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Abstract
Young, Clark, Goffus, and Hoane (Learning andMotivation, 40(2), 160–177, 2009) documented significant advantages of linear
and nonlinear mixed-effects modeling in the analysis of Morris water maze data. However, they also noted a caution regarding
the impact of the common practice of ending a trial when the rat had not reached the platform by a preestablished deadline. The
present study revisits their conclusions by considering a new approach that involves multilevel (i.e., mixed effects) censored
generalized linear regression using Bayesian analysis. A censored regression explicitly models the censoring created by prema-
turely ending a trial, and the use of generalized linear regression incorporates the skewed distribution of latency data as well as the
nonlinear relationships this can produce. This approach is contrasted with a standard multilevel linear and nonlinear regression
using two case studies. The censored generalized linear regression better models the observed relationships, but the linear
regression created mixed results and clearly resulted in model misspecification.
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A medical researcher conducts a 10-year prospective
study of the effectiveness of surgical versus nonsurgical
interventions on surviving a heart attack. The main vari-
able of interest is the number of years the patient survives
after the intervention. After 10 years, 60% of the patients
studied are still alive, which is a good outcome, but one
that presents problems for data analysis: Does the re-
searcher categorize these people as surviving for 10 years
(but no longer), omit them from the analysis because the
number of years survived is unknown, or find a statistical
technique that treats these data appropriately as being at
least 10 years, but perhaps much longer? Another scientist
is measuring how long it takes various lizard species to
escape a puzzle box (Cooper et al., 2019) and encounters
a problem: Some subjects take so long to complete the
task that it is necessary to impose a 3-minute time limit
for solving the puzzle. When analyzing the data, running

into the time limit presents a problem because the scientist
recognizes that it is not possible to safely conclude that
the solution time was exactly 3 minutes—it could have
been much longer. These examples describe situations
involving censoring, in which a subject’s or trial’s ob-
served value represents a minimum but otherwise un-
known estimate (e.g., at least 10 years or 3 minutes).

This paper will focus on censoring in the Morris water
maze because it presents multiple challenges to the data ana-
lyst. First, the data have a multilevel structure that creates data
dependencies. Conventionally, each rat is assessed multiple
times in a day and across multiple days. Thus, data within a
day for the same rat and data from the same rat across days are
more highly correlated. A proper analysis must incorporate
these dependences (Aarts, Verhage, Veenvliet, Dolan, & van
der Sluis, 2014). Second, there is a natural floor for perfor-
mance that creates curvature in the relationship between laten-
cy and trial or day (see Fig. 1, rats 43 and 48). Thus, standard
linear regression is not appropriate for many subjects.
However, most researchers do not try to model the functional
relationship and instead analyze day as if it were an unordered
categorical variable, which complicates presentation and in-
terpretation and can result in an underpowered analysis
(Young et al., 2009). Third, rats are routinely removed from
themaze if they have not found the hidden platform after some
predetermined deadline (commonly 60 s for mice and 90 s for
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rats; see the data points designated by a cross in the sampling
of rats shown in Fig. 1—in this unpublished study, 14% of the
1,540 observations were censored). Researchers score these
trials as having the deadline value (60 s or 90 s) for the anal-
ysis. This censoring of the data (Tobin, 1958) artificially de-
creases the variability in latencies on these trials and biases the
estimated latencies downwards. On these trials, researchers
know that the rat did not find the platform by the deadline,
but they do not know how much longer it would have taken.

To address the first two challenges, modeling the data
dependencies and the curvilinear relationship, Young et al.
(2009) suggested the use of multilevel modeling. They com-
pared the traditional repeated-measures approach to Morris
water maze data to linear and nonlinear multilevel modeling.
All three approaches model at least some of the data depen-
dencies, but the repeated-measures analysis of variance
(ANOVA) is restricted to within-subjects predictors being
categorical. One of the primary advantages of multilevel
modeling is its ability to conduct repeated-measures analysis
in which one or more of the within-subjects predictors is con-
tinuous (most commonly for Morris water maze data, this
continuous variable would be day and/or trial). Young et al.
documented that both linear and nonlinear multilevel model-
ing greatly increased the ability to accurately identify

condition differences relative to approaches that model each
day as categorically different from another. Although the non-
linear version produced better fits, the linear version fared just
as well in identifying group differences (at least for the variety
of situations tested in their simulations).

To address the third challenge—censoring—the present
paper will evaluate the use of an easy tool to perform
Bayesian censoredmultilevel generalized regression, the brms
package in R (Bürkner, 2017, 2018), and how this approach
fares relative to the use of standard linear multilevel regression
and generalized linear multilevel regression. Although cen-
sored regression will produce a better model of the process,
we will explore the practical implications of its use relative to
analyses that do not attempt to account for the censoring.

