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Abstract Prior research on cognitive skill learning has
shown that algorithmic and direct memory retrieval
strategies are not executed in parallel if the algorithm
entails a series of long-term memory (LTM) retrieval steps
(as in the case, for example, of mental arithmetic). This
phenomenon has been hypothesized to reflect a bottleneck
in LTM retrieval processes that forces a strategy choice
during an early stage of processing. Here, we investigate
simple perceptual-motor algorithms that involve no memory
retrieval steps, a largely unexplored case in which parallel
strategy execution models remain viable. Pronounced strategy
interference was again observed, albeit interference that was
different in important respects from that observed for LTM
retrieval algorithms. It appears that neither parallel nor choice
models, as developed to date, are sufficient as a generalized
theory of this skill learning phenomenon. Issues central to the
development of a more comprehensive theory are discussed.

Keywords Skill - Learning - Algorithms - Strategy
execution - Strategy choice

A signature phenomenon in cognitive skill learning is the
shift from reliance on a multistep algorithm to direct
memory retrieval. In doing single-digit multiplication, for
example, children may initially perform a repeated addition
algorithm, but with sufficient practice will transition to
direct retrieval (e.g., Siegler, 1988). Multiple laboratory
studies have confirmed this shift over a variety of arithmetic
and nonarithmetic tasks (Delaney, Reder, Staszewski & Ritter,
1998; Hertzog, Touron & Hines, 2007; Jenkins & Hoyer,
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2000; Logan, 1988, 1992; Onyper, Hoyer & Cerella, 2006;
Palmeri, 1997; Rawson, 2004; Reder & Ritter, 1992; Rickard,
1997, 1999, 2004; Rickard & Bajic, 2003, 2006; Rogers,
Hertzog & Fisk, 2000; Schunn, Reder, Nhouyvanisvong,
Richards & Stroffolino, 1997; Touron, Hoyer & Cerella,
2001). An understanding of the temporal dynamics of
strategy execution in these tasks is integral to the broader
goal of modeling the underlying learning processes and
performance mechanisms, as well as the factors that may
modulate the rate of the strategy shift (e.g., Bourne,
Raymond & Healy, 2010; Onyper et al., 2006; Salvucci &
Taatgen, 2008; Touron & Hertzog, 2009).

One group of models assumes parallel strategy execution
(Logan, 1988; Nosofsky & Palmeri, 1997; Palmeri, 1997,
1999). In these models as developed to date, the algorithm
and retrieval strategies compete in a race, which is a special
case of parallel processing involving independent and
capacity-unconstrained strategy execution (for a general
treatment, see Townsend & Nozawa, 1997). A second
group of models assumes a strategy choice at an early stage
of processing, such that only one strategy is executed at a
time (Rickard, 1997, 2004; Schunn et al., 1997; Siegler,
1988). The most recent evidence (Bajic & Rickard, 2009)
unambiguously favors the strategy choice account for the
case of algorithms that involve long-term memory (LTM)
retrieval steps. Bajic and Rickard used a task that allowed
indexing of not only the response time (RT) for each trial
(defined as the latency between stimulus onset and response
execution) but also the latency of completion of each step
of the algorithm. On each trial of their experiment, subjects
were presented with a two-digit stimulus. The algorithm
involved silent forward counting from the presented
number, pressing the space bar in synchrony with each
count, until the computer informed subjects to stop. They
then spoke aloud the number to which they had counted.
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The latency of each keypress was recorded, providing the
approximate latency of each counting step, and a micro-
phone voice-key recorded the latency from the onset of the
numerical stimulus to the vocal response (i.e., the RT).
Each stimulus was presented multiple times over training
blocks. For each stimulus (e.g., 21), the same number of
counts was always required (e.g., 11), and the same
response was always to be spoken (e.g., 32), leading to a
shift to direct retrieval for most items—that is, the ability
to recall a given stimulus’s vocal answer without the use
of the associated algorithm. Any trial in which an answer
was vocalized prior to algorithm step completion could
unambiguously be identified as a trial in which the
direct-retrieval strategy had been used successfully as the
basis for responding.

This task allowed Bajic and Rickard (2009) to explore
two previously unaddressed questions about the temporal
dynamics of strategy execution: (1) On the last few
algorithm trials preceding the first correct retrieval trial for
an item, is there evidence of progressively slower latencies
for one or more algorithm steps, as would be expected if the
retrieval strategy becomes more competitive over trials and
if there is a latency-consuming strategy competition? And
(2) on retrieval trials, is it generally the case that some
fraction of the algorithm steps are completed, as would be
expected if the two strategies can be executed in a race and
if the latency of each algorithm step is much shorter than
that for direct retrieval?

With respect to both questions above, the data supported
a strategy choice account in which there is a competition
between the algorithm first step (e.g., the first tap—count
event) and the direct-retrieval strategy. Specifically, on the
last few algorithm trials preceding the first correct retrieval
trial for an item, there was a marked slowing in the
execution of the algorithm first step (but not of subsequent
steps), reaching a peak value of over 800 ms on the trial
immediately preceding the first correct retrieval. Bajic and
Rickard (2009) termed this selective first-step slowing the
algorithm pause effect, and we will refer to the increasing
magnitude of this effect on trials approaching the first
correct retrieval trial as the pause-effect slope. The pause
effect indicates that the algorithm was blocked temporarily
while subjects attempted to retrieve the answer. Apparently,
answer retrieval either failed on those trials, or subjects
were insufficiently confident to execute the retrieved
answer, and thus switched to the algorithm as a backup
strategy. The pause effect, then, is consistent with strategy
choice but not with parallel strategy execution.

