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Abstract
Impulsive choice is preference for a smaller-sooner (SS) outcome over a larger-later (LL) outcome when LL choices result 
in greater reinforcement maximization. Delay discounting is a model of impulsive choice that describes the decaying value 
of a reinforcer over time, with impulsive choice evident when the empirical choice-delay function is steep. Steep discount-
ing is correlated with multiple diseases and disorders. Thus, understanding the processes underlying impulsive choice is 
a popular topic for investigation. Experimental research has explored the conditions that moderate impulsive choice, and 
quantitative models of impulsive choice have been developed that elegantly represent the underlying processes. This review 
spotlights experimental research in impulsive choice covering human and nonhuman animals across the domains of learning, 
motivation, and cognition. Contemporary models of delay discounting designed to explain the underlying mechanisms of 
impulsive choice are discussed. These models focus on potential candidate mechanisms, which include perception, delay and/
or reinforcer sensitivity, reinforcement maximization, motivation, and cognitive systems. Although the models collectively 
explain multiple mechanistic phenomena, there are several cognitive processes, such as attention and working memory, that 
are overlooked. Future research and model development should focus on bridging the gap between quantitative models and 
empirical phenomena.

Keywords Interval timing · Psychophysics · Delay discounting · Impulsive choice · Cognitive mechanisms · Quantitative 
models

Introduction

Impulsivity is a multifaceted construct that can be summa-
rized as engaging in actions without foresight (Winstanley 
et al., 2006). Researchers have operationalized impulsiv-
ity into three dimensions—impulsive choice, impulsive 
responding, and impulsive personality. Impulsive choice is 
characterized by the preference for a smaller reinforcer avail-
able sooner (SS, “impulsive option”) compared with a larger 
reinforcer available later (LL, “self-controlled option”). The 
LL is the self-controlled option because it typically provides 
more reinforcement over time (i.e., optimal choice). Impul-
sive responding refers to the failure to suppress or with-
hold an action in the presence of certain stimuli. Impulsive 
personality, or trait impulsivity, measures persistent and 

stable aspects of personality primarily through self-report 
assessments (Reynolds et al., 2006). Although points of 
overlap exist, these dimensions are largely considered to 
be mechanistically distinct from one another (MacKillop 
et al., 2016). This review discusses learning, motivational, 
cognitive mechanisms of impulsive decision-making in both 
humans and nonhuman animals. We also review a wide array 
of mathematical models developed to predict impulsive 
choice and discuss the areas of disconnect between empirical 
research and theory development with the goal of motivating 
future research.

An essential facet of impulsive choice is that individuals 
devalue temporally distant reinforcers (Madden & Bickel, 
2010), a phenomenon known as delay discounting. Delay 
discounting reflects the level of impatience, or unwillingness 
to wait for larger delayed outcomes that has been proposed 
as a key underlying mechanism that drives impulsive choice 
(Mazur, 1987). Impulsive choice has received considerable 
attention because of its relationship with important health 
outcomes. For example, individuals with higher discounting 
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rates have a higher prevalence of substance use (Amlung 
et al., 2017; Bickel et al., 1999; MacKillop et al., 2011), obe-
sity (Jarmolowicz et al., 2014; Weller et al., 2008), attention-
deficit/hyperactivity disorder (ADHD; Marx et al., 2021; 
Patros et al., 2016), and gambling disorders (Grecucci et al., 
2014). As a result of the breadth of application, impulsive 
choice has been proposed as a trans-disease process (Bickel 
et al., 2019; Bickel & Mueller, 2009).

Laboratory procedures have been developed to assess 
impulsive choice in both humans and animals. The SS and 
LL options are usually presented as a concurrent discrete 
choice so that once individuals choose one option, the 
remaining option is removed. The key feature of impulsive 
choice tasks is that individuals must weigh both the rein-
forcer amount and delay to reinforcement when determining 
the value of each option. The tasks are typically constructed 
so that LL choices maximize reinforcement earning over 
time. In these circumstances, individuals that prefer the SS 
are considered impulsive.

In tasks with animals, different pairings of amounts and 
delays are offered, and the animal can choose an option 
by making a specific response. The outcomes (delay and 
amount) are learned through experience. For example, rats 
may choose between pressing two levers, with one lever pro-
viding one food pellet after 10 s and another providing two 
food pellets after 30 s. Most impulsive choice tasks manip-
ulate the amount or delay associated with the SS or LL. 
Systematic procedures employ choice parameters where the 
delay or magnitude of reinforcer(s) for the SS or LL option 
changes systematically between each session (e.g., Green & 
Estle, 2003). Alternatively, the delay or magnitude of the SS 
or LL may change systematically within each session (e.g., 
Evenden & Ryan, 1996). For systematic procedures, the pro-
portion of LL choices is often the index of self-control (or 
impulsive choice). Finally, adjusting procedures change the 
delay or magnitude of the SS or LL based on recent previous 
choices in a titrating fashion. For example, repeated choices 
of the LL delay may lead to an adjustment to make that 
option less attractive (e.g., LL delay increases or magnitude 
decreases). Alternatively, preference for the SS may lead 
to an adjustment to make the alternative LL option more 
attractive (e.g., LL delay decreases, or magnitude increases). 
Adjustments of LL (or SS) delay or magnitude continue 
until achieving an indifference point, where either option is 
selected equally often (Mazur, 1987, 1988). In the adjust-
ing procedure, the duration or magnitude of the adjusting 
option associated with the indifference point is an index of 
self-control.

Assessments of impulsive choice in humans utilize simi-
lar methods but often rely on hypothetical reinforcers and 
delays. For example, the Monetary Choice Questionnaire 
(MCQ; Kirby et  al., 1999) delivers a fixed set of ques-
tions with specific amount/delay pairings. Adjusting tasks 

are delivered similar to animal tasks but with hypothetical 
delays and outcomes (Frye et al., 2016). Some studies make 
outcomes quasi-experiential by giving participants a ran-
domly selected single outcome from their choices during the 
study (e.g., Rotella et al., 2019). In experiential discounting 
tasks, participants experience actual delays and/or magni-
tudes (Reynolds & Schiffbauer, 2004; Smits et al., 2013; 
Steele et al., 2019) that may better approximate tasks used 
in animals.

Steele et al. (2019) investigated whether experiencing 
real versus hypothetical delays and reinforcers influenced 
preferences. The SS and LL options delivered 1–5 mini 
M&Ms after 5–30 s with the LL always involving a longer 
delay and larger amount. The delays and amounts could be 
hypothetical or real. In the real conditions, the participants 
received the M&Ms and had to wait for the delay. Steele 
et al. found that there was no difference in performance with 
real versus hypothetical M&Ms. However, in a condition 
where real delays were experienced initially followed by 
hypothetical delays (both paired with hypothetical M&Ms), 
participants increased their sensitivity to delays in the hypo-
thetical delay task as a result of experience with the real 
delays. In addition, choices from the MCQ did not signifi-
cantly correlate with performance on the experiential task, 
consistent with other reports (Reynolds et al., 2006; Reyn-
olds & Schiffbauer, 2004). One factor that may explain the 
poor correlation across hypothetical and experiential tasks 
is that different combinations of factors and behaviors can 
produce similar choice patterns. It is possible that hypothet-
ical discounting better reflects choice intentions, whereas 
experiential discounting may better reflect actual choices. 
This suggests the importance of measuring specific choice 
mechanisms rather than simply measuring choice behavior, 
an issue that is discussed in the following section.

An alternative approach for measuring experiential 
choices in humans is the delayed gratification procedure. 
Delayed gratification tasks present two options (SS or LL) 
in succession so that choosing the SS during an initial delay 
forfeits access to the LL reinforcer that would otherwise be 
available later. This contrasts with the standard impulsive 
choice task in that there is no upfront commitment. One 
notable study that measured individual’s ability to delay 
gratification is the “marshmallow task” where preschool-
aged children were told they could have one small, but 
immediate reinforcer now, or two small reinforcers if they 
chose to wait for a specified time (Mischel et al., 1972).

The delayed gratification procedure has also been used in 
nonhuman animals by incorporating a defection response into 
an impulsive choice task that allows for switching to SS fol-
lowing an initial choice of the LL (Haynes & Odum, 2022). 
Reynolds et al. (2002) compared impulsive choice and delayed 
gratification procedures in rats with an adjusting amount pro-
cedure with the addition of a defection response opportunity. 
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In both groups, if the rats chose the SS (by making a nose-poke 
response), then they received an immediate small reward and if 
they chose the LL, they received a larger delayed reward. Dur-
ing the LL delay, the SS nose-poke response remained avail-
able. For the rats in the impulsive choice task, SS responses 
during the LL delay were recorded but had no consequence. 
In contrast, rats in the delay gratification task could defect by 
making an SS nose-poke response at any time during the LL 
delay to receive the immediate smaller reward. There were no 
significant differences in the discounting functions between 
the tasks, suggesting that the two experiential procedures may 
measure similar processes in rats. Göllner et al. (2018) also 
found a correlation between impulsive choices and delay grati-
fication in humans, further supporting the claim that the tasks 
are measuring similar processes.

The above tasks can be used for measuring choice mecha-
nisms and for modeling choices. The impulsive choice func-
tion generated by these procedures is likely a product of mul-
tiple empirical relationships that can be accounted for by a 
combination of several processes. Impulsive choice research-
ers have achieved an emerging understanding of the com-
ponents that explain impulsive choice, but research on how 
these factors interact is lacking. Further experimentation is 
necessary to fill in the gaps. In addition, models designed to 
encapsulate the relevant factors are necessary. In addition to 
their predictive power, models can provide an organizational 
structure for interpreting research findings. In the absence of 
such a structure to explain impulsive decision-making, and 
the myriad of factors underlying it, researchers are only able 
to contribute to an ever-growing catalog of effects. Given the 
importance of both empirical and theoretical contributions to 
a unified understanding of impulsive choice, we review both 
elements in the current paper.

This review is broad but not comprehensive. The impulsive 
choice literature is vast with an “impulsive choice” search in 
Google Scholar producing 9,460 results and “delay discount-
ing” producing 26,600 results (as of September 2022). Instead, 
this paper focuses on exemplar studies (i.e., recent, seminal, 
and/or highly cited) that cover the mechanisms that are rel-
evant to both human and animal research on impulsive choice. 
The primary goal is to synthesize the cognitive, motivational, 
and attentional processes involved in impulsive choice, review 
the contemporary theoretical models, and highlight future 
directions for research that can propel the field forward.

Learning, motivational, and cognitive 
factors underlying impulsive 
decision‑making

This section highlights experimental research investigating 
the mechanisms underlying impulsive decision-making. 
The consideration of learning factors will focus on learning 

history and impulsive-choice training procedures to pro-
vide clues about the mechanisms of impulsive choice. The 
discussion of cognitive and motivational factors is grouped 
because influential frameworks of substance use disorders 
often explain impulsive decision-making as an imbalance 
between dysregulation of the executive control system and 
a hyperactive motivational system (Bechara et al., 2019). 
Experimentation testing these frameworks can reveal the 
underlying mechanisms involved in impulsive decision-
making. The section on motivational factors will focus on 
how reinforcer quantity, quality, and incentive motivation 
affect impulsive choice. Finally, we focus on the underly-
ing cognitive processes that are recruited to affect impul-
sive decision-making, including working memory, attention, 
and perceptual processes (especially timing processes). This 
section will highlight the empirical foundation that influ-
ences models of impulsive choice, which will be discussed 
subsequently.

Learning factors

Learning factors relate to the organisms’ behavioral adapta-
tion to the environment based on experiences. In this section, 
we focus on how impulsive decision-making is affected by 
learning the local choice contingencies (i.e., what the SS and 
LL options provide in terms of reinforcers and delays), the 
context and framing of the choice options (i.e., how future 
choices are affected by prior choices/outcomes and how 
presenting the choices successively or concurrently affects 
behavior), and the broader choice contingencies (i.e., does 
preference track reinforcement maximization or not).

Learning the local contingencies: Amounts, delays, and 
immediacy The most elemental learning process in an 
impulsive choice environment involves understanding the 
delay and amounts associated with each choice. Correla-
tional research indicates that rats and humans who time 
delays better also show greater self-control (Baumann & 
Odum, 2012; Brocas et al., 2018; Darcheville et al., 1992; 
Marshall et al., 2014; McClure et al., 2014; Moreira et al., 
2016; Navarick, 1998; Paasche et al., 2019; Smith et al., 
2015; Stam et al., 2020; van den Broek et al., 1992; Witt-
mann & Paulus, 2008). In addition, rats that display superior 
amount discrimination also show better self-control (Mar-
shall & Kirkpatrick, 2016; Experiment 1). These results sup-
port a basic assumption that more self-controlled choices 
should follow from a better understanding of the choice 
outcomes.

Given the observation of correlations in timing ability 
and amount discrimination with impulsive choice, it is rea-
sonable to assume that training those abilities could improve 
self-control. Training designed to improve self-control has 
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been useful in determining what learning experiences, and 
associated processes, underlie impulsive choice. Smith et al. 
(2015) trained rats on different schedules of reinforcement 
designed to promote timing of the SS and LL delays fol-
lowed by impulsive choice assessment. Training occurred on 
the same levers as the choice assessment to promote transfer 
across tasks. The DRL-Delay delivered training with a dif-
ferential reinforcement of low-rate schedule where the rats 
had to withhold responding for a fixed delay. The FI-Delay 
involved rats responding after a fixed interval elapsed. The 
VI-Delay required rats to respond after a variable interval, 
with the delay varying across trials according to a uniform 
schedule. All three procedures increased LL choices coupled 
with improved timing precision of the SS and LL delays. 
Timing precision was indexed by reduced variability in 
responding on a peak interval procedure. In this procedure, 
rats received nonreinforced trials that extended beyond the 
usual time of reinforcement and response rates peaked at 
the anticipated time of reinforcer delivery. The location of 
the peak is an index of timing accuracy and the variability 
of the peak distribution indexes timing precision. Previous 
research has shown that rats can time delays in DRL, FI, 
and uniformly distributed VI schedules (Church et al., 1998; 
Pizzo et al., 2009). It appears that temporal learning during 
the training with the three schedules may have transferred 
to the choice task.

Similarly, Peterson and Kirkpatrick (2016) trained rats 
on a VI-Delay procedure with uniformly distributed vari-
able delays compared with a No-Delay control group. The 
VI-Delay group showed greater LL choices. In addition, an 
individual differences analysis revealed that the rats in the 
VI-Delay group (but not the control) with the highest self-
control showed the best timing in a temporal discrimination 
task. Overall, these studies suggest that training-induced 
improvements in self-control is linked to improved timing 
in peak interval (Smith et al., 2015) and temporal discrimi-
nation (Peterson & Kirkpatrick, 2016) procedures. However, 
Rung et al. (2018) failed to find a relationship between tem-
poral discrimination and LL choices and Fox et al. (2019) 
did not find a relationship between peak interval timing and 
LL choices; these inconsistencies are discussed later.

An alternative training approach involved training rats to 
discriminate the SS and LL amounts, which increased LL 
choices along with increasing amount discrimination ability 
(Marshall & Kirkpatrick, 2016; Experiment 2). Specifically, 
rats were trained to discriminate 1 versus 2 pellets and 1 ver-
sus 4 pellets, whereas the control group only chose between 
2 versus 2 pellets. The rats in both groups were then tested 
to determine their ability to discriminate between 1 versus 
2, 2 versus 3, 3 versus 4, and 4 versus 5 pellets. Rats in the 
training, but not the control, group showed improved dis-
crimination performance coupled with a numerical distance 
effect (i.e., 1 vs. 2 was easier to discriminate than 4 vs. 5), 

which suggests that numerical processing was selectively 
improved for the training group. In addition, across rats, 
there was a positive correlation between improvement in 
self-control (pre- vs post-training) and amount discrimina-
tion accuracy for the training group but not the control (i.e., 
reminicent of what Peterson & Kirkpatrick, 2016, observed 
with the discrimination of delays). Collectively, these studies 
revealed that refined training to learn the larger/smaller and 
later/sooner contingencies involved in the choice procedure 
resulted in more self-controlled choices.

Although research in rodents using delay and amount 
training techniques appears promising, the generality of 
these studies to humans needs further investigation. Self-
control is increased in humans that are exposed to delays 
(Binder et al., 2000; Dixon et al., 1998; Dixon et al., 2003; 
Fisher et al., 2000; Neef et al., 2001; Schweitzer & Sulzer-
Azaroff, 1988; Vessells et al., 2018; Young et al., 2011; 
Young et al., 2013), but it is unclear whether these benefits 
are the result of learning about the delays and/or amounts 
or occur through other mechanisms (see delay tolerance 
below).

