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Abstract In this article, we present our first attempt at
combining an elemental theory designed to model represen-
tation development in an associative system (based on
McLaren, Kaye, & Mackintosh, 1989) with a configural the-
ory that models associative learning and memory (McLaren,
1993). After considering the possible advantages of such
a combination (and some possible pitfalls), we offer a
hybrid model that allows both components to produce the
phenomena that they are capable of without introducing
unwanted interactions. We then successfully apply the model
to a range of phenomena, including latent inhibition, percep-
tual learning, the Espinet effect, and first- and second-order
retrospective revaluation. In some cases, we present new data
for comparison with our model’s predictions. In all cases, the
model replicates the pattern observed in our experimental
results. We conclude that this line of development is a prom-
ising one for arriving at general theories of associative learn-
ing and memory.
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Introduction

Our long-term aim is to produce a general model of asso-
ciative learning and memory that captures the processes that
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are common to both humans and infrahumans. This article
investigates the feasibility of combining elemental and con-
figural approaches to associative learning and memory as a
stepping stone toward that ultimate goal. In doing so, it also
addresses a particular computational problem: How we can
have representation development at an elemental level while
still learning in a holistic fashion? We start by considering
the problem in general and by motivating the need to find a
solution incorporating both elemental (e.g., Brandon, Vogel,
& Wagner, 2000; Estes, 1959; Harris, 2006; Mclaren, Kaye,
& Mackintosh, 1989; Wagner & Brandon, 2001) and con-
figural (e.g., Honey, 2000; Honey & Ward-Robinson, 2002;
McLaren, 1993, 1994; Pearce, 1987, 1994) forms of repre-
sentation, then move to a specific example of such a com-
bination that attempts to amalgamate the McLaren, Kaye,
and Mackintosh (1989) model (henceforth, the MKM mod-
el) of representation development with the APECS (Le
Pelley & McLaren, 2001; McLaren, 1993, 2011) model of
associative learning and memory. To anticipate slightly, the
enterprise is a successful one in the sense that the hybrid
model is able to reproduce the phenomena that can be
simulated using its components (and thus is of wider scope
than either of its constituent parts), but this outcome was not
achieved without considerable effort and overcoming nu-
merous difficulties. In the course of grappling with this
problem, we have developed a new respect for the way in
which issues multiply as the complexity of the model
increases, and we try to pass on our experience of what will
and will not work when synthesizing elemental and config-
ural approaches to learning and memory.

This represents our first attempt at combining a theory of
stimulus representation that operates at an elemental level
(that due to McLaren, Kaye, & Mackintosh, 1989; further
elaborated in McLaren & Mackintosh, 2000) with a theory
of associative learning and memory that is clearly of a
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configural nature (APECS; Le Pelley & McLaren, 2001;
McLaren, 1993, 1994, 2011). While the benchmark elemen-
tal model of associative learning over the last 40 years has
been the Rescorla and Wagner (1972) model, more recently,
results such as those from retrospective revaluation studies
and from experiments on latent inhibition and perceptual
learning have suggested that the Rescorla and Wagner mod-
el can no longer accommodate important findings in the
human (see, e.g., Dickinson & Burke, 1996, and Larkin,
Aitken, & Dickinson, 1998, on retrospective revaluation;
McLaren, 1997, McLaren, Leevers, & Mackintosh, 1994,
and Wills, Suret, & McLaren, 2004, on perceptual learning)
and animal (see, e.g., Matzel, Schactman, & Miller, 1985,
and Matzel, Shuster, & Miller, 1987, on retrospective reval-
uation; McLaren, Bennett, Plaisted, Aitken, & Mackintosh,
1994, on latent inhibition; Aitken, Bennett, McLaren, &
Mackintosh, 1996, on perceptual learning) literature. Miller
and colleagues have taken this further by assessing the
Rescorla—Wagner model against what is currently known
about associative learning and, while they find it a useful
benchmark, noting that there are a number of phenomena
that it cannot accommodate (Miller, Barnet, & Grahame,
1995). Given this, our strategy is to consider in detail two
problem domains that are appropriate test beds for the
elemental and configural model classes (we will also refer
briefly to a number of other phenomena to illustrate the
generality of our approach). One of these problem domains
encompasses retrospective revaluation, where both elemen-
tal and configural theories vie to explain the data. We will
argue that a configural approach is the more successful here.
The other focuses on representation development—in par-
ticular, the role of stimulus—stimulus associations in latent
inhibition and perceptual learning. We attempt to character-
ize what each approach can bring, computationally, to these
problem domains and then use our hybrid MKM—-APECS
model as a means of illustrating the benefits to be derived
from their amalgamation. We begin by introducing the
problem domains themselves.

Problem domain 1

Here, we are concerned with representation development, as
exemplified by phenomena such as perceptual learning,
latent inhibition, and the Espinet effect. We argue in this
article that the proper role for elemental models lies in
providing the input to configural systems, so that these
configural systems can then associate inputs to outcomes
and store the result in memory. Thus, the elemental contri-
bution is one of representation development that takes place
over time and as a consequence of experience with stimuli,
and it will come as no surprise that this is one area that we
will focus on in this article as a test domain for any attempt

to combine these two classes of theory. Our view is that
configural theories struggle to provide the mechanisms for
such basic phenomena as latent inhibition and perceptual
learning, brought about as a consequence of preexposure to
a stimulus or stimuli. Even so, configural representations
still have something to offer (e.g., in explaining recovery
effects and context effects) and can enhance our ability to
explain the full range of stimulus exposure phenomena. We
must be wary of the possibility, however, that the attempt to
combine configural and elemental theories, rather than sim-
ply delivering the sum of what each model class can do
(which would be an entirely acceptable outcome), instead
turns out to cause them to interact in such a fashion as to
introduce more problems than the combination solves. Thus,
our challenge will be, in some sense, to combine what we
see as a successful theory of representation development
with a configural approach to learning and memory without
either introducing inappropriate phenomena or losing the
ability to generate appropriate effects.