Further, on the first five retrieval trials for each item,
when retrieval was slowest, one or more algorithm steps
were completed on only about 10% of trials. We will refer
to this subset of retrieval trials as partial-algorithm retrieval
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trials. Based on the assumptions of a strategy race model
(Logan, 1988; Palmeri, 1997; for a general treatment, see
Townsend & Nozawa, 1997), it would have been predicted
that one or more algorithm steps should have been observed
on about 86% of those trials (calculation of this prediction
is described later). Finally, on partial-algorithm retrieval
trials, there was a roughly 700-ms partial-algorithm pause
effect (i.e., a 700-ms delay in execution of the algorithm
first step), mirroring the pause effect for algorithm trials. In
combination, these results ruled out both the race model
and any straightforward implementation of a limited-
capacity parallel strategy execution model.

Bajic and Rickard (2009) interpreted their results as
being consistent with an elaborated version of Rickard’s
(1997) component power laws (CMPL) model. That model,
which is an example of the more general class of strategy
choice models, assumes a bottleneck in cued recall from
LTM (see Nino & Rickard, 2003; Rickard & Bajic, 2004).
The entire retrieval event, up to the point at which the
answer becomes available for responding, must be com-
pleted before a second retrieval can be initiated. Thus, for
any algorithm that involves principally a series of LTM
memory retrievals (even a series of retrievals as simple as
counting), the algorithm and retrieval strategies cannot be
executed in parallel. The relatively rare partial-algorithm
retrieval trials in the Bajic and Rickard experiment can be
accommodated by a choice model such as CMPL if it is
assumed that, on occasion, subjects (1) retrieve the answer,
yielding the partial-algorithm pause effect; (2) subsequently
initiate algorithm execution anyway, perhaps due to
insufficient confidence in the retrieved answer; yet (3) prior
to completion of the full algorithm, choose to execute the
previously retrieved answer. See Bajic and Rickard for a
discussion of why subjects might interleave strategies in
this way on occasional trials.

The CMPL model leaves open the possibility that
strategy execution may run in parallel for algorithms that
do not involve LTM retrieval operations. An example
laboratory task is noun-pair lookup (Hertzog et al., 2007;
Touron et al., 2001). In a typical version of that task, a set
of noun pairs is presented at the top of the screen. On each
trial, a noun-pair cue is presented in the center of the
screen, and the subject must indicate, by pressing one of
two keys, whether the cue pair corresponds to one of the
pairs at the top of the screen. Subjects must either
remember the paired nouns (direct retrieval) or visually
search the noun-pair table (the algorithm) to find it. In this
task, execution of the search algorithm may not require
LTM retrieval at all, or at least may require much less than
other algorithms (e.g., arithmetic).

There are also numerous retrieval-shift phenomena
outside of the laboratory involving perceptual-motor
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(P-M) “algorithms” having minimal or no LTM-retrieval
component. As examples, consider remembering a
keyboard shortcut to perform a word-processing operation
versus searching a dropdown menu, directly remembering the
location of a control lever in an unfamiliar automobile versus
searching, and remembering a person’s name or phone
number versus looking it up on a contact list.

There are at least two reasons to suspect parallel strategy
execution for the case of P-M algorithms. First, there is
evidence from the dual-task literature for domain specificity
in LTM retrieval interference. Fernandes and Moscovitch
(2000, 2003) observed that retrieval performance is more
adversely affected by a secondary task that involves the
same domain (e.g., verbal retrieval and a verbal secondary
task) than by a secondary task from a different domain
(e.g., verbal retrieval and a numerical secondary task).
Presumably, then, the direct (LTM) retrieval strategy would
be less influenced by a P-M algorithm than by an LTM
algorithm. Second, in many cases (e.g., the examples noted
above), P-M algorithms are subjectively less taxing on
general cognitive resources than are LTM retrieval algo-
rithms (e.g., arithmetic algorithms). It may be that the
critical factor is not whether the algorithm requires LTM
retrieval per se, but whether it leaves sufficient resources
unallocated (i.e., attentional capacity; Kahneman, 1973) to
execute retrieval in parallel. In the P-M conditions of the
experiments described below, the algorithms—involving
repeated key tapping or mouse movements—are among the
simplest possible from both subjective and theoretical
perspectives. Strategy execution for these algorithms was
compared to that for matched LTM retrieval algorithms—
differing only in that they required that counting be
performed concurrently with the P-M algorithm steps, as
in Bajic and Rickard’s (2009) tap—count task.

Experiment 1

This experiment is nearly identical to that described in
Bajic and Rickard (2009). In both that and the present
experiment, the algorithm involved the repeated tapping of
a key on a computer keyboard. However, whereas the
algorithm described by Bajic and Rickard also required
concurrent counting, the algorithm in the present exper-
iment simply required the subject to begin tapping when
a visual stimulus was presented and to continue tapping
until the computer indicated the appropriate vocal
response for that stimulus. In both Bajic and Rickard’s
study and the present experiment, the subject could
terminate the algorithm early—or skip it altogether—if
he or she directly retrieved the vocal response associated
with a given stimulus.

Method

Subjects A total of 31 University of California at San
Diego undergraduate students participated for course credit.

Materials, design, and procedures Subjects were tested
individually on IBM-compatible personal computers, seated
approximately 50 cm from the computer screen, and
approximately 3 c¢cm from the microphone. The computer
keyboard was positioned directly behind the microphone,
such that the subject could comfortably place one hand over
the space-bar key. The experimenter was seated to the right
of the subject, with access to the keyboard’s number pad.
The experiment was programmed in E-Prime, and the
voice-key apparatus was model 200A, both from Psychology
Software Tools (Pittsburgh, PA).