Comparisons, contrasts, and carryover effects Learning 
the amounts and delays of the options is important, but 
the question remains: what is learned through experiences 
with SS and LL outcomes? This section covers generaliza-
tion of different experiences with SS and LL outcomes that 
can produce subsequent effects on choice. When given two 
options the most basic assumption is that the value of one 
amount–delay trade-off (e.g., LL option) is compared with 
the value of the alternative (e.g., SS option). Given that there 
are moderate positive cross-task correlations between impul-
sive choice methods in rodents (Craig et al., 2014; Peterson 
et al., 2015) it may be assumed that a common learning pro-
cess may occur during experience with any impulsive choice 
procedure (i.e., trait effects; Odum, 2011). Be that as it may, 
procedural decisions for training and assessing impulsive 
choice may bias choices and this reflects the importance of 
learning- and context-based effects.

Training procedures designed to influence choices 
sometimes reveal that rats do not always simply learn the 
smaller/larger and sooner/later contingencies of the impul-
sive choice task. In comparison to FI-Delay and VI-Delay 
training, experiments that utilized a No-Delay control group 
trained the rats to differentiate SS and LL amounts associ-
ated with each lever (e.g., FR 2 for 1 SS or 2 LL pellets). 
In several studies, the No-Delay experience has not shown 
any significant changes in LL choices (Bailey et al., 2018; 
Panfil et al., 2020; Stuebing et al., 2018). This outcome is 
somewhat counterintuitive because the No-Delay procedure 
effectively trains the rats to expect 2 pellets from the LL 
lever and 1 pellet from the SS lever, but that experience does 
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not promote the choice of 2 pellets over 1 pellet. If the rats 
learn simple associations between the SS and LL levers and 
their respective amounts during training, then the No-Delay 
training should increase LL choices. The absence of this out-
come suggests that preference for the LL and SS options as a 
result of training does not reflect some composite associative 
value that generalizes to the choice procedure.

Training procedures have shown that different ways of 
introducing SS and LL options may lead to different pref-
erences in choice. Marshall and Kirkpatrick (2016) found 
that amount discrimination training improved self-control, 
so it could be assumed that the No-Delay training could 
do the same. The No-Delay training procedures typically 
expose rats to SS and LL options successively and this may 
impede the ability to discriminate amounts. Consistent with 
this idea, Marshall et al. (2014) failed to find a relation-
ship between impulsive choice and amount discrimina-
tion accuracy with a procedure that trained amount–lever 
associations across successive blocks. However, Marshall 
and Kirkpatrick (2016) observed a relationship between 
amount discrimination and impulsive choice after training 
with concurrently presented amounts. Concurrent discrimi-
nation training might be a necessary condition to observe 
reinforcer-amount training effects on LL choices.

Although concurrent training may promote amount dis-
crimination, it is unknown whether it is a necessary con-
dition for delay-based training. Outside of the impulsive 
choice paradigm it has been shown that pigeons only learn 
the temporal value of different delay-correlated cues when 
they are trained simultaneously with other delays in the same 
session, rather than successively across blocks of sessions, 
using the concurrent chains procedure (Grace & Hucks, 
2013). The effects of delay-correlated cues were described in 
terms of their conditioned reinforcement value in concurrent 
chains research, but these effects can easily be interpreted in 
terms of how the context modifies the way that delayed rein-
forcement is learned. The impulsive choice tasks described 
previously are functionally concurrent chains schedules with 
a choice initial-link (fixed-ratio, FR, 1) chained to a delay-
to-reinforcement terminal-link (FI or fixed-time, FT). The 
concurrent chains schedules described in this section utilize 
a VI initial link choice schedule where responses can be 
allocated to both options and the first response that com-
pletes the VI schedule on either of the options registers as 
the selected choice. The significance of the VI initial link 
choice period (vs. FR 1) is that it provides an added delay 
context that precedes a signaled terminal-link delay.

Grace and Savastano (2000) trained pigeons simultane-
ously on two different concurrent chains components that 
differed on initial-link schedules (VI 20 s for the “short” 
initial-link component and VI 100 s for the “long” initial-
link component). Those components had the same termi-
nal-link delays (VI 10-s delay, VI 20-s delay), but different 

terminal-link key light colors depending on the component 
(e.g., VI 10-s for the short component might be green, 
whereas the VI 10-s for the long component might be red). 
Then the pigeons’ preferences were probed with the green 
VI 10 from the short component compared with the red VI 
10 from the long component. The pigeons had equivalent 
preference for the VI 10-s schedules. This outcome would 
be expected assuming that the pigeons learned that the aver-
age terminal link delays were the same and if the length of 
the initial link context was ignored. However, O’Daly et al. 
(2005) trained pigeons successively on two different multiple 
chains components that differed on initial-link schedules (VI 
10 s for the “short” initial-link component and VI 100 s for 
the “long” initial-link component), but shared the same FT 
30-s terminal link that differed in terms of key light color 
based upon the associated component (e.g., red FT 30-s 
schedule following VI 10-s, green FT 30-s schedule follow-
ing VI 100). The pigeons’ preference between red versus 
green FT 30-s terminal links was probed, and the pigeons 
favored the terminal link signal associated with the VI 100-s 
initial link (e.g., green). This outcome would be expected 
if the pigeons learned the duration of the initial-link and 
terminal-link components and the signaled FT delay repre-
sented the time remaining within the component (consist-
ent with the delay reduction hypothesis; e.g., Fantino et al., 
1993). The 30-s delay following the (average) 100-s delay 
would indicate “most of the waiting for food has passed” in 
the context of the component, and the 30-s delay following 
a 10-s delay would indicate “most of the waiting for food is 
still to come.”

Overall, the results of Marshall et al. (2014) and Marshall 
and Kirkpatrick (2016) show that concurrently training dif-
ferent reinforcer amounts may be necessary to produce accu-
rate amount discrimination. On the other hand, the results 
of Grace and Savastano (2000) in comparison with O’Daly 
et al. (2005) show that concurrent training of different delays 
leads to them to be compared based upon their absolute 
times, whereas successive training of delays leads them to 
be compared based upon whether they signal that food is 
temporally nearer or farther in the overall context. Previous 
FI-Delay training has used successive procedures to produce 
improvements in timing and self-control. Future FI-Delay 
training using concurrent procedures might produce rela-
tively greater improvements in timing and self-control.

Learning-based procedures often increase preference for 
the choice option that provides more reinforcers, but proce-
dures can also affect choice by increasing preference for the 
option that provides reinforcers sooner. T. R. Smith et al. 
(2022; Experiment 2) compared FI-Delay training between 
groups where the SS option involved either a short delay 
(5-s) or a long delay (10-s SS) with 30-s LL delay training 
delivered to both groups. The group experiencing the 5-s SS 
delay showed greater delay discounting in comparison to the 
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group experiencing the 10-s SS delay training. These results 
were interpreted in terms of the rats experiencing the 10-s 
SS delay being trained to tolerate the aversiveness of waiting 
(i.e., delay tolerance, a mechanism discussed later), but both 
groups experienced 30-s LL delay training that has been 
shown to increase LL choices (Fox et al., 2019; only trained 
LL delays). The attractive dimension of the SS delay is that 
it is “short”; the 5-s SS delay group perhaps learned to attend 
to that dimension because of training, whereas the 10-s SS 
delay group attended to the attractive “larger” reward dimen-
sion of the LL.

Bailey et al. (2021) also reported training effects indicat-
ing that exposure to short delays can increase preference for 
that option, in this case the LL option with short VI delays. 
A VI-Delay group received training with a Weibull distribu-
tion of delays with different mean and shape parameters to 
produce increasing, decreasing, or constant hazard functions 
with mean VI durations for the SS and LL levers of 10 s and 
30 s, respectively. The decreasing hazard function delivered 
many short delays offset by a few very long delays, whereas 
the constant hazard function had an exponential distribution, 
and the increasing hazard function closely approximated a 
uniform distribution. Compared with the increasing and con-
stant hazard functions, the decreasing hazard function VI 
produced the greatest improvement in self-control. The fre-
quent short delays to the LL outcome during training might 
have increased the LL value (similar to what the 5-s SS delay 
did in T. R. Smith et al., 2022), but the occasional long delay 
might have increased LL delay tolerance.

To summarize, what animals learn about delay and 
amount contingencies in a choice procedure depends on how 
the animals are introduced to those contingencies. These 
dynamics, however, have been studied using animals that 
learned the contingencies in a highly controlled environ-
ment. It is unclear whether these dynamics would apply to 
human decision-making. We will return to this issue below 
(see Attention section) when discussing framing effects on 
impulsive decision-making and will discuss the extent to 
which the studies in this section with rats and pigeons may 
bias attention in similar ways to framing effects. This pro-
vides a possible connection across species.

Learning the global contingencies: Optimal preference for 
reinforcement maximization In an impulsive choice proce-
dure, the LL option is the “optimal choice” defined in terms 
of maximizing reinforcer outcomes over time, thus making 
it the self-controlled choice. Humans can adopt an optimal 
strategy under the constraints of a delay discounting task 
(Schweighofer et al., 2006) and animals’ behavior often is 
adaptive to the environment and sometimes approximates 
the optimal solution in a variety of experimental prepara-
tions (Fantino & Abarca, 1985; Stevens & Stephens, 2010). 
For example, Schuweiler et al. (2021) found that rats could 

optimally delay gratification in a choice and diminishing 
returns procedure, which offered a choice between a progres-
sive interval (PI) and an FI. The PI delay started at 0 s and 
increased by 1 s for each successive PI choice, and the FI 
option was always a 10-s delay. Choosing the FI option reset 
the PI delay for the next trial to 0 s. The optimal response 
pattern to maximize reinforcers was to choose the PI until 
reaching 4 s and then switch to the FI option to reset the PI 
to 0 s. This would keep the rat routinely encountering low 
PI delays. The rats in Schuweiler et al. (2021) on average 
switched at the 4-s delay—demonstrating precision in learn-
ing the optimal strategy.

Given that rats can optimize in the diminishing returns 
task, one might anticipate that they would adopt the opti-
mal strategy in impulsive choice procedures. Typically, 
in impulsive choice procedures, the LL results in greater 
reinforcement maximization because the intertrial interval 
(ITI), the time between food delivery and the next choice 
trial, represents an opportunity cost in a limited-time ses-
sion. For example, even if the SS offers 1 pellet after 10 
s and the LL offers 3 pellets after 30 s, a common 60-s 
ITI following both choices ensures the LL option will 
have a greater payoff when considering trial and ITI time 
together. Self-control is often touted as the optimal choice, 
but humans and animals almost never exclusively prefer 
the LL option, hence why impulsive decision-making is 
such a ubiquitous problem. If animals are insensitive to 
the ITI and fail to see the “big picture” in terms of the LL 
option maximizing reinforcement in the long run, then that 
might partly explain why optimal self-controlled solutions 
are uncommonly observed.

Studies examining sensitivity to the ITI have found mixed 
results. Smethells and Reilly (2015) demonstrated that rats 
in a condition with a 6-s LL delay coupled with a 10-s ITI 
chose the SS option, providing immediate reinforcement, 
more often compared with a group with a 45-s ITI. The 
10-s ITI imposed a low opportunity cost for choosing the 
SS and the rats appeared to be sensitive to that contingency. 
However, sensitivity to the ITI may be the exception rather 
than the rule. Blanchard et al. (2013) demonstrated that 
rhesus monkeys showed poor sensitivity to ITI durations 
unless the ITI was made salient with signaling. Sjoberg et al. 
(2021) reported that increasing the length of the ITI for the 
LL choice had no effect on impulsive choices in rats, and 
attempts to make the ITI more salient with audio cues did 
not improve sensitivity. Pigeons also generally showed poor 
sensitivity to ITIs (Logue et al., 1985). It is curious that 
rats (Schuweiler et al., 2021) and pigeons (Hackenberg & 
Hineline, 1992) generally show optimal response patterns 
in a diminishing returns contingency, and yet when simi-
lar delays are packaged into an impulsive choice procedure, 
preference often deviates from optimality.
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The ITI is not the only extraneous variable that could 
affect impulsive choices. Low opportunity costs induced by 
using reinforcer postponement, rather than reinforcer wait-
ing, can also affect choice behavior (Paglieri, 2013). In illus-
trating the effects of reinforcer postponement, Addessi et al. 
(2021) showed that when a new trial occurred immediately 
after a choice, but before delayed reinforcers from the previ-
ous trial were delivered, capuchin monkeys made more LL 
choices. This is because the LL delay imposed a smaller 
opportunity cost if a new choice trial could present itself 
concurrently with the LL delay from the previous trial. In 
other words, the monkeys were not waiting for the LL rein-
forcer; they were postponing the LL reinforcer to be deliv-
ered later while they engaged in other reinforcing activities. 
Although animals may often ignore the ITI, the SS and LL 
delays might represent salient opportunity costs that animals 
do not ignore. On the other hand, the hypothetical impulsive 
choice tasks that humans receive inherently imply reinforce-
ment postponement because participants will not assume 
that a “$27 in 2 weeks” choice commits them to captively 
wait in a laboratory room for those weeks (Paglieri, 2013). 
Thus, choosing the LL does not necessitate an opportunity 
cost for other reinforcing activities in the hypothetical choice 
paradigm.

Reinforcer bundling is another extraneous contingency 
that affects choice outside of delay/amount contingencies 
(Ashe & Wilson, 2020). In bundling, a single choice results 
in a series of delayed outcomes that occur in succession, 
and this has the effect of increasing LL choices. For exam-
ple, the SS option may offer $100 immediately and another 
$100 after two weeks, and the LL option may offer $200 
after 2 weeks and another $200 after 4 weeks. Bundling 
effects have been observed in humans (e.g., Kirby & Guas-
tello, 2001) and rats (e.g., Stein et al., 2013b). Stein et al. 
(2013b) demonstrated greater LL choices in group of rats 
that experienced a bundle of 9 SS or LL delayed reinforcer 
events (followed by a single ITI), compared with a no bun-
dle group with an ITI length to equate rate of reinforcement 
between the two groups. Additionally, rats in the bundled 
group later made more LL choices in a standard impulsive 
choice task. Thus, the bundling experience resulted in learn-
ing that transferred across tasks. Stein and Madden (2021) 
proposed that bundling increases LL choices by allowing the 
sum of the values of discounted LL reinforcers in the bundle 
to be compared against the sum of the values of discounted 
SS reinforcers in the bundle (which includes delays between 
each subsequent SS reinforcer delivery). The first SS rein-
forcer in the bundle might have greater value than the LL 
reinforcer, but each successive SS reinforcer may have lower 
value than the LL; thus, the sum these reinforcer values will 
drive preference for the LL. The process underlying bun-
dling effects might explain why the optimal response strat-
egy is observed in the diminishing returns procedure. The PI 

option is often selected several times consecutively before 
switching to the FI option to reset the PI delays. If each dis-
crete choice for the PI option is framed as a “bundle,” then 
the discounted value of each PI reinforcer in the series of 
choices might summate to compare against the value of the 
delayed FI reward. Future research is necessary to explore 
this hypothesis.

To summarize, animals can adapt their choices to find an 
optimal response solution to maximize reinforcers. How-
ever, the standard impulsive choice contingencies often lead 
to suboptimal choices. This might in part be because the 
prototypical impulsive choice situation is not designed to 
highlight the global reinforcement context. The learning 
effects on choice behavior highlight many possible mecha-
nisms that may determine impulsive choice and those may 
independently affect choices in complex ways. The following 
section will discuss mechanisms of impulsive choice from a 
more conceptual theory-driven perspective.

Motivational and cognitive factors

Learning implicitly includes motivational and cognitive fac-
tors that may interact with impulsive choice. Motivational 
factors relate to influences of reinforcers and aversive stim-
uli/punishers in affecting choices. Within the framework of 
impulsive decision-making between larger/later and smaller/
sooner options, the reinforcers often refer to the quantity or 
quality of the larger/smaller outcomes, whereas the aver-
sive stimuli refer to the duration of the later/sooner delays. 
Motivation also relates to the conditions that modify the 
subjective value of reinforcers across time (reinforcer dep-
rivation being the prototypical example). Collectively, the 
value of a consequence in a given deprivation state could 
be considered the “utility” of that consequence. Learning 
does not uniformly occur between individuals and within 
the same individual across all situations. Cognitive factors 
that functionally describe how experiences translate into 
adaptations in behavior are also important. The key cogni-
tive processes that are relevant to impulsive decision-making 
are delay and amount perception, attention, and working-
memory. Learning necessitates perceptual contact and atten-
tion to be focused on those relevant environmental features 
for the organism to encounter the prevailing reinforcement 
contingencies. Learning also requires adequate working 
memory to associate current environmental conditions with 
past outcomes to accurately plan prospectively and optimize 
future outcomes.