Bayesian approaches to censored regression are not new
(e.g., Gelman, 2004; Kruschke, 2014; Ntzoufras, 2011), but
the use of censored regression in Morris water maze data is
extremely rare. When we examined the 10 most cited rat/mice
Morris water maze papers published since 2016, only one had
conducted a censored regression. Furthermore, only one of
these papers reported the percentage of censoring that they
observed (15% of values in a drug group vs. 7% in another
drug group vs. 1% in a saline control), although at least one-
third of the latency graphs in these 10 articles documented

47 48 49

44 45 46

41 42 43

0 2 4 6 0 2 4 6 0 2 4 6

0

25

50

75

0

25

50

75

0

25

50

75

day

La
te
nc

y Censored

No

Yes

Fig. 1 Examples of real rat latencies in a Morris water maze. The data points designated with a cross are the result of removing a rat from the maze that
had not found the platform by the 90-s deadline (i.e., these data points were censored)
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mean latencies near the cutoff in at least one group on a day or
session. When a mean latency is near the cutoff value, there is
evidence of censoring approaching 50% for that condition on
that day or session. Note that by only focusing our informal
survey on recent highly cited papers, these numbers approxi-
mate the best analytical approaches that we would expect to
find in the literature. Extending our search to older and less
cited papers would document even lower rates, given that
censored regression of repeated-measures data has only be-
come tractable relatively recently.

Censoring

One of the cautionary issues raised by Young et al. (2019) was
the potential consequences of censoring in the Morris water
maze. Although they classified the issue as one of truncation
(in which values greater than a threshold are removed) rather
than the more accurate term, censoring (in which values great-
er than a threshold are assigned the threshold value), the chal-
lenges of analyzing censored data have been known since
Tobin (1958). In the Morris water maze, predicting latencies
greater than the deadline is problematic and can only emerge
due to linear or nonlinear extrapolation. Statistical analysis of
subjects or conditions in which more than a few values are
censored could result in severe underestimation of both the
mean and variance for those subjects and for those conditions
in which data were more likely to be censored. This artificial
decrease of the observed variance in latencies near the dead-
line also violates the assumption of homogeneity of variance
for ANOVA and linear-regression analyses. Although Jahn-
Eimermacher, Lasarzik, and Raber (2011) recognized the util-
ity of censored regression to address censoring in the Morris
water maze and related tasks, the absence of readily available
repeated-measures versions of censored regression meant that
it was not possible to use their technique for many situations
(but see Andersen, Wolf, Jennings, Prough, & Hawkins, in
press; Faes, Aerts, Geys, & De Schaepdrijver, 2010). The
challenge of a proper censored analysis is further increased
by the skewed distributions commonly observed in latency
measures that have a hard minimum of zero and a long upper
tail.

The emergence of practical Bayesian analysis permits the
use of generalized multilevel censored regression of latency
data for preparations like the Morris water maze. An introduc-
tion to Bayesian analysis is beyond the current paper (see
Kruschke & Liddell, 2018), but the approach is able to address
issues like censoring because it relies on Monte Carlo simula-
tion to create data with particular properties. This simulation-
based approach is also the reason why Bayesian analysis was
not practical until recently—computational power and memory
demands restricted its use to either simple analyses or to re-
searchers with considerable computational resources (and

patience!) at their disposal. Although early implementations
of tools like WinBUGS could run such an analysis, they were
too demanding of computational resources to prompt broad use.
As a result of it becoming more feasible to use multilevel cen-
sored regression, the current paper revisits the conclusions of
Young et al. (2009) and how an analysis that properly considers
censoring might change the conclusions derived from a Morris
water maze study. Analyses that do not consider censoring
might underestimate means, misestimate the rate of learning,
and overestimate the degree of certainty in those estimates (con-
sidered in our first case study), but they may also misclassify
the presence or absence of interactions (considered in our sec-
ond case study). We begin with a brief introduction to how
censored regression works, and then present two case studies
to demonstrate the differences between the results of a standard
multilevel regression of censored data versus a censored regres-
sion. Because of the computational demands of Bayesian anal-
ysis, we will eschew the approach of Young et al. in which
thousands of analyses were run for various conditions. The
outcomes are apparent enough to be revealed by the case stud-
ies presented here.

Censored regression

Data points that are beyond the point of censoring are known
to lie in the tail, but where they lie is unknown. Censoring can
occur in either tail, but for the purposes of the present discus-
sion involving the Morris water maze, we restrict our discus-
sion to the upper tail (known as “right censoring”), where
censoring is known to occur. Censored regression can predict
latencies on those trials in which the subject was removed
from the maze at the deadline as being in the tail of the distri-
bution, but with uncertainty regarding its position within the
tail. The particulars involve estimating the value of a latent or
unobserved latency variable, latencyUnobs, that has a known
relationship with the observed latency, latencyObs. For an ex-
periment using a deadline of 90 s:

latencyObs ¼ latencyUnobs; latencyUnobs < 90
90; latencyUnobs≥90

�
ð1Þ

All other variables in the analysis are then modeled as
affecting the latent unobserved latency rather than the ob-
served latency. To ensure that the model behaves well, it is
important that the assumed distribution of the latencies is well
specified. Latencies can be modeled with a number of differ-
ent distributions, and the upper tail of each of these will have
different probabilities associated with the likelihood of these
values being beyond the cutoff.