The experiment consisted of a warm-up phase and a
training phase. Prior to each phase, instructions were
presented on the screen and were also read aloud by the
experimenter. Within each trial of each phase, a two-digit
number stimulus was presented visually, and the subject
had to speak the answer (another two-digit number) either
by use of the tapping algorithm or through memory
retrieval. The Appendix lists all visual stimulus and vocal
response items used in the training phase. The warm-up
phase utilized the same values, each raised by 10 (e.g., “30”
and “44” in the warm-up phase versus “20” and “34” in the
training phase). The Appendix also lists the number of
algorithm steps, which was the number of key taps required
to complete the algorithm for each item. Although the
stimulus—response pairings were the same across all
subjects, the number of required algorithm steps (key-
presses) was randomly assigned to items for each
subject, with a constraint such that the number of
algorithm steps for a particular item could not be equal
to the value of the correct response minus the numerical
stimulus. In the description below, a block is defined as
one randomly ordered presentation for each of the 10
stimulus—response items.

The warm-up phase consisted of a single block. At the
start of each trial, the screen went blank for 500 ms, a
fixation field (consisting of three plus signs) was presented
at the center of the screen for 500 ms, the screen again went
blank for 500 ms, and then a two-digit number—the trial
stimulus—was presented at the center of the screen.
Subjects were instructed to begin rapidly tapping the
space-bar key when the number appeared. When the
number of taps equaled the number of required algorithm
steps for an item, the stimulus disappeared, and the word
STOP was presented on the screen, along with the answer
for that trial presented just below. The subject would then
speak the answer into the microphone.
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After the subject spoke the response, the experimenter
entered it using the computer keyboard and recorded
whether the voice key tripped synchronously with respond-
ing. Immediately after an incorrect response (rare in the
warm-up phase), the correct response was presented for 5 s.
Otherwise, the word “Correct!” was presented for 800 ms.
Immediately following feedback, the next trial began.

The training phase of the study was identical to the
warm-up phase, with the following exceptions. Multiple
blocks were presented, and subjects were informed that the
same set of starting numbers (stimuli) would be presented
repeatedly throughout the phase, with each starting number
always having the same response number. Subjects were
informed that either or both of two methods could be used
to find the answer for each trial: (1) tapping the space bar
until the word STOP and the answer for that trial appeared
on the screen (the algorithm), and (2) remembering the
answer associated with the presented stimulus. To promote
parallel strategy execution if it was possible, the instructions
stated (falsely) that, “Many subjects have reported good
results when they attempt to use both strategies at the same
time.” Subjects were told that they could speak the answer
into the microphone at any time during each trial. They were
instructed that they should try to finish this part of the
experiment as quickly as possible, while still being accurate.

Each trial stimulus was removed from the screen either
when the subject spoke an answer or when the subject had
entered a sufficient number of keypresses to bring the word
STOP onto the screen—whichever came first. Subjects
were permitted a brief pause between blocks and continued
to receive new blocks until 45 min from the start of the
training phase, after which time the experiment concluded
and the subject was debriefed.

Results

Only the training phase data were analyzed. Prior to
analysis, subjects were excluded if their response error rate
was greater than 20% or if the voice key failed to trip
appropriately on more than 10% of trials.

For Experiment 1, all subjects had sufficiently high
accuracy for inclusion, but 4 subjects were rejected due to
their voice-key error rate. In all of the analyses that follow,
trials were excluded if voice-key errors occurred (approxi-
mately 3% of trials in Exp. 1), if there was a latency of less
than 180 ms from stimulus onset to the first algorithm step, or
if less than 300 ms occurred from stimulus onset to the vocal
response (less than 1% of trials across all experiments).'

!'See Luce (1991) for discussion of plausible minimum response times
in simple- and choice-RT tasks.
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Mean accuracy was initially near perfect (over 99% on
the first training block), fell to its lowest value (approxi-
mately 91%) on Block 10, and then rose again to
approximately 98% by the 27th block, the final block that
all 27 subjects completed. The mean of the subject-level
mean correct RTs (latency from stimulus presentation to
vocal response, inclusive of both algorithm and retrieval
trials) is plotted as a function of training block in Fig. la,
and the mean of the subject-level standard deviations (SDs)
is plotted in Fig. 1c. For reference, the corresponding data
from the matched version of this experiment, which
involved counting and tapping (Bajic & Rickard, 2009),
are shown in Fig. 1b and d. Best-fitting three-parameter
power functions for the RT data are also included for
reference. Both the deviation from the power function in
the mean RT and the inverted U-shaped SD values are
consistent with results of prior studies (e.g., Rickard, 1997).
These effects have to date only been observed for tasks
that exhibit a shift to retrieval, and they reflect a
strategy mixture over items and trials during the
strategy-shift portion of training. The substantially faster
algorithm latencies for the tap-only task (Fig. 1a) versus
the tap—count task (Fig. 1b) is expected, because the
relatively time-consuming counting operation is absent
for the tap-only group.

The proportions of correctly answered trials on which
the direct-retrieval strategy must have been the basis for
responding—defined as those trials on which the subject
spoke the answer before completing all algorithm steps—
are shown as a function of training block in Fig. le. The
strategy shift had occurred for 50% of items by about the
10th practice block, and was nearly 100% complete by the
27th block. Similar results were observed by Bajic and
Rickard (2009); see Fig. 1f of the present article).

Algorithm step latencies on trials preceding the first correct
retrieval Here and in subsequent analyses of algorithm step
latency on trials approaching the first correct retrieval, the
following procedure was used. First, the training block
variable for each item for each subject was reset, such that
zero corresponded to the first correct retrieval block for that
item, with blocks preceding the first correct retrieval taking
negative values. Below, when referring to block numbers
synchronized in this manner, we will use the abbreviated
term sync-blocks. For each subject, the mean latency for
each algorithm step was then computed for sync-block
values of —5 through —1 (i.e., for the last five algorithm
blocks preceding each item’s first correct retrieval block).
Prior to calculating these means, error and voice-key error
trials were removed (i.e., those trials were treated as
missing data). Items with four or fewer blocks prior to the
first correct retrieval were excluded from this analysis.
These sync-block means were then averaged over subjects
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Fig. 1 Mean response times (RTs) with the best-fitting three-
parameter power functions (panels a and b), mean standard deviations
(¢ and d), and proportions of trials on which the direct-retrieval

and plotted in Fig. 2a, which shows results for Algorithm
Steps 1, 2, 3, and 4, along with the mean of Steps 5-9.
(Most items required more than nine algorithm steps;
data from those steps exhibited patterns like those for
Steps 2-9.)