Impulsive versus self-controlled decision-making is often 
framed as a competition between a motivational system 
and a cognitive (executive) system, respectively (Bechara 
et  al., 2019). The motivational system is driven by the 
short-sighted pursuit of immediate attractive reinforcers at 
the expense of long-term outcomes. The cognitive system 
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strives to achieve optimal outcomes that take long-term 
reinforcers into consideration, foregoing any immediate 
reinforcer that is in competition with the long-term goals. 
The competing neurobehavioral decision systems (CNDS; 
Koffarnus et al., 2013) theory posits two neurobehavioral 
processes responsible for impulsive decisions and execu-
tive decisions. Brain regions associated with the (bottom-up) 
impulsive system include the amygdala and striatum (i.e., 
dopamine mediated wanting system associated with habitual 
reinforcer seeking and cravings). Brain regions associated 
with (top-down) executive control systems include the orbit-
ofrontal cortex, prefrontal cortex, and anterior cingulate cor-
tex (i.e., anticipation, foresight/planning, value processing 
in decision-making, etc.). The insular system (i.e., sensory 
processing, salience detecting, information integration, etc.; 
Gogolla, 2017) is proposed to modulate how deprivation 
and stress can produce an imbalance allowing hyperactivity 
in impulsive systems to override hypoactivity in executive 
systems (Bechara et al., 2019). The motivational and cog-
nitive factors discussed in this section may fit within the 
CNDS framework.

Aversion to delays and temptation by immediacy Delay 
aversion is a common explanatory framework that describes 
impulsive choices as avoidance of the aversive properties 
involved in waiting for a delayed reinforcer. The delayed 
gratification paradigm can evaluate delay aversion where 
waiting for the LL is challenging in the face of tempta-
tion from the immediate SS (Mischel et al., 1989; Watts 
et  al., 2018). For example, individuals with ADHD are 
often considered to be delay averse (Solanto et al., 2001; 
Sonuga-Barke et al., 1992) and often fail to wait for the LL 
(Rapport et al., 1986). Individuals with ADHD often fail 
to wait for the LL and show greater avoidance of a cue that 
was associated with the delay, and this is interpreted as an 
aversion to the delay that the cue represents (Van Dessel 
et al., 2018). Their study also showed increased activity in 
the amygdala and dorsolateral prefrontal cortex, which are 
linked to negative affect and avoidance behavior, in delay-
avoidant individuals. These results are further supported by 
Mies et al. (2018), who found that higher amygdala activity 
was correlated with self-reports of delay aversion and more 
impulsive choices. Like in humans, research with rodents 
has also observed that impulsive rats will respond to turn 
off cues associated with longer delays (Peck et al., 2019). 
Delay aversion as an explanation of impulsive choice is a 
construct that is supported by behavioral data (cue avoidance 
responses), subjective reports, and brain measures (activity 
in regions associated with aversive affect).

Preclinical research has further suggested that there 
might be a causal link between delay aversion and impul-
sive choice as exposure to delays increases self-controlled 

choices in humans and animals (e.g., Rung et al., 2019; 
Smith et al., 2019). Stein et al. (2013a) required rats to 
repeatedly respond for delayed reinforcement (using a 
fixed-time, FT, schedule) on a training lever and sub-
sequently tested those rats’ impulsive choices using a 
separate pair of choice levers. Compared with rats that 
were trained to respond for immediate reinforcement (FR 
1), the delay exposure rats made more LL choices. This 
effect has been replicated repeatedly using the procedure 
described above (Peck et al., 2019; Renda & Madden, 
2016; Renda et al., 2018, 2021; Rung et al., 2018; Stein 
et al., 2015). Peck et al. (2019) found that that exposure 
to delays improved self-control and decreased avoidance 
of a delay-associated cue. This finding suggests that the 
delay exposure training may have improved self-control by 
reducing aversion to the LL delay evidenced by reduced 
responses to escape from delay-correlated stimuli. Improv-
ing delay tolerance through training was reported in Fox 
et al. (2019; Experiment 2) with rats exposed to FI-Delay 
training and assessed on an impulsive choice and peak 
interval procedure. Unlike A. P. Smith et al. (2015), where 
training involved SS and LL forced-choice trials, the train-
ing in Fox et al. delivered LL and SS amounts from both 
of the choice levers (randomly) after an LL delay. Fox 
et al. (2019) reported that their version of the FI-Delay 
training improved self-control, but they did not observe 
any improvements in peak interval timing. The different 
training procedures in Fox et al. (2019) allowed experience 
with the LL delay to occasionally lead to SS reinforcer 
amounts on the SS lever and this might have led to poor 
generalization of timing information acquired in training 
to the choice task. These results suggest that the improve-
ment in self-control was driven by improvements in delay 
tolerance.

Delay tolerance suggests that LL delays resulting from 
self-controlled choices are not aversive. Alternatively, an 
immediacy preference suggests that reinforcer prompt-
ness associated with the SS choice is attractive. Fox et al. 
(2019; Experiment 2) found that the FI-Delay training 
improved delay tolerance, but No-Delay training increased 
SS preferences. The No-Delay training involved immediate 
access to pellets using an FR 2 contingency with the SS 
and LL reinforcer amounts presented randomly on each 
lever (like the FI-Delay training). Fox (2021) replicated 
this effect of the No-Delay training. Collectively, these 
studies support the conclusion that FI-Delay exposure 
may promote self-control by increasing delay tolerance, 
whereas a No-Delay exposure may increase impulsive 
choice by increasing an immediacy preference. The No-
Delay training in these studies differs procedurally from 
previous No-Delay tasks (Bailey et al., 2018; Panfil et al., 
2020; Stuebing et al., 2018) in the delivery of random SS 
and LL reinforcer amounts. Those previous studies did 
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not report any change in LL choices. It is possible that the 
random reinforcer amount deliveries may have increased 
attention to the immediacy of the delays, a possibility that 
necessitates further research.

Preference for immediacy has also been studied by 
increasing the SS delay, rather than the LL delay, resulting 
in an increased preference for the LL (Bailey et al., 2018; 
Mazur & Biondi, 2009; Rodriguez & Logue, 1988). Experi-
ments that eliminate immediacy by using a precommitment 
contingency can also increase LL choices (Rachlin & Green, 
1972). The precommitment opportunity was presented as 
an initial link choice between a later terminal link offering 
a free choice between SS and LL options or a terminal link 
only offering a forced-choice LL option. When the pigeons 
choose to proceed to the free-choice terminal link, they 
favored the SS option, but overall, the pigeons preferred to 
commit to the forced-choice LL option in the initial link. 
Thus, if the SS option was unavailable to tempt immedi-
ate reinforcer delivery in the initial link, then the pigeons 
showed more self-controlled choices by favoring a terminal 
link that led to a forced-choice LL option.

Jackson and Hackenberg (1996) also demonstrated that 
eliminating reinforcer immediacy increased self-control by 
using token-reinforcement procedures. In this procedure 
responding did not directly lead to food, but rather illumi-
nated LED lights that were accumulated across trials and 
later exchanged for food. Pigeons chose between an LL 
option of 3 LEDs after 6 s or an SS option of 1 LED avail-
able immediately. Under conditions where LEDs were traded 
for food immediately the pigeons showed an SS preference 
(similar to when they responded for food directly). How-
ever, if the opportunity to trade accumulated LEDs for food 
was delayed for LL and SS choices, then the pigeons were 
more likely to choose the LL option. Similar to what was 
observed with Rachlin and Green (1972), once the tempta-
tion of an immediately consumable reinforcer was removed, 
the pigeons demonstrated better self-control.

Collectively, self-control can be increased by reducing 
LL delays, increasing tolerance to LL delays, increasing 
SS delays, or preventing immediate access to SS outcomes. 
Preference for immediacy and aversion to delays are both 
significant factors in modulating impulsive choice.

Reinforcer valuation Reinforcer valuation refers to the moti-
vation to obtain a given reinforcer based on how intrinsi-
cally valuable an outcome is to an individual (i.e., its utility). 
In addition, motivational states can modulate the value of 
a reinforcer across situations and over time. For example, 
food deprivation will increase food value until the hunger 
state is satisfied. The quantity and quality of the “larger” 
and “smaller” reinforcer determines how reinforcer value 
affects impulsive decision-making—this section focuses on 
qualitative reinforcer differences.

Madden et al. (1997) found that opioid dependent individ-
uals were more impulsive when choosing between monetary 
SS and LL rewards in a hypothetical choice task, but they 
were even more impulsive when the reinforcer was hypothet-
ical heroin—a commodity that is highly valued to individu-
als with an opioid dependency. Odum et al. (2020) reviewed 
the effects of qualitatively different reinforcers on impulsive 
choice and explored why some reinforcers are discounted at 
higher rates. For example, nonmonetary outcomes lose value 
with delays more steeply than monetary outcomes. They 
conclude that the discounting of qualitatively different rein-
forcers was determined by the perceived future preference 
for a reinforcer (i.e., does the individual anticipate that they 
would want it later) and the utility of a future reinforcer (i.e., 
would the future value of the reinforcer be lost). But those 
conclusions are limited to human participants. In animals, 
preference between the SS and LL options do not appear 
vary between conditions where quantitatively (e.g., 10 vs. 30 
pellets) and qualitatively different reinforcers were offered 
(e.g., sucrose vs. cellulose pellets; Calvert et al., 2010). It 
therefore seems that any consumable reinforcer may produce 
the same rate of delay discounting. However, this conclusion 
needs to be considered with caution because reinforcer qual-
ity was identical on the SS and LL options (same-reinforcer 
tasks) in Calvert et al. (2010). Using qualitatively different 
reinforcers (e.g., sucrose on SS, cellulose on LL) might have 
produced different results.

Evaluating impulsive choice using cross-reinforcer tasks 
where the SS and LL offer different types of reinforcers 
rather than different quantities is insightful, but is uncom-
mon in impulsive choice assessments (Pritschmann et al., 
2021). Bickel et al. (2011) looked at cross-reinforcer impul-
sive choice between hypothetical money and cocaine using 
participants meeting clinical criteria for stimulant use dis-
order. The cocaine-SS and money-LL group showed high 
degrees of self-control favoring the delayed money option, 
suggesting that immediate cocaine did not compete strongly 
against delayed money. The money-SS and cocaine-LL 
group showed the strongest rate of discounting, presumably 
because a delayed consumable reinforcer loses much of its 
anticipated value (Odum et al., 2020). They included same-
reinforcer groups and reported that the LL choices were 
highest with money, and greater SS choices were found 
with the cocaine, consistent with steeper discounting of 
nonmonetary reinforcers. The use of hypothetical cocaine 
as a reinforcer might partially explain these effects because 
the individuals may have lacked motivation for that rein-
forcer while completing that task. However, providing a real 
cocaine reinforcer is not feasible in most human research 
studies.

Animal studies have assessed choices with different 
types of consumable reinforcers (Huskinson et al., 2016; 
Huskinson et al., 2015). Huskinson et al. (2015) reported 
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that when rhesus monkeys were offered a food-LL and a 
cocaine-SS, they discounted the food-LL more steeply com-
pared with a condition when food was available for both 
options. This suggests that impulsive choices may increase 
when a highly valued consumable reinforcer is attached to 
the SS option. However, Huskinson et al. (2016) presented 
the opposite cross-reinforcer options with cocaine-LL and 
food-SS. They reported that monkeys preferred the cocaine-
LL with stronger preferences when higher doses of cocaine 
were available. Thus, with real outcomes the higher-valued 
cocaine reinforcer dominated preferences. The difference 
between the results in monkeys and humans might reflect the 
use of experiential versus hypothetical outcomes. Regard-
less, the use of cross-reinforcers in the impulsive choice 
tasks reveal novel dynamics that invite further research. For 
instance, the utility of qualitatively different reinforcers can 
interact in ways that affect the value of each reinforcer. Some 
cross-reinforcers interact in a way where consumption of one 
reinforcer increases the value of the alternative—these are 
known as complimentary cross-reinforcer interactions (e.g., 
consumption of salt may increase thirst and increase the con-
sumption of a beverage). Other cross-reinforcers interact in 
a way where consumption of one reinforcer decreases the 
value of the alternative—these are known as substitutable 
cross-reinforcer interactions (e.g., consumption of water may 
decrease thirst and decrease the consumption of alternative 
beverages). Cross-reinforcer relationships are “independent” 
when they do not interact.

The economic demand procedure (Hursh & Roma, 2016) 
is a useful method to assess the value of a reinforcer and 
evaluate how cross-reinforcers interact. Procedurally, rein-
forcer value is evaluated by having individuals pay some cost 
(e.g., effort, hypothetical money) to obtain the reinforcer 
where the unit price (cost per amount) of the reinforcer is 
varied across conditions and the amount of the reinforcer 
obtained is measured. The reinforcer value is indexed by 
the elasticity of demand, the degree to which reinforcer con-
sumption drops when the unit price is increased. Shallow 
decreases in consumption are termed inelastic demand and 
this is an index of high reinforcer value relative to elastic 
demand where consumption drops steeply with increases 
in price. In everyday terms, inelastic demand is associated 
with necessities that individuals would pay almost any price 
to obtain (e.g., food, water) and elastic demand is associated 
with luxuries that can be forgone if the costs are too high 
or reinforcer value offered is too low (e.g., entertainment). 
Cross-reinforcer interactions can be evaluated when the unit 
price of one target reinforcer is varied while the cost of a 
qualitatively different alternative is held constant. For sub-
stitutable relationships, the consumption of the alternative 
would increase with increased price for the target reinforcer, 
whereas for complimentary reinforcers, the consumption of 
the alternative would decrease with the increase in price 

of the target reinforcer. These cross-reinforcer relation-
ships underscore the point that the utility of a reinforcer in 
a context is determined by what other reinforcers are pre-
sent. Understanding these interactions is useful in substance 
abuse research where reinforcer overevaluation can become 
maladaptive.

In the extreme, overevaluation occurs when a reinforcer is 
excessively consumed or sought out at the expense of other 
outcomes. As previously discussed, conditions like sub-
stance use disorders are associated with impulsive choice, 
but prediction of these conditions is improved when jointly 
factoring impulsive choice and reinforcer valuation assess-
ments. Observations that high impulsive choice and high 
reinforcer valuation (assessed using the demand procedures) 
are associated with maladaptive substance use behaviors 
has been termed reinforcer pathology (Bickel et al., 2014, 
2020). Reinforcer pathology is linked to unhealthy behav-
iors associated with alcohol (Lemley et al., 2016; Stancato 
et al., 2020), cannabis (Aston et al., 2016; reinforcer value 
and discounting were associated with different THC use 
outcomes), body mass index (Epstein et al., 2014), caloric 
intake (Rollins et al., 2010), unsafe sexual behaviors (Harsin 
et al., 2021), and relapse from smoking cessation (García-
Pérez et al., 2022). The observation that impulsive choice 
and reinforcer value often covary in individuals suggests that 
they may share a common underlying motivational mecha-
nism. Interventions designed to treat maladaptive reinforcer-
driven behavior should therefore be assessed for their ability 
to reduce impulsive choice and the value of the problem 
reinforcer—be it drugs, food, gambling, or sex.

Interventions such as episodic future thinking (EFT) 
can affect both impulsive choice and reinforcer value. EFT 
requires individuals to vividly imagine a future event and 
this has been shown to reduce impulsive choice (Peters & 
Büchel, 2010) along with decreased excessive valuation for 
alcohol (Bulley & Gullo, 2017), nicotine (Stein et al., 2018), 
and palatable foods (Sze et al., 2017). Alternatively, partici-
pants that receive scenarios of stressful situations, such as 
income constraints (Mellis et al., 2018) or hurricane losses 
(Snider et al., 2020), are more likely to show increased 
impulsivity and (food) reinforcer valuation. Collectively, 
this supports the reinforcer pathology framework and dem-
onstrates that impulsive choice and reinforcer valuation are 
mechanistically associated. These results also support the 
CNDS proposal that impulsive behaviors emerge from the 
motivational system and are associated with heightened rein-
forcer valuation (Bechara et al., 2019).