Given that latencies have a natural floor of 0 s, the appro-
priate choice of distribution should have a minimum of 0 and a
long upper tail. Possibilities include the lognormal, gamma,
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Weibull, and exponential distributions. The fit of each of these
to a particular data set can be examined, but our observation is
that the choice among the lognormal, gamma, and Weibull is
not likely to have a major impact on an analysis when the
amount of censoring in any particular data condition is rela-
tively low (i.e., 10% or less). However, the Monte Carlo sim-
ulations we conducted in the first case study did reveal differ-
ences between the two distributions that we examined (gam-
ma and Weibull) when there was substantial censoring with
small sample sizes.

The latency variable will comprise both censored and un-
censored latencies (i.e., latencyObs). To set up data for a cen-
sored regression, it is necessary to include an extra variable for
each trial with a value that indicates the presence and type of
censoring. In the R computing environment and brms library
that we used, right-censoring is designated as a 1 for this extra
variable, and no censoring is designated with a 0. This extra
variable signaling censoring differentiates a trial in which the
rat found the hidden platform at the 90-s deadline versus being
removed at the deadline due to a failure to find the platform.

To perform multilevel censored regression, we used the
Bayesian analysis package, brms, in the R platform
(Bürkner, 2017) for all analyses (censored, not-censored,
and across all distributional specifications). The brms package
is an R front-end for Stan, a widely used Bayesian analysis
package. By using brms, the analyst can write an analysis
using a more familiar syntax (that used in the lme4 package)
and let the brms package compile the Stan code to be used in
the computation. The general form for all of the analyses was:

brm Latencyjcens Censoredð Þ∼Day� Groupþ DayjSubject−IDð Þð ;
family ¼ gamma link ¼ “log”ð Þ…:Þ: ð2Þ

This example represents a full-factorial of Day (as a continu-
ous variable) by Group as predictors of Latency; Day was a
within-subjects variable with a slope that can vary across sub-
jects, and the outcome variable, Latency, was modeled as having
a gamma distribution with an inverse-logarithmic (i.e., exponen-
tial) relationship with the predictors. For details of the analyses,
see the Supplemental Materials in OSF (https://osf.io/ntgxu/).

Because we are using a Bayesian analysis, there are no
p values produced by the analysis. Instead, parameter esti-
mates are coupled with estimated error (the standard deviation
of the estimatedmeans) and 95% credible intervals (analogous
to 95% confidence intervals; here, they represent the 2.5%
quantile and the 97.5% quantile). For more information on
the interpretation of the results of a Bayesian analysis, there
are numerous resources (e.g., Franck, Koffarnus, McKerchar,
& Bickel, 2019; Kruschke, 2014; Young, 2019). However, to
connect the current work to the decisions common in many
laboratories, we will consider credible intervals that do not
include zero as equivalent to rejecting the null hypothesis,
despite the drawbacks to such an approach.

Case study 1

To illustrate the results that emerge from analyses that do and
do not model censoring, we begin by using Monte Carlo sim-
ulation to create a sample data set and then assess how each
analytical approach recovers the original population values
used to generate this sample. The hypothetical experiment
involved five groups (a between-subjects variable) in which
the animals were tested across 10 days (designated Day 0
through 9) and a 90 s deadline was used before removal from
the maze. Each group contained 10 rats, and each group was
simulated to either have population Day 0 latency that was
100 s, thus creating a moderate level of censoring, or 50 s, thus
creating little or no censoring. Each group was simulated to
learn the task by producing shorter latencies with each subse-
quent day of testing with the learning rate being faster in some
groups than in others; the rate change was logarithmic to en-
sure that latencies could never be less than zero and to create
typical learning curves.

More precisely, the Day 0 population mean (original scale
and log transformed) and daily change on a logarithmic scale
are shown in Table 1. The 10 rats in each group were simu-
lated to have different population mean performance on Day 0
(these values were drawn from a normal distribution around
the rat’s group population value in Table 1), and different
learning rates (again drawn from a normal distribution around
the rat’s group population value). Finally, gamma-distributed
noise was added to the specific rat’s population latency; a
gamma distribution was used to ensure that latencies could
not be negative (both gamma and Weibull distributions fit
well for the Morris water maze rat data sets we had available).
For details of the Monte Carlo simulation, see the OSF repos-
itory for this manuscript (https://osf.io/ntgxu/).

Note that there are many different situations that can be
modeled using this approach. We informally examined situa-
tions with longer initial latencies than those tested here, thus
creating even more censoring, slower learning rates, more and
less variability, and smaller and bigger differences between

Table 1 Population latency values for Day 0 (original and natural log
transformed) and the slope of latency change for each subsequent day
(natural log scale)

Group Day 0 (seconds) Day 0 (log seconds) Slope (log scale)

1 100 4.60 −0.074
2 50 3.91 −0.137
3 100 4.60 −0.200
4 50 3.91 −0.263
5 100 4.60 −0.326

Note. These values were the basis for creating simulated subjects with
Day 0 latencies and latency slopes that varied around these values.
Additional measurement error was also incorporated
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groups. We settled on the current parameters because they
approximated a real data set that could not be used due to
averaging across trials, thus losing information on which trial
data had been censored. This real data set involved five con-
ditions each, with different degrees of brain injury both with
and without treatments intended to improve performance.
Thus, a brain injury could have produced much poorer initial
performance in two groups, but faster learning in a treated
group; the treatment could have improved initial performance,
but had no impact on learning; or any of a host of other pos-
sible outcomes.