In this problem domain, the basic phenomena are well
known, and there are numerous models capable of explain-
ing them. Thus, preexposure to a stimulus will, other things
being equal, retard learning to that stimulus in the same, but not
a different, context (e.g., Lovibond, Preston, & Mackintosh,
1984), unless the context is itself familiar (McLaren, Bennett,
et al., 1994). Preexposure to stimuli that subsequently
have to be discriminated will, in some circumstances,
facilitate rather than retard acquisition of the discrimination
(see Hall, 1980, for an early review, and McLaren &
Mackintosh, 2000, for a later one). In this article, we will
focus on the relationship between these two effects, since
taken together, they pose a challenge for any unitary explana-
tion of the effects of stimulus exposure on learning. Typically,
models will explain one or the other of these effects (e.g.,
Gibson’s (1969) explanation of perceptual learning; Pearce &
Hall’s (1980) explanation of latent inhibition), and if they
attempt to explain both, will appeal to different processes for
latent inhibition and perceptual learning (e.g., Saksida’s
(1999) model of perceptual learning, which in effect combines
Pearce and Hall's alpha modulation with a nonassociative
connectionist model based on competitive learning that imple-
ments Gibson's ideas). McLaren, Kaye, and Mackintosh's
(1989) model of representation development is different in
this regard, in that it uses the salience reduction consequent on
stimulus exposure that causes latent inhibition as one of the
mechanisms that drives perceptual learning. The differential
latent inhibition of common elements mechanism for percep-
tual learning relies on the better predicted and more often
encountered shared features of a discrimination becoming
relatively less salient than those features unique to each stim-
ulus that serve as the basis for successful discrimination. This
approach to perceptual learning makes some strong predic-
tions. Clearly, the relationship between latent inhibition and
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perceptual learning should, under some circumstances,
be directly demonstrable. And we do have Rodrigo,
Chamizo, Mclaren, and Mackintosh's (1994) demonstra-
tion of both latent inhibition and perceptual learning as
a consequence of preexposure in the radial maze (see also
Prados, Chamizo, & Mackintosh, 1999; Sansa, Chamizo, &
Mackintosh, 1996) and Trobalon's as well as Bennett and
Tremain's work, as discussed in McLaren and Mackintosh
(2000, pp. 230-232), to support this analysis in rats. In the
former experiments, manipulation of preexposure to involve
the unique (landmarks at end of maze arms) or common
(landmarks in between maze arms) elements of the
discrimination led to latent inhibition in the first case and
perceptual learning in the second. In the latter experiment,
preexposure produced latent inhibition that resulted in
perceptual learning, but extended preexposure produced
more severe (i.e., near asymptotic) latent inhibition that
then eroded the perceptual learning effect. There is also
ample evidence that perceptual learning requires a diffi-
cult discrimination such that the discriminanda are suf-
ficiently similar to one another (e.g., Oswalt, 1972) and
that, if this requirement is not met, preexposure can instead
lead to a deficit in learning (e.g., Trobalon, Sansa, Chamizo, &
Mackintosh, 1991). All these results (which are predicted
by the MKM model) suggest that there is an intimate rela-
tionship between latent inhibition, on the one hand, and per-
ceptual learning, on the other.

Another prediction that follows from this model, and one
which we will focus on in this article, is that preexposure to
a category that is defined in terms of a prototype should
enhance the ability to discriminate among the members
(exemplars) of that category. We have previously shown
(McLaren, 1997; McLaren, Leevers, & Mackintosh, 1994)
that exposure to exemplars drawn from a category defined
by a prototype leads to perceptual learning, as evidenced by
an enhanced ability to discriminate between category exem-
plars after preexposure. And in pigeons, we have been
able to show that exposure to the prototype alone can
have effects similar to those predicted by the MKM model
(Aitken et al., 1996). Now, we are able to extend this result
to show that exposure to a single, prototypical stimulus has a
similar effect for humans, in that it results in faster acquisi-
tion of a discrimination between exemplars drawn from that
category (see later in this article). This result is important
because it establishes that, in some circumstances at least,
perceptual learning is not contingent on the opportunity to
compare stimuli (so as to discover the diagnostic features
required for later discrimination), ruling out models that see
this process as both necessary and sufficient for the demon-
stration of perceptual learning. It also links Gibson, Walk,
Pick, and Tighe's (1958) result in rats and Attneave's (1957)
finding in humans, that distortions of a preexposed stimulus
are easier to discriminate between than distortions of a novel
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stimulus, to the literature on how familiarization with a
prototype-defined category can enable better discrimination
between members of that category (e.g., McLaren, 1997).
Configural theories struggle (because of their holistic na-
ture) to cope with data of this type, because they strongly
suggest that some features become advantaged relative to
others as a consequence of simple preexposure. As we have
indicated, the challenge we face in this problem domain is
whether the type of elemental, associative mechanism for
latent inhibition and perceptual learning instantiated in the
MKM model can be combined with the configural account
of associative learning and memory in such a way that the
desirable features of the elemental theory are preserved and,
in addition, the conditional properties of configural models
are brought into play.