training block

strategy was selected (e and f), as functions of training block for
Experiment 1 here (a, ¢, and e, respectively) and the experiment in
Bajic and Rickard (2009; b, d, and f, respectively)

The algorithm first step was substantially slower than
subsequent steps, presumably reflecting the need to orient
to the presented stimulus and to initiate the tapping
algorithm. Of greater interest, the algorithm first step
exhibited a 340-ms increase in latency from Sync-
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Fig. 2 Mean algorithm step latencies on the five blocks prior to the
first correct retrieval block for Algorithm Steps 1, 2, 3, and 4 and the
mean of Steps 59 (panels a and b); relative frequency bar charts of
expected (according to a race model) and observed completion frequencies

for each algorithm step on the first five correct retrieval trials (¢ and d);

Blocks —5 through —1 (the pause-effect slope), con-
firmed by a within-subjects ANOVA, F(4, 104) = 9.63,

@ Springer

Step 1 Step 2 Step 3 Step 4

and partial-algorithm latency difference scores (Sync-Blocks 04 vs.
Block 1) for Steps 14 (e and f), from both Experiment | here (a, ¢, and
e, respectively) and the experiment in Bajic and Rickard (2009); b, d,
and f, respectively). For panels a and b, error bars represent the between-

subjects standard errors, computed independently for each sync-block

p <.0001. There was no significant effect of sync-block for
Steps 2, 3, 4, or 5-9 (p > .05 in all cases).
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To test for differences in the pause-effect slope in this
experiment, as compared to that observed by Bajic and
Rickard (2009), a mixed ANOVA with the factors Exper-
iment and Sync-Block (=5 through —1) was conducted on the
subject-level mean latencies for Step 1. There were significant
effects of sync-block, F(4, 232) = 17.25, p < .0001, and
group, F(1, 58) = 17.84, p < .0001. There was also a
significant interaction, F(4, 232) = 3.18, p < .02; the pause
slope in the present experiment, while substantial, was
significantly smaller than that observed by Bajic and Rickard
(cf. Fig. 2a and b).

Errors in Sync-Blocks —5 through —1 were primarily
incorrect retrieval attempts (approximately 7.9% of trials in
those blocks) and, as in the Bajic and Rickard (2009) study
(in which the error rate was approximately 7.1%), followed
a pattern of increasing frequencies over Sync-Blocks —5
through —1 (i.e., on blocks approaching the first correct
retrieval, at Sync-Block 0).

Algorithm step execution on retrieval trials In Fig. 2c, the
bar graph shows the frequency with which zero, one, two,
three, and so on, algorithm steps were completed on trials
during Sync-Blocks 0—4, along with the expected frequen-
cies according to a race model. Sync-Blocks 0-4 were
selected for this analysis because those trials tended to have
the slowest retrieval latencies, and hence would be expected
to exhibit the most algorithm step completion according to
a parallel model. In the observed data, retrieval trials
corresponded to a step count of zero, and partial-algorithm
retrieval trials corresponded to a step count greater than
zero but less than the number of steps required to complete
the algorithm. Full-algorithm reversions, on which all steps
of the algorithm were completed and on which use of the
algorithm strategy to generate the response can be presumed,
occurred on 27% of trials in Sync-Blocks 14 (17% of trials in
the Bajic & Rickard, 2009, experiment; data from these trials
are not included in Fig. 2c and d).

The expected number of algorithm steps according to a
race model was derived as in Bajic and Rickard (2009).
First, latencies for each algorithm step during the first block
of the training phase were averaged over items for each
subject. Prior analyses indicated no significant effects of
item on these latencies, motivating the averaging. The first
training block was used because no algorithm step slowing
due to retrieval competition would be present. Next, for
each retrieval trial under consideration in Sync-Blocks 0—4,
the expected number of completed algorithm steps accord-
ing to the race model was estimated by determining the
number of algorithm steps that the subject would have been
expected to complete on that trial, based on the mean step
latencies from Block 1. For example, if a particular subject
had a Block 1 mean latency of 1,200 ms for the completion

of four algorithm steps, and 1,400 ms for the completion of
five steps, then a race model would predict that this subject
would complete four algorithm steps on a direct-retrieval
trial with an RT of 1,300 ms.

As shown in Fig. 2c, there were fewer algorithm steps
completed than would be predicted by the race model. The
statistical significance of this effect was tested by first
computing, for each trial and each subject, the difference
between the number of algorithm steps expected by the race
model (always more than zero) and the number of observed
steps on each trial (frequently zero), taking the mean of
these difference scores over trials for each subject, and then
conducting a Wilcoxon signed rank test on those mean
difference scores, T+ = 378, p < .0001. The failure of the
race model to fit the data is driven largely by (1) a much
larger than predicted percentage of trials with zero
completed algorithm steps, and (2) particularly slow
retrievals on about 21% of trials, such that a race model
would predict that all algorithm steps should have been
completed (represented by the “>” column of Fig. 2¢ and
d). The latter case consisted of partial-algorithm retrieval
trials with particularly slow Step 1 latencies.

Despite the strong statistical rejection of the race model,
there were many more partial-algorithm retrieval trials in
this experiment than in Bajic and Rickard (2009); cf.
Fig. 2c¢ and d of the present article) and slightly more
completed steps on average (5.2 vs. 4.8). The statistical
significance of the difference in the distribution shapes was
confirmed by a x? test for independence, x*(12) = 353.1,
p <.0001.% Note also that for the tap-only group, but not for
the tap—count group, there was a tendency for the observed
distribution of completed algorithm steps (beyond the case
of zero steps) to mimic the race distribution, albeit with a
left-shifted mode.