Figure 2 contains violin plots of the generated sample data
in which the distribution of latencies on each day in each
group are shown (a violin plot shows the complete distribution
of observed values). It is apparent that the groups and days
differed in the likelihood with which the rats could find the
hidden platform before the deadline for removal from the
maze. Censoring on the first 2 days of testing is evident for
Groups 1, 3, and 5, for which the population mean perfor-
mance on Day 0 was 100 s.

To analyze these data, we used two censored regression
techniques that allow for logarithmic changes in latencies
(censored gamma and Weibull regressions), a technique that
allowed for logarithmic change but did not recognize the cen-
soring (gamma regression), and a standard linear regression
that also did not recognize the censoring. All four analyses
were conducted using Bayesian multilevel (i.e., repeated mea-
sures) linear regression. The goal was to depict the inference
of latencies beyond the 90-s deadline as well as any differ-
ences in each technique’s inferences regarding group param-
eter estimates and group differences.

The first censored regression technique involves the spec-
ification of a gamma distribution of the outcome variable to
capture the obvious skew in latencies that is especially evident
in Groups 4 and 5; thus, this analysis was a generalized linear
multilevel regression with censoring, with the assumption that
the unobserved latencies followed a gamma distribution (with
a log-link function to predict the mean). The second censored
regression technique specified a Weibull distribution, but was

otherwise identical to the first; this approach was explored
because initial fits with the gamma consistently overestimated
censored values. The third and fourth techniques ignored the
censoring and analyzed the data using a standard generalized
(gamma) linear model or a standard multilevel linear regres-
sion. Although these last techniques were fully expected to
underestimate the unobserved latencies that would have oc-
curred on censored trials, they provide a benchmark of com-
parison because the vast majority of analyses of Morris water
maze data do not use censored regression.

A failure to recognize censoring thus creates clear model
misspecification when censoring is present, and the linear ap-
proach is further misspecified by assuming a linear relation-
ship between day and latency when this relationship cannot be
linear (otherwise, negative latencies could be predicted). A
further question was whether ignoring the censoring would
lead to different conclusions regarding group differences than
would the two censored regressions. To ensure direct compar-
ison, all four models were conducted using Bayesian model-
ing in R’s brms package and specified weakly informed priors
for the parameters. For analysis details and brms code, see the
OSF repository for this manuscript (https://osf.io/ntgxu/).

The four panels of Fig. 3 show example individual simulated
rats and depicts the uncensored data (latencyUnobs) as well as the
censored data (latencyObs) with the best fit function derived using
each analytical technique. The censored regression techniques
are predicting unobserved latencies that are larger than the 90-s
deadline, as expected, and both tended to overestimate the actual
(unobserved) latencies. However, the gamma regression is
overestimating the actual (unobserved) latencies more than the
Weibull regression. It should be noted, however, that the uncer-
tainty of these predictions is extremely high, and thus their influ-
ence on each group’s estimates would be correspondingly much
weaker than predictions obtained from latencies that occurred
before the deadline (for more on this concept of shrinkage, see
Young, 2017). Regardless, the result prompted us to test the
scope of this overestimation, and analyses involving significantly
larger samples (e.g., 100 simulated rats per condition) produced
much better estimation of the censored latencies. Given that the
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Fig. 2 Violin plots showing the distribution of observed latencies for all of the simulated rats on each day of testing in each of the five groups. Censoring
at 90 s is evident in Groups 1, 3, and 5
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Weibull regression had a smaller tendency to overestimate with
small samples, we deemed the Weibull to be more appropriate
for the small sample sizes typical in Morris water maze studies.

There are two additional issues of importance in interpreting
these graphs. First, the linear regression both underestimates the
initial and final performance and overestimates the performance
in the middle (see Subject 26). This result is caused by trying to
fit a straight line to curved data. Second, the two models (bottom
two rows) that do not recognize that censoring has occurred will

nearly always underestimate the latencies for trials on which it
did occur.

More importantly for scientific inference, wemust consider
the estimates and fits for the groups as a whole. In multilevel
modeling, unusual data or subjects have less influence on the
model fit, but they are retained in the analysis rather than using
an often-arbitrary exclusion criterion. Furthermore, group es-
timates involving a lot of censored data should be more un-
certain (i.e., have wider error bars) due to the necessary
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Fig. 3 Superimposed fits for example rats derived from the four modeling approaches. The dashed line shows uncensored data. Each fit was generated
using a single multilevel model and not by fitting each individual rat independently from the other
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inference of unobserved latencies. The results are shown
graphically in Fig. 4 supplemented by a dashed line indicating
the fit from an omniscient gamma regression fit to the uncen-
sored (latencyUnobs) data.

