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Abstract
For humans, a distinction has been made between implicit and explicit learning. Implicit learning is thought to involve auto-
matic processes of the kind involved in much Pavlovian conditioning, while explicit learning is thought to involve conscious 
hypothesis testing and rule formation, in which the subject’s statement of the rule has been taken as evidence of explicit learn-
ing. Various methods have been used to determine if nonverbal animals are able to learn a task explicitly – among these is 
the 1-back reinforcement task in which feedback from performance on the current conditional discrimination trial is provided 
only after completion of the following trial. We propose that it is not whether an organism can learn the task, but whether 
they learn it rapidly, all-or-none, that provides a better distinction between the two kinds of learning. We had humans learn a 
symbolic matching, 1-back reinforcement task. Almost half of the subjects failed to learn the task, and of those who did, none 
described the 1-back rule. Thus, it is possible to learn this task without learning the 1-back rule. Furthermore, the backward 
learning functions for humans differ from those of pigeons. Human subjects who learned the task did so all-or-none, suggest-
ing explicit learning. In earlier research with pigeons, they too showed significant learning of this task; however, backward 
learning functions suggested that they did so gradually over the course of several sessions of training and to a lower level of 
asymptotic accuracy than the humans, a result suggesting implicit learning was involved.
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Introduction

In humans, implicit learning is non-episodic learning of 
complex information in an incidental manner, without 
awareness of what has been learned (Seger, 1994). Learning 
is thought to be explicit if subjects can verbalize the activity 
or rule. This definition implies that one can attend to, or is 
conscious of, the learning. Neal and Hesketh (1997) suggest 
that in explicit learning the emphasis should be shifted from 
attention to intention, another term that implies conscious-
ness. In contrast, implicit learning is thought to be a process 
in which information is abstracted out of the environment 
without recourse to explicit strategies for responding or 
systems for recoding the stimuli (Reber, 1967). De Hou-
wer (2009) proposes that most learning, with the exception 

of very simple organisms (e.g., aplysia), can be described 
as propositional. Propositional models imply reasoning, 
and according to De Houwer (2009), they provide a bet-
ter account of associative learning than implicit association 
formation theory, not only in humans but also in other ani-
mals. Shanks (2010) largely agrees, but suggests that it may 
not be possible to disentangle implicit and explicit learning 
because explicit cognitive constructs, such as attention and 
awareness, may also involve implicit associations.

As can be seen from the various approaches to research 
with humans, the distinctions between implicit and explicit 
learning are difficult to make. To make it even more difficult 
to make a clear distinction, Stadler (1997) has reported that 
subjects sometimes find explicit regularities in the task that are 
not actually present – explicit rules that turn out to be incorrect 
– while other subjects, who cannot verbalize the pattern and 
whose improvement in performance as measured by reaction 
time would be thought to be purely implicit, later realize that 
they knew more about the task than they first thought.

Although the boundary conditions between implicit and 
explicit learning may be difficult to define, an example of 
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the distinction between implicit and explicit learning that 
most people have encountered may be helpful. As a child, 
one may learn to tie one’s shoes explicitly (by verbal rules 
or motor imitation), but as one gets older, the action of tying 
one’s shoes becomes automatic or implicit. If, as an adult, 
one is asked, “how does one tie one’s shoes,” the process 
may be difficult to describe (explicitly). In fact, it may be 
easier to go through the motions (implicitly) and, while so 
doing, describe one’s actions, rather than trying to describe 
tying one’s shoes without the actions. What has happened 
is implicit learning has taken over for explicit learning. Of 
course, explicit learning can recover, as what one often must 
do to describe tying one’s shoe to a child.

In the present context, implicit learning falls within the 
scope of associative learning. Although associative learning 
is agnostic as to the distinction between conscious and sub-
conscious learning, associative learning is generally thought 
to be a gradual process. Of course, it is also possible for very 
rapid associative learning to occur (e.g., conditioned taste aver-
sion; Garcia & Koelling, 1966), and explicit learning can be 
gradual, when applied to concept learning tasks (consider, e.g., 
a child learning the concept of dog). Nevertheless, the distinc-
tion between gradual and all-or-none learning may be useful.

