is important to my identity. –.27 –.02

How well did you perform overall? .92** .46**

How well did you perform compared to musicians? .52* .40*

How will did you perform compared to nonmusicians? .38 .47**

Natural musical ability –.06 .58**

Level of effort –.03 .48**

Level of attention .15 .44**

Level of task difficulty –.89** –.23

Level of task understanding .41 .54**
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of 36 trials, participants were given feedback about their
performance. If enough points were achieved in the gains
condition to meet or exceed the criterion, or if participants
successfully avoided the criterion in the losses condition,
promotion-focused participants were told that they would
have received a raffle ticket if this had been the final block
of the experiment, and prevention-focused participants were
told that they would have successfully avoided losing their
raffle ticket if this had been the final block of the
experiment. On the other hand, if not enough points were
achieved in the gains condition or too many points were
lost in the losses condition, promotion-focused participants
were told that they would not have received a raffle ticket,
and prevention-focused participants were told that they
would have lost their raffle ticket if this had been the final
block of the experiment. When the final block was
completed, participants earned or kept (vs. did not earn or
failed to keep) their raffle ticket, depending on their
regulatory focus condition and performance.

After completing the perceptual classification task,
participants completed a posttest questionnaire that assessed
their ratings of natural musical ability (1 = very poor, 6 =
very good), level of effort (1 = I did not try at all, 6 = I tried
my best), level of attention (1 = I did not pay attention, 6 =
I paid full attention), level of task difficulty (1 = not
difficult at all, 6 = very difficult), and level of task
understanding (1 = I did not understand at all, 6 = I
understood exactly what to do). The experiment lasted
approximately 90 min.

Results

Perceptual classification performance

Accuracy analyses Figure 4 shows proportions of correct
tone classifications (PCs) for each of the eight blocks of
trials for promotion-focus-primed participants (solid lines)
and prevention-focus-primed participants (dotted lines) in
the gains condition (solid markers) and the losses condition
(open markers). A 2 (regulatory focus) × 2 (reward
structure) × 8 (block) mixed-measures ANOVA on PCs
revealed main effects of block, F(7, 378) = 12.85, p < .01,
and regulatory focus, F(1, 54) = 5.79, p < .01, and a
significant interaction between regulatory focus and reward
structure, F(1, 54) = 6.46, p = .01. There was no main
effect of reward structure, F(1, 54) = 2.66, p = .1, and no
other significant interactions (all ps > .17).1 Accuracy was
higher for promotion-focused (M = .69, SD = .13) than for

prevention-focused (M = .62, SD = .13) participants, but
differences in accuracy due to regulatory focus were
qualified by a two-way interaction between regulatory
focus and reward structure. Consistent with the regulatory-fit
hypothesis, accuracy for promotion-focused participants
(similar to self-identified musicians in Exp. 1) was higher in
the gains condition (M = .77, SD = .13) than in the losses
condition (M = .63, SD = .11), t(27) = 3.20, p < .01.
Conversely, prevention-focused participants showed slightly
higher accuracy in the losses condition (M = .63, SD = .15)
than in the gains condition (M = .60, SD = .12), but the
difference was not significant, t(27) = −0.60, p = .55.

Model-based analyses As in Experiment 1, three classes of
DBMs were examined: unidimensional frequency and
duration models, optimal and suboptimal disjunctive mod-
els, and a random-responder model (see Table 3). The
models fit the data well, explaining 85.1% of variance,
which is similar to the proportion of variance accounted for
in Experiment 1. Table 6 summarizes the percentages of
participants in each block who were best fit by the optimal
disjunctive model, the suboptimal disjunctive model, the
unidimensional frequency model, the unidimensional dura-
tion model, and the random-responder model, while Fig. 5
shows just the percentages of participants who were best fit
by the optimal DBM for each of the eight blocks and each
of the four groups (promotion–gains, promotion–losses,
prevention–gains, prevention–losses). As in Experiment 1,
the block-by-block changes in the percentages of partic-
ipants best fit by the optimal disjunctive model (Fig. 5)
paralleled the block-by-block change in the accuracy
pattern (Fig. 4). Moreover, promotion-primed participants
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Fig. 4 Proportions of correct classification responses (PC) in
Experiment 2 in each block for promotion-focus-primed participants
(solid lines) and prevention-focus-primed participants (dotted lines),
given the gains reward structure (filled markers) or the losses reward
structure (open markers)