The race model predicts that the speed of algorithm step
execution on partial-algorithm retrieval trials will not be
influenced by the race with retrieval. We evaluated that
prediction by comparing algorithm step latencies on the
partial-algorithm retrieval trials to the step latencies on the
first training block. For each subject, the means of the
latencies for Algorithm Steps 1, 2, 3, and 4 for the first
training block were subtracted from the mean of the
matched step latencies on partial-algorithm retrieval trials
(due to data attrition, partial-algorithm latencies on subse-
quent steps were not analyzed). These difference scores are
depicted in Fig. 2e, with positive scores indicating slowing
relative to Block 1. Contrary to the race prediction, there
was a pronounced and highly significant 745-ms pause
effect for Step 1, #24) = 3.64, p < .002. This result roughly

2 Here and elsewhere, step bins were combined as needed to meet x>
assumptions of expected frequency of no fewer than five.
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matches the more than 700-ms partial-algorithm pause
effect in the Bajic and Rickard (2009) experiment (Fig. 2f).
The latency difference scores for Algorithm Steps 2—4 were
67.88, 54.53, and 65.53 ms, respectively. Despite being
more than one order of magnitude smaller than the
slowing observed for Step 1, these results were still
significant (p < .05 in all cases). This result is in contrast
to the data from Bajic and Rickard, in which the difference
scores for Steps 2—4 did not significantly differ from zero.

These RT effects for Steps 2—4 in the present experiment
may simply reflect small increases in algorithm step
completion latencies following practice that occurred
independently of any retrieval interference effects. For
example, it may be that subjects performed the simple
repeated keypress task as fast as possible at the outset of the
experiment, with no room for a speed-up with practice. A
build-up of some fatigue over the course of practice may
then yield a slower keypress rate, resulting in the small
positive difference scores for Step 2 and onward. In
contrast, in the tap—count condition there may be room for
skill learning with practice, and a consequent step latency
speed-up, that offsets any slowing due to fatigue build-up.

Discussion

The striking degree of strategy interference in this simple
tapping task was not predicted by any of the models that
have been developed to explain the temporal dynamics of
strategy execution in cognitive skill leaning (e.g., Logan,
1988, 2002; Palmeri, 1997; Rickard, 1997, 2004). Never-
theless, these effects, and in particular the pause effect, may
be intuitively plausible. In our experience, it is not
uncommon to pause briefly to attempt to remember, say,
where one’s keys are before searching, or to try to
remember a computer key combination before initiating a
search of dropdown menus.

The strategy interference effects in this experiment are
generally much smaller, however, than those observed by
Bajic and Rickard (2009) for the tap—count algorithm, the
only exception being the pause effect on partial-algorithm
retrieval trials (cf. Fig. 2e and f). Further consideration of
the theoretical implications of these results will be deferred
until the General Discussion.

Experiment 2

In this experiment, we investigated whether the results from
Experiment 1 would generalize to a different P-M algo-
rithm. Instead of key tapping, the motor task in this
experiment required subjects to use the computer mouse
to click alternately on target regions on the left and right
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sides of the computer screen. Subjects were randomly
assigned either to a version of the algorithm that required
only mouse clicks (click-only) or to an algorithm that
required both clicks and counts (click—count) but that was
otherwise nearly identical to the click-only algorithm. The
lack of random assignment in the foregoing comparison of
Experiment | to the Bajic and Rickard (2009) experiment,
though not problematic in any obvious way, could have
influenced the between-groups effects.

Method

Subjects A total of 36 University of California at San
Diego undergraduate students participated for course credit.

Design and procedure As with Experiment 1, this experi-
ment consisted of a one-block learning phase and a 45-min
training phase, with similar instructions prior to each phase.
The Appendix lists the numerical visual stimuli, number of
algorithm steps, and correct vocal responses for all 10
stimulus—response items. Prior to each trial, a small text
box containing the words “Click Here to Begin” would
appear just below the center of the screen, and clicking this
box would immediately initiate the trial. (This ensured that
the mouse pointer was always at roughly the same position
at the start of each trial.) During each trial, the screen was
divided into two equal halves by a thin vertical line down
the center. At the beginning of each trial, a 1.5x1.5 cm
square containing the numerical stimulus for that trial
would appear at the center of the screen, and a green
rectangle (6.5x11 cm) would appear on either the left or
right half of the screen (randomly determined), centered
vertically on the screen, with one edge positioned 2.5 cm
away from the vertical line that divided the screen. This
rectangle will henceforth be referred to as the targer. If the
target was clicked with the mouse pointer, it would
immediately move to its equivalent position on the opposite
half of the screen. Each mouse click of the target
constituted one algorithm step.

For subjects in the click-only group, the algorithm
simply involved repeated, alternating clicking of the left-
and right-side target rectangles. After the required number
of algorithm steps for a given stimulus had been completed,
the mouse pointer and the trial’s numerical stimulus would
vanish from the screen. Simultaneously, the target rectangle
would change from green to black, with white text inside it
presenting both the word STOP, and the appropriate
numerical answer for that trial’s vocal response.

For subjects in the click—count group, the algorithm
further required silent counting, starting with the value of
the numerical stimulus, each time the target was clicked.
That is, if the numerical stimulus for a given trial were 21,
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the subject would silently count “22” the first time that he
or she clicked the target square, “23” the second time, and
so forth. When the full set of required algorithm steps had
been completed, the same events described above for the
click-only group would occur, except that the white text at
the end of the trial would only present the word STOP, and
not the answer itself. At that point, subjects were to speak
aloud their final count.

Results and discussion

Following the rules described for Experiment 1, data from 4
subjects (2 in each group) were excluded due to high rates
of voice-key errors, and data from 2 subjects in the click—
count group and 1 subject in the click-only group were
excluded due to low overall accuracy. Among the remain-
ing subjects, voice-key errors occurred on approximately
3.85% of trials in the click—count group and approximately
4.24% of trials in the click-only group.