Given that distinguishing implicit from explicit learning 
in humans is not always easy, the task of trying to identify 
explicit learning in nonverbal animals is even more difficult. 
Several indirect procedures have been proposed, however, 
that have been suggested to show evidence for explicit learn-
ing in nonverbal animals.

One such procedure involves the use of a categorical 
discrimination in which stimuli fall along a continuum and 
the task requires that the stimuli must be assigned to one 
of two response categories depending on which side of a 
criterial value they fall (e.g., Smith et al., 1995, 1997). At 
stimulus values far from the criterion level, the discrimina-
tion is easy. When the value of the stimulus approaches the 
criterial value, however, the discrimination is more diffi-
cult, and errors tend to occur. It has been suggested that the 
inclusion of an “uncertain” response may allow an animal 
to avoid these difficult discriminations (e.g., Smith et al., 
1995, 1997). It is further proposed that the use of an uncer-
tain response would require the use of controlled decisional 
mechanisms involving the explicit monitoring of cognition 
(e.g., “do I know into which category the stimulus should go 
or should I make the ‘uncertain’ response”).

When humans are subjects, it is assumed that they would 
rather avoid making an incorrect categorizing response and 
instead choose the uncertain response because by doing so 
they would be able to skip to the next trial. But nonhuman 
animals are typically working for food as a reinforcer, and 
when the discrimination is difficult, if one were to choose 
the categories randomly it would provide reinforcement 50% 
of the time. For this reason, there must be some incentive 

for the animal to choose the uncertain response. When the 
uncertain response has been allowed with animals, outcomes 
for choosing the uncertain response may involve avoiding an 
aversive timeout if they are incorrect and often getting an 
easy-to-categorize stimulus on the next trial (e.g., Couchman 
et al., 2010; Smith et al., 1995, 1997). Alternatively, choos-
ing the uncertain response may result in obtaining a reward 
smaller than the reward for correct categorization (Foote & 
Crystal, 2007; Hampton, 2001). In fact, it can be argued that 
in order to encourage the use of the uncertain response, the 
reward for making the uncertain response should be larger 
than a 50% chance of getting a reward for correct categoriza-
tion, otherwise the uncertain response may never be made.

It can be argued, however, that with reinforcement for 
making the uncertain response, the choice among three 
responses allows for a clear implicit account. With prac-
tice, each stimulus would be associated with one of the three 
response alternatives according to its maximum reinforce-
ment value. When the stimuli are close to the criterial level, 
and the value of a categorical response declines to near 50%; 
if the value of the uncertain response exceeds the value of 
50% reinforcement, an uncertain response should be made 
(see Foote & Crystal, 2007; Jozefowiez et al., 2009; Le Pel-
ley, 2012; Smith et al., 2008). Thus, the use of an uncertain 
response for stimuli close to the categorical boundary does 
not imply that the response was made explicitly.

A second presumed source of evidence for a nonverbal 
distinction between implicit and explicit learning comes 
from performance on rule-based category-learning tasks, as 
compared to information-integration tasks. In a rule-based 
task, for example, stimuli are varied along two dimensions 
(e.g., size and brightness), but only one of the dimensions is 
relevant (e.g., size). Thus, a simple rule can govern the cor-
rect response (e.g., choose left when the rectangle is large, 
choose right when the rectangle is small; see Fig. 1a). In an 
information-integration task, however, the stimuli are varied 
along two dimensions and both dimensions are relevant, such 
that no simple category rule will work (see Fig. 1b). There is 
evidence that information-integration tasks of this kind are 
learned slower by humans than rule-based tasks, presumably 
because in the case of information-integration tasks there is 
no simple rule that can be used to categorize the stimuli, so 
learning is hypothesized to be implicit (Smith et al., 2011). 
Thus, according to Smith et al., slow learning on the informa-
tion-integration task suggests it is learned implicitly.