Problem domain 2

Here, we focus on studies of retrospective revaluation (RR).
In a typical RR experiment with human participants, com-
pound stimuli AB and CD are presented with reinforcing
outcomes (i.e., AB + CD+). Following this, A is presented
alone and followed by reinforcement, whereas C is pre-
sented alone without reinforcement. In the final test phase,
the causality ratings for B and D are measured, and typical-
ly, the ratings for B are found to be less than those for D. It
therefore seems that changes to the associations of B and D
with the outcome must occur during their absence in order
to account for the differences in their ratings. The effect for
B is known as backward blocking, and for D as unoversha-
dowing. We note in passing that these effects are not always
obtained, at least in animals, since sometimes mediated
extinction has been the reported consequence of following
CD + with C — that is, responding to D decreased (e.g.,
Ward-Robinson & Hall, 1996). This is, in itself, an interest-
ing result and one that we hope to return to in the future, but
for present purposes, we confine our analysis to the RR
phenomenon. The Rescorla and Wagner (1972) model has
no mechanism to allow learning about absent stimuli, but
modifications of the rule have been proposed (e.g., Van
Hamme & Wasserman, 1994), and modifications of other
theories have also been suggested (e.g., a modification of
SOP, Wagner, 1981; put forward by Dickinson & Burke,
1996) to deal with this problem, and these have met with
some success. But we do not believe that these elemental
models are viable as explanations of RR, for reasons that we
will now discuss.

One consideration that led to this decision concerned a
result—known as the Espinet effect—that is thought to be
mediated by inhibitory associations developed as a conse-
quence of preexposure (Bennett, Scahill, Griffiths, &
Mackintosh, 1999; Espinet, Iraola, Bennett, & Mackintosh,
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1995; Graham, 1999). Espinet et al. took thirsty rats and
preexposed them to distinct compound flavours, AX and
BX, on alternate days. After a single conditioning trial in
which a solution containing A alone was followed by LiCl
injection (to induce illness), the rats were slower to learn an
aversion to solution B, when solution B was subsequently
paired with LiCl injection. The authors went on to show that
solution B now acted as a conditioned inhibitor and signaled
the absence of illness, as a result of solution A being paired
with illness.

In the RR paradigm, Dickinson and Burke (1996) had
shown that reliable co-occurrence of A and B during the
initial stage, which would result in the formation of excit-
atory associations between them, was vital if RR effects
were to be obtained. But Espinet et al. (1995) showed that
alternating preexposure to AX and BX, which would result
in inhibitory associations between unique A and B flavors
(because the presence of A signals the absence of B and vice
versa), produced an effect such that conditioning A to illness
either weakened B’s association with illness or made B an
inhibitor. Both results challenged standard associative theo-
ries of conditioning, but the combination of these two results
has proved an even greater challenge to accommodate in
any one theory. Clearly, a simple negative alpha account will
not do, because if we assume that activation of a stimulus
representation due to excitatory associations will result in
learning to that stimulus, but with the opposite sign to that
obtained when the stimulus is physically present (the defin-
ing characteristic of these elemental accounts), then activa-
tion due to inhibitory associations should have the opposite
effect again—that is, produce learning in the same way as
that which would be supported by physical presentation of
the stimulus. But in both backward blocking and the Espinet
effect, the change in associative strength is in the same
direction (i.e., downward). Until recently, only Graham
(1999) had been able to construct a model that could ac-
commodate both these results. And, to the best of our
knowledge, there is no reliable evidence for inhibitory acti-
vation of a stimulus producing learning to that stimulus
analogous to that obtained when the stimulus was physically
present, as the negative alpha or modified SOP accounts
would require. For this and other reasons, then, they seem to
be contraindicated.

Furthermore, even Graham's (1999) ingenious variation
on Wagner (1978) will not accommodate the second-order
RR results that we report later on in this article. Given this,
we take the position that elemental theories of RR struggle
to accommodate the data in both humans and other animals.
We also note that Le Pelley and McLaren (2001) and, later,
McLaren (2011) were able to show that a configural theory
of learning and memory—APECS—was able to model
these RR results in a manner that is entirely independent
of any need to postulate the within-stimulus associations

that lead to conflict between findings such as the Espinet
effect and RR. It did this by interpreting RR as an effect in
memory, rather than in learning. Training either A + or A —
after initial AB + learning had the effect of altering the
retrievability of the initial configural memory for the earlier
learning to AB +, and this produced the revaluation effects.
Given that elemental theories (e.g., McLaren & Mackintosh,
2000, 2002) are able to explain the Espinet effect, we were
motivated to ask whether by combining these two theories,
one configural, the other elemental, we could arrive at a
theory that encompasses the full set of phenomena. Hence,
experiments involving the revaluation of stimuli that have
already been paired in the past, as is the case for studies of
both RR and the Espinet effect, would seem to be a useful
problem domain to consider. This domain also has the
advantage of linking back to the first problem domain we
identified, because the Espinet effect is also, in some sense,
an effect of preexposure.

We now give a brief description of each of our model
candidates (elemental and configural) in turn, with a quick
summary of what they are able to do singly. Then we briefly
consider different methods of combination and the results
that the hybrid models produce.