Motivating operations refers to the conditions that tem-
porarily modulate the value of a reinforcer across time 
(Edwards et al., 2019; Michael, 1993). The most basic exam-
ple of a motivating operation is deprivation. For example, 
food deprived animals experience hunger, water deprived 
animals experience thirst, and drug-dependent animals in 
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abstinence experience withdrawal. However, other condi-
tions can serve as motivating operations. For example, salt 
intake results in thirst, advertisements for palatable food and 
drugs can trigger cravings, and stressful environments moti-
vate avoidance behavior. Downey et al. (2022) provides a 
thorough review of the effects of deprivation on impulsive 
decision-making that does not need to be fully recounted 
here. However, there are several key proposals that highlight 
how motivational processes may affect impulsive choice. In 
humans, it has been generally concluded from the results of 
a variety of studies that sleep or nicotine deprivation have no 
effect on impulsive choice, whereas deprivation of opioids or 
financial resources increase impulsive choice (Downey et al., 
2022). In animals, mild deprivation does not seem to affect 
impulsive choice in food-deprived pigeons (Oliveira et al., 
2013) or water-deprived rats (Richards et al., 1997). How-
ever, opioid-dependent rats show greater impulsive choices 
during deprivation-induced withdrawal (Harvey-Lewis & 
Franklin, 2014). Collectively, there are mixed results about 
whether deprivation impacts impulsive decision-making. 
However, from prevailing trends, it is possible that mild 
deprivation (or other low-stress conditions) would have neg-
ligible effects while stressful deprivation (e.g., withdrawal) 
may increase impulsive choice.

Attention Attention is a perceptual and cognitive concept 
that is broad and difficult to define precisely (Hommel et al., 
2019). For the present purposes we operationalize attention 
as the degree to which reinforcement contingencies and 
stimulus cues in the environment affect impulsive choice 
behavior.

The importance of attention can be observed in studies 
where conditions lead to poor learning. As discussed ear-
lier, delay training increased self-control corresponding with 
improvements in timing in some studies (Peterson & Kirk-
patrick, 2016; Smith et al., 2015), but not others (Rung et al., 
2018). A prominent procedural difference that may explain 
differences between the studies is the contingency employed 
at the end of the delay. Smith et al. (2015) used response-
initiated FI schedules requiring the rats to make a response 
after the delay to collect the reinforcer during training and 
impulsive choice tasks. On the other hand, Rung et al. (2018) 
used response-initiated FT schedules where reinforcement 
was delivered automatically after the delay. The FI response 
requirements promote active attention to the delay. The FT 
schedules deliver the reinforcers automatically after the 
delay. The FT schedules in the choice procedure might not 
require sufficient attention to delays, and this might have led 
to the absence of an effect in the timing task. In another, pre-
viously discussed example, Marshall and Kirkpatrick (2016) 
reported that rats learned to discriminate reinforcer amounts 
with a concurrent training procedure (e.g., choosing between 

different pellet amounts in a trial), but not in a successive 
training procedure (e.g., responding for different pellet 
amounts on a lever across blocks of sessions; Marshall et al., 
2014). This benefit of learning during concurrent training 
might be mediated by the procedure requiring attention and 
comparison between the two options. The successive proce-
dure does not easily permit such comparisons between the 
two options. Poor attention may explain why some proce-
dural differences produce limited effects on learning.

Refocusing attention is a proposed method to help indi-
viduals with impulsive decision-making and associated 
maladaptive behavior, like substance use disorder (Ashe 
et al., 2015). Mischel and Ebbesen (1970) and Mischel et al. 
(1972) investigated the impact of attention in the delayed 
gratification task in children. Conditions that encouraged 
attention to the outcome, such as thinking of the reinforcer 
or making the reinforcer visible, decreased delay gratifica-
tion. On the other hand, conditions that distracted the chil-
dren from the reinforcer, such as thinking of something fun, 
improved delay gratification for the LL option. Evans and 
Beran (2007) reported that chimpanzees engaging in self-
distraction activities were better able to wait for a larger 
accumulation of reinforcers in a modified delay of gratifica-
tion task. This finding demonstrates that attentional focus 
can be a relevant mechanism for self-control in animals 
who are not simply following verbal instructions or obey-
ing potential demand characteristics, as may be the case with 
human participants. Overall, this demonstrates that shifting 
attention away from a tempting SS option can increase the 
ability to wait for an LL option.

Just as distraction can shift attention away from the 
choice situation, attention can also be shifted toward differ-
ent aspects of the choice situation by using stimulus cues. 
As discussed above, ITIs often do not affect impulsive deci-
sion-making in rats (e.g., Sjoberg et al., 2021), but Pearson 
et al. (2010) reported that signaling the ITI increased LL 
choices in rhesus macaques. This signaling effectively drew 
attention to the ITI and increased reinforcement maximiz-
ing. The results from Peck et al. (2019), where rats avoided 
delay-correlated cues, indicate that cue lights associated 
with a choice appear to represent the aversive dimension 
of the delay rather than the reinforcing dimension of the 
food. Attention to the delay-associated cue may condition 
the delays to represent the aversive aspects of waiting.

Studies have also shown that cues associated with delays 
in the terminal link within concurrent chains can represent 
the delay to food (Grace & Savastano, 2000) or time left 
waiting for food (from transition between initial link and 
terminal link; O'Daly et al., 2006) based on concurrent 
or successive value training, respectively. These contrast-
ing results might be best understood in terms of how the 
training focuses attention on learning what the delay repre-
sents. Using short SS delays in training increased impulsive 
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choices (Smith et al., 2022), and this might be due to bias-
ing attention towards short SS delays (i.e., rats learned the 
appeal of a short SS delay). The way animals experience the 
SS and LL options (outside of a choice procedure) may bias 
learning by training the animals to attend to different aspects 
of the impulsive choice contingencies. Overall, whether 
delays represent the aversive aspects of waiting, the value 
of the outcome, the time that has already passed during a 
delay, or the time left waiting may depend upon how these 
aspects were learned. The relevant mechanism underlying 
this learning might be attention to the contingencies.

The contingencies of reinforcement or cues in an initial 
link of an impulsive choice procedure can affect choices 
and these effects relate to attentional framing. Calvert 
et al. (2011) also demonstrated that cues can affect impul-
sive choices by signaling parts of the delay. They assessed 
impulsive choice in a study with a common delay added to 
the SS and LL options so that the SS option did not pro-
duce immediate reinforcer delivery. In comparison to con-
trol condition with no common delay, unsignaled common 
delays increased impulsivity and signaled common delays 
decreased impulsivity. The reason for this signaling effect 
is unclear, but it may have manipulated attention to the con-
tingencies where the unsignaled delay was associated with 
a long delay that was aversive (e.g., Peck et al., 2019). In 
contrast, the signaled condition may have reframed the con-
tingencies so that the experience with the LL option was 
not as subjectively long in comparison to the SS option. To 
compare with humans, Green et al. (2005) added a common 
delay to hypothetical SS and LL choices and found more 
LL choices as a result. Thus, pigeons showed sensitivity to 
the contingencies similar to humans if the task was framed 
in a way that highlighted the common delay between the 
SS and LL.

Attention can also be manipulated in experiments 
without the explicit use of stimulus cues. As described 
previously, Rachlin and Green (1972) demonstrated that 
pigeons committed to the LL option if given the opportu-
nity in an initial link. In a similar experiment, Siegel and 
Rachlin (1995) found that an FR 31 response requirement, 
on either the SS or LL initial link leading up to the choice, 
increased LL choices compared with an FR 1 response 
requirement. The pigeons could switch options during the 
FR 31 and only the last response counted as the choice, 
which led to the SS or LL delay and subsequent rein-
forcer delivery. Under this contingency, pigeons tended to 
respond on the LL option early and rarely switched to the 
SS option. Monterosso and Ainslie (1999) suggested that 
the pigeons’ attention was focused on the LL at the start 
of the trial in the FR 31 condition because the initial link 
distance from the outcome produced an LL bias and the 
response contingency helped maintain attention on the LL 
for the remaining 30 responses. The self-control promoting 

effects of precommitment in Rachlin and Green (1972) 
can emerge when the initial link delay involves a response 
contingency that captures attention and guides the pigeon 
to the terminal choice associated with that option, often 
the LL due to an LL preference at the precommitment 
stage of decision-making.

Framing effects in the impulsive choice literature with 
humans might be understood in terms of attentional con-
trol. Instructions to human participants can reframe tasks to 
shift attention that can be observed with outcome framing 
and date framing. Hypothetical choice tasks typically ask 
participants, “Would you prefer $9 now or $18 in 14 days?” 
The explicit-zero framing asks participants, “Would you 
prefer $9 now and $0 in 14 days or $0 now and $18 in 14 
days?” Radu et al. (2011) conducted a series of experiments 
comparing explicit and implicit $0 (i.e., a standard question 
format). They tested preferences of future outcomes in one 
group and satisfaction from past outcomes (e.g., “$9 an hour 
ago” or “$18 fourteen days ago”) in another group. They 
reported fewer impulsive choices with explicit zero for both 
the future and past outcome groups. They explained these 
results in terms of temporal attention, where myopic tempo-
ral horizons (for future and past outcomes) can at least par-
tially account for impulsive choice without needing to appeal 
to temptation. It is interesting to point out that the focus on 
temporal attention in Radu et al. (2011) as a causal mecha-
nism shares some parallels with animal research where FI-
Delay training improves the timing of FI delays and leads 
to more LL choices (Smith et al., 2015), which may expand 
the temporal horizons.

Another form of framing is explicit date framing where 
choice questions indicate the date when the outcome would 
be delivered (e.g., $15 on 7/22/22 instead of $15 in 7 days). 
Read et al. (2005) found that date framing increased LL 
choices. This may have occurred because date framing does 
not explicitly highlight the delay dimension and may pro-
mote attention to the amount dimension. Naudé et al. (2018) 
found that improvements in self-control from date discount-
ing were more likely to be observed with highly impulsive 
individuals. These results suggest that date framing shifts 
attention away from the delay dimension. If impulsivity is 
driven by delay aversion, then this attentional shift would 
disproportionally affect choices of impulsive individuals.

Attention is also implicated in studies designed to bias 
time perspectives. Future time perspective (FTP) measures 
the degree to which individuals think about the future and 
consider future consequences. Greater degrees of FTP are 
associated with greater self-control and healthful behaviors 
(Daugherty & Brase, 2010). Göllner et al. (2018) assessed 
the relationship between FTP in both impulsive choice and 
delayed gratification measures and found that LL choices 
and success in delaying gratification was correlated with 
a longer FTP time horizon. Thus, temporal attention is a 



367Learning & Behavior (2023) 51:355–391 

1 3

mechanism that may explain impulsive choice and subse-
quently why EFT is successful in promoting self-control.

More recent versions of reinforcer pathology theory 
include a temporal window or time horizon as the target 
for interventions (Bickel et al., 2020). An individual’s short 
time horizon may potentially be linked to poor time per-
ception, inattention to the future, and/or inability to make 
well-informed temporal choices. Short time horizons could 
be a possible cause of impulsive choice. If so, then training 
procedures designed to improve temporal horizons should 
improve self-control. As previously mentioned, EFT reduces 
impulsive choice and lowers reinforcer valuation in humans 
by having them vividly imagine future events (Peters & 
Büchel, 2010). The act of vividly imagining the future is cor-
related with activity in the anterior cingulate cortex (ACC, 
related to attention; Davis et al., 2000) and hippocampus 
(processes temporal information relating to episodic memo-
ries, Umbach et al., 2020). Attention is implicated in EFT in 
two main ways. First, it increases self-control when imple-
mented during a choice trial, when attention would most 
likely influence decision-making. Second, focusing attention 
on episodic recent events can increase impulsive choices 
(Rung & Madden, 2019), demonstrating that the mechanism 
of attention on choice can work in both directions. Rein-
forcer pathology links high impulsive choice, high reinforcer 
valuation, and short time horizons as key aspects predictive 
of maladaptive behavior. The ability of EFT to increase time 
horizons and reduce impulsive choice and reinforcer valua-
tion suggests that temporal attention is target mechanism for 
positive behavioral change.

Working memory Working memory is the ability to main-
tain goal-relevant information despite interference from 
competing or irrelevant information. Shamosh et al. (2008) 
reported that working memory is negatively correlated with 
impulsive choice and intelligence (replicated in Bobova 
et al., 2009), and is partly explained by activity in the ante-
rior prefrontal cortex (functionally associated with prospec-
tive planning; Ramnani & Owen, 2004). This correlation 
implies that working memory may be another target mecha-
nism mediating impulsive choice.

To test this hypothesis, Bickel et al. (2011) gave stimu-
lant users working memory training using digit-span and 
word recall tasks and reported improved self-control. 
Jimura et al. (2018) measured fMRI with participants mak-
ing impulsive choices and completing a working memory 
exercise. They reported that the anterior prefrontal cor-
tex and the dorsolateral prefrontal cortex activation was 
correlated with difficult working memory trials (i.e., high 
cognitive loads) and difficult impulsive choice trials (i.e., 
where both options have similar subjective values)—when 
the self-controlled option was chosen. This suggests that 

the neurobiological networks associated with challenging 
cognitive tasks also participate in difficult choices. Snider 
et al. (2018) used working memory training in addition 
to EFT to increase self-control in individuals with alco-
hol use disorder coupled with high baseline impulsive 
choices. Working memory training coupled with EFT 
improved self-control. Individuals showed improvements 
in a working memory transfer task that was procedurally 
distinct from the training task to confirm that the training 
improved working memory in general. Working memory 
training may support EFT by improving the generation 
of the vividly imagined stimuli that improve self-control. 
Overall, working memory training has had some promising 
results in individuals high in impulsivity, but some work-
ing memory training studies have failed to improve self-
control (Hendershot et al., 2018; Wanmaker et al., 2018). 
Future research is needed to help better understand the 
mechanisms that working-memory training targets when 
improving self-control.

In preclinical models, working memory has also been 
assessed in rodents as a possible process underlying impul-
sive choice. Renda et al. (2014) found that rats with better 
working memory accuracy, assessed using a delayed match-
to-position task, made more LL choices. However, training 
working memory using the same procedure did not increase 
LL choices in impulsive rats (Renda et al., 2015). It is pos-
sible that alternative working memory training procedures 
may produce effects on self-control, but this remains to be 
tested. Overall, in both rats and humans, there is evidence 
indicating a relationship between working memory and self-
control, but more research is needed to determine whether 
working memory training can reliably improve self-control.

Perception, discrimination, and timing Impulsive decision-
making involves the discrimination between the LL and SS 
contingencies. Perceptual processes are involved in translat-
ing the objective stimulus properties (delays and reinforcer 
amounts) into subjective representations. Meck and Church 
(1983) demonstrated that amount discrimination (i.e., count-
ing) and time discrimination (i.e., waiting) both displayed 
a psychophysical function where the point of subjective 
equivalence (judged to be the midpoint between two stimu-
lus values) was located at the geometric mean. This is con-
sistent with the psychophysical principles of perception that 
are explained by Weber’s law. As already discussed, self-
control is correlated with accurate discrimination between 
reinforcer amounts (Marshall & Kirkpatrick, 2016), accurate 
discrimination between delays (Baumann & Odum, 2012; 
McClure et al., 2014), and accurate expectation of delayed 
reinforcer delivery (Marshall et al., 2014). Collectively, this 
demonstrates that variance in self-controlled choices can be 
explained by variance in an accurate representation of the 
choice options.
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Distorted timing processes, in particular, have received 
considerable attention in explaining impulsive choice (Bailey 
et al., 2018; Baumann & Odum, 2012; Berlin et al., 2004; Kim 
& Zauberman, 2009; Marshall et al., 2014; McGuire & Kable, 
2012, 2013; Noreika et al., 2013; Reynolds & Schiffbauer, 
2004; Rubia et al., 2009; Smith et al., 2015; Wittmann & Pau-
lus, 2008; Zauberman et al., 2009). Additionally, impulsive 
choice and timing dysfunctions are associated with substance 
use disorders with distorted timing being proposed as a mecha-
nistic link mediating the relationship between self-control and 
substance use (Paasche et al., 2019). Timing distortions may 
affect impulsive choice via overestimations of delays, thus 
making the LL option less attractive, or imprecisely estimat-
ing delays may lead to uncertainty in temporal anticipation 
and difficulty predicting events in time. Baumann and Odum 
(2012) demonstrated that human impulsive choice was associ-
ated with overestimation of delays, and McGuire and Kable 
(2012, 2013) reported that individuals overestimating delays 
also were less likely to wait for delayed reinforcers. Temporal 
imprecision has also been associated with impulsive choice 
in rats (Marshall et al., 2014; McClure et al., 2014; Peterson 
& Kirkpatrick, 2016; Smith et al., 2015). To summarize, self-
controlled choices are associated with accurate psychophysi-
cal representations of choice amounts and delays. Accurate 
perception of delays might be particularly important driving 
self-control.