A few aspects are immediately apparent. First, the esti-
mates for the standard multilevel regressions that do not rec-
ognize censoring (bottom two rows) are much lower, as ex-
pected. Second, for the censored regressions, the width of the
error ribbons (95% credible intervals) are much broader for
the conditions that involved a lot of censored data (Groups 1

and 3 and, to a lesser extent, Group 5). Third, the omniscient
fit (red dotted line) was within the 95% CI for all of the anal-
yses except for the linear regression. Fourth, the censored
regressions for groups involving significant censoring
(Groups 1 and 3) tended to overestimate the unobserved la-
tencies. Finally, the linear assumption for the standard linear
regression deviated systematically from the omniscient fit.

Figure 5 plots the 66% and 95% credible intervals for the
intercepts and slopes for each condition as computed by the
three analyses being compared. The figures include a violin
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Fig. 4 Violin plots with superimposed fits from the four modeling approaches for the five groups. The blue error region is a 95% credible interval. The
red dashed line is the best fit from a model of the uncensored data. (Color figure online)
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plot that illustrates the empirically derived complete posterior
marginal distribution of plausible values of each parameter.
Unlike the 95% confidence interval, which cannot make any
claims about the relative likelihood of each value within the
interval, the 95% credible interval (CI) provides what we in-
tuitively believe a confidence interval represents.

Intercepts

The intercept for each group (i.e., Day 0 estimated mean la-
tency) represents initial performance in the Morris water maze
on the first day of testing. Thus, this performance should not
reflect any significant learning by the subjects. In Case Study
1, three of the groups had much worse initial performance
(latencyUnobs = 100 s; see Table 1) thus simulating that they
had been subjected to an intervention like a brain injury. The
other two groups had much better initial performance with a
mean of 50 s that was much shorter than the censoring point of
90 s, although some of the simulated rats in these groups could
still have produced censoring due to simulated variability.

The first row of Fig. 5 reveals that the predicted Day 0 per-
formance (intercepts) successfully identified that the means for
Groups 1, 3, and 5, are similar and higher than those for Groups 2
and 4. The red cross in each group indicates the best fitting value
from a gamma regression based on the uncensored data (the
omniscient analysis). Three results stand out in these graphs.
First, the CIs are much larger for Groups 1, 3, and 5 for the

censored analyses (first two columns) than the uncensored ones.
Given that these three groups have encountered much more cen-
soring that the other two groups, especially onDay 0 (see Fig. 2),
it is appropriate that these estimates generated greater uncertainty
in this initial performance. Second, the censored regressions
tended to overestimate Day 0 performance in Groups 1, 3, and
5, whereas the standard gamma and linear regressions tended to
underestimate them. The degree of deviation was largest for the
standard linear regression and fell well outside the 95% CI. The
standard gamma regression fared well for all five groups, but we
must caution that its ability to extrapolate beyond the 90-s inter-
val will be very limited. Due to the censoring in Groups 1, 3, and
5, the standard gamma regression also produced artificially nar-
row CIs. Third, the CIs for the standard linear regression were
much too narrow, especially for the groups containing censored
data. This finding is expected to be quite robust and can lead to
an inflation of Type II error.

Day slopes

The day slope for each group represents the rate of learning
and should be negative if the latencies are growing shorter
with each day. All five groups were simulated to show some
degree of learning (see Table 1). In the population being sim-
ulated, the slopes should have systemically differed with the
first group, showing the shallowest slope and each subsequent
group producing increasingly more negative slopes at equally
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Fig. 5 Violin plots of the full posterior distributions of the intercept (top)
and slope (bottom) estimates from the three modeling approaches. The
dot represents the median value, the wide line the 66% CI, and the thin
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(Color figure online)
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spaced intervals. The particular random sample presented here
(red crosses) had very similar day slopes for Groups 1 and 2,
even when analyzed using an omniscient analysis, but the
other groups showed the expected increases in slope negativ-
ity that are anticipated given the population characteristics.

The second row of Fig. 5 shows the day slopes. Three results
stand out in these graphs. First, the first three analyses all gen-
erated very similar estimates and uncertainties. The CIs for the
standard gamma regression (third analysis) are slightly smaller
than the first two, but the slopes derived from the uncensored
gamma regression (the red crosses) were well within the 66%
CI for all groups for these three analyses. Second, the slopes for
the standard linear regression showed a deviation from the ex-
pected order, with Group 4 having a much flatter slope than
anticipated. This outcomewas caused by the inability of a linear
regression to adequately capture the curvature in that group—
even an omniscient linear analysis that had access to the uncen-
sored latencies showed the same tendency. Third, for the final
graph, an omniscient linear analysis based on the uncensored
latencies revealed that the linear analysis was underestimating
the slopes in Groups 3 and 5 in a way that will be a common
outcome for situations in which learning is rapid and perfor-
mance runs into a floor effect, thus flattening the slope unless
properly analyzed using a logarithmic model. Relatedly, Group
4 also has the same underestimation of this learning slope, but
this underestimation is only apparent when contrasted with the
estimated Group 4 slopes in the logarithmic relationships
modeled in the other three analyses.