1 An ANOVA on d′ in Experiment 2 similarly revealed main effects of
block, F(7, 378) = 6.28, p < .01, and regulatory focus, F(1, 54) = 4.8,
p < .05, and a significant interaction between regulatory focus and
reward structure, F(1, 54) = 6.6, p < .01.
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given a gains reward structure were best fit by the optimal
disjunctive model in more blocks [M = 5.4 vs. 3.0 blocks, t
(27) = 2.58, p < .05] and earlier [M = 2.6 vs. 4.6 blocks, t
(27) = −2.14, p < .05] than were promotion-primed
participants given a losses reward structure. For prevention-
primed participants, in contrast, reward structure did not
appear to affect the number of blocks [prevention–gains,M =

2.86; prevention–losses, M = 3.0 blocks; t(27) = −0.15, p =
.88] or how quickly participants learned the disjunctive rule
[prevention–gains, M = 4.2 blocks; prevention–losses, M =
4.4 blocks; t(27) = −0.18, p = .86].

With respect to the overall best-fitting model (i.e., for
choice data collapsed across blocks), the disjunctive models
(optimal and suboptimal) fit best for 58.6% of participants, the
unidimensional models (duration and frequency) fit best for
25.9% of participants, and the random-responder model fit
best for 15.5% of participants. As in Experiment 1, more than
half of the participants were fit best by either the optimal or
the suboptimal disjunctive model. When promotion-primed
and prevention-primed participants were considered separate-
ly, 51.7% of the promotion-primed participants were found to
be best fit by the optimal disjunctive model, whereas only
24.1% of the prevention-primed participants were best fit by
the optimal disjunctive model, χ2(1) = 4.69, p < .05. A
further comparison of the gains versus losses conditions for
the two regulatory focus conditions revealed a pattern that
was consistent with a regulatory-fit hypothesis. For
promotion-primed participants, 76.9% given a gains reward
structure were best fit by the optimal disjunctive model,
while only 31.3% given a losses reward structure were best
fit by the optimal model, χ2(1) = 5.99, p < .025. Conversely,
for prevention-primed participants, 14.3% given a gains
reward structure were best fit by the optimal disjunctive
model, while 33.3% given a losses reward structure were best
fit by the optimal model, χ2(1) = 1.45, n.s.

Table 6 Percentages of
promotion- and prevention-
primed participants in the gains
and losses incentive conditions
in Experiment 2 for which an
optimal, a suboptimal, a unidi-
mensional (UD) duration, a uni-
dimensional frequency, or a
random-responder model best fit
the accuracy (as percentages
correct) data according to the
BIC metric

Block

Model Condition 1 2 3 4 5 6 7 8

Optimal Promotion gains 30.8 61.5 76.9 76.9 69.2 76.9 61.5 84.6

Promotion losses 12.5 18.8 18.8 50.0 50.0 50.0 56.3 43.8

Prevention gains 7.1 28.6 28.6 28.6 57.1 64.3 35.7 35.7

Prevention losses 13.3 33.3 33.3 46.7 46.7 40.0 40.0 46.7

Suboptimal Promotion gains 7.7 7.7 0.0 15.4 15.4 7.7 23.1 0.0

Promotion losses 12.5 6.3 6.3 12.5 6.3 6.3 6.3 6.3

Prevention gains 14.3 0.0 7.1 14.3 0.0 0.0 14.3 7.1

Prevention losses 13.3 0.0 13.3 0.0 0.0 6.7 6.7 6.7

UD Freq Promotion gains 15.4 7.7 7.7 7.7 7.7 7.7 7.7 7.7

Promotion losses 31.3 31.3 31.3 12.5 18.8 18.8 18.8 31.3

Prevention gains 28.6 42.9 35.7 28.6 14.3 0.0 28.6 14.3

Prevention losses 53.3 26.7 26.7 40.0 20.0 40.0 26.7 26.7

UD Dur Promotion gains 15.4 7.7 0.0 0.0 0.0 7.7 0.0 0.0

Promotion losses 12.5 0.0 18.8 6.3 12.5 12.5 0.0 6.3

Prevention gains 0.0 0.0 7.1 0.0 0.0 7.1 0.0 7.1

Prevention losses 6.7 6.7 13.3 6.7 13.3 0.0 0.0 0.0

Random Promotion gains 30.8 15.4 15.4 0.0 7.7 0.0 7.7 7.7

Promotion losses 31.3 43.8 25.0 18.8 12.5 12.5 18.8 12.5

Prevention gains 50.0 28.6 21.4 28.6 28.6 28.6 21.4 35.7

Prevention losses 13.3 33.3 13.3 6.7 20.0 13.3 26.7 20.0
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Fig. 5 Percentages of participants best fit by the optimal disjunctive
rule in Experiment 2 in each block for promotion-focus-primed
participants (solid lines) and prevention-focus-primed participants
(dotted lines), given the gains reward structure (filled markers) or
the losses reward structure (open markers)
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Effects of regulatory focus and reward structure on posttest
item ratings