For subjects in the click-only group, mean accuracy was
initially perfect (100%) on the first training block, fell to its
lowest value (90.23%) on Block 6, then rose again to
98.67% by the 26th block, the final block that all subjects
completed. For subjects in the click—count group, mean
accuracy was initially 89.31% on the first training block,
fell to its lowest value (85.58%) on Block 10, then rose to
93.41% by the 22nd block, the final block that all subjects
completed. Figure 3 depicts the means of the subject-level
mean RTs, their SDs, and the proportions of trials on which
the retrieval strategy was used, for the click-only group
(panels a, c, and e, respectively) and the click—count group
(panels b, d, and f).

Algorithm step latencies on trials preceding the first correct
retrieval Mean algorithm step latencies from Sync-Blocks —5
through —1 are shown in Fig. 4a (click-only) and b
(click—count). The mixed-factors ANOVA on the algorithm
first-step data revealed significant effects of sync-block,
F(4, 108) = 16.5, p < .0001, group, F(1, 27) = 30.3,
p <.0001, and their interaction, F(4, 108) = 2.47, p < .05.
The interaction effect confirms the shallower pause-effect
slope in the click-only group. The simple effects of sync-block
were also confirmed in separate ANOVAs performed for each
group: F(4, 52) = 9.32, p <.0001, for the click—count group;
and F(4, 56) = 8.91, p <.0001, for the click-only group. As
in Experiment 1, there were no significant effects involving
sync-block when this analysis was performed on subsequent
algorithm steps.

Errors in Sync-Blocks —5 through —1 were primarily
incorrect retrieval attempts (approximately 9.5% and 6.9%
of trials for the click—count and click-only groups,
respectively) and followed a pattern of increasing frequency
on blocks approaching Sync-Block 0.

Algorithm step completion on retrieval trials The distribu-
tion of steps completed on partial-algorithm retrieval trials
in Sync-Blocks 1—4 is shown in Fig. 4c and d for the click-
only and click—count groups, respectively. Full-algorithm
reversions occurred on 25% of these trials in the click-only
group and on 26% of these trials in the click—count group.
The Wilcoxon tests allowed rejection of the race model for
both groups: click-only, T+ = 102, p < .0007; click—count,
T+ =105, p < .0002. A ¥ test of independence, comparing
the observed distribution of completed algorithm steps on
retrieval trials for the two groups, was highly significant,
x*(9) = 205.26, p < .0001. Among partial-algorithm
retrieval trials, the mean number of completed steps was
slightly greater in the click-only group (4.4 vs. 4.1). As in
Experiment 1, the shape of the distribution of completed
P-M algorithm steps (beyond zero steps) is similar to that
predicted by the race model, albeit with a left-shifted mode.
The left-shifted mode was expected, given the pause effects
on partial-algorithm retrieval trials in Experiment 1 and in
this experiment (described below). When considering only
partial-algorithm retrieval trials, the similarity of the distribu-
tion shape to that predicted by the race model suggests that,
once a P-M algorithm is initiated, the temporal dynamics of
strategy execution may approximate a race.

For the click—count group, the partial-algorithm step
latency difference scores (calculated as in Exp. 1) for
Algorithm Steps 1-4 were 607.6, —8.43, 128.31, and
62.16 ms, respectively (Fig. 4f). There was significant
slowing for Step 1, #9) = 2.35, p < .05, but tests for
subsequent steps did not reach significance. For the click-
only group (see Fig. 4e), the partial-algorithm difference
scores for Algorithm Steps 1-4 were 459.49, 66.42, 43.05,
and 13.06 ms, respectively. There was again significant
slowing for Step 1, #14) = 3.15, p < .008, but not for
subsequent steps (although the trend was toward positive
scores, as in Exp. ).

It is worth noting that the pause effect on partial-algorithm
retrieval trials was larger for the tap-only group of Experiment
1 than for the click-only group of this experiment. Although
we have no strong theoretical account of that effect, it may
reflect differences in the algorithms that may affect the
subjects’ choices of when to initiate the algorithm. Perhaps,
for example, the initial mouse movement of the click-only
algorithm was less demanding on attention than was
initiating a keypress, allowing it to be initiated earlier during
the course of the retrieval attempt.

In summary, the results of this experiment replicate those
for the comparison of the tap-only (Exp. 1) and tap—count
(Bajic & Rickard, 2009) algorithms; in the click-only
group, there was a shallower (but still robust) algorithm
pause-effect slope and a larger number of partial-algorithm
retrieval trials. The pause effect on partial-algorithm
retrieval trials was observed for both groups.
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Fig. 3 Mean response times (RTs) with the best-fitting three-
parameter power functions (panels a and b), mean standard deviations
(c and d), and the proportions of trials on which the direct-retrieval

In contrast to Experiment 1, the number of required
clicks in the click-only condition of this experiment always
matched the number of counts between the stimulus
number and the correct response number. Although this
feature of the design has the advantage of equating the
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training block

strategy was selected (e and f), as functions of training block for the
click-only group (a, ¢, and e, respectively) and the click—count group
(b, d, and f, respectively) of Experiment 2

click—count and click-only algorithms to the maximum
extent possible (i.e., the numbers of clicks for each
stimulus—response pair were always identical in the two
conditions), it raises the possibility that subjects in the
click-only condition could, in principle, have performed
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frequencies for each algorithm step on the first five correct retrieval trials

silent (subvocal) counting as part of algorithm execution.
Two factors, however, speak against that possibility. First,
use of a silent counting strategy in the click-only group

(c and d); and partial-algorithm latency difference scores (Sync-Blocks 0—
4 vs. Block 1) for Steps 1-4 (e and f), for both the click-only group (a, ¢,
and e, respectively) and the click—count group (b, d, and f, respectively)
of Experiment 2. For panels a and b, error bars represent the between-
subjects standard errors, computed independently for each sync-block

would have made the algorithm essentially identical to that
of the click—count group, and as such, the large group
performance differences should not have occurred. Second,
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if even a subset of subjects in the click-only group did some
silent counting, then we would expect the pause-effect
slope on algorithm trials in Experiment 2 to be substantially
larger than in Experiment 1, wherein silent counting would
have no conceivable adaptive value (indeed, it would
presumably have interfered with performance in that
experiment). No such effect was evident. Finally, given
the overall pattern of results, the possibility that a few
subjects employed counting in the click-only group of
Experiment 2 does not appear to compromise the overall
conclusions to be emphasized in the General Discussion.