To reassure the reader, the findings reported here were
typical across multiple runs of our simulation; for simplicity,
we only show the results from one of those runs. The censored
gamma andWeibull regressions performed similarly well, but
they overestimated means for those conditions involving sig-
nificant censoring relative to a gamma regression with full
access to the uncensored data (see Figs. 3, 4, and 5). This
overestimation decreases with the use of Weibull regression
and, not shown here, with the use of larger sample sizes. The
standard gamma regression performed admirably in estimat-
ing the means and slopes for the five conditions tested, with
only small underestimation of means involving censored data.
Although we caution that the degree of underestimation will
be much higher when there is more censoring (e.g., see
Subject 7 in Fig. 3), this nonlinear approach appears to work
well with modest degrees of censoring, thus confirming the
findings of Young et al. (2009).

In contrast, fitting standard linear regressions to censored
data was problematic. First, there was significant underesti-
mation of initial Day 0 performance due to both the curvature
common in learning data as well as the censoring (see Figs. 3,
4, and 5); the analysis also computed overly narrowCIs for the
intercepts. The inability of a standard linear regression to cap-
ture the curvature (and thus the anticipated floor effects as
performance rapidly improved) resulted in a misordering of

the estimated slopes across the five conditions (see Fig. 5).
Thus, standard multilevel linear regression cannot be recom-
mended given these systematic deviations in estimatingmeans
and slopes as well as the size of the CIs for means.

There is one analytic approach that we did not test here that
was included in Young et al. (2009)—treating the day variable
as categorical. We chose not to include this analysis for two
reasons. First, when testing this approach Young et al. found
much poorer sensitivity—an analysis treating day as an unor-
dered categorical variable was much poorer at correctly iden-
tifying real group differences. Second, presenting the results
of this analysis would be much more complex because the
outcome of a 5 × 10 (Group × Day) ANOVA would require
a long series of post hocs or planned comparisons in which the
five groups were compared for each of the 10 days of testing
(for further discussion of this issue, see Young, 2016).

Implications for researchers

Incorrect inferences will arise when censored data are treated
inappropriately. We consider three situations that illustrate the
consequences of inappropriate analysis of censored Morris
water maze data.

Censored regression models provide a natural way to mod-
el the uncertainty when making inferences about observations
beyond the deadline. For example, a researcher interested in
the consequences of extending the response deadline from
60 s to 90 s would be poorly served by models that both
underestimate these inferred latencies and do so with exagger-
ated certainty. An examination of the censored regressions
shown in Figs. 3 and 4 suggests that doubling the cutoff from
90 s to 180 s would capture most of the behavioral profiles
exhibited for subjects like Subjects 2 and 7, but the fits suggest
that this doubling is unlikely to eliminate all censoring. In
contrast, using the standard regressions for such inference
would not be trusted by a seasoned researcher because these
regressions suggest that even a small increase in the deadline
from 90 s to 100 s may suffice to eliminate censoring (see
Figs. 3 and 4).

Secondly, imagine a group or rat for which a bulk of the
data were censored (e.g., Subjects 2 and 7 in Fig. 3). Any
inferences regarding slope differences for similar subjects or
for entire conditions with this profile of behavior will be fun-
damentally flawed. Rather than having a high confidence that
there is no learning for Subject 7 (as suggested by the standard
gamma and linear multilevel regressions), the censored regres-
sions of this subject suggest that performance may be improv-
ing or it could be getting substantially worse over time.

Finally, the ceiling effect created by inappropriate handling
of censored data as well as the floor effect natural to latency
data both raise the possibility that interactions might be in-
ferred or missed. This issue is explained and explored in our
second case study.
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Case study 2

In this case study involving Morris water maze data, we exam-
ined the ability of these approaches to identify the presence or
absence of an interaction. In a previous study involving accu-
racy data, Dixon (2008) noted that a standard multilevel linear
regression can infer the presence of an interaction where none is
present and miss an interaction that is indeed present. This
occurs due to the presence of ceiling and floor effects when
accuracy (0 to 100%) is the outcome. Given the ceiling effect
created by censoring of Morris water maze data and the floor
effect present with latency data, we hypothesized that standard
multilevel linear regression would similarly fail, but that the use
of censored regression may eliminate the impact of the latency
ceiling at 90 s, and that the use of gamma orWeibull regression
would eliminate the impact of the latency floor at 0 s.

To illustrate why floor and ceiling effects are problematic
for linear regression, Fig. 6 shows four panels. In the first
panel in the top row, we see a situation involving two groups
learning at the same rate (these lines are parallel when plotted
in log-transformed space). In the second panel, censoring is

applied, which greatly reduces the judged slope of one of the
groups, thus creating the illusion of a Group × Day interaction
when this censoring is ignored. In the third panel (first panel in
the second row), there is a situation in which there is a clear
interaction between group and day. But the final panel illus-
trates how censoring flattens the performance of one of the
groups, thus underestimating the degree of interaction.