Much of the research reviewed in this section included 
both human and animals and shows overlapping mechanisms 
in learning, motivational, and cognitive effects related to 
impulsive choice. Species differences are sometimes obvi-
ous—for example, rats and pigeons cannot read a series 
of questionnaire items and indicate their preference to a 
hypothetical offer, nor can they be tasked to vividly imag-
ine a future outcome. Future comparative research needs to 
explore the ability of animal models to inform the mecha-
nisms of impulsive choice broadly, and the extent to which 
those mechanisms can be translated across species. There 
are numerous hypotheses and predictions that are made by 
each factor discussed above. The foundational theoretical 
models that have historically described delay discounting 
have often failed to account for these additional factors and 
the following section on models of impulsive decision-
making highlights this point. Researchers should consider 
how cognition, motivation, attention, and working memory 
intersect when investigating the mechanisms of impulsive 
decision-making.

Models of impulsive decision‑making

A wide range of mathematical formulations have been pro-
posed to explain behavior in impulsive choice tasks, but the 
breadth of models has not necessarily led to new insights 

into understanding the mechanism of impulsive choices. 
Here, we focus on the models that are most pertinent to 
the cognitive processes discussed in the previous section 
and point to strengths and weaknesses in the efficacy of the 
models in shedding light on interpreting empirical data. We 
present an analysis of 16 models that are grouped in four 
different families. All models presented have a fundamental 
focus on predicting subjective value of as a function of rein-
forcer amount and delay. Throughout this section, we differ-
entiate the models based on whether they are better suited 
to predict human and/or animal data. We do not include a 
discussion of models that are designed to predict decision 
heuristics in hypothetical choice situations only (Marzilli 
Ericson et al., 2015), nor do we include drift diffusion mod-
els that are designed to predict reaction time distributions 
and/or describe evidence accumulation in place of subjective 
value (Amasino et al., 2019; Peters & D’Esposito, 2020). 
Finally, the models here assume that choice behavior follows 
reinforcer value in a straightforward way. We do not include 
discussion of separate decision rules (e.g., softmax) that 
could affect choice behavior (e.g., Rodriguez et al., 2014). 
Following a discussion of individual models, we evaluate the 
models overall and then discuss their relation to the empiri-
cal results described in the previous section.

Foundational models

Exponential versus hyperbolic discounting The original dis-
counting equation, derived for economics applications, is the 
exponential (EXP; Samuelson, 1937; Table 1, Eq. 1), which 
assumes a constant rate of discounting over time. Because 
discounting is a constant rate, the EXP predicts rational 
decision-making so that preferences should not change over 
time. The sole free parameter is k, which is the discounting 
rate. This determines the rate at which the subjective value 
(VD) decays as a function of the delay (D) until future rein-
forcer receipt. The subjective value is also a function of the 

Table 1  Foundational discounting models including the exponential 
(EXP), hyperbolic (HYP), Rachlin hyperboloid (RACH), and Myer-
son–Green hyperboloid (MG)

VD = Discounted value as a function of actual delay; A = amount of 
reinforcer, D = delay to future reinforcer receipt

Eq # Model Equation Free Parameters

1 EXP VD = Ae−kD k = discounting rate
2 HYP VD =

A

1+kD
k = discounting rate

3 RACH VD =
A

1+kDs
k = discounting rate; s = sensitivity 

to delay
4 MG VD =

A

(1+kD)s
k = discounting rate; s = ratio of 

sensitivity to delay and sensitivity to 
amount
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reinforcer amount (A). The delay and amount entered in the 
model are the actual values rather than perceived values.

There are challenges to EXP discounting, with two promi-
nent objections. The first is that there are systematic devia-
tions in the fit of the EXP to data from impulsive choice 
tasks in humans and animals (e.g., Frederick et al., 2002; 
Laibson, 1997). The second, and perhaps more important 
objection, is that the EXP discounting function predicts that 
choices should be constant over time. For example, if an 
individual prefers $20 now (the SS) over $50 in 3 months 
(the LL), they should also prefer $20 in 1 week over $50 in 3 
months and 1 week. Instead, preference reversals may occur 
in which individuals may prefer the LL in the latter example. 
Preference reversals have been observed in both humans and 
animals (e.g., Frederick et al., 2002; Green & Estle, 2003). 
Thus, adding a constant amount of time (1 week in this 
case) can change preferences, which should not occur under 
EXP discounting. Preference reversals are thought to occur 
because discounting rates are higher for shorter delays than 
longer delays (Thaler, 1981). Another problem discussed 
below is that EXP discounting assumes that individuals have 
perfect knowledge of the amounts and delays. Although this 
may be a feasible assumption in hypothetical discounting 
tasks (at least in healthy adults), experiential delay and 
amount tasks could potentially be associated with errors in 
judging delays and/or amounts. This is a particular issue 
when judging real delays, as the timing system naturally 
includes imprecision and inaccuracy in estimates, and timing 
errors increase as the estimated intervals increase (Gibbon, 
1977). Timing errors may result in time contraction—the 
observation that longer delays are often underestimated and 
shorter delays are often overestimated.

A widely accepted alternative to the EXP function is 
the hyperbolic discounting equation (HYP; Mazur, 1987; 
Table 1, Eq. 2), which has the same parameters holding the 
same meaning as in the EXP function. The HYP equation 
typically provides a better fit to impulsive choice functions 
and correctly predicts preference reversals (Frederick et al., 
2002). Note that the HYP equation predicts that decision-
making may be irrational so that preferences can shift over 
time, depending on the discounting rate. However, like the 
EXP model, the HYP model also assumes perfect knowl-
edge of amounts and delays. In addition, the hyperbolic fits 
to individual subjects can have systematic deviations from 
the data, suggesting the need for alternative models. Spe-
cifically, both the HYP and EXP tend to overestimate value 
at shorter delays and underestimate value at longer delays 
relative to data (McKerchar et al., 2009).

Hyperboloid models Similar to individual differences in 
the rate of discounting, not all individuals share the same 
sensitivity to delays. There are two primary models that 

incorporate delay sensitivity parameters into the HYP equa-
tion, with an attempt to improve fits to data and/or add mean-
ingful parameters to account for amount and/or delay per-
ceptual effects on subjective value. The Rachlin hyperboloid 
(RACH; Rachlin, 1989; Table 1, Eq. 3) adds a sensitivity to 
delay (s) parameter as an exponent on the actual delay within 
the HYP equation. In this model, the s parameter moder-
ates the effects of delay on subjective value, independent 
of any effect of amount of reward. The s parameter is theo-
retically meaningful because it reflects the observation that 
perceived time is a non-linear function of actual time, in this 
case a power function relationship (Stevens, 1957), which 
results in time contraction. To capture this effect, s must be 
between 0 and 1, if s = 1, then this model is equivalent to 
the hyperbolic.

Alternatively, Myerson and Green (MG; Myerson & 
Green, 1995; Table 1, Eq. 4) proposed a hyperboloid equa-
tion which includes an s parameter on the denominator of the 
HYP equation. The s parameter is the ratio of amount and 
delay sensitivities so that s can capture nonlinearities in the 
perception of delay and/or amount. As a result, the value of 
s could potentially be greater or less than 1 and be theoreti-
cally meaningful (but must be greater than or equal to 0). If 
s is less than 1, then the function is steeper at shorter delays 
but shallower at longer delays (reflecting time contraction). 
If s is greater than 1, this produces a steeper function than 
predicted by the base HYP function; observations of fits with 
s > 1 in applications of this model are relatively uncommon 
(Mitchell et al., 2015). Because delay and amount sensitivity 
are captured in the same parameter, the MG model does not 
provide specificity of parameter interpretation in comparison 
to the RACH hyperboloid. As with RACH, the MG model 
is equivalent to the HYP when s = 1.

Figure 1 compares the EXP, HYP, RACH, and MG mod-
els for a relatively shallow and steep set of discounted value 
curves. The parameters used to generate the curves in the 
figure are given in Table 2. Because the RACH and MG 
models are equivalent to HYP when s = 1, the functions in 
Fig. 1 show the predictions for the models when k is set to 
the same value as in the HYP model but with s = .5 (McK-
erchar et al., 2009). Note that the EXP function predicts that 
shorter delays lose value less quickly, but longer delays lose 
value more quickly in comparison to predictions of the HYP. 
The two models with the s parameter can further moderate 
the loss in value with delay by setting s less than 1. McK-
erchar et al. (2010) provides an excellent discussion of the 
interpretation of the s parameter in these models, for further 
reference.

Comparisons of the HYP against the RACH and MG 
hyperboloid models have yielded some insights—namely, 
that the models with an s parameter fit data from hypo-
thetical choice tasks in humans better than the base HYP 
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model (McKerchar et al., 2009; Mitchell et al., 2015; Peters 
et al., 2012), suggesting that sensitivity to delay may be an 
important contributor to subjective value computations. 
(Note that comparable assessments of model fits to animal 
data have not been conducted to our knowledge.) However, 

comparisons of the RACH and MG fits to data yielded mixed 
results. McKerchar et al. (2009) reported that both models 
fit data better than the HYP and that the s parameters were 
significantly less than 1 for most participants in both models. 
However, the hyperboloid models were indistinguishable in 
the fit to the data (see also Rachlin, 2006, for similar find-
ings). It is worth noting that the assessment of the model fits 
did not control for model complexity, which can produce 
overfitting, or better approximations of the data, at the cost 
of generalizability to new data sets (Babyak, 2004). Mitchell 
et al. (2015) indicated that the RACH and MG hyperboloids 
fit the data better than the HYP when controlling for model 
complexity. However, a comparison of the RACH and MG 
models yielded somewhat mixed results with the RACH 
model fitting the data better in some, but not all cases. 
Finally, Peters et al. (2012) found that the two hyperboloid 
models fit the individual participant’s data better than the 
HYP model, but were less sensitive at detecting group dif-
ferences; this was also noted by Mitchell et al. (2015). This 
is likely because k and s in both hyperboloid models can be 
strongly negatively correlated (Mitchell et al., 2015; Peters 
et al., 2012), so that the two parameters compete to explain 
the same variance (multicollinearity). This will reduce sensi-
tivity for both parameters to distinguish group differences. In 
addition, the s parameter values may not distinguish group-
level effects very well, regardless of multicollinearity, creat-
ing challenges for interpretation (Mitchell et al., 2015).

Despite their issues, the hyperboloid models are impor-
tant in their recognition of the nonlinear nature of the psy-
chophysical relationship between actual and perceived 
delays and amounts (McKerchar et al., 2010), which may 
take the form of a power function (Stevens, 1957). The 
RACH model can be directly interpreted in the framework 
of Stevens’s power law. The MG model is more compli-
cated where s is the ratio of sensitivities to amount and 
delay. Nevertheless, the MG model does still propose a 
psychophysical scaling of amount and delay.

Fig. 1  Top: Subjective value (VD) as function of delay to reward in 
seconds for relatively low discounting rate as predicted by the Expo-
nential (EXP), Hyperbolic (HYP), Rachlin hyperboloid (RACH), and 
Myerson-Green hyperboloid (MG) models. Bottom: VD as a func-
tion of delay for a relatively high discounting rate as predicted by the 
models

Table 2  Parameter values that were used to calculate the functions 
shown in Fig. 1 for the Exponential (EXP), Hyperbolic (HYP), Rach-
lin hyperboloid (RACH), and Myerson–Green hyperboloid (MG)

Separate parameters are shown for the shallow discounting curves in 
the top panel and the steep curves in the bottom panel of Fig. 1. See 
Table 1 for parameter definitions

Model Shallow Steep

EXP k = .06 k = .30
HYP k = .10 k = .80
RACH k = .10

s = .50
k = .80
s = .50

MG k = .10
s = .50

k = .80
s = .50
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Models derived from properties of the timing 
system

The dual parameter delay sensitivity models incorporate 
psychophysical principles with the s parameter added onto 
the base HYP model. Another approach has been to derive 
models directly from the known properties of the timing 
system. Although temporal discounting almost certainly 
necessitates timing processes, models of discounting and 
timing have been developed largely independently of one 
another. The models in this section aim to bridge the gap 
between timing processes and discounted value computa-
tions and yield interesting insights into potential mecha-
nisms of impulsive choice behavior.

One early attempt to explain hyperbolic discount-
ing within the timing system was by Gibbon (1977), who 
showed that hyperbolic discounting emerged directly from 
the scalar property of time perception. The scalar property is 
derived from Weber’s law and reflects the relative nature of 
time. This is seen in timing errors, where the standard devia-
tion in timing estimates increases linearly with the mean 
estimated delay. In addition, delay and amount judgments 
take a relative form in which the ability to discriminate two 
delays follows a ratio rule (discriminating 2 vs. 4 s is the 
same difficulty as 20 vs. 40 s). Cui (2011) later revisited this 
issue, proposing the scalar timing model (ST; Table 3, Eq. 5) 
to explain hyperbolic discounting. This model incorporates 
two parameters to reflect the Weber fractions for amount 
and delay, which measures the just-noticeable difference that 

participants can reliably detect. Unlike the MG hyperboloid, 
the ST model provides separate parameters for delay and 
amount sensitivity that are distinct (see Young, 2018, for 
further discussion of this issue). This can provide an advan-
tage of parsing specific cognitive mechanisms, as it appears 
that delay and amount processes exert different influences 
on human choice behavior in hypothetical tasks (Amasino 
et al., 2019). Interestingly, the ST model does not include a 
discounting rate parameter. Instead, hyperbolic discounting 
emerges directly from the psychophysical properties of delay 
and amount perception. This raises a key consideration as to 
whether predictions of impulsive choice require the inclu-
sion of a discounting parameter, or if discounting may be 
explained by other established cognitive and/or perceptual 
processes.

The other models in this family have taken the approach 
of integrating timing system functions into the EXP model 
coupled with nonlinear perception of delays. Note that 
there has been an extensive discussion of whether timing 
is linear or nonlinear in humans and animals and nonlin-
ear time perception has not always been supported (Crystal, 
2001; Gibbon & Church, 1981; Wearden & Jones, 2007; Yi, 
2009). The timing system approach is related to the RACH 
hyperboloid in that it assumes discounting (in this case an 
exponential function) coupled with nonlinear delay percep-
tion. The contrast sensitivity model (CS; Ebert & Prelec, 
2007; Table 3, Eq. 6), which was implemented to fit data 
from human hypothetical choice tasks, separates the impa-
tience component of delay discounting (k) from the delay 

Table 3  Models derived from properties of the timing system including the scalar timing (ST), constant sensitivity (CS), logarithmic timing 
(LOG), Modified Generalized Hyperbolic (MGH), Kim–Zauberman (KZ), and Training-Integrated Maximized Estimate of Reward (TIMERR)

VD = Discounted value as a function of actual delay; A = amount of reinforcer, D = delay to future reinforcer receipt; Vd = Discounted value as 
a function of perceived delay; d = perceived delay; Vd′ = discounted value as a function of the neural representation of delay; aest = estimate of 
past reinforcement rate; d′ = neural representation of delay

Eq # Model Equation Free Parameters

5 ST VD = (1 − a)ln(D)∕ln(1+b) a = Weber fraction for amount
b = Weber fraction for delay

6 CS VD = Ae−kD
s k = discounting rate

s = sensitivity to delay
7 LOG VD = Ae−k�ln(1+�D) α = scale of logarithmic function

β = base of logarithmic function
k = discounting rate

8 MGH VD = A(1 + hDs)
−k

h
k = discounting rate
h = deviation from exponential discounting
s = sensitivity to delay

9 KZ Vd = Ae−kd

d = �Ds

k = discounting rate
d = perceived delay
α = timing accuracy
s = sensitivity to delay

10 TIMERR Vd� = A −
(

A

Time
+ aest

)

d�
  

d� =
D

1+
D

Time

  
aest =

∑

(A)

Time

Time = past integration interval



372 Learning & Behavior (2023) 51:355–391

1 3

sensitivity component (s) like the hyperboloid models. Here, 
s is the exponent of a power function relating perceived and 
actual time, as in the RACH model. Thus, when s = 1 (lin-
ear timing), exponential discounting is observed and when 
s is significantly less than 1, discounting is approximately 
hyperbolic. This model was shown in one study to provide a 
superior fit to data from a hypothetical choice task in humans 
compared with the HYP, EXP, RACH, and MG models 
(Peters et al., 2012), suggesting that exponential discount-
ing coupled with nonlinear (power function) time perception 
may be a better modeling approach.