MKM elemental theory

We began with the basic equations taken from McLaren,
Kaye, and Mackintosh (1989) that instantiate the version of
the delta rule used in that model that lends itself to salience
modulation. Our model architecture was to have a represen-
tation layer that received input through fixed one-to-one
weights, thus providing external input to these units. In
our first version, every unit on this input representation layer
was linked to every other unit on the representation layer by
modifiable links. These links followed the MKM algorithm
in attempting to equate the internal input with the external
input to each unit in the representation layer; that is, the
links change such that the error score for a unit is mini-
mized. The activation of units in the representation layer
was computed from the input it received both externally and
internally from other units within the layer. Modulation of
unit activation was implemented by multiplying the external
input to that unit by 10 times the error value for the unit if
that error value was positive. This representation layer
(which is essentially MKM) was then linked via a hidden
unit layer to an output layer on which the target outputs are
set in the same way as for a backpropagation network. The
model was trained with 0.9 for an output unit that was on
and 0.5 for an output unit that was off. The activation of the
output layer is calculated using the standard logistic activa-
tion function, and the weights from input to hidden and
hidden to output layers changed using the generalized delta
rule (Rumelhart, Hinton, & Williams, 1986). Thus, with

@ Springer



324

Learn Behav (2012) 40:320-333

experience, the network would be able to use the input it
receives to refine its representations at input and, mean-
while, learn to link these representations to the correct output
representation.

In essence, this implements the rather simplistic approach
of grafting the MKM model onto the input of a simple
feedforward backpropagation network. This basic system
is nevertheless capable of modeling a range of phenomena,
including (but not restricted to) simple acquisition and ex-
tinction, discrimination learning, blocking, overshadowing,
overexpectation, latent inhibition and its context specificity,
recovery from latent inhibition, and perceptual learning.
These results, especially those involving perceptual learning
and latent inhibition, are not surprising, since the MKM
model was specifically developed to give an account of
these phenomena. Our next step was to introduce the con-
figural APECS component into the model by modifying the
backpropagation component of the model to produce the
architecture shown in the top panel of Fig. 1. Before we
discuss this hybrid architecture, we will introduce APECS
and briefly motivate the need for this configural component
to fully capture what we know about associative learning
and memory in humans and infrahumans.

APECS configural theory

The APECS configural theory of associative learning and
memory was introduced in McLaren (1993), further devel-
oped in the discussion contained in Mclaren (1994), and
then applied to a wide range of associative learning phe-
nomena in Le Pelley and McLaren (2001) before its most
recent refinement in McLaren (2011). The last is the version
of APECS that we will use here. Le Pelley and McLaren had
already shown that APECS could give a good account of
first-order RR, in that it produces a marked unovershadow-
ing effect and a somewhat weaker backward-blocking ef-
fect, a result that was in line with the behavioral data
reported in that and other articles (e.g., Larkin et al.,
1998). The explanation given in Le Pelley and McLaren
for the unovershadowing effect was that training A — after
AB + training led to the hidden unit carrying the AB +
mapping becoming more easily activated, because its bias
became less negative; in effect, memory for AB + training
became more accessible, more readily retrieved. This oc-
curred because after A — training, when A was no longer
presented, the equilibrium state of the network had to adjust
so that the outcome was not negatively predicted; that is, the
unit representing the outcome did not have a negative error
score because of inappropriate inhibitory activation from the
hidden unit mediating the A — mapping. In doing this, the
easiest solution for the network was to raise the bias (make it
less negative) of the hidden unit representing the AB +
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Fig. 1 Top panel: A simple combination of an elemental MKM system
acting as the input to an APECS feed-forward network. The input units
in the representation layer are completely connected to one another
(only some links are shown for clarity), and the links between units are
used to generate error scores (the difference between the external input
supplied and the internal input from other input units), which then
control or modulate the salience (activity) of each unit. These are then
used to learn the input to output mappings via the hidden units. Bottom
panel: A quite different autoassociative architecture. Once again, only
some links are shown for clarity. The input units are not connected to
one another but, instead, have counterparts on the output layer that can
be associated to and that can then feed input back to the input units
they correspond to. This is done with a fixed weighting of 0.4 times the
difference between the corresponding output unit activation due to
internal input and its resting level (0.5) in the simulations reported
here. The error score for the appropriate output unit now controls
modulation of the input unit, and this is done by increasing the external
input to the unit by a factor of 10 times the corresponding output unit
error score if that error score is positive. All links from input to output
via the hidden or configural layer are learned via APECS

mapping. This meant that later on, presentation of B on its
own was more effective in activating this hidden unit and,
hence, activating the unit representing the outcome. The
analysis of backward blocking similarly required consider-
ation of the networks equilibrium state after training (see Le
Pelley & Mclaren, 2001, for a full discussion), and these
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analyses continue to hold for the version of APECS used
here and the hybrid model we are about to consider. The
2001 version of APECS was also capable of simulating
learning to a partially reinforced CS, and predicted that there
would be no excitatory learning between two associatively
activated representations in memory, a result reported in Le
Pelley and McLaren, although contradicted by the work of
Dwyer, Mackintosh, and Boakes (1998). Successful simu-
lations of Dickinson and Burke's (1996) demonstration that
RR in a standard AB + | A + vs. CD + | C — design was
observed only when the CSs were consistently paired were
also reported. The last is noteworthy since, up to this point,
the Dickinson and Burke data were taken to indicate that RR
could occur only when there were strong between-CS asso-
ciations (brought about by their consistent pairing), but our
simulations with APECS did not require the existence of
these between-CS associations to generate the result.
APECS was also able to simulate the phenomenon of back-
ward conditioned inhibition first reported by Chapman
(1991). This uses an AB — | A + vs. CD — | C — design,
and the first treatment in terms of APECS was given in Le
Pelley, Cutler, and McLaren (2000). Larkin et al. (1998) also
showed that consistent CS pairing was a necessary condition
for this phenomenon, a result that APECS was able to
generate as well. Thus, APECS was already able to model
a wide range of RR phenomena, but subsequent develop-
ments suggested that it lacked the ability to give a full
account of RR (second-order effects), and the McLaren
(2011) version was developed to deal with this issue.