Importantly, when pigeons have been trained on these 
tasks, both tasks have been found to be acquired at the about 
the same rate (Smith et al., 2011). Thus, it is assumed that the 
pigeons acquire both tasks implicitly. Le Pelley et al. (2019) 
have noted, however, that the information-integration task is 
inherently more difficult for humans than the rule-based task. 
When they corrected for the difference in task difficulty, they 
found that for humans there was similar accuracy on both 
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rule-based and information-integration tasks (see also Wills 
et al., 2019). Thus, these tasks may not differ inherently in the 
way that they are learned by humans, implicitly or explicitly.

A different approach to making a distinction between 
implicit and explicit learning was developed by Smith et al. 
(2020). They proposed that implicit learning relies on tempo-
rally contiguous reinforcement, such that one should be able to 
interfere with implicit learning by delaying feedback following 
a response. This hypothesis is based on research suggesting 
that the implicit system relies on direct neural connections to 

reward centers in the brain (Arbuthnott et al., 2000; Calabresi 
et al., 1996) and if reinforcement lags, it should not be possible 
to strengthen the synapses that contribute to implicit learning 
(Smith et al., 2020). Smith et al. (2020) argue that for the 
implicit system to function, the relevant cortical representa-
tion must still be active, and the signal for reinforcement must 
arrive promptly (within about 2 s).

With the goal of ruling out implicit learning, Smith et al. 
(2020) trained monkeys on various conditional discriminations 
(e.g., in the presence of stimulus A a response to stimulus 
X, but not stimulus Y, is reinforced, whereas in the presence 
of stimulus B a response to stimulus Y, but not stimulus X, 
is reinforced) in which the subjects received feedback from 
their response on Trial 1, only after completing Trial 2, and 
on Trial 2, only after completing Trial 3, and so forth. Smith 
et al. (2020) found that three of their four monkeys were quite 
good at learning these 1-back reinforcement discriminations 
(see also Smith et al., 2006). This conclusion relies on the 
assumption that the 1-back reinforcement task can only be 
learned explicitly. Alternatively, the 1-back reinforcement 
merely made implicit learning of the task more difficult.

Pigeons are generally thought to be implicit learners 
(Jozefowiez et  al., 2009; Smith et  al., 2011). However, 
Nosarzewska et al. (2021) found that pigeons, too, are able 
to learn this 1-back reinforcement task, albeit slowly and 
to a modest level (see also Zentall et al., in press). Thus, it 
may be that implicit learning is not disabled by a meaningful 
delay between the response and the reinforcer.

A different way of characterizing implicit versus explicit 
learning is in the way learning progresses. One of the charac-
teristics of many human explicit learning tasks is that learning 
is often abrupt (e.g., all-or-none; Kintsch, 1963), especially 
when a relatively simple rule is involved (Bower & Trabasso, 
1964; Millward & Spoehr, 1973). Subjects typically try out 
one strategy at a time until they find the correct rule. Thus, 
with such a task, as humans are trying out incorrect rules, 
accuracy should be close to chance, but when they discover 
the correct rule, accuracy should almost immediately reach a 
high, nearly perfect level. This is quite different from the way 
pigeons learn this task.

The purpose of the present experiment was to compare 
the learning functions of humans with the learning functions 
previously obtained from pigeons (Zentall, Peng, & Mueller, 
in press). Do humans learn abruptly, or gradually the way 
pigeons presumably do? And if humans learn, are they able 
to articulate the rule?

A second purpose of the present experiment was to deter-
mine if the ability of human subjects to acquire the 1-back 
reinforcement task would be affected by instructions that 
they are given: none (analogous to the task for pigeons), 
“use your intuition” (thought to encourage subjects to use 
implicit learning), or previous trial hint instructions (thought 
to provide an explicit hint to task solution).