Finally, potential effects of regulatory focus and reward
structure were assessed for items on the posttest question-
naire (see Table 7). With the exception of task understand-
ing, there were no main effects of regulatory focus or
reward structure, nor reliable interactions for any of the
posttest items (all ps > .1). For task understanding (1 = I did
not understand at all, 6 = I understood exactly what to do),
promotion-primed participants gave higher task understand-
ing ratings (M = 4.93, SD = 1.39) than did prevention-
primed participants (M = 3.76, SD = 1.70), t(56) = 4.91, p <
.05. Given that participants, by design, were not told the
correct classification rule and had to learn it through trial
and error, the effect of regulatory focus on task understand-
ing was likely due to the better performance of promotion-
primed participants.

Discussion

The results of the second experiment provide direct support
for an effect of regulatory fit on auditory perceptual
classification. For the promotion focus manipulation,
participants were told that they would have an opportunity
to earn entry into a $50 raffle, while for the prevention
focus manipulation participants were given a raffle ticket
and needed to avoid poor performance to prevent loss of the
ticket. Consistent with a regulatory-fit hypothesis,
promotion-primed participants performed better in the gains
condition (regulatory fit) than in the losses condition
(regulatory nonfit). Prevention-primed participants tended
to show the opposite pattern, but the differences observed
between the gains and losses conditions with the prevention
prime were not found to be reliable. Converging evidence
was provided from the model-based analyses, which
revealed a regulatory-fit advantage in participants’ use of
the optimal disjunctive rule.

General discussion

This article reported two experiments that used regulatory
focus theory as a framework to begin to address whether
musician advantages in assessments of auditory perception
skills may partly reflect individual differences in motiva-
tional orientation. The general approach was based on
Grimm et al. (2009), who in part were investigating
whether performance on a visual classification task with
an initially unknown conjunctive rule could be influenced
by the regulatory fit between a primed stereotype (i.e.,
“men typically outperform women” or “women typically
outperform men”) and the reward structure of the task.
Consistent with the view that participants given positive
stereotypes would focus on goal attainment and adopt a
promotion focus, while those given negative stereotypes
would focus on avoiding poor performance and adopt a
prevention focus, Grimm et al. found that women given
positive stereotypes outperformed men given negative
stereotypes when the women were experiencing a gains
reward structure, but that the reverse effect was observed
when the opposite stereotypes were primed.

The present study showed an analogous, but not identical,
pattern of results when comparing musicians and nonmusi-
cians who were primed with a positive and a negative
stereotype, respectively, before completing a tone classifica-
tion task with an initially unknown disjunctive rule. The
primary hypothesis was that priming self-identified musicians
with a positive stereotype (i.e., musicians typically outperform
nonmusicians) would lead musicians to focus on goal
attainment and adopt a promotion focus. Consistent with this
hypothesis and similar to the pattern observed by Grimm et al.
(2009), musicians outperformed nonmusicians in a gains
reward structure (a regulatory fit), but not in a losses reward
structure (regulatory nonfit). Model-based analyses further
showed that musicians were quicker than nonmusicians to
learn the optimal disjunctive rule, but only with a gains
reward structure.

Table 7 Mean ratings (± SD) for self-report items for promotion-focus- and prevention-focus-primed participants in the gains and losses
conditions

Posttest Questionnaire Promotion Prevention

Gains Losses Gains Losses

Natural musical ability 3.5 (1.7) 2.6 (1.3) 3.6 (1.5) 3.1 (1.3)

Level of effort 5.6 (0.9) 5.3 (0.9) 5.4 (0.9) 5.3 (0.8)

Level of attention 5.4 (1.0) 4.9 (1.3) 5.0 (0.9) 5.2 (0.9)

Level of task difficulty 4.2 (1.4) 4.0 (1.4) 4.4 (1.2) 4.7 (1.2)

Level of task understanding 4.8 (1.5) 5.0 (1.3) 3.6 (1.6) 3.9 (1.8)

Only task understanding differed between the conditions, with promotion-primed participants providing higher ratings than prevention-primed
participants, p < .05. There were no effects of reward structure or interactions between reward structure and regulatory focus (all ps > .1).
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Nonmusicians, in contrast, did not appear to be affected
by the prime. This might be explained by the fact that the
effectiveness of priming a negative stereotype has been
shown to depend on the importance that individuals place
on the ability in question (e.g., women primed with a
negative stereotype about math performance have been
shown to be more affected by the prime if they assign high
importance to mathematical ability; Cadinu et al., 2003). In
line with this possibility, nonmusicians gave much lower
ratings to the statements “It is important for me to be good
at music” and “My musical ability is important to my
identity” than did musicians.