Before we proceed, it is important to point out that the
subject instructions in these experiments, which stated that
many subjects had reported good results when they
attempted to use both strategies at the same time, might
have constituted a demand characteristic, leading to a larger
pause-effect slope and more partial-algorithm retrieval trials
than would otherwise have been observed. Under less
leading instructions, the results for the P-M algorithms
might have looked more similar to those for LTM
algorithms. Even if that were the case, however, our results
provide an “existence proof” that, after a pause, subjects can
initiate and execute simple P-M steps while running the
retrieval strategy to completion in parallel. Thus, it is unlikely
in our view that any instructional demand characteristic would
seriously bias the theoretical conclusions, noted below,
regarding the algorithm types and processing stages at which
parallel strategy execution is and is not possible.

General discussion

The results for the click—count group of Experiment 2, as well
as for the tap—count task of Bajic and Rickard (2009), are
consistent with strategy choice accounts such as CMPL
(Rickard, 1997). When the algorithm entails a series of LTM
retrieval steps—even steps as simple as counting—strategy
execution appears to be a one-at-a-time phenomenon.

The results for the P-M (i.e., the tap-only and click-only)
algorithms, however, were not predicted by any of the
currently applicable models. The race account, which has
been adopted in fits to data of both the instance theory
(Logan, 1988) and the exemplar-based random walk model
(Palmeri, 1997, 1999), cannot explain the substantial
strategy interference that was observed. The race account
was viable for P-M algorithms prior to this study, but it can
now be eliminated from consideration. Any limited-
capacity parallel strategy execution model that assumes a
constant capacity demand from both strategies throughout
all steps of their execution can also be rejected. Simple
strategy-choice models are also challenged by these results.
The CMPL model, which was proposed for the case of

@ Springer

LTM algorithms, leaves open the possibility that strategy
interference for P-M algorithms may occur through some
mechanism other than LTM retrieval interference, but it
provides no process account of that interference.

Toward a more generalized theory of strategy execution

A new or modified model of the temporal dynamics of
strategy execution, and in particular the shift to retrieval with
practice, is needed to accommodate the full set of empirical
results reported here and in the literature. Although formal
development of such a model is beyond the scope of this
article, some of its basic properties can now be identified.

First, it is clear that the retrieval strategy, once it becomes
competitive through training, interferes markedly with initi-
ation of both LTM and P-M algorithms. For the P-M case, but
not the LTM case, this interference appears to dissipate during
the course of a successful retrieval attempt, as indicated by the
frequent partial-algorithm retrieval trials for the P-M algo-
rithms only. Once the P-M algorithm is initiated on partial-
algorithm retrieval trials, however, algorithm step execution is
slowed only minimally, if at all, by the ongoing execution of
the retrieval strategy (i.e., there is no pause effect on partial-
algorithm retrieval trials for Step 2 and onward). The retrieval
strategy, then, profoundly interferes with initiation of, but not
the subsequent execution of, P-M algorithms. These patterns
suggest a strategy initiation bottleneck, such that execution of
a retrieval strategy delays initiation of the P-M algorithm
strategy but does not affect execution of that strategy (i.e.,
execution of the P-M steps) once initiated. We leave open the
question of whether the hypothesized strategy initiation
bottleneck is an immutable property of the cognitive
architecture, or rather is an adaptation to capacity limits that
render parallel strategy initiation inefficient.

Given our proposal that the two strategies cannot be
initiated simultaneously, subjects must choose on each trial
to initiate either the retrieval strategy first or the algorithm
strategy first. Phenomena such as the pause-effect slope
show that, on at least a large proportion of trials, subjects
choose to initiate and attempt the retrieval strategy first,
once it becomes competitive through training. The data do
not speak conclusively to the possibility that, on some other
trials, subjects may first initiate the P-M algorithm
(followed by the retrieval strategy), although some evidence
for that possibility is considered below.

A remaining question is why the interference that blocks
P-M algorithm initiation dissipates over the course of
executing the retrieval strategy. One possibility is that an
LTM retrieval involves a graded capacity demand, such
that, at some point during the retrieval attempt, sufficient
attentional capacity becomes available to initiate the P-M
algorithm without compromising ongoing execution of the
retrieval strategy. An alternative account is that LTM
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retrieval can, for the present purposes, be conceived of as
having two sequential stages. By this account, the first
stage acts as a bottleneck, completely blocking initiation of
the algorithm. During the second retrieval stage, however,
there is no bottleneck for P-M algorithms, and they can be
initiated and executed without further interference. This
two-stage retrieval account would be most satisfying if the
two stages could be differentiated in psychologically simple
terms. One possibility is that the first stage involves the
entire retrieval event up to the point of answer generation,
and the second stage involves conversion of the generated
answer into an overt articulatory response.

Given the large interference effect that the retrieval
strategy has on P-M algorithm initiation, it would seem
more efficient for subjects to first initiate the P-M algorithm
and then to initiate retrieval. Presumably, the latency for
initiation of the P-M algorithm would be relatively small
(perhaps on the order of 100 ms), with minimal variability.
The data in fact suggest this possibility. Post-hoc analyses
of the subject-level data showed that, whereas many
subjects exhibited large pause-effect slopes on algorithm
trials and large pause effects on partial-algorithm retrieval
trials (some nearly as steep as those observed for the
matched LTM algorithms), a few subjects exhibited
minimal pause effects. Subjects with minimal pause effects
might have adopted a strategy of initiating the P-M
algorithm first. This pattern of extreme subject-level
variability was not present in the LTM algorithm groups.
These individual difference patterns, if confirmed, could be
important to future model development and could provide
insight into factors that determine whether a subject does or
does not adopt optimal strategy scheduling.