(a) Rule-based task

(b) Informa�on-integra�on task

Fig. 1   Rule-based and information-integration category tasks illus-
trated within a two-dimensional stimulus space. The gray and black 
symbols represent responses to stimuli from Category A and Cat-
egory B, respectively (after Smith et al., 2018)
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Methods

Subjects

The subjects were 103 University of Kentucky students 
obtained from the SONA psychology subject pool. Of the 
subjects, 66 identified as female and 39 as male. The ages of 
the participants ranged from 18 to 50 years. The University 
Internal Review Board approved the study, and written 
informed consent was obtained from all participants prior 
to participation in the experiment.

Apparatus and procedure

The experiment was conducted in a small windowless room 
3.2 m wide × 2.3 m deep with a table on the long side divided 
in two by a partition that rested on the table separating the 
subject from the experimenter. The task was a 1-back rein-
forcement, symbolic matching to sample task presented on 
a (19 in. diagonal) computer monitor. The stimuli consisted 
of a yellow (RGB values R = 255, G = 255, B = 0) or blue 
(RGB values of R = 0, G = 0, B = 255) colored circle (3.8 cm  
diameter) that appeared in the center of the computer screen 
(the sample). A click (with a mouse) to the sample presented 
a red (RGB values R = 255, G = 0, B = 0) and a green circle 
(RGB values G = 255, R = 0, B = 0) comparison stimulus 
(3.8 cm diameter) to the left and right of the center circle, 
spaced 2.5 cm (edge to edge) from the center stimulus.

Subjects were randomly assigned to one of three instruc-
tion conditions. Subjects in the No Instruction Group were 
given no additional instructions (n = 34). Subjects in the 
Intuition Group saw “The best way to solve this task is to 
not overthink it. Go with your intuition” (n = 36). Subjects 
in the Previous Trial Hint Group saw “What you did on the 
last trial is important to the feedback you will get on the 
current trial” (n = 33). The number of males and females in 
each group was approximately the same.

At the start of each session the following instructions 
were printed on the computer screen for all subjects: “At 
the start of each trial, you will see either a yellow or a blue 
circle. Click on the circle. You will then see two circles, one 
red and the other green on either side. You should click on 
one of them.”

Clicking either comparison stimulus ended the trial and 
started a 3-s intertrial interval. No feedback was provided on 
the first trial. On the second trial, a randomly selected sample 
(yellow or blue) was presented. After clicking the sample, 
red and green comparison stimuli were presented. After 
comparison choice on Trial 2, if the subject had chosen the 
correct comparison stimulus on Trial 1, a 1-s tone sounded 
and a “+ 1 point” visual stimulus appeared during the first 
second of the intertrial interval. An incorrect response on  
trial N led to no feedback on Trial N + 1. The correct 

sample-comparison relations were determined randomly 
for each subject (red for yellow samples and green for 
blue samples, or green for yellow samples and red for blue 
samples). Trials proceeded in this way, with the tone and point 
feedback dependent on whether the response was correct on 
the preceding trial. “Total points obtained” also appeared 
on the right side of the screen and was updated following 
each “+1 point” printed to the screen. Each subject received 
100 trials of this task. The task took approximately 10 min 
to administer. After task completion, each subject was asked 
“what rule did you use to solve the task?”

Data analysis

A cumulative plot of the number of subjects reaching a crite-
rion of nine out of ten trials correct in each ten-trial block for 
each instruction group was constructed and the total number 
of subjects reaching criterion by the last trial block was sub-
jected to a Chi-square analysis to determine the effect of the 
instructions on learning. For subjects who reached criterion 
on any block of trials, to assess the all-or-none nature of the 
learning, a backward learning curve was created by plotting 
backward from the first moving ten-trial block on which each 
subject reached criterion. We were also interested in the rela-
tion between the accuracy of the subjects and the rule that 
they said they used to perform the task.

For comparison purposes, using pigeon data from Zentall 
et al. (in press), backward learning curves were calculated 
for pigeons, using the first session that each pigeon reached 
70% accuracy on a 1-back reinforcement, color-matching 
task similar to the one used in the present study. A lower 
level of criterial accuracy was used for the pigeons because 
they failed to reach a higher level of accuracy. Most of the 
pigeons appeared to asymptote at about 70% correct.