Experiment 2 provided some direct support that regulatory
fit impacts auditory perceptual classification and converging
evidence that performance differences (or lack thereof)
between musicians and nonmusicians in Experiment 1 were
likely due to priming a difference in regulatory focus. Instead
of telling participants that musicians typically outperformed
nonmusicians on the task, participants were explicitly given
promotion and prevention primes. Promotion-primed partic-
ipants were told that they had an opportunity to be entered
into a raffle with a 1-in-20 chance of winning if they
performed well enough on the task, while prevention-primed
participants were given a raffle ticket with a 1-in-20 chance
of winning and told that they would lose it if they failed to
maintain a given level of performance. Consistent with a
regulatory-fit hypothesis, promotion-primed participants
showed greater accuracy levels and learned the disjunctive
classification rule more quickly in the gains condition than in
the losses condition, while prevention-primed participants
showed only a slight performance advantage in the losses
condition as compared to the gains condition.

The results from Experiment 2 are mostly consistent
with the work of Maddox and colleagues, who have
previously demonstrated interactions between regulatory
focus and reward structure (i.e., regulatory fit) (Grimm et
al., 2008; Maddox et al., 2006; Markman, Baldwin, &
Maddox, 2005; Markman, Maddox, & Baldwin, 2007;
Markman, Maddox, & Worthy, 2006). Similar to the
present investigation, Maddox et al. (2006) primed
participants with a promotion or prevention focus and
then had them complete a perceptual classification task (in
this case, a visual rather than an auditory task) in which
they either gained points for correct answers or lost points
for incorrect answers. Critically, the perceptual classifica-
tion tasks were chosen so that cognitive flexibility was
either an advantage (Maddox et al., 2006, Exp.1) or a
disadvantage (Maddox et al., 2006, Exps. 2 and 3). As in
the present study, for a rule-based visual perceptual
classification task in which cognitive flexibility was
beneficial, individuals in a situationally induced regulato-
ry fit learned the rule more quickly than (and out-
performed) individuals in a regulatory nonfit.

One notable difference between the present results and
the work of Maddox and colleagues is that although we
found a regulatory-fit effect for the promotion–gains
condition, a regulatory-fit effect was much less evident for
the prevention–losses condition. The failure to find a robust
prevention–losses fit effect for a rule-based auditory
perceptual classification task is somewhat surprising, given
that we used the same type of promotion and prevention
primes and the same reward structure manipulation is in
Maddox et al. (2006). There does not appear to be a
straightforward explanation for this difference.

One factor that may have contributed to a weak
prevention–losses fit effect in the present study is a chronic
promotion focus bias that tends to be prevalent in college-
student populations (Higgins, 2008). A participant bias
toward a chronic promotion focus could have conceivably
interacted with the situational regulatory focus primes,
enhancing the effect of the promotion primes and weaken-
ing the efficacy of the prevention prime. Consistent with
this possibility, we did observe a chronic promotion focus
bias in Experiment 1, but there was little evidence that
individual differences in chronic regulatory focus influ-
enced performance or interacted with the reward structure
manipulation.2

A second factor that could be important to consider is
task difficulty. Overall, auditory perceptual classification
performance in the present study was relatively poorer than
in some previous visual perceptual classification studies
that have examined regulatory-fit effects (Maddox et al.,
2006). In this regard, there is some evidence that
participants may be particularly used to gains environments
(see Grimm et al., 2009), which leads them to experience
gains conditions as inherently easier than losses condition,
with the fit (promotion–gains) group then experiencing a
boost. If this were the case in the present study, one would
expect this to be reflected in ratings of task difficulty or task