Another core feature of any comprehensive model of the
shift to retrieval will be an account of the apparent one-at-a-
time strategy execution (i.e., a pure strategy choice) that
occurs for LTM retrieval algorithms. The most obvious
possibility is that, whereas a P-M algorithm and the direct-
retrieval strategy (e.g., an LTM retrieval) can proceed in
parallel once initiated, two LTM retrievals (i.e., the direct-
retrieval strategy and each step of an LTM algorithm)
cannot run in parallel during any stage of their processing.
Thus, there may be two sources of strategy interference in
the general case: (1) strategy initiation interference, which
occurs for all algorithm types, and (2) a more extensive
interference effect that precludes two simultaneous LTM
retrievals (see Nino & Rickard, 2003, for supporting
evidence for the case of two retrievals from a single cue).
Consider this account in terms of the two-stage retrieval
model outlined above. Whereas it might be possible to
initiate and execute a simple, repetitive motor action during
the second stage of retrieval, it might not be possible to
initiate another retrieval, even one as simple as counting,
during either the first or second stage.

The strategy initiation bottleneck hypothesis can explain
the finding that partial-algorithm retrieval trials are far less
frequent for LTM retrieval algorithms than for P-M
algorithms. Given that the direct-retrieval strategy cannot
be executed in parallel with an LTM retrieval algorithm,
partial-algorithm retrieval trials would entail the inefficient
sequence of steps noted in the introduction: (1) successful
completion of direct retrieval (providing an account of the
partial-algorithm pause effect), (2) a subsequent shift to
algorithm execution for a few steps, yet (3) an early
termination of the algorithm in favor of speaking the
previously retrieved response. Thus, in the case of LTM
algorithms, partial-algorithm retrieval trials have a latency
cost with no apparent benefit, and they would be expected to
occur infrequently. For P-M algorithms, on the other hand,
partial-algorithm retrieval trials appear to reflect an efficient,
postinitiation strategy race that could in principle reduce mean
RTs, relative to one-at-a-time strategy execution.

The substantially smaller algorithm pause effect for the P-M
algorithms might also be accommodated by the initiation
bottleneck hypothesis. Given that P-M algorithms, but not
LTM algorithms, can be initiated prior to the retrieval attempt
running to completion, the pause effect should then be reduced.

The strategy initiation bottleneck hypothesis comple-
ments prior work showing that a feeling of knowing
influences strategy choice (Delaney et al., 1998; Reder &
Ritter, 1992; Schunn et al., 1997). Given that an initiation
bottleneck exists, some mechanism must exist that leads to
selection of a strategy for first initiation. A feeling of
knowing based on, perhaps, increasing familiarity with the
stimuli over training blocks (Reder & Ritter, 1992; Schunn
et al., 1997) could be one such mechanism.

Our results can also be related to the threaded cognition
framework of Salvucci and Taatgen (2008). Within that
theoretical framework, for any multitask situation, perfor-
mance bottlenecks can arise at the level of any resource (e.g.,
perceptual, motor, or declarative memory resources) shared
by the competing tasks. This includes possible bottlenecks in
a central procedural resource, where production rules (e.g.,
“if a particular stimulus is present, perform a particular
action”) fire within the context of various goal states.

From the perspective of that framework, the algorithm
and direct-retrieval strategies within our studies could be
viewed as competing threads. The brief initiation bottleneck
observed for the P-M tasks (tap-only and click-only) could
reflect a bottleneck at the level of the central procedural
resource, whereas the more pronounced bottleneck observed
for the LTM algorithm tasks (tap—count and click—count)
might be caused by bottlenecks in both the central procedural
resource and the declarative memory resource. Further
refinement of that model for this case, however, would be
needed before determining whether it can account for the full
pattern of results.
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Conclusions

These experiments constitute the first systematic investiga-
tion of the shift to retrieval for the general class of P-M
algorithms, as well as the first matched comparison of P-M
and LTM retrieval algorithms. The data support the
following empirical and theoretical inferences: (1) for the
case of LTM retrieval algorithms, a pure strategy choice
process, in line with that assumed by the CMPL model
(Rickard, 1997), governs performance on at least the great
majority of trials; (2) there is substantial strategy interference
even for very simple P-M algorithms that involve little more
than sequential tapping or clicking; (3) the interference effects
for the P-M case, however, are generally of smaller
magnitude; (4) none of the models that have been considered
in the literature (i.e., race, limited-capacity parallel, and choice
models) can, in their current forms, accommodate either the
results for P-M algorithms or the performance differences
between the two types of algorithms; (5) it appears that any
comprehensive model of the shift to retrieval will have to
incorporate both a ubiquitous strategy initiation bottleneck (or
at least an extremely disruptive capacity limit on strategy
initiation) and an account of the greater interference—and
resulting pure strategy choice behavior—for the case of LTM
retrieval algorithms.

Author note We thank Kristin West, Lisa Graves, Jennifer Um,
Shivali Agarwal, Samir Patel, Jon Strunk, and Caitlin Oldenkamp for
their assistance with data collection.

Appendix

Table 1 Phase 2 Stimulus—Response Pairings

Stimuli Responses Algorithm Steps
20 34 14
21 36 15
22 32 10
23 35 12
24 33 9
25 37 12
26 41 15
27 40 13
28 39 11
29 38 9

For Experiment 1, the algorithm steps listed above were randomly
reassigned to the various stimulus-response pairings at the start of the
experiment, following randomization constraints listed in the Method
section of that experiment.
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