We simulated two data sets to illustrate each of the situa-
tions shown in Fig. 6. In the first, no interaction was present
between day and group, whereas in the second, an interaction
was present. Each data set was analyzed five ways: multilevel
Weibull and standard linear regression of the uncensored data
(omniscient analyses); Weibull censored regression; Weibull
standard regression; and standard linear regression of the cen-
sored data. All fits were derived using Bayesian analysis. The
omniscient analyses provide the benchmarks against which
the other analyses are measured; however, the standard linear
regression of the uncensored data is flawed because it cannot
fit the learning curves common to Morris water maze data.
The modeling details are provided in the OSF materials
(https://osf.io/ntgxu/).
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Fig. 6 Plots illustrating how censoring can create a spurious interaction (top two panels) or make a real interaction disappear (bottom two panels)
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Spurious interaction

In the situation illustrated at the top of Fig. 6, censoring can
make it appear as if an interaction is present when it is not.
This will occur when both groups produce similar learning
rates, but one of the groups undergoes more censoring than
the other due to a main effect of group (overall poorer perfor-
mance). A secondary factor can offset this effect when the rats
learn the tasks quickly; the linear regression for a group with
shorter overall latencies can produce flatter learning rates due
to the floor effect not being adequately modeled. In the
present simulation, we intentionally avoided significant
floor effects because it complicates interpretations of the
effect of censoring.

The top of Fig. 7 compares the model fits for the three
Weibull regressions for the uncensored data (first panel) and
censored data (next two panels; first fit is from a censored
regression), and the standard linear regression of the censored
data (last panel). The censored Weibull overestimated the la-
tencies for the group subject to significant censoring (this
overestimation also occurred in the first case study), but the
analysis documented the high degree of uncertainty for a
group with this level of censoring. In contrast, the standard
regressions produced strong underestimation of the latencies
in this group and suggest a strong interaction in which the two
groups’ learning curves diverge with additional training.

To move beyond a merely visual comparison, statistical
inferences regarding the presence of an interaction hinge on
the estimated regression weight for the Group × Day term.
The bottom of Fig. 7 illustrates the full posterior distribution
of the interaction regression weight for each of the four
fits shown in Fig. 7. The median best fitting value de-
rived from the omniscient fits are shown in each panel
using a cross symbol.

Given that the true population value is zero, both the om-
niscient and censored regressions produced posterior distribu-
tions in which zero is within the 95% CI, thus supporting the
correct conclusion that there is no interaction. In contrast, the
standard regressions produced posterior distributions in which
zero is not in the 95% CI supporting the incorrect conclusion
that an interaction exists. Because the three Weibull estimates
can be directly compared (they all entail estimating slopes in a
log-transformed space), it is noteworthy that the predicted
interaction regression weight for the standard Weibull was
nearly three times larger than that for the omniscient Weibull
regression.

Missed or weak interaction

In the situation illustrated at the bottom of Fig. 6, censoring
can make it appear as if an interaction is absent when it is
present. This will occur when both groups produce very
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Fig. 7 Top: Plots of the best fitting line from the Bayesian multilevel
analyses of data sampled from a population without an interaction in
the log-transformed space before censoring. The plot on the left repre-
sents an omniscient analysis with full knowledge of the uncensored sam-
ple values. The next three plots show analyses of data censored at 90 s.
Bottom: Violin plots of the posterior distributions of the regression

weight for the Day × Group interaction. The dot represents the median
value, the wide line the 66% CI, and the thin line the 95% CI. The
population value for this regression weight was zero; the red crosses in
each diagram represent the most likely value derived from a correspond-
ing analysis of the uncensored sample. (Color figure online)
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different learning rates, but one of the groups undergoes more
censoring than the other thus flattening its estimated slope due
to the ceiling effect.

The top of Fig. 8 compares the model fits for the three
Weibull regressions for the uncensored data (first panel) and
censored data (next two panels), and the standard linear re-
gression of the censored data (last panel). The censored
Weibull again overestimated the latencies for the group sub-
ject to significant censoring, but the analysis documented the
high degree of uncertainty for a group with this level of cen-
soring. In contrast, the standard regressions again produced
strong underestimation of the latencies in this group and sug-
gest much weaker evidence of an interaction.

We again examined the estimated regression weight for the
Group × Day term. Here, the population value was 0.10 in the
log-transformed space. The bottom of Fig. 8 illustrates the full
posterior distribution of the interaction regression weight for
each of the four fits shown in Fig. 8. The median best fitting
value derived from the corresponding omniscient fits are
shown in each panel, using a cross symbol.