2 Chronic regulatory focus was of particular interest in Experi-
ment 1 because participants assigned themselves to either the
musician or nonmusician samples, rather than being randomly
assigned to promotion focus and prevention focus groups as in
Experiment 2. For all participants, chronic promotion scores (M =
19.4, SD = 2.2) were reliably higher than chronic prevention scores
(M = 15.0, SD = 2.8), t(55) = 9.12, p < .01, which is consistent with
a promotion bias in the college student population. Musicians and
nonmusicians, however, did not significantly differ in chronic
promotion focus, t(54) = −1.43, p = .16, or chronic prevention
focus, t(54) = 0.44, p = .66. RFQ scores were also uncorrelated with
classification accuracy (promotion score, r = −.02, p = .88;
prevention score, r = −.05, p = .69). Finally, to assess whether
chronic RFQ interacted with reward structure and could have had an
impact on the pattern of results, the difference between the
promotion and prevention scores on the RFQ was used to classify
participants as having more of a chronic promotion or prevention
focus. A 2 (chronic focus) × 2 (reward structure) × 8 (block)
ANOVA yielded no main effect of chronic focus (p = .78), nor any
interactions with chronic focus (all ps > .4).
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understanding. However, reward structure (gains vs. losses)
had no effect on either task difficulty or task understanding
for both Experiments 1 and 2.

Another consideration that might help to explain a weak
prevention–losses fit effect is the difference between the
gains and losses reward structure manipulations. Specifi-
cally, in the gains reward structure, participants gained
points for correct answers (+2) but did not gain any points
for incorrect answers (+0). However, in the losses reward
structure, participants lost points for correct (−1) and for
incorrect answers (−3). Pairing a prevention focus (which is
characterized by a concern with maintenance and avoiding
losses) with a reward structure that did not allow the
participant to maintain the current performance level even
when they were correct might have reduced a regulatory-fit
effect with the prevention prime. Given that the losses
reward structure was chosen to match Maddox et al. (2006),
it does not explain the difference between the two studies,
but nonetheless it is still possible that this particular choice
of losses reward structure weakened a prevention–losses fit
effect here. One approach to considering this possibility in
future studies would be to titrate the numbers of points
gained and lost for correct and incorrect responses.

A comparison of both experiments reveals strikingly
similar patterns across studies, which serves to strengthen
support for the conclusion that musicians in Experiment 1
adopted a promotion focus and experienced regulatory fit
with the gains reward structure and nonfit with the losses
reward structure. This conclusion has implications for
distinguishing the effects of motivation from those of
music ability at the two ends of the musical expertise
spectrum. Impacts of music training on different aspects of
perception and cognition have received increasing attention
in the past decade or so (Cohen, 2000; Fujioka, Trainor,
Ross, Kakigi, & Pantev, 2004; Koelsch et al., 1999; Magne,
Schön, & Besson, 2006; Morrongiello & Roes, 1990;
Pechstedt, Kershner, & Kinsbourne, 1989; Schön et al.,
2004; Trainor, Shahin, & Roberts, 2003). In this regard, it is
notable that while many studies have reported robust and
long-lasting perceptual benefits associated with music
training, others have also failed to observe differences
between musicians and nonmusicians (Bigand, 2003;
Bigand & Poulin-Charronnat, 2006; Grahn & McAuley,
2009; Henry & McAuley, 2009; Henry, McAuley, &
Zaleha, 2009). The fact that in the present study a relatively
small change in the structure of the task (emphasizing gains
vs. losses), combined with the simple prime “Musicians
typically outperform nonmusicians” could have an impact
on differences in task performance between musicians and
nonmusicians highlights the need to understand better the
interactions between motivational systems and basic cog-
nitive processes in both the laboratory and more natural
settings.

One implication of this study is the possibility that
individual differences in motivation may also play an
important role at the other end of the expertise spectrum.
In particular, congenital amusia (or tone deafness) is a
condition in which individuals have lifelong difficulty
recognizing melodies without the aid of lyrics or detecting
small pitch changes in music; this condition cannot be
attributed to factors such as hearing loss, lack of exposure
to music, or general intelligence (Ayotte, Peretz, & Hyde,
2002). Some research has examined the influences of
heredity (Peretz, Cummings and Dubé 2007) and brain
structure (Hyde, Lerch, Zatorre, Griffiths, Evans, & Peretz,
2007; Peretz, Brattico, Jarvenpaa, & Tervaniemi, 2009;
Peretz, Brattico, & Tervaniemi, 2005) on amusia, but the
role of individual differences in motivation orientation has
been largely ignored.