The computational principles governing the newest ver-
sion of APECS are the following:

* A new hidden unit is recruited to represent each novel
mapping of input to output. This is an automatic conse-
quence of the architecture of the model and the algo-
rithm. As an example, following AB+, A+, A — training,
typically three hidden units will have been recruited—
one carrying an AB + mapping, one an A + mapping,
and the other an A — mapping. The selected units’
learning rate parameters are set high: 0.8 for connections
to and from any active hidden unit, to 0.1 for the bias
(the bias is the weight to a hidden unit from an input unit
that is always on). Unselected units default to .0005 for
the first two parameters and .005 for the bias. Thus, a
hidden unit that has not yet been recruited to carry a
mapping has all learning rates set to near zero; that is, it
effectively takes little or no part in the learning process
(but can adjust its bias very gradually). These rules have
the following exceptions:

* Hidden units that have been recruited previously and
have a negative error score as a result, have their bias
parameter set high (i.e., 0.1), but not the other learning
parameters, which remain at .0005. The fact that the unit

was recruited previously is determined from inspection
of the individual components of error propagated back
to that unit. In this case, given an overall negative error
score for the hidden unit, an individual contribution
from an output unit that is more negative (i.e., lower)
than — .0025 is taken as the criterion.

» Ifaunit that has a positive error was previously recruited
(criterion of a positive back-propagated error component
greater than .0025 and no substantial negative error
component due to previous learning, defined as before),
then the bias is set high at .1, but not the other learning
rate parameters, which remain at .0005.

» Each trial is now followed by a posttrial learning phase
in which only biases are allowed to vary. This concept
goes beyond the simple idea that the network should
free-run during the intertrial interval (ITI). It implies
control of learning such that the network cycles between
phases of learning mappings from input to output and
then adjusting biases with no input or output so that it
reaches equilibrium.

» Each trial and each ITI involves 200 learning cycles (the
minimum that seems to be effective). All weights are
initially set to small random values.

With these changes, we can confirm that the APECS
component of the model is capable of giving simple first-
order RR effects, as well as more complex first- and second-
order effects in multiphase designs of the type we will
consider in a moment. We defer our explanation of how it
does so until then. We now evaluate the hybrid model
produced by combining this with the elemental MKM mod-
el described earlier to see whether the hybrid is then capable
of encompassing a wider range of phenomena than either
model on its own.

The hybrid model: MKM-APECS

We begin by considering the most obvious and straightfor-
ward combination of these two modeling approaches. We
have already noted that by simply using our MKM model to
provide input to an APECS network, we arrive at the archi-
tecture shown in the top panel of Fig. 1, in which all input
units in the representation layer are connected to one another
and also connected to all the units in the hidden layer, which
then connects (again completely) to the output layer. This
strategy, which certainly seemed worth pursuing, since each
component model offers something that the other lacks,
does not, as far as we are able to establish, succeed. Once
we had constructed this model, we then explored whether
the hybrid network would be capable of generating the
required RR effects and the other phenomena that we cover
in this article. We experienced some success with this
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architecture, and by varying assumptions and parameters,
we were able at one time or another to solve all the problems
presented to the model. But, ultimately, we were unable to
find a single set of parameters that would allow us to
simulate all of the effects needed for a comprehensive solu-
tion to the problem space we are considering in this article.
While we are not in a position to rule out this approach
entirely, we can say that it has not proved the most produc-
tive in our work in attempting to combine elemental stimu-
lus—stimulus models of representation development with
configural models of stimulus—outcome learning. As one
example of the difficulties we encountered with this archi-
tecture, it typically had a strong tendency to generalize
between mappings so that, rather than an unovershadowing
AB + | A — design producing stronger responding to B, it
often actually caused it to decline, relative to control con-
ditions. This was directly attributable to the stimulus—stim-
ulus associations formed by the MKM component of the
model, since, if these were turned off, the model was able to
demonstrate unovershadowing. This was not entirely unex-
pected; while we had hoped that stimulus—stimulus associ-
ations would help as far as second-order RR effects were
concerned (and they did), it had always seemed to us that it
might have problematic implications for the first-order
effects. Our experience in working with this architecture
was that if we managed to find parameters such that we
got either of the necessary first- and second-order effects,
then this was at the expense of losing the elemental salience
modulation properties of the hybrid, which defeated the object
of the exercise.

Accordingly, we moved to the second version of our
hybrid model architecture, shown in the bottom panel of
Fig. 1. Instead of simply bolting MKM onto the front end of
APECS, this approach required more integration between
the two models at a conceptual and algorithmic level. The
concept underpinning this architecture is that the model is a
combination of the standard stimulus—outcome mapping
architecture used in APECS with an autoassociative com-
ponent that, in effect, allows for stimulus—stimulus associa-
tions. Changes in these associations are driven by the
APECS algorithm in the same way as for other associations
(i.e., via the hidden [configural] layer), but they give rise to
associatively activated input on the representation layer and
are also used to generate the error term that controls modu-
lation of the input units' salience (i.e., the units’ activation).
The figure attempts to illustrate this computational arrange-
ment explicitly by showing that the representation layer
connects to a section of the output layer that simply repli-
cates the input layer and uses the inputs to set target activa-
tions. But note that it could just as easily (and more
elegantly) depict this architecture as simply involving links
back from the hidden layer to the representation layer, as
long as the computations were handled in the same way. We
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hope that the “unpacked” illustration provided helps readers
understand how the computations are done, but the more
concise recurrent architecture (shown later in Fig. 6) is the
one that motivated this approach. The error at these outputs is
then used, on a one-to-one basis, to control modulation of the
input units in the representation layer, and the activation of the
output unit corresponding to a given input unit is used to
determine the internal input delivered to the input unit. The
last is responsible for the associative activation of input units
even when no external input is applied to that particular unit.
We have found that this system works well and seems to
incorporate the best features of both models. We now demon-
strate how it deals with a variety of problems that we have
tested it on and, in particular, how it fares when asked to cope
with our data on RR, latent inhibition, and perceptual learning.