In addition, the CS model is supported by the observa-
tion of sub-additive discounting in hypothetical choice tasks 
(Read, 2001). This phenomenon occurs when a time inter-
val is divided into subintervals. Because the subintervals 
tend to be overestimated (due to their shorter delay) relative 
to the full interval, the subjective value of the subintervals 
decreases. This leads to the observation that the total subjec-
tive value over the subintervals is lower than the subjective 
value when the interval is judged as a whole. Subadditive 
discounting is explained by the power function relationship 
between perceived and actual delay. When coupled with 
EXP discounting, the effects of subadditive discounting 
on perceived delay translate into alternations in subjective 
value. Note that the HYP function does not explain subad-
ditive discounting—instead the HYP is additive over any 
subdivision of delays (Read, 2001), so the prediction of 
subadditive discounting is an advantage of the CS model. 
Although the CS model has some promising features, further 
comparisons across a broader range of data sets and empiri-
cal phenomena (including application to human experiential 
and animal choice tasks) are needed before drawing strong 
conclusions.

Alternatively, Takahashi (2005) developed logarithmic 
timing model (LOG; Table 3, Eq. 7) that couples an expo-
nential discounting model with logarithmic timing of delays 
instead of a power function. The LOG model was based 
on the observation that logarithmic timing, derived from 
Weber’s law produced a hyperbolic function. A logarith-
mic timing function is predicted by Weber’s law and is the 
preferred framework for interpreting timing data in humans 
and animals (Gibbon, 1977), as opposed to the power func-
tion predicted by Stevens’s law (S. S. Stevens, 1957). In 
addition, Takahashi et al. (2008) compared the HYP, LOG, 
and CS models in their fit to hypothetical choice data in 
humans and found that the LOG outperformed the CS, fol-
lowed by the HYP. Thus, both the observation that temporal 
psychophysics tends to follow logarithmic timing (although 
not always—see above) coupled with better performance of 
the LOG model argues in favor of a logarithmic nonlinear 
representation of time coupled with EXP discounting.

Interestingly, the LOG model is mathematically equiv-
alent to the MG hyperboloid (Takahashi, 2005). In the 

transformation, the β parameter from the LOG model serves 
in place of the discounting rate (k) in the MG hyperboloid 
and the α and k parameters in the LOG model combine mul-
tiplicatively to serve in the place of the s parameter. The 
observation that the same mathematical function can be pro-
duced by adding an exponent (ratio of two power functions 
for delay and amount sensitivity) to a HYP or by adding 
logarithmic time perception to an EXP cuts to the heart of 
the core debate about whether choices are rational (EXP) 
or irrational (HYP). If choices are rational but perception 
is flawed, that is a different systemic conclusion than if 
choices are irrational (and perception may also possibly be 
flawed; see Nakahara & Kaveri, 2010, for further discussion 
of this issue). For example, this could lead to very different 
approaches for treatment of impulsive choice as the LOG 
models suggests targeting faulty perception and the MG sug-
gests targeting impatience. The two models’ predictions of 
choice behavior are identical.

A few studies have attempted to address this issue by 
measuring perceived time (which may be logarithmically 
related to actual time) and then entering those measurements 
into an EXP function to predict choice behavior in hypotheti-
cal tasks (Agostino et al., 2021; Zauberman et al., 2009). 
These studies have supported the idea that accounting for 
time perception leads to exponential rather than hyperbolic 
discounting in human participants. Chen and Zhao (2021) 
examined this issue by studying time perception (in a pro-
duction task) and impulsive choice (in hypothetical tasks) 
under cognitive load and found that time perception was a 
causal mediator of impulsive choice. This suggests a possi-
ble causal relationship between time perception and impul-
sive choice. However, these conclusions are based on results 
from only a small number of studies and have only been 
applied to hypothetical choice tasks in humans. These results 
need to be verified by future research in nonhuman animals 
and using experiential choice tasks in humans. In addition, 
not all individuals conform to exponential discounting when 
accounting for their timing perception.

As an extension to the LOG model, Agostino et al. (2021) 
proposed a modification of the generalized hyperbolic equa-
tion suggested earlier by Loewenstein and Prelec (1992) 
with an added parameter (s) to represent the exponent of 
the power function relating perceived and actual delays. The 
modified generalized hyperbolic (MGH; Table 3, Eq. 8) is 
an EXP discounting model with a free parameter (h) that 
represents the magnitude of deviation from exponential dis-
counting so that as h approaches 0, the function yields EXP 
discounting and when h = k, HYP discounting is observed. 
Agostino et  al. (2021) measured participants perceived 
delays and used the measurements to calculate sensitivity 
to delay (s). When they subsequently calculated subjec-
tive value for participants’ hypothetical choice behavior 
(using observed s values), they found that exponents were 
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significantly less than 1, indicating time contraction. In addi-
tion, most (but not all) participants had h parameters near 
0, consistent with EXP discounting. Thus, when accounting 
for time perception, discounting appears to be more expo-
nential (rational) than hyperbolic, but with some individual 
differences. A nice feature of this model is that the discount-
ing rate (k), deviation from constant discounting (h), and 
delay sensitivity (s) are separate parameters, thus present-
ing opportunities for modeling specific mechanisms. Future 
applications should confirm whether these parameters are 
truly independent when modeling individual differences 
(i.e., absence of multicollinearity).

Figure 2 compares the HYP, ST, CS, LOG, and MGH 
predictions for a relatively shallow and relatively steep dis-
counting rate. Because the models in this set are independ-
ent from the HYP, we calculated the set of parameters for 
each model that best fit the HYP function using the Solver 
Tool in Microsoft Excel 2016. The HYP was used as the 
comparison model here (and in subsequent model assess-
ments) because it is the dominant foundational model of 
impulsive choice behavior. The resulting parameters are 
given in Table 4. Although the ST model achieved a general 
HYP form, this model deviated from the HYP at the shal-
lower discounting rate. This could potentially represent a 
weakness of the model when fitting discounting functions 
that have a shallower slope, an issue that should be assessed 
in future research. At the steeper discounting rate, the ST 
model closely approximated the HYP. For the ST model, the 
Weber fraction for amount (a) was significantly lower than 
the Weber fraction for time (b) in both curve fits. Thus, the 
ST model predictions for these two curve fits were associ-
ated with Weber fractions with delays that were less dis-
criminable than Weber fractions for amounts. This suggests 
that errors in time perception may serve as a stronger predic-
tor of impulsive choices than errors in amount perception. 
We are not aware of any formal comparisons assessing this 
issue, so this could be a fruitful avenue for future research.

Applying Solver for the MGH fits for both curves with 
no constraints converged on an h = 0, which resulted in an 
error. Because forcing h = k would result in a fit identical to 
the hyperbolic [h = k = .10 (or .80) and s = 1], we next fit 
the data setting h to .000001 (an EXP shape) and the model 
was fit by allowing k and s to vary. When h was set to an 
EXP shape, the CS and MGH k and s parameters were the 
same. This is expected given that the MGH is the same as 
the CS model when setting h to an EXP shape. Thus, the 
model fits were not especially illuminating in this example, 
but we include them for illustration purposes. Because the 
MGH model allows for other forms of discounting functions, 
thus leading to additional model flexibility, it may be use-
ful when fitting individual participant functions. Whether 
such flexibility is necessary to account for data needs further 
testing.

The LOG model provided an excellent fit to the HYP 
function (Fig. 2) for both steep and shallow curves. The α, 
β, k values were clustered with lower α but higher k and 
β values associated with the steeper discounting function. 

Fig. 2  Top: Subjective value (VD) as function of delay to reward in 
seconds for relatively low discounting rate as predicted by the Hyper-
bolic (HYP), Scalar Timing (ST), Constant Sensitivity (CS), Loga-
rithmic Timing (LOG), and Modified General Hyperbolic (MGH) 
models. Bottom: VD as a function of delay for a relatively high dis-
counting rate as predicted by the models
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Note that the β values in the LOG model converged on the 
same value as in the HYP (.10 and .80, respectively); as 
a reminder, β in the LOG model is equivalent to k in MG 
hyperboloid. The main advantage that the LOG model may 
have (in addition to its links with psychophysical proper-
ties of time perception) is that the α and k parameters may 
represent different psychological constructs. However, 
whether they add unique prediction capability remains to 
be confirmed.

Kim and Zauberman (2009) proposed an EXP model 
incorporating a power function relating perceived and actual 
delays (KZ model; Table 3, Eq. 9) like the CS model. They 
applied the model to fit hypothetical impulsive choices in 
humans. One advantage of the KZ model over the LOG 
model is the inclusion of separate equation for computing 
perceived delay (d) that has the potential to link psycho-
logically meaningful parameters from the model to different 
facets of time perception. The α parameter represents timing 
accuracy with values greater than 1 indicating overestima-
tion, equal to 1 indicating accurate estimation, and less than 
1 indicating underestimation. In addition, the model has a 
sensitivity to delay parameter, s, which reflects the degree 
of nonlinearity in timing (or degree of time contraction, as 
in previous models) and must be between 0 and 1 to achieve 
HYP discounting. Given the previous discussion of linear 
versus nonlinear timing, building flexibility for different rep-
resentations of time may be an advantage of this model. Note 
that when α and s are equal to 1 then the discounted value 
follows an EXP function. Thus, the discounting function is 

a simple EXP but with perceived delay in place of actual 
delay. As noted previously, when timing error is accounted 
for empirically then HYP discounting is observed within 
an EXP function (Agostino et al., 2021; Zauberman et al., 
2009). This is because participants tend to overestimate 
short and underestimate long delays. When perceived times 
are used to calculate value, then the value of short delays 
decrease and long delays increase, relative to the base EXP 
function, thus producing a HYP function.

Figure 3 shows the subjective value from the KZ model 
as a function of perceived time (Vd; top panel) and the per-
ceived time used to calculate subjective value (d; bottom 
panel) as a function of actual delay for the steep and shal-
low discounting parameters in comparison to the HYP. The 
best-fitting parameters to the HYP were determined and 
are reported in Table 4. This model predicts that perceived 
delay should directly affect discounting, consistent with pre-
vious literature. Note that the fitted parameters to both HYP 
discounting functions indicated modest overestimation of 
delays (α > 1) but this was coupled with large nonlinearities 
in time so that longer delays were substantially underesti-
mated; k-values also were higher for the steeper function. 
The correlation between β and k values should be assessed 
when fitting individual discounting functions in future work. 
The predicted level of time contraction is more extreme than 
what is likely to be observed in data. For example, the pre-
dicted perceived delay for 30 s in both steep and shallow 
functions, is severely underestimated even in the shallow 
function. In addition, it seems unlikely that time contrac-
tion (underestimation of longer delays) would co-occur with 
overestimation of delays. These issues may present weak-
nesses for the model in application to data.

Another weakness of all the preceding timing models is 
that they do not include any parameters to model specific 
substituents of the timing system that are common elements 
in timing models (e.g., clock, attention, memory, decision). 
Taking a more process-driven approach, the biological clock 
model (BIO; Ray & Bossaerts, 2011) proposes that hyper-
bolic discounting emerges from a biological clock that has 
a variable clock speed with the variation in clock speeds 
that are positively correlated over time (e.g., the most recent 
clock speed is similar to the current clock speed). The BIO 
model proposes EXP discounting coupled with a stochas-
tic biological clock. The BIO model is interesting in that 
it connects naturally with the noisy nature of neural tim-
ing systems that has been proposed to account for timing 
phenomena in humans and animals (Oprisan & Buhusi, 
2013, 2014). In addition, clock speeds can be context and 
stimulus dependent in humans and animals, thus provid-
ing an opportunity to account for state versus trait effects 
on timing (Wearden, 2007; Wearden et al., 1998, 1999; 
Wearden & Penton-Voak, 1995) that could be extended to 
account for effects on discounted value computations. The 

Table 4  Parameter values use to calculate the functions shown in 
Figs.  2, 3 and 4 for the hyperbolic (HYP), scalar timing (ST), con-
stant sensitivity (CS), logarithmic timing (LOG), modified general 
hyperbolic (MGH), Kim–Zauberman (KZ), and training-integrated 
maximized estimate of reward rate (TIMERR) models

Separate parameters are given for the shallow and steep discounting 
curves in the figures. See Table 3 for parameter definitions

Model Shallow Steep

HYP k = .10 k = .80
ST a = .07

b = .23
a = .36
b = .60

CS k = .16
s = .65

k = .83
s = .41

LOG α = 1.49
β = .10
k = .67

α = 1.06
β = .80
k = .95

MGH h = .00
k = .16
s = .65

h = .00
k = .83
s = .41

KZ α = 1.21
β = .65
k = .13

α = 1.30
β = .41
k = .65

TIMERR Time = 13.33 Time = 1.41
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simulations reported by Ray and Bossaerts (2011) yielded 
an important insight—as the clock in the BIO model became 
noisier and clock speeds were more highly correlated over 
time, discounting functions were increasingly hyperbolic, 
even though the discounting equation is an EXP func-
tion. This suggests that neural noise in the timing system 
could be a key component that differentiates HYP and EXP 

discounting. In addition, the correlation of clock speeds over 
time suggests that one should see individual differences in 
timing that correlate with individual differences in impulsive 
choice, which has been reported in both humans and animals 
(Baumann & Odum, 2012; Brocas et al., 2018; Darcheville 
et al., 1992; Marshall et al., 2014; McClure et al., 2014; 
Moreira et al., 2016; Navarick, 1998; Paasche et al., 2019; 
Smith et al., 2015; Stam et al., 2020; van den Broek et al., 
1992; Wittmann & Paulus, 2008). In addition, it has been 
suggested that individuals who are impulsive may also have 
a faster clock (Barratt, 1983), although this has not been 
directly assessed to our knowledge. Finally, although tim-
ing and impulsive choice are often correlated, this is not 
always the case, particularly in studies that have examined 
delay effects on impulsive choice and timing reported in the 
previous section. In addition, some reports have observed 
correlations between timing accuracy and impulsive choice 
and/or timing precision and impulsive choice. So, the pic-
ture in terms of the timing-choice relationship is not entirely 
clear. Further research is needed to pinpoint specific timing 
and choice mechanisms that may drive this relationship. As 
a final note, the BIO model was developed for simulation 
rather than explicit solution, so we do not include any equa-
tions here, but the model can be implemented to converge on 
a highly similar solution to the MGH model if clock speeds 
increase systematically with delays farther in the future, thus 
yielding time compression.

The BIO model suggests that incorporating timing 
processes into discounted value equations can produce 
high-quality fits to data that can model specific cognitive 
mechanisms stemming from the timing system. Taking this 
a step further, the training-integrated maximized estimate 
of reward rate model (TIMERR; Namboodiri et al., 2014; 
Table 3, Eq. 10) incorporates timing processes with rein-
forcer maximization processes (see next section for further 
details). TIMERR is based on the fundamental assumption 
that animals (and humans) estimate the rate of past reinforc-
ers earned (aest) over a finite window of time (Time) based on 
past experiences with delays to reinforcement (integration 
window). The TIMERR model does not include a discount-
ing rate parameter; instead, the steepness of the discounting 
function is governed by the reciprocal of the Time over which 
reinforcement rates are computed. As with the two previous 
models, TIMERR assumes that subjective value is a function 
of the neural representation of delay, d′. This representa-
tion is affected by the duration of the integration window, 
Time, leading to the prediction that individuals who are more 
impulsive should also show impaired time perception (Bau-
mann & Odum, 2012; Brocas et al., 2018; Darcheville et al., 
1992; Marshall et al., 2014; McClure et al., 2014; Moreira 
et al., 2016; Navarick, 1998; Paasche et al., 2019; Smith 
et al., 2015; Stam et al., 2020; van den Broek et al., 1992; 
Wittmann & Paulus, 2008). Specifically, TIMERR predicts 

Fig. 3  Top: Subjective value as function of actual delay to reward 
 (VD) or perceived delay to reward  (Vd) in seconds for relatively low 
(1) and high (2) discounting rates as predicted by the hyperbolic 
(HYP) and Kim-Zauberman (KZ) models. Bottom: Perceived delay 
(d) as a function of actual delay for the KZ models associated with 
relatively low (1) and high (2) discounting rates
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that impulsive individuals should overestimate delays and 
show inconsistent timing of delays (i.e., poor timing preci-
sion), consistent with empirical studies. The TIMERR model 
predicts 19 independent phenomena relating to impulsive 
choice and time perception observed in humans and ani-
mals including foundational phenomena such as the hyper-
bolic nature of discounting and the scalar property of time 
perception (Namboodiri et al., 2014). TIMERR also posits 
that the Weber fractions for delay and amount perception 
should predict discounted value (Namboodiri et al., 2014), 
thus bringing this model into line with the ST model. In 
addition, TIMERR proposes that the Weber fractions should 
depend on reinforcement history, an interesting prediction 
that deserves further testing.