As a step in this direction, we recently (McAuley, Henry,
& Tuft, 2011) examined the effects of regulatory fit on
performance on the Montreal Battery of Evaluation of
Amusia (MBEA; Peretz, Champod, & Hyde, 2003). The
MBEA was of interest because it is the primary assessment
tool used to diagnose congenital amusia. To test a
regulatory-fit hypothesis, we either gave musicians and
nonmusicians instructional primes or explicitly primed a
promotion or prevention focus. We then had participants
complete a representative subtest of the MBEA that
involved same–different judgments about melody pairs
while either gaining points for correct answers (a gains
condition) or losing points for incorrect answers (a losses
condition). Consistent with a regulatory-fit hypothesis,
promotion-primed participants achieved higher scores in a
gains condition than in a losses condition, while
prevention-primed participants performed better in a losses
than in a gains condition.

Particularly relevant for the present investigation were two
additional findings. Reward structure interacted with musi-
cality, but in a manner opposite the one in the present study;
musicians performed better when given a losses reward
structure than when given a gains reward structure, thus
appearing to adopt a prevention rather than a promotion focus
when performing the task. Second, regulatory-fit effects with
explicit promotion and prevention primes were generally
stronger for musicians than for nonmusicians. The latter result
notably converges with the overall more consistent
regulatory-fit effects observed for musicians here, but the
former result is at first glance puzzling.

Two methodological differences between McAuley et al.
(2011) and the present study seem like good candidates to
explain this difference. First, the instructional prime used
with musicians and nonmusicians by McAuley et al. was
that the “task was diagnostic of musical ability” rather than
that “musicians typically outperform nonmusicians”; this
might have particularly encouraged musicians to try to
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avoid doing poorly so that they would not be perceived as
having low musical ability. Second, the task itself was one
that was very familiar to musicians, and one in which they
would thus have clear expectations about their perfor-
mance. Notably, both methodological differences have been
shown to be important for stereotype threat effects, which
can be considered as part of a broader class of reputational
threats. Our working hypothesis, in this regard, was that
giving musicians a familiar task that they are told is
diagnostic of musical ability represents a reputational threat
and will encourage them to adopt a prevention, rather than
a promotion, focus. Additional work is needed to test this
possibility.

Another potentially fruitful line of work would be to
contrast the effects of regulatory fit for individuals who score
high and low on the MBEA. The key observation here is that
there is a tendency for participants who do poorly on the
MBEA to use a conservative response criterion (i.e., they tend
to say that melodies are the same; Henry & McAuley, 2011),
which suggests that these participants may be adopting a
prevention focus when performing the task. If this is the
case, giving individuals who do poorly on the MBEA a
losses reward structure would result in a state of regulatory
fit and yield better performance than when these individuals
are given a gains reward structure. This possibility is in line
with recent work by Maddox, Filoteo, Glass, and Markman
(2010), who considered how creating states of regulatory fit
and nonfit might influence the proportions of individuals
classified as “impaired” on the Wisconsin Card Sorting Task
(WCST: Heaton, 1981). Consistent with a regulatory-fit
hypothesis, individuals in a regulatory fit took fewer trials to
adapt to a switched rule and made fewer perseverative
responses than did individuals in a regulatory nonfit;
moreover, fewer people in the regulatory-fit condition were
classified as “impaired” on the WCST than in the regulatory-
nonfit condition.

Finally, although the focus of this study has been on
musical expertise, it seems possible that the present findings
could be more generally relevant for understanding effects of
motivational orientation on task performance for other
populations of experts (e.g., baggage screeners at the airport)
placed in situations in which there is a desire either to show off
their expertise (leading to a promotion focus orientation) or to
avoid looking bad (leading to a prevention focus orientation).
In both instances, a better understanding of how motivational
orientation interacts with task characteristics can be used to
frame tasks in a manner that will optimize task performance.

Conclusions

The present study represents a novel extension of
regulatory focus theory to the auditory domain and

provides evidence that the perceptual advantages typi-
cally associated with music training or musical ability
have the potential to be reduced by considering the fit
between an individual’s regulatory focus and the reward
structure of the task (i.e., whether or not participants
gain points for correct responses or lose points for
incorrect response). In two experiments, participants
heard tones that varied in frequency and duration
according to an initially unknown disjunctive rule and
assigned tones to one of two categories, either gaining
points for correct responses or losing points for
incorrect responses. Experiment 1 revealed that self-
identified musicians learned the disjunctive rule more
quickly than did nonmusicians in the gains condition,
but that there was no musicality effect in the losses
condition. Experiment 2 revealed a similar pattern of
results for individuals primed with a promotion focus,
as compared to those primed with a prevention focus.
Overall, the findings are consistent with the hypothesis
that musicians primed with a positive stereotype adopt a
promotion focus when faced with a novel auditory
perception assessment that affords musicians the oppor-
tunity to demonstrate their listening skills. Although
musician versus nonmusician differences were observed
with a gains reward structure, both the accuracy and
model-based analyses revealed no musicality effects
with a losses reward structure, supporting the more
general view that effects of musicality (associated with
either music ability or formal music training) are at least
somewhat malleable, and likely partly depend on both
motivational factors and task characteristics. Regulatory
focus theory offers one approach that can be used to
begin to disentangle the effects of individual differences
in motivational orientation from those associated with
music training or musical ability.