Simulations and experiments
Model and parameters

For details on model implementation, please consult the
primer in the online repository that accompanies this arti-
cle. The issue of what are "free" parameters in the model is
itself an interesting one. In some sense, none of them are
free. They vary adaptively, yes, but once set, this adaptation
is carried out by the model. We used the same parameter
settings throughout our simulations, rather than changing
them to produce a better fit to a given problem. If, however,
we were asked how many parameters could meaningfully
be varied to create different versions of this model, then,
including constraints such as the number of input, hidden,
and output units, learning rates, criteria, and so forth, the
answer would be about 12. The residual uncertainty in this
estimate stems from difficulty in deciding what should be
counted as a parameter in the model. For example, we used
an architecture with 10 input units, 20 hidden units, and 14
output units, of which 10 corresponded to the input units.
How many of these (fairly arbitrary) decisions count as
"free parameters"? In what follows, we present some of
the simulation results obtained with this model. Space
constraints prevent us from considering all the simulations
we have run, but we do attempt to indicate other results
where possible.

Retrospective revaluation

We begin with RR, since we have already indicated that this
proved problematic for earlier hybrids. The first thing we
established was that the model had no difficulty in produc-
ing unovershadowing and (to a lesser extent) backward
blocking (these first-order RR effects are contained within
the data presented when we consider second-order effects).
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Thus, it did not suffer from the problems attendant on our
initial attempt at hybridization. Then we moved on to con-
sider first- and second-order RR effects in combination. To
illustrate how we did this, we will introduce the results of a
recent experiment in some detail and then go on to show
how the model copes when asked to simulate them.

In our experiment, the participants are presented with
four experimental problems and four filler problems. In each
problem, they are shown whether Mr. X has an “allergic
reaction” after eating particular foods or if he “feels fine.”
There are three food/food pairs within each problem, and
they are presented in three distinct learning phases such that
all the presentations from one phase are made before mov-
ing on to the next (although the participants were unaware
of this division into phases). The design is shown in Table 1
below. The first two problems (1 and 2) are what we call
forward designs. The last two (3 and 4) are the RR prob-
lems. The fillers were chosen to balance up the positive (+ =
"allergic reaction") and negative (— = "feels fine") outcomes
at each stage. Each learning phase presented each of the
problems (and fillers) 6 times. Meals were presented one at a
time, and the participants had to decide whether an allergic
reaction would occur or not. Feedback was then given so
that they were able to learn the correct response for each
meal by trial and error. At the end of all the learning phases,
there was a final rating phase in which each food was
evaluated individually on an 11-point scale for its likeliness
to provoke an allergic reaction, with 0 being very unlikely to
do so and 10 being very likely.

The results of this study with 32 participants for the RR
problems (3 and 4) are shown in the top panel of Fig. 2.

We can see that, in contrast to the results reported by De
Houwer and Beckers (2002) and by Melchers, Lachnit, and
Shanks (2004), the second-order effect here for food C is in
the same direction as that for the first-order effect for food
B. We have investigated this matter further to ascertain the
conditions under which we are able to obtain their results
and have discovered that running essentially the same ex-
periment using a questionnaire-based protocol, with exactly
the same problems but with all the phases for a given problem

Table 1 The design of the allergy prediction experiment demonstrat-
ing first- and second-order retrospective revaluation effects. Training
took place in three distinct phases to four problems and was by means
of trial (participants predicted the outcome) and error (they then

available on the same page (thus minimizing memory load for
our participants), would allow us to obtain the result reported
by De Houwer and Beckers and by Melchers et al. That is, the
A — condition (unovershadowing, problem 1) leads to a higher
rating for B than does the A + condition (backward blocking,
problem 2), but now this effect reverses for the second-order
cue C. Our conclusion is that, in these circumstances, when
memory load is low and all components of the problem are
available for inspection, rational inference produces this pat-
tern of results. But in cases where memory load is a real
factor (e.g., the computer-based version of the experi-
ment described earlier) and ratings are taken at the end
after the learning phases, the second-order result is quite
different. This is clearly an important finding for our
purposes, because it implies that explaining this second-
order effect should not fall within the scope of an
associative theory, and we would argue that the results
reported by De Houwer and Beckers and by Melchers et
al. may well have been produced by something other
than an associative mechanism and, so, should not be
modeled by an associative mechanism. Instead, this
demonstration of second-order RR can be captured by
a theory that posits a process of symbolic inference on
the part of the participants. Taking the BC + | AB + |
A + problem, if they reason that, since A is paired with
and predictive of the outcome on its own, then, starting
from this point, they can chain back and (assuming
perfect memory for the other compounds) infer that B
does not have to be (since A was there), generating a
first-order effect when tested, and that C (other things being
equal) has at least as good a chance of being predictive of the
outcome as B. If we now consider the BC + | AB + | A —
problem, A is now definitely not predictive of the out-
come, so B is; hence, C is less likely to be. Thus, the
second-order effect observed by De Houwer and Beckers
and by ourselves can be generated by these heuristics
(and our participants explicitly claimed to be using
them), which produce the correct pattern of effects
observed in the data. Our requirement here, however,
is for MKM-APECS to be able to model the type of second-

received feedback). Filler problems were used to equate the occurrence
of compound and singleton cues and the two outcomes ("allergic
reaction" and "feels fine"). Ratings were taken at the end of training
phase 3