Figure 4 (top panel) shows the fit of the TIMERR model 
to the HYP with an estimated reinforcement rate (aest) set 
to 0.01 and Time allowed to vary as a free parameter against 
the HYP with the steep and shallow discounting rates (see 
Table 4 for parameter values). TIMERR closely approxi-
mates the HYP function, although it predicts a steeper 
decline in value compared with the HYP at the shallower 
discounting rate. TIMERR achieves steeper discounting by 
decreasing the length of the integration interval. Because 
this model integrates reinforcement computations over time, 
it can incorporate learning of delays and amounts of rein-
forcers. An interesting prediction of this model is that more 
impulsive individuals (have a shorter Time window) should 
learn to adjust their behavior more quickly when the delay or 
amount change, a proposition that deserves further testing. 
Impulsive individuals should also show more volatile choice 
and timing behavior when confronted with an environment 
that contains variable amounts and/or delays. The bottom 
panel of Fig. 4 shows the predicted neural representation of 
delay as a function of actual delay. The d' value would need 
to be translated to perceived delay for predicting behavioral 
outputs. The Time parameter produces a large effect on repre-
sented delay, thus leading to a predicted correlation between 
timing and choice behaviors like the KZ model. Where d′ is 
a neural representation, it is unclear whether the quantita-
tive prediction of perceived delay by this model would be 
accurate. The predicted d′ for a 30-s delay in Fig. 4 (bottom) 
is approximately 9 times longer for the shallower function, 
which may be unrealistic. This deserves further attention in 
future applications of the model.

Overall, the models discussed in this section provide 
alternative frameworks for conceptualizing impulsive choice 
and subjective reward valuation. The CS, LOG, MGH, and 
KZ models assume EXP discounting with nonlinear timing, 
although the MGH model does allow for the possibility of 
HYP discounting with nonlinear timing (with the h param-
eter). These models were developed to fit data from human 
hypothetical choice tasks and have not been assessed in their 
application to human experiential or animal choice data. The 

ST, BIO, and TIMERR models propose alternatives to dis-
counting. In the ST model, discounting emerges from the 
Weber fractions for time and amount. In the BIO model, 
discounting emerges from a stochastic clock coupled with an 
autocorrelation in clock speeds. Finally, the TIMERR model 

Fig. 4  Top: Subjective value as function of actual delay to reward 
 (VD) or neural representation of the delay to reward  (Vd) in seconds 
for relatively low (1) and high (2) discounting rates as predicted by 
the hyperbolic (HYP) and Training-Integrated Maximized Estimate 
of Reward Rate (TIMERR) models. Bottom: Neural representation of 
delay (d′) as a function of actual delay for the TIMERR models asso-
ciated with relatively low (1) and high (2) discounting rates
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assumes that subjective value is a direct function of the Time 
window for integrating estimated reinforcement rates, which 
also governs the neural representation of delays. These mod-
els were developed based on similar principles observed in 
humans and animals. Although the models have different 
conceptualizations of the underlying mechanisms of impul-
sive choices, all adequately fit the HYP function in the above 
simulations. This creates a major challenge for differentiat-
ing models and indicates a strong need for more sensitive 
and comprehensive methodologies to test these models. 
Rigorous testing of the models in their fit to data from dif-
ferent species and choice tasks, assessment of the ability of 
parameters to differentiate groups while adequately fitting 
individuals, evaluation of the unique link to psychologically 
meaningful variables, and assessment of multicollinearity of 
parameters is much needed.

Reinforcement maximization and reinforcer 
valuation models

An alternative set of models has been developed to explain 
reinforcement maximization and reinforcer valuation pro-
cesses that have been linked with impulsive choice. The rein-
forcement maximization models have their origins in stud-
ies of foraging behaviors in nonhuman animals. Impulsive 
choice tasks can be conceptualized as a form of foraging task 
in which individuals decide between two patches with differ-
ing reinforcement rates (Amount/Delay). Optimal foraging 
theory (Stephens & Krebs, 1986), as applied to impulsive 
choice tasks, proposes that animals aim to maximize their 
future reinforcement rates over spans of time. In this formu-
lation, the reinforcement rate is computed over both the trial 
and ITI. In addition, the reinforcement rate computation has 
no free parameters—thus, amount and delays are assumed 
to be accurately perceived (as in EXP and HYP models). 
On the other hand, ecological rationality theory proposes 
that individuals seek to maximize reinforcement rates dur-
ing the trial time only (Bateson & Kacelnik, 1996). This 
model also assumes no free parameters. Both theories can 
generate hyperbolic functions, and there are mixed results 
regarding attention to post-reinforcer delays (or ITI), as dis-
cussed above.

More recently, the bounded rationality model (BR; Blan-
chard et al., 2013; Table 5, Eq. 11) was developed to rectify 
these two extremes and explain discrepancies in results. The 
BR model proposes that discounting is determined by the 
estimated post-reinforcer delay, thus allowing individuals 
to give varying weight to post-reinforcer delays in deter-
mining reinforcement maximization. The estimated post-
reinforcer delay (ω) produces a hyperbolic value function 
without a discounting parameter. A scale parameter (X) 
translates the model fit to subjective value; in the most 
straightforward application X can simply be set to equal ω 

for a direct translation of the estimated delay to subjective 
value. Figure 5 shows the model fit to the relatively shallow 
and steep HYP functions, with the associated parameters 
give in Table 6 (showing that the differences in discounting 
functions is driven by ω).

The TIMERR model is also applicable here. TIMERR 
bridges between the models derived from the timing system 

Table 5  Reinforcement maximization models and reinforcer valua-
tion models including the bounded rationality (BR) model, additive 
utility (UTIL) model, multiplicative (MULT) model, and reward sen-
sitivity (REW) model

VD = Discounted value as a function of actual delay; A = amount of 
reinforcer, D = delay to future reinforcer receipt

Eq # Model Equation Free Parameters

11 BR VD =
(

A

�+D

)

X

X = �

ω = estimated post-reinforcer 
delay

X = scale factor
12 UTIL VD = (A� − kDs)1∕� α = utility

k = discounting rate
s = sensitivity to delay

13 MULT VD =
1

1+
Q

A

1

1+kD
Q = discounting rate for amount
k = discounting rate for delay

14 REW VD =
Az

1+kD
z = reinforcer sensitivity
k = discounting rate

Fig. 5  Subjective value as a function of delay to reward  (VD) in sec-
onds for relatively low (1) and high (2) discounting rates as predicted 
by the Hyperbolic (HYP), Bounded Rationality (BR), and Addictive 
Utility (UTIL) models. Note that the functions for the BR model are 
jittered on the x-axis for presentation purposes
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and reinforcement maximization models due to its focus on 
estimated reinforcer rates over a moving time window. TIM-
ERR further assumes that animals only include amounts and 
delays associated with active trial time; thus, post-reinforcer 
delays are not included in the estimated average reinforce-
ment rate computation. This may be a weakness of the model 
as the emerging picture in the field is that individuals may 
underestimate ITI durations rather than ignoring them and 
that the ITI may be attended to under certain circumstances 
such as when the ITI is cued (Blanchard et al., 2013). These 
findings favor including the perceived post-reinforcer delay 
as a free parameter, as in the BR model.

To assess the generality of reward maximization and 
choice models, Carter and Redish (2016) developed highly 
comparable tasks for measuring impulsive choice and for-
aging decisions in rats. They fit optimal foraging theory, 
ecological rationality theory, HYP, EXP, BR, and TIMERR 
models to both tasks. They found that all six models fit the 
data from both tasks to a similar standard; however, they 
did not control for model complexity in assessing the fits. In 
addition, none of the models were able to fit the data from 
the two tasks using similar parameters. This is problematic 
given that the tasks were developed to be highly comparable 
and thus the models should fit the tasks in a comparable way. 
This suggests that the models are not sufficiently general to 
account for choice behavior in tasks with different structures, 
which may be a general challenge to all these models.

Although the previous models in this section focus on 
maximization of reinforcer amount, other models have 
instead focused on elements of reinforcer quality. The addi-
tive-utility (UTIL) model (UTIL; Killeen, 2009; Table 5, 
Eq. 13) proposes that discounting applies to utility rather 
than amount of reinforcement. Although the UTIL model 
was primarily developed to fit data sets from human hypo-
thetical impulsive choice tasks, the model was designed to 

fit data from nonhuman animals (and presumably human 
experiential choice tasks) as well. The UTIL model thus has 
a utility parameter (α) in addition to parameters for discount 
rate (k) and sensitivity to delay (s). Utility refers to the use-
fulness of a reinforcer and is not necessarily the same as the 
amount of a reinforcer. In general, the usefulness of money 
tends to relate directly to amount, but consumables may have 
an inverted U-shape function where larger amounts may 
be more valuable only to a point and then could decrease 
thereafter. For example, satiety effects could lead to very 
large amounts of food having lower value than moderate 
amounts of food. Generally, when α = 1, then discounting 
is linear and if α = 0 then the utility model is the same as 
the CS model (Ebert & Prelec, 2007). In addition, if s = 1 
then discounting is an EXP function and if s is small then 
discounting is a HYP function.

As seen in Fig.  5, the UTIL model provides a good 
approximation to the HYP function. The fitted parameters 
in Table 6 indicate that the steeper discounting function was 
associated with a higher k value and a lower sensitivity to 
delay (s); it is possible that this model could suffer from 
a similar issue to the hyperboloid models in that k and s 
may be multicollinear. This is an issue that should be exam-
ined when fitting the model to data sets. Note that the utility 
parameter did not differ appreciably between the relatively 
shallow and steep functions. This is expected because the 
reinforcer was the same in those conditions. The main ben-
efit of this model may lie in its potential to explain discount-
ing in impulsive choice tasks with consumable reinforcers 
that are experienced during the task or in cross-commodity 
assessments where qualitatively different reinforcers (e.g., 
cocaine and food) could be directly compared based on their 
utility.

Another model that is designed to capture reinforcer 
quality and incentive features in choice data from nonhu-
man animals is the multiplicative model (MULT; Ho et al., 
1999; Table 5, Eq. 13). This model derives its name from 
the fundamental idea that different task variables can have 
an associated discounting equation that combine multipli-
catively. For example, a task could include variations in 
delay, amount, and probability, each of which would have 
a separate discounting equation that would then multiply 
together to form an overall subjective value computation. 
The application of MULT to impulsive choice tasks includes 
a standard HYP equation for the delay component multiplied 
with a discounting equation for amount, which includes a 
separate discounting parameter/sensitivity (Q) for reinforcer 
amount. Although most impulsive choice tasks focus on pre-
senting the same type of reinforcers with different amounts, 
real-world decisions often involve outcomes that differ in 
quality. The incentive value parameter can operate like a 
utility parameter by accounting for the motivational value 
of the reinforcer.

Table 6  Parameter values used to calculate the functions shown 
in Figs. 5, 6 and 7 for the bounded rationality (BR), additive utility 
(UTIL), multiplicative (MULT), and reward sensitivity (REW) mod-
els in comparison to the hyperbolic (HYP)

Separate parameters are shown for the shallow discounting curves in 
the top panel and the steep curves. See Table 5 for parameter defini-
tions

Model Shallow Steep

HYP k = .10 k = .80
BR ω = 10.00 ω = 1.25
UTIL α = .37

k = .07
s = .54

α = .34
k = .31
s = .23

MULT k = .10
Q = .20

k = .80
Q = .20

REW k = .10
z = .80

k = .80
z = .80
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Figure 6 shows the effect of Q on the HYP function. Here, 
because the best fit of the model would converge on Q = 0 
(identical to the HYP equation), instead of fitting the model 
we simply demonstrate the impact of reducing reinforcer 
incentive and quality (see Table 6 for parameter values). In 
this example, the Q parameter reduces overall value (inter-
cept of the value function) without changing the slope, all 
other things being equal. Unlike previous models, which 
assume that the subjective value at a 0-s delay is equal to 
the amount of the award, this model can modulate value at 
a 0-s delay. In the example in Fig. 6, the value at 0 s is less 
than 1, which could be used to explain phenomena that affect 
incentive value of a reward, independent of delay.

An alternative model in this set is the reward sensi-
tivity model (REW; Locey & Dallery, 2009; Table 5, 
Eq. 14), which was developed to explain amount sensi-
tivity effects in animal impulsive choice data. This model 
adds an exponent onto the amount in the hyperbolic equa-
tion that represents amount sensitivity (z). Because the 
best fitting model to the HYP would converge on z = 1, 
instead of fitting the HYP model we show the impact of 
z on the value function in Fig. 7. The effect of setting z 
less than 1 is to alter the intercept of the value function 
without changing the slope, with larger effects associated 
with shallower rates. The impact of z is similar to the 
effect of Q in the MULT model. (Note that the z parame-
ter has alternatively been proposed to multiply onto A for 

an alternative formulation that also alters the intercept 
of the function; Reynolds et al., 2002). It is possible that 
these models may be difficult to distinguish in their fit 
to data because of their similar nature. One noteworthy 
issue with the REW model is that the z-parameter does 
not moderate reinforcer sensitivity if the amount is equal 
to 1, which is a frequently used smaller-sooner amount in 
animal choice tasks. For this reason, the curves in Fig. 7 
were generated for an amount of 2. The alternative for-
mulation with a z multiplying onto A would be another 
way to solve this problem.

Overall, the models in this section complement the 
previous models by emphasizing reinforcement pro-
cesses. The reinforcement maximization models (e.g., 
BR model) supply an alternative discounting-free 
modeling approach. The UTIL and MULT models are 
designed to incorporate aspects of reinforcer quality, 
motivational value, and/or usefulness of the reinforcer. 
Additionally, the MULT and REW model can account for 
individual differences in reinforcer sensitivity, aligning 
with psychophysical principles of amount perception. 
The MULT and REW models are focused on predict-
ing results from animal choice tasks whereas the UTIL 
model could potentially fit data from humans and ani-
mals. As with many of the previous models, the rein-
forcement maximization and reinforcer valuation models 
need to be rigorously tested to assess their comparative 
fits to data sets.

Fig. 6  Subjective value as a function of delay to reward  (VD) in sec-
onds for relatively low (1) and high (2) discounting rates as predicted 
by the Hyperbolic (HYP) and Multiplicative (MULT)

Fig. 7  Subjective value as a function of delay to reward  (VD) in sec-
onds for relatively low (1) and high (2) discounting rates as predicted 
by the Hyperbolic (HYP) and Reward Sensitivity (REW) models
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Present focused models

The final group of models under consideration includes 
a balance of dual processes relating to immediate versus 
delayed outcomes. Both theories in this section are related 
to the CNDS theory described earlier, but with the added 
opportunity to predict and understand data quantitatively.

The quasi-hyperbolic (QUASI; Laibson, 1997; Table 7, 
Eq. 15) was developed to explain behavior on delay grati-
fication tasks in humans and includes a bias parameter 
for immediate or present outcomes (k1) and a discounting 
parameter for delayed outcomes (k2). Note that when k1 = 1, 
then discounting follows a standard EXP model, whereas k1 
< 1 reflects a present-bias and k1 > 1 reflects a future bias. 
Present bias has been linked to “hot” cognition, or impulsive 
processes, whereas the devaluation of delayed outcomes is 
thought to present “cool” cognition emerging from executive 
processes related to self-control. Note that this theory has a 
discontinuity; if the delay is zero, then the value is set equal 
to the amount. Fundamentally, the QUASI model is an EXP 
curve with two discounting parameters. As with several pre-
vious theories, the QUASI model assumes perfect perception 
of amounts and delays.

Figure 8 shows the fit of the QUASI model to the shallow 
and steep HYP functions. The discontinuity in the function 
creates a deviation in the fit to the HYP at the shallower 
discounting rate (top panel). The parameter values for the 
QUASI fits are given in Table 8. The k2 values were similar 
for the two discounting curves, but the k1 value was much 
lower for the steeper discounting curve. Both functions were 
associated with significant present bias (k1 < 1). This indi-
cates that steeper discounting may emerge predominantly 
from present bias rather than from discounting of delayed 
reinforcers in this model, at least for these two examples.

To test whether time perception would add predictive 
value to the QUASI model, Brocas et al. (2018) measured 
performance on a time estimation task and a hypothetical 
impulsive choice task in humans. As with previous litera-
ture, they found that overestimation of delays greater than 
1 hr was associated with greater impulsive choices. They 

fit the QUASI function to the impulsive choice tasks using 
perceived time estimates versus actual time. Both models fit 
the data well, suggesting that the QUASI model with actual 
delays may be a reasonable approximation to data when 
perceived delays are not measured. This does not dismiss 
the importance of perceived time, but this factor may be 
less impactful in the QUASI model where two discounting 
parameters are available to account for more variance in the 
functions. Note that if the QUASI model were tested with 
k1 = 1 coupled with perceived delay, then this model would 
be the same as the KZ model.