Author note Portions of this research were presented at the 10th
Biennial Meeting of the Society for Music Perception and Cognition.
The authors gratefully acknowledge Samantha Tuft and Bryan
Grushcow for their contributions to this project.

Appendix: Decision bound models

In general, decision bound models (DBMs) explain how
participants represent a stimulus in multidimensional space
and ultimately make a categorization decision by assigning
responses to regions of perceptual space (Ashby, 1992;
Ashby & Gott, 1988; Ashby & Maddox, 1993; Maddox &
Ashby, 1993). The stimulus is defined by a set of
coordinates in a physical multidimensional space with
dimension s (e.g., s = 2). A vector Yi represents the
stimulus’s coordinates in physical space. DBMs use a
psychophysical function ψ to map the physical space into
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the perceptual space. DBMs allow for a wide range of
mappings to perceptual space, but in this set of experiments
we have assumed a 1:1 mapping. DBMs allow for trial-by-
trial (unbiased) variability in the percept so that

yðYi; ep;iÞ ¼ Xp;i ¼ Xi þ ep;i ðA1Þ
where ep is a random vector that represents sensory and
perceptual noise. The vector ep is assumed to be multivar-
iate normal with covariance matrix

P
p. In the models, the

perceptual noise is stimulus invariant, so that the covariance
matrix is the same for all stimuli. In the DBMs we used, we
assumed zero covariance between dimensions, so that
P

ps
2
pI .

According to DBMs, participants divide up the psycho-
physical space with response criteria to make a decision.
People may use an infinite number of possible decision
rules. Table 3 describes the seven decision rules we used. A
general description of each of the three classes of models
(unidimensional, disjunctive, and random responder) is
provided next.

Unidimensional rule

The unidimensional rule assumes that a respondent makes a
categorization decision based on one dimension only. If a
respondent only makes a decision on Dimension 1, then
they set a criterion λ1 on the perceived dimension. In
general, with this model the probability of responding with
Category A (RA), is

P RAjxð Þ ¼ P½x1 þ ep1 < l1 þ ec1�; ðA2Þ
where λ1 and ec1 are the response bias and criterial error,
and ep1 is the perceptual noise on the first dimension. In the
model, ec1 and ep1 are assumed to be independent and
identically distributed. Equation A2 can be rewritten as

P RAjXð Þ ¼ Φ
l1 � x1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
p þ s2

c

q

0

B
@

1

C
A ðA3Þ

where Φ is the normal cumulative distribution function. The
probability of responding RB is P(RB | x) = 1 – P(RA | x). In
the models, we cannot identify σp and σc separately, so we
fit only one noise parameter σ2 = σp

2 + σc
2. Thus, each

model has two free parameters: the variability parameter σ
and the decision bias parameter δ.

For each dimension, we fit two unidimensional models.
One version assumed that participants responded A if the
perceived stimulus’s first dimension value was less than the
criterion, or otherwise they responded B (see Eq. A2). A
second model assumed the opposite mapping. Unidimen-
sional models based on the second dimension were
developed in the same manner.

Disjunctive rule

The disjunctive rule was the optimal rule, in that the true
categories in the experiment were defined with a
disjunctive rule. Thus, participants who adopted a
disjunctive rule would maximize accuracy. The decision
rule required participants to determine whether the value
on the first dimension x1 was low or high and whether the
value on the second dimension x2 was low or high and
then to combine those two separate dimensions to generate
a response. Using the dimensions of duration and
frequency, the optimal bounds required participants to
use the following rule: “Respond ‘A’ if the duration is
short and the frequency is high or if the duration is long
and the frequency is low; otherwise, respond ‘B.’ ” As
Maddox et al. (2006) pointed out, this rule requires an
overt verbalizable rule that requires separate decisions on
each decision, and thus should be more difficult for
participants to implement in the nonfit condition due to
their limited cognitive resources.