Results and discussion

The 1-back reinforcement task proved to be a very difficult 
task for our subjects. Only about half of the subjects learned 
to perform to the learning criterion of nine out of ten trials 
correct on a block of ten trials. A cumulative plot of the 
number of subjects who learned the 1-back reinforcement 
task in each of the three groups, in each of the ten blocks of 
ten trials, is shown in Fig. 2. A Chi square analysis performed 
on the last block of ten trials indicated that the three groups 
were not statistically different, χ2 (2, 105) = 1.40, p = .496.

As the subjects who did learn did so at different points 
in training, to get a better idea of their rate of learning, we 
plotted a mean backward learning curve for the subjects. 
Because differences in the instructions did not appear to 
have an important effect, the data from the three groups 
were combined. The backward learning curve for the human 
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subjects, plotted from the first criterial moving trial block, 
is presented in Fig. 3. As one might expect, if subjects were 
learning explicitly, they were not better than chance on the 
trial block prior to the criterial block.

For comparison purposes, the backward learning curve 
from pigeons trained on the same symbolic matching, 1-back 
reinforcement task (Zentall et al., in press) are presented in 
Fig. 4. For the pigeon backward learning plot we considered 
the criterion as the highest level of accuracy on a given ses-
sion that almost all of the pigeons achieved, 70% correct.

Although direct comparison of Fig. 3 with Fig. 4 would 
be difficult because of the large differences in the amount 
of training and the low level of task accuracy attained by 
the pigeons, two aspects of the two graphs are apparent. 
First, the humans show little evidence of learning the task 

prior to the criterial block of trials. In fact, prior to the crite-
rial block, several of the subjects appeared to be choosing 
some trials based on the incorrect color association. The 
pigeons, on the other hand, show somewhat gradual learning 
of the task, at least for about five sessions prior to the crite-
rial session. Second, although the criterial block of trials 
for humans shows a high level of accuracy, suggestive of 
explicit learning of rules, the pigeons never attained as high 
a level of task accuracy as the humans.

It should be noted that there is an artifact in the plot of the 
pigeons’ data resulting from the use of a criterion. For the 
pigeons, criterion was defined as the first session on which 
a pigeon performed at 70% accuracy or better. This criterion 
necessarily means that on the penultimate session, accuracy 
for each of the pigeons would have had to have been below 
70% correct. Thus, there was necessarily an increase in accu-
racy for each pigeon from the session immediately before 
criterion to the criterial session, that would not be true of 
any other session. As can be seen in Fig. 3, however, the 
pigeons averaged about 60% correct on the session prior to 
the criterial session and they showed gradual learning on 
the preceding sessions. This gradual learning would suggest 
that implicit learning was involved, learning quite different 
in kind from that of the humans.

Curiously, the sharp rise in accuracy (about 15%) from 
Session C-1 to Session C suggests that the increase in accu-
racy was not solely due to this artifact. In fact, one measure 
of the artifact can be obtained by considering the difference 
between accuracy on Session C+1 (the session immediately 
following the criterion session) compared with Session C. 
This comparison indicates that there was, in fact, a small drop 
in accuracy of about 3% on Session C+1. That suggests that 
most of the remaining difference between Session C-1 and 
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Session C, about 12% correct, cannot be accounted for by 
the artifact. Such a large increase in accuracy would not be 
expected to result from implicit learning. On the other hand, 
if some form of explicit learning was involved, one would 
have expected accuracy to have been considerably better than 
70% correct, and as noted earlier, the gradual increase in 
accuracy over the approximately five sessions prior to the 
criterial session suggests that the learning was implicit.

Given the nature of the 1-back task, we were interested in 
how the human subjects had learned the task. Not surpris-
ingly, most of those subjects who chose the correct compari-
son stimuli significantly better than chance over the course 
of training (binomial test, 59 out of 100 trials, p = .044), also 
were able to describe the rules relating the sample stimulus 
to the correct comparison stimulus.