Learning Phase 1 Phase 2 Phase 3

Problem Food codes Reaction Food codes Reaction Food codes Reaction
1 A - AB + BC +

2 D + DE + EF +

3 MN + oM + (e} +

4 PQ + RP + R -
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Fig. 2 Ratings data (see text) for our second-order retrospective re-
valuation design (top panel) and the simulation using the hybrid model
(bottom panel). The top panel shows that the rating (high = outcome
more likely, maximum value = 10) for A + is much higher than that for
A — (low value = outcome less likely, minimum value = 0) and that the
first-order RR effect on B is for its rating in the A + condition
(backward blocking) to be lower than in the A — condition (unover-
shadowing). The second-order effect on C is similar, although numer-
ically larger. The simulation results give scores that represent the
fraction of the total possible activation of the output unit representing
"allergic reaction," using the resting state as a baseline. Thus 0 implies
no learning, and 1 is the maximum score. The pattern of results
parallels those of the empirical data

order RR effect found in the computer-based high memory
load version of the experiment, as well as the first-order effects
already considered.

The bottom panel of Fig. 2 gives our simulation results
for this design. The pattern is very much the same as that in
our data, with the output unit activation (the model's equiv-
alent of a rating) highest for the unovershadowing condition
for both B (first-order effect) and C (second-order effect). In
both cases, the RR effect is significant, smallest F(1, 31) =
4.15, p < .05, with, if anything, the larger effect for the
second-order case, although this does seem to be a some-
what parameter-dependent result. As McLaren (2011) noted,
the last finding (which we have replicated) would call into
question theories and models that rely on chained associa-
tive activation of stimulus representations to drive retrospec-
tive revaluation, because if this were the case, the activation
of B by presentation of A must inevitably be stronger than
that of C and, so, the effect should be greater for B than for
C, which we do not observe to be the case. An explanation
of how APECS can produce this pattern of results is already
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available in McLaren (2011), so we will give only a brief
characterization here. We start by noting that the addition of
the MKM component to this model does not now seem to
have hindered its ability to continue to produce this effect.
In essence, APECS produces revaluation effects by first
setting up configural representations of BC + and AB +
and then altering their accessibility as a result of experienc-
ing either A + or A—. If A + occurs, then the effect is for the
unit carrying the mapping from A and B to + to become
harder to activate—in effect, the memory of that learning
has become harder to retrieve. This has the consequence that
the ability of B to activate this unit and so activate the US
representation is reduced. This first-order effect (backward
blocking, in this case) is paralleled by a similar second-order
effect. The unit carrying the mapping for BC + is also
rendered less accessible, and so the effect for C is in the
same direction as that for B.

The Espinet effect

One challenge that we posed for our model in the Introduc-
tion was to succeed in generating appropriate RR effects
but, also, to produce an Espinet effect. Our next step was to
present exactly this problem to the model. We used a design
in which stimuli AX and BX were preexposed, either all AX
before BX or vice versa. Then we conditioned A and tested
B. We used this blocked design (even though it is a weaker
variant than the original intermixed design) because the
results are more informative, but note that we do obtain an
Espinet effect with intermixed presentations of AX and BX.
The results of this simulation are shown in Fig. 3 (bottom
panel). The AX followed by BX condition produced signif-
icantly negative responding (i.e., an inhibitory effect) when
B was presented after A had been conditioned. Control (A
conditioned after no preexposure) and BX exposed before
AX conditions produced little or no effect. This is very
much in line with our and others’ work on the Espinet effect
designed to look at the issue of training order (for examples,
see Espinet et al., 1995; Graham, 1999) and suggests that we
have captured this phenomenon in the model. Our explana-
tion of this effect is based on preexposure setting up a
negative link between representations of B and A such that
B inhibits A. If A is conditioned, the negative input to the
representation of A when B is subsequently presented lowers
its activation, which in turn lowers input to the unit represent-
ing the outcome, allowing it to take activation below its
normal resting level.

Perceptual learning
The top panel of Fig. 3 shows the complementary results

obtained for preexposure to AX and BX either in the
blocked fashion used for the Espinet effect simulations
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Fig. 3 Top panel: Results of a simulation of preexposure to AX and
BX in either blocks or alternation, followed by conditioning of AX and
testing of BX. This time the response measure given is a discrimination
ratio so that higher scores indicate better performance: 0 means no
learning, and 1 is the maximum possible. Controls were simply con-
ditioned to AX without preexposure. Both preexposure conditions
show higher (better) scores than does the control, but alternated pre-
exposure is significantly superior to blocked. Bottom panel: Results of
a simulation of the Espinet effect. AX and BX are preexposed (either
AX | BX or BX | AX), and then A is paired with the outcome. Testing
to B reveals no learning for the control (nonpreexposed) and little for
BX | AX conditions but a weak (although significant) negative dis-
crimination ratio for the AX | BX condition, indicating that, in this
case, B has become inhibitory

(the results given are averaged across the AX followed
by BX and the BX followed by AX conditions) or
using alternated preexposure to these two stimuli (as
well as a control condition that had no preexposure),
but with preexposure followed by conditioning to AX
rather than just A, and testing to AX and BX. The
result is that blocked preexposure produces better per-
formance in discriminating between AX and BX than is
obtained in the control condition but alternated preex-
posure leads to better discrimination still. We believe
this to be the first demonstration of such an effect by
simulation, and it fits well with demonstrations of such
an effect (e.g., Hall, Blair, & Artigas, 2006; Mitchell,
Nash, & Hall, 2008). The mechanism here seems to be
one that could explain the finding reported by Hall and
Rodriguez (2009), characterized by Hall (2003, 2009) as
alternated preexposure leading to associative activation
of the unique components of the stimuli, which allows
for some restoration of the loss in salience to these
components that would otherwise have occurred. The
outcome is that X suffers from greater differential latent
inhibition (relative to A and B), and the discrimination
between AX and BX is more easily acquired.