To calculate the probability of responding “A,” P(RA | x), it
is useful to divide the two-dimensional space into four
quadrants using the two orthogonal decision criteria. Starting
from the top right and moving counterclockwise, analogous
to Cartesian quadrants, we label the quadrants I, II, III, and
IV. The probability P(RA | x) is equal to the probability that
stimulus x is perceived as falling into either of the two
Cartesian quadrants II or IV,

P RAjxð Þ ¼ P IIjxð Þ þ P IVjxð Þ: ðA4Þ

Analogously, the probability of responding “B” is

P RBjxð Þ ¼ P Ijxð Þ þ P IIIjxð Þ: ðA5Þ

According to the general structure of DMBs, the
probability of a stimulus falling into quadrant III (assuming
criteria λ1 and λ2 on their respective dimensions) is

P IIIjxð Þ ¼ P½x1 þ ep1 < l1 þ ec1; x2 þ ep2 < l2 þ ec2�:
ðA6Þ

Thus, because the dimensions are not correlated, this
expression can be rewritten as

P IIIjXð Þ ¼ Φ
l1 � x1
s2
p þ s2

c

 !

Φ
l2 � x2
s2
p þ s2

c

 !

: ðA7Þ

Using similar logic, the probability of the perceived
stimulus falling into quadrant IV is

P IVjXð Þ ¼ Φ
x1 � l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
p þ s2

c

q

0

B
@

1

C
AΦ

l2 � x2
s2
p þ s2

c

 !

: ðA8Þ
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The probability of the perceived stimulus falling into
quadrant II is

P IIjXð Þ ¼ Φ
l2 � x1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
p þ s2

c
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x2 � l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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C
A: ðA9Þ

The probability of the perceived stimulus falling into
quadrant I is

P IjXð Þ ¼ Φ
x1 � l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
p þ s2

c
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x2 � l2
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s2
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A: ðA10Þ

Two disjunctive models were fit to the data. The optimal
model set the criteria at λd = 500 ms (duration) and λf =
466 Hz (frequency). These were the locations that were
used to assign the category labels used in the experiment;
thus, this model was optimal in that participants would
maximize accuracy if they used it. Again, the perceptual
and criterion noise parameters could not be separated, so
one trial-by-trial parameter was fit. Thus, the optimal
disjunctive model had one free parameter. The other model,
the suboptimal disjunctive model, allowed the two criteria
parameters to be free. After including the trial-to-trial
variability parameter, this model had three free parameters.

Random-response rule

The random-response rule is essentially a statistical model in
which the probability that a participant responded with
Category A was set equal to the observed relative frequency
of choosing the category. This model does not use the
attributes of the stimulus, and thus over blocks the DBMs
should do better than this model. This model had one free
parameter, the observed relative frequency of responding “A.”

Model fitting and comparison

In general, our goal was to use these DBMs as a rough
model of the learning process (see also Maddox et al.,
2006). To do so, we fit each DBM to each participant’s data
on a block-by-block basis and identified the best-fitting
model for each block. If participants were learning the
categories, then over the blocks we should see the DBM
that assumes the correct decision rule (i.e., disjunctive) with
the optimal criteria become the best-fitting model. All of
the DBMs were fit to the responses using maximum
likelihood methods. In the case of the four uniform DBMs
and the two disjunctive DBMs, the best-fitting parameters
were found with MATLAB’s constrained nonlinear optimi-
zation routine based on a quasi-Newton approximation of
the Hessian function. The parameter for the random-
response rule was estimated directly from the data.

We used the Bayesian information criterion (BIC; Kass &
Raftery, 1995; Raftery, 1995; Schwarz, 1978; Wasserman,
2000) to make our model comparisons. The BIC was
calculated for each model according to the following
expression:

BIC ¼ �2MLi þ jilogðnÞ;

where MLi is the maximum log-likelihood of model i, j is the
number of parameters in the model, and n is the number of
observations. The model with the smallest BIC was selected
as the best-fitting model. The number of parameters in the
expression serves as a handicap for model complexity, where
models with more parameters tend to overfit the data and
therefore the BIC is handicapped more. As a rule of thumb,
based on the BIC’s Bayesian roots, 2 or less is interpreted as
weak evidence, a difference of 2–6 as positive evidence, a
difference of 6–10 as strong evidence, and a difference
greater than 10 as very strong evidence for the particular
model (Raftery, 1995; Wagenmakers, 2007).
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