For the No Instruction Group, 16 of the 18 subjects who 
performed better than chance correct were able to describe 
the sample-comparison rules (89%). For the Intuition Group, 
13 of the 16 subjects who performed better than chance cor-
rect described the sample-comparison rules (81%). For the 
Previous Trial Hint Group, seven of the 11 subjects who 
performed better than chance correct described the sample-
comparison rules (64%). None of the subjects who did not 
perform better than chance were able to articulate the rules.

Surprisingly, however, when the subjects were asked how 
they had learned to solve the task, not one subject mentioned 
the 1-back reinforcement rule. Although most of the subjects 
who performed well mentioned which sample went with which 
comparison stimulus, they did not appear to be aware of the 
1-back rule. Apparently, the subjects learned this task without 
learning the 1-back rule. How could they have learned this task 
without learning the 1-back rule? They could have performed 
well on this task without learning the 1-back rule if they hap-
pened to have been correct on Trial N - 1 and they had also 
been correct on Trial N, but they attributed the feedback on 
Trial N incorrectly to the current trial rather than to the pre-
ceding trial. As long as they persisted with that attribution, 
they would have “solved” the task without actually learning 
the intended 1-back reinforcement rule. Of course, the prob-
ability of two trials in a row being correct by chance was only 
25% and, furthermore, it should have been confusing to them 
because on earlier trials, what subjects thought was an error, 
because they received no reward, actually may not have been 
an error. In a sense then, subjects who performed well on this 
task may have done so because they neglected some of the ear-
lier feedback. That is, when they matched incorrectly on one 
trial and then matched correctly on the next trial, the feedback 
that they would have received on that second trial would have 
suggested that they were wrong, when, in fact, they would 
have been correct.

On the one hand, contrary to the suggestion by Smith et al. 
(2020), the present results suggest that the 1-back reinforce-
ment task is not an appropriate task to assess learning of the 

1-back rule, at least not for humans. Human subjects can 
perform this task at a high level of accuracy without actually 
learning the 1-back rule. By misinterpreting the feedback for 
their response on the prior trial as feedback for their response 
on the current trial, they are learning the matching rule without 
learning the 1-back rule. In a sense, they are taking a “short 
cut.” On the other hand, the rule that the humans did learn sug-
gests strategic explicit learning of the simpler matching rule.

With regard to the way pigeons learn this task, the Zentall 
et al. (in press) results suggest that it is likely that pigeons do 
show some evidence of learning the task, and although they 
appear to do so implicitly, the backward learning functions 
suggest that something like explicit learning may be involved. 
Their slow learning, and to a level far below that of the human 
subjects, suggests that they may have been learning the 1-back 
task. When comparing pigeons on this 1-back reinforcement 
task with pigeons that have learned a similar symbolic match-
ing task with reinforcement for a correct response on the cur-
rent trial, the simpler symbolic matching task is learned much 
faster and to a much higher level of accuracy (see, e.g., Carter 
& Eckerman, 1975; Zentall & Hogan, 1974). Thus, had the 
pigeons in the 1-back experiments been using the same match-
ing short-cut as the humans did without learning the 1-back 
rule, they should have achieved a much higher level of accuracy 
and have learned considerably faster. Thus, paradoxically, the 
pigeons may actually have learned the 1-back reinforcement 
task, whereas the humans may have bypassed the 1-back rule.

To summarize, the results of the present study together with 
the results of Nosarzewska et al. (2021) and Zentall et al. (in 
press) suggest that humans and pigeons learn the 1-back rein-
forcement task differently and accurate performance of the 
1-back reinforcement task cannot distinguish between implicit 
and explicit learning. Taken together, the results of research 
with the uncertain response, research comparing rule-based 
learning with information-integration learning, and 1-back 
reinforcement learning do not appear to provide evidence that 
animals learn these tasks by explicit learning. Whether back-
ward learning functions provide an alternative means to dem-
onstrate evidence for explicit learning by animals will have to 
await further research.
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