A closely related theory, designed to predict hypotheti-
cal impulsive choices in humans, is the double-exponential 
(DBEXP; Van den Bos & McClure, 2013; Table 7, Eq. 16), 
which assumes separate discounting parameters for the 
impulsive valuation system (k1) and executive control sys-
tem (k2). The relative weight of the two systems (ω) is an 
additional free parameter. This model has the advantage 
of adding the balance of the two systems, but at the cost 
of an additional free parameter compared with the QUASI 
model. One advantage of the DBEXP is that it does not have 
a discontinuity in the function. As a result, the fits of the 
DBEXP to the HYP model were excellent (Fig. 8). As seen 
in Table 8, the DBEXP fit the steeper curve with a lower 
k2 value and a lower ω but a similar k1. Thus, the steeper 
hyperbolic curve was modeled by lowering both the weight 
assigned to the control system and the discount rate for the 
control system. This is an interesting contrast to the QUASI 
model where the main parameter change was in the present 
bias parameter.

The difference in the parameter settings of the two mod-
els in the group should be explored further with rigorous 
comparisons of the models to relevant data sets. Ideally, 
such modeling should be accompanied by additional cogni-
tive testing of impulsive and executive control systems to 
confirm which of the two systems is most likely different 
between steeper and shallower discounters. For example, the 
impulsive choice task could include tests with both rewards 
delayed versus testing with a 0-s SS to assess present bias 
(Mitchell & Wilson, 2012).

Table 7  Present-focused models that include dual processes for valuation of immediate versus delayed reinforcers including the quasi-hyperbolic 
(QUASI) and double exponential (DBEXP) model

VD = Discounted value as a function of actual delay; A = amount of reinforcer, D = delay to future reinforcer receipt

Eq # Model Equation Free Parameters

15 QUASI VD = A(k
1
kD
2
)

if D = 0, V = A
k1 = bias for immediate outcomes
k2 = discounting of delayed outcome

16 DBEXP VD = A[�kD
1
+ (1 − �)kD

2
] ω = relative involvement of valua-

tion and control systems
k1=discount rate for valuation 

system
k2 = discount rate for control system
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Model evaluation

The models across the four sets in this section can be catego-
rized in different ways. First, most models explicitly assume 

a discounting process including the EXP, HYP, RACH, 
MG, CS, LOG, MGH, KZ, UTIL, MULT, REW, QUASI, 
and DBEXP models. These models differ in whether the 
base model equation is an exponential (EXP, CS, LOG, 
KZ, UTIL, QUASI, and DBEXP models) or a hyperbolic 
(HYP, RACH, MG, MULT, and REW). The MGH model 
can take either an EXP or HYP form. Because the empirical 
literature is more consistent with a HYP function, the EXP 
functions produce hyperbolic shapes by assuming nonlin-
earities in delay sensitivity (RACH, MG, CS, LOG, MGH, 
KZ, UTIL) and/or amount sensitivity (MG, UTIL, MULT, 
REW). A final set of discounting-free models propose alter-
native mechanisms including Weber fractions for delay and 
amount (ST), a noisy biological clock (BIO), a moving time 
window for reinforcement rate computation (TIMERR), or 
variations in estimated post-reinforcement delay (BR). These 
models can achieve a hyperbolic or hyperbolic-like form. 
The fact that so many models can account for the same data 
is a serious challenge for the field that needs to be recti-
fied. One way forward would be to test the model assump-
tions regarding the underlying mechanisms that drive choice 
behavior using other cognitive and impulsive choice tasks. 
So far, only limited tests of this sort have been conducted. 
One example includes the assessments using time percep-
tion measurements embedded within exponential models to 
predict impulsive choices. However, these tests were only 
applied to predict behavior on human hypothetical choice 
tasks and have not yet been assessed in human experiential 
or animal choice tasks. The models are further discussed 
in the next section considering the learning, cognitive, and 
motivational factors from the previous section as a further 
way to delineate their potential efficacy.

Another key issue is that the models are not often directly 
compared in their fit to data, and when comparisons have 
been made, they have only involved a limited set of models 
(e.g., Carter & Redish, 2016; McKerchar et al., 2009; Mitch-
ell et al., 2015; Peters et al., 2012). Model fit indices often 
fail to account for differences in model complexity. Using 

Fig. 8  Top: Subjective value (VD) as function of delay to reward in 
seconds for relatively low discounting rate as predicted by the Hyper-
bolic (HYP), Quasi-Hyperbolic (QUASI) and Double Exponential 
(DBEXP) models. Bottom: VD as a function of delay for a relatively 
high discounting rate as predicted by the models

Table 8  Parameter values used to calculate the functions shown in 
Fig.  8 for the quasi-hyperbolic (QUASI) and double-exponential 
(DBEXP) in comparison to the hyperbolic (HYP)

Separate parameters are shown for the shallow discounting curves in the 
top panel and the steep curves. See Table 7 for parameter definitions

Model Shallow Steep

HYP k = .10 k = .80
QUASI k1 = .74

k2 = .96
k1 = .30
k2 = .92

DBEXP ω = .56
k1 = .97
k2 = .83

ω = .18
k1 = .95
k2 = .59
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an Akaike information criterion and/or Bayesian information 
criterion (Burnham & Anderson, 2004) can provide a better 
indication of model fit, as opposed to variance accounted for 
indices. This issue is especially pertinent when comparing 
models with different numbers of free parameters. Models 
can also be assessed using nonlinear multilevel modeling, a 
regression technique that fits data to individuals and groups 
within a single model (Young, 2018), as opposed to the more 
common approach of fitting individuals and assessing group-
level model parameters separately. Finally, multicollinearity 
of model parameters needs to be examined more thoroughly. 
This is an issue raised with the RACH and MG hyperboloid 
models that affected sensitivity of these models in predict-
ing group-level effects. Most models in this section have not 
been assessed for multicollinearity with multiple data sets, 
at least not to our knowledge.

Model assessment in relation to empirical findings

In addition to the practical issues with model assessments 
in the fit to data, models can be assessed in their predictions 
relating to specific mechanisms of choice behavior. With 
respect to the learning, motivational, and cognitive factors 
discussed previously, different models can predict specific 
outcomes.

The review of learning research on impulsive choice 
focused on training conditions that affect impulsive deci-
sion-making. The models above do not have parameters that 
account for training histories. The only model that could 
accommodate training effects is TIMERR, which has a 
moving integration window that can capture recent rein-
forcement history. This is an important future direction for 
researchers to explore as training history clearly does affect 
behavior on impulsive choice tasks. The understanding of 
learning processes is additionally valuable in highlighting 
what mechanisms are important.

For example, the research linking impulsive choice to tim-
ing abilities (Baumann & Odum, 2012; Brocas et al., 2018; 
Darcheville et al., 1992; Marshall et al., 2014; McClure 
et al., 2014; Moreira et al., 2016; Navarick, 1998; Paasche 
et al., 2019; Smith et al., 2015; Stam et al., 2020; van den 
Broek et al., 1992; Wittmann & Paulus, 2008) supports the 
need for models that recognize that psychological time may 
not scale the same as physical time. Similarly, research link-
ing impulsive choice to magnitude discrimination abilities 
(Marshall & Kirkpatrick, 2016) suggests that models should 
recognize that numerical discrimination is scaled by psy-
chophysical principles. Most of the above models included 
sensitivity to reinforcer delay and/or amount to account for 
these relationships.

The observation that impulsive choice appears to be 
affected by experience with concurrent or successive expo-
sures to contingencies (Grace & Hucks, 2013; Marshall & 

Kirkpatrick, 2016) might be explained by other processes 
such as attention (as we have defined it here). Models might 
account for broader contextual factors by modifying sub-
jective value computations based on the presence of stimu-
lus cues representing delay or magnitude learning history 
(e.g., conditioned reinforcement effects) and modifiers that 
account for control of such cues in a context. For exam-
ple, no model easily addresses token reinforcement effects 
in increasing self-control (Jackson & Hackenberg, 1996). 
However, the hyperbolic value added model (Mazur, 2001), 
which assumes that temporal discounting determines subjec-
tive value of delayed outcomes, is a step in this direction. 
This model was not featured in the modeling section because 
of its focus on conditioned reinforcement for concurrent 
chains data as opposed to impulsive choice data. Finally, an 
animal’s tendency to choose the LL when the SS outcome 
is delayed by adding a common delay (Calvert et al., 2011; 
Green et al., 2005; Rachlin & Green, 1972; Siegel & Rach-
lin, 1995) might simply be accounted for by the fact the 
subjective value of the SS option is discounted by its own 
delay to receipt.

Reinforcement maximization has received scant attention 
in impulsive choice models and only the BR model formally 
addresses ITI effects on impulsive choice. Bundling effects 
could be accounted for by models discussed above by allow-
ing the values of all the delayed reinforcers to be summated 
into one subjective value. For example, Stein and Madden 
(2021) adapted the HYP equation into an additive hyperbolic 
model and found that this accounted for bundling effects. In 
a similar way, the increase in self-control observed by allow-
ing the LL reinforcer to be postponed (rather than waited 
for) might be accounted for if the discounting of a previ-
ous LL outcome is allowed to summate with the subsequent 
LL outcome that is occurring concurrently (Addessi et al., 
2021). The TIMERR model also summates reinforcers over 
time and might be a good candidate to account for reinforcer 
influences that go beyond a single trial.

Reinforcer value effects are accounted for in several mod-
els. Qualitative differences in reinforcers and influences by 
motivating operations could be accounted for as an out-
come’s utility or quality (UTIL, MULT, respectively). By 
accounting for quality, these models have the added explana-
tory power to account for differences in incentive sensitiza-
tion (i.e., hyper reward valuation observed in substance use 
disorders; Berridge & Robinson, 2016), inelastic reinforcer 
effects on quality, motivating operations, and cross-rein-
forcer effects where the SS and LL are qualitatively differ-
ent (e.g., food vs. cocaine). Because “quality” could vary 
in terms of sensory experience or deprivation from food, it 
might need to be parametrically expanded upon to account 
for meaningful differences. Quality will need to be separate 
from quantity, where psychophysical properties in numeri-
cal discrimination would be uniquely involved (i.e., models 
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cannot conflate quality and quantity as contributors to sub-
jective value). The REW model treatment of sensitivity to 
reinforcement (z) may need to be elaborated upon to separate 
those dimensions of reinforcer value.

The DBEXP model is a quantitative formalization of 
the qualitative CNDS model that frames impulsive choice 
emerging from a competition between an impulsive/moti-
vational system and an executive system (Koffarnus et al., 
2013). DBEXP has separate discounting parameters for 
the impulsive system (k1) and the executive system (k2, 
lower weight for impulsive individuals), and a parameter 
to account for the influence between the two systems (ω, 
lower weight for executive system for impulsive individu-
als). These parameters might be predictive of other psycho-
logical and neurobiological processes. For example, the 
impulsive parameter may be correlated with higher level 
and elasticity of demand, and striatal dopamine sensitiv-
ity. The executive system could be correlated with working 
memory and long temporal horizons, and prefrontal cortex 
activity. The weighting parameter might relate to how the 
insular system balances the two neurobiological systems that 
are affected by psychological factors like stress, which can 
lead to increased impulsive choices (e.g., Torregrossa et al., 
2012, stress hormones increases SS choices). These areas 
can be a focus of future research for both human and animal 
experimentation. Effects of delay intolerance and preference 
for reinforcer immediacy can be addressed by the QUASI 
model, which has parameters for immediacy bias and may 
be well-suited to capture preference for immediacy (Fox, 
2021; Fox et al., 2019). To the degree that delay aversion 
and immediacy preference are reflected in the motivational 
system, the DBEXP model might account for their influence 
in the k1 and ω parameters.

Attentional effects could potentially be explained by 
multiple models. The effects of cues on attention could be 
accounted for by models that include a parameter for present 
bias, assuming that bias is a proxy for attention. For exam-
ple, attentional manipulations could alter the k2 parameter 
in the QUASI model. The DBEXP may account for cues 
modulating attention with ω. For example, powerful rein-
forcer cues may bias attention and trigger cravings (Ashe 
et al., 2015) and this may lead to a shift in balance favoring 
the motivational/impulsive system driving discounting.

Generalization of learning from training tasks to the 
impulsive choice task (e.g., successive/concurrent, short/
long SS delays) or within the choice contingencies them-
selves (e.g., FI or FT delays) may bias attention and mod-
ulate impulsive choices. How humans are presented with 
impulsive options (e.g., explicit-zero, date framing) may, 
likewise, bias attention in the choice procedure and affect 
impulsive choices. Reinforcer-focused models (UTIL, 
MULT, REW) may account for attention effects on amount 
processing and the TIMERR model may account for 

attention to delay. If date-framing effects are due to dimin-
ishing attention to delay and explicit-zero effects are due to 
greater attention to amounts, then models with parameters 
for both could capture those effects. For example, for the 
UTIL model, attention to magnitudes may affect utility (α) 
and attention to delays may affect delay sensitivity (s).

The TIMERR model’s Time parameter accounts for the 
time horizon that is driven by how attention is focused. 
For example, individuals with FTP may be biased towards 
the future. EFT procedures may take people with present 
time perspective (i.e., impulsive) and refocus their attention 
towards the future, leading to greater self-control. Attention 
may be shifted to focus on future reinforcers that are worth 
waiting for, but longer past-oriented time horizons also pre-
dict self-control (Radu et al., 2011). The time horizon in 
TIMERR is backwards focused with a window that captures 
and integrates past reinforcement history from prior trials. 
Thus, the temporal window of the horizon may matter more 
than the time horizon’s direction. Finally, formal models of 
timing have incorporated attention as a subordinate process 
(Burle & Casini, 2001). Thus, to the degree that models 
can account for timing process, they potentially should also 
account for attention, at least as it relates to delay track-
ing. For example, in the KZ model, the perceived delay (d) 
parameter may account for effects of cueing attention toward 
or away from the delay.

The current models do not readily account for the rela-
tionship between working memory and impulsive choice 
without further assumptions. It is possible that working 
memory reflects a healthy top-down executive control sys-
tem, in which case DBEXP parameters (k2, ω) might account 
for working memory effects. Working memory is intrinsic 
to timing models (Meck et al., 1984, 2013) and accurate 
and precise timing necessitates functional working memory 
(Gu et al., 2015; Lustig et al., 2005). The effects of working 
memory on impulsivity might operate through its effects 
on timing (and/or amount discriminations). For example, 
working memory is necessary for maintaining a current 
representation of the passage of time during a delay and 
faulty working memory can result in impairments in tim-
ing accuracy and/or precision (e.g., Gibbon et al., 1984). 
Experimental research needs to flesh out the significance of 
working memory and its relationship with impulsive choice 
to guide future model development.

Overall conclusion

The empirical findings and models presented here are 
intended to provide an organizational structure for under-
standing potential mechanisms of impulsive choice. Several 
key cognitive processes were highlighted that are likely to 
contribute to impulsive choice, at least in some contexts and 



384 Learning & Behavior (2023) 51:355–391

1 3

tasks. Multiple factors include learning processes, reward 
maximization, incentive motivation, attention, timing, and 
working memory. Different models have been proposed, 
with some models directly motivated by empirical findings. 
Models have been developed to explain the psychophysi-
cal properties of delay and amount perception, reinforce-
ment maximization principles, and competition between 
two systems. Because all models (except for the basic EXP) 
correctly predict hyperbolic or hyperbolic-like discounting, 
simply fitting the models to choice data is unlikely to yield 
any significant new insights. Instead, model fits to impulsive 
choice data should be accompanied by testing on other cog-
nitive and behavioral tasks. In addition, developing sensitive 
methods that move beyond correlation across tasks is a key 
challenge for the field to identify specific mechanisms.

Ultimately, the models cut to core questions that remain 
unanswered in empirical data. For example, one issue of 
central importance is whether discounting is rational (expo-
nential) but coupled with a faulty perceptual system or if 
discounting is irrational (hyperbolic). Only limited studies 
examining the direct relationship between time perception 
and discounting (where perceived time is used to predict 
choice through subjective value computation) have attempted 
to address this issue and those studies do not definitively dif-
ferentiate between these two possibilities. Finally, there is the 
question of whether we even discount at all? There are sev-
eral viable models that propose alternative non-discounting 
mechanisms that require more thorough testing.

A problem with the modeling approach is that there has 
perhaps been too much of a focus on the search for a perfect 
equation that can account for the hyperbolic function rather 
than developing process-driven models. As a result, impor-
tant processes such as learning, attention, timing processes, 
and working memory are not commonly featured in models, 
and in some cases (e.g., attention and working memory) can 
only be accounted for by making indirect assumptions. Ulti-
mately, the field of impulsive choice may require a recalibra-
tion to focus more broadly on cognitive mechanisms and the 
development of models of such mechanisms. Only then may 
we be able to fully and truly understand impulsive choices.
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