Given that the true population value is 0.10 for the first
three analyses, both the omniscient and censored regressions
produced posterior distributions in which 0.10 is well within
the 66% and 95% CIs, thus producing very good estimates of
the magnitude of the interaction. Furthermore, the censored

Weibull judged a zero slope, indicating no interaction to be
highly implausible (zero was well outside the 95% CI), thus
supporting the correct conclusion that there as an interaction.
In contrast, the standard regressions produced posterior distri-
butions in which zero was at the edge of the 95% CI ([0.00,
0.10] for the Weibull) or outside the 95% CI ([0.77, 6.44] for
the linear), supporting the incorrect conclusion that an inter-
action was absent. Even though the median interaction regres-
sion weight obtained by the standard Weibull and linear re-
gressions was higher than zero (0.05 and 3.57, respectively),
these median regression weights were at best half that derived
from the corresponding omniscient analysis (0.10 and 9.75,
respectively).

Conclusions

Using two case studies, we demonstrated the behavior of cen-
sored regression as applied toMorris water maze performance
in a repeated-measures design. The censored regressions made
statistically sound inferences regarding unobserved latencies
beyond the deadline, modeled the greater uncertainty in esti-
mated latencies that had been censored, and better judged the
magnitude of an interaction.
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Fig. 8 Top: Plots of the best fitting lines from the Bayesian multilevel
analyses of data sampled from a population with an interaction in the log-
transformed space before censoring. The plot on the left represents an
omniscient analysis with full knowledge of the uncensored sample
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population value for this regression weight was 0.10; the red crosses in
each diagram represent the most likely value derived from a correspond-
ing analysis of the uncensored sample. (Color figure online)
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When there was limited censoring, a standard multilevel
gamma regression did well at estimating mean latencies,
how those latencies changed across time, and the uncertainties
in those estimates. In contrast, a multilevel linear regression
did not perform well even for conditions that involved little
censoring because it fails to capture the curvature common in
experiments in which learning occurs. Furthermore, analyzing
data that has significant censoring but using analyses that do
not incorporate that censoring produced significant underesti-
mation of latencies and artificially reduced uncertainty in the
estimates. Finally, we examined situations in which the ceiling
effect caused by censoring resulted in misestimation of inter-
actions between day of testing and an independent variable.

Censored data like those routinely encountered in Morris
water maze studies present challenges that are nicely ad-
dressed by the use of censored regression. Although the cen-
sored analysis must guess the nature of unobserved data (la-
tencies greater than the deadline), these guesses are not arbi-
trary but are rather the result of explicit assumptions about the
distributional characteristics of the latencies, the behavior of
other rats, and experience (i.e., prior experiments) concerning
the plausible range of intercepts and slopes generated in
Morris water maze experiments.

Censored multilevel regressions in which the distributional
properties of the dependent variable can be specified was only
possible through the use of Bayesian statistical methods.
Bayesian analysis allows researchers to conduct much more
sophisticated analyses than have been historically possible.
Although there are costs involving the need to learn an unfa-
miliar approach to data analysis and the greater computational
power that is necessary, the increased flexibility of the ap-
proach has many benefits beyond those considered here for
analyzing censored Morris water maze data.

One such benefit is the ability to specify a wider range of
outcome distributions. Here, we examined gamma, Weibull,
and Gaussian (normal) distributions, but there are other distri-
butions that possess the long upper tail typical of latency data,
including the exGaussian, lognormal, and shifted lognormal.
In many cases, distinguishing among these long-tailed distri-
butions may not be possible because of the limited amount of
data available. It is best, however, to choose a distributionwith
characteristics consistent with the measure to ensure that the
model cannot predict impossible values (e.g., latencies less
than zero).

Another advantage of the Bayesian approach is the ability
to perform robust regression in which unusual subject values
are not as influential as they would be in a standard regression
(Gelman et al., 2013), thus reducing the pressure to remove
“outliers.” Unusual values or subjects can be true outliers and
thus represent the operation of a different process or popula-
tion (e.g., the rat that cannot swim due to illness, the subject
who presses the same key on every trial out of boredom, the
nonnative English speaker in a reading study). However,

unusual values can also be occurring at the rate at which you
would expect given the assumed distribution of individual
differences or behavior across time; removing these values
will then distort an analysis by asymmetrically truncating a
distribution and/or artificially decreasing the observed vari-
ability (Ulrich & Miller, 1994). In the case studies considered
here, we used t distributions with three degrees of freedom for
the regression weight priors because t distributions have lon-
ger tails than normal distributions, thus making unusual ob-
servations in the tails less unusual and thus less influential in
estimating the parameters. This approach allows the retention
of unusual data while reducing their influence on group esti-
mates in an explicit and systematic way.

Given the ability to conduct repeated-measures censored
regression using Bayesian approaches in R, these techniques
are more accessible than previously possible. By placing the R
code used in the present paper in a public OSF repository, it
becomes easier for others to apply the approach to their own
data. However, although the analyses are relatively easy to run
and plots are easy to generate, the statistical output will be
unfamiliar because it lacks the ubiquitous degrees of freedom,
t values, F values, and p values that are commonly reported in
published studies. Researchers, reviewers, and editors will
need to gain greater comfort with the rich reporting of poste-
rior distributions, 95% credible intervals, and R-hat values.
The ability to address longstanding challenges like censored
Morris water maze data makes the effort worthwhile.
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