We must acknowledge, however, that there are other
theories of perceptual learning—typically, those based
on the principles put forward by Gibson (1969) and
involving an appeal to comparison processes (see, €.g.,
Mundy, Honey, & Dwyer, 2007)—that already exist
within a configural learning framework and can also
account for these basic phenomena. Our response is to
offer some new data that we believe require salience
reduction mechanisms for their explanation, in conjunc-
tion with a demonstration of our model's ability to
simulate them. The procedure used with our human
participants was simple enough. They were preexposed
to a novel checkerboard and then later required to
discriminate between two new distortions of that now
familiar checkerboard. Performance on this discrimina-
tion was compared with performance on two novel
distortions of an unfamiliar checkerboard that were ac-
tually the experimental stimuli for one of the other
participants in the experiment. We ran 32 participants
in this experiment, and their ability to learn to discrim-
inate between checkerboards was assessed by means of
putting pairs of checkerboards on screen and asking
them to learn which was the S+ by trial and error.
The results are shown in the top panel of Fig. 4. We
can see that there is an advantage for the preexposed
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Fig. 4 Top panel: Results of the checkerboard preexposure experiment
reported in the text. Discrimination between the two distortions of this
preexposed checkerboard leads to a higher proportion of correct
responses (the measure shown, chance = 0.5, 1 = perfect) than with
the control pair of stimuli derived from a novel checkerboard. Simula-
tion of this result was done by preexposing to AX, then training a
discrimination between BX and CX. Bottom panel: The results. Again,
a discrimination ratio is used such that 0 denotes no learning and 1
perfect acquisition
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checkerboards in acquisition of the discrimination, which
reaches significance, F(1, 31) = 3.1, p(one-tailed) < .05. The
result is important because, since the participants were
exposed to only one checkerboard from the hypothetical
category that the test exemplars were drawn from, it is
difficult to see how some comparison-based mechanism for
perceptual learning could produce this result. The result is
analogous to that obtained by Aitken et al. (1996) with
pigeons and by Mundy et al. in one of their experiments with
faces. The bottom panel of Fig. 4 shows our simulation of this
study. In this simple simulation, we attempted to capture the
essential nature of the checkerboard design by preexposing to
AX, then training a discrimination of BX versus CX. The
pattern is very much the same, with an advantage for the
preexposed stimuli. We are able to claim, then, that our model
can demonstrate perceptual learning in situations in which
there has been no basis for comparison between stimuli drawn
from the to-be-discriminated class. As far as we are aware, this
class of model is the only one that can generate this result for
this particular experiment, and it does so by reducing the
salience of the common X element between BX and CX as a
result of the earlier AX preexposure.
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Fig. 5 Top panel: Results of a latent inhibition experiment carried out
by McLaren (1990), in which stimuli were preexposed in one context
and then conditioned in the same (preexposed) or different (different
context) context. Controls received no preexposure. The measure
shown is CS—PreCS photocell counts for magazine entry in a licking
procedure. Bottom panel: Simulation of this experiment. The scores
represent the fraction of the total possible activation of the output unit
representing reward (0 = no learning, 1 = maximum). The preexposed
condition shows latent inhibition in both empirical and simulated data;
a change of context disrupts this (although not completely)
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Latent inhibition

Our final simulation is of preexposure causing latent inhibi-
tion, and the effect of a change of context on this preparation.
The design is simple: Stimulus A is preexposed in a
context S and then conditioned either in the same con-
text (AS|AS+) or in a different context (AS|AD+) that is
equally familiar (preexposed on its own). The control condi-
tion simply removes the preexposure phase. This version of a
latent inhibition experiment has the advantage of allowing us
to analyze what the model is doing. Simulation results are
shown in the bottom panel of Fig. 5 and indicate that condi-
tioning is slower when preexposure and conditioning take
place in the same context, but that this effect is greatly ame-
liorated by a change in context, although there is still a small
but detectable retardation in acquisition, relative to controls.
Our explanation for this effect is that the autoassociative
learning of the representation of the stimulus in a particular
context leads to salience reduction (less activation) for that
representation, which leads to slower learning of the stimulus—
outcome association when it is trained. Changing context
means that the hidden unit responsible for carrying the autoas-
sociative mapping is now no longer activated to the same
extent; hence, the salience reduction is less, and learning of
the stimulus—outcome mapping proceeds more rapidly. The
top panel of Fig. 5 shows some lick-conditioning data from

Auto-Associative APECS / MKM
Hybrid Model Architecture

INPUT
Fixed input links

Representation layer

Modifiable links in
both directions

O
Q)

I I Fixed output to
response & target

activation input

Hidden (configural) layer
Modifiable links

Output (outcome) layer

OUTPUT

Fig. 6 The final MKM—APECS hybrid model architecture. Only some
connections are shown for clarity, but all input units connect to all
hidden units, and the hidden units connect back to all the input units
via separate modifiable connections. Thus, the model auto-associates
to the input layer but also allows for separate associative links between
input and output
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rats that were collected by McLaren (1990) in a similar design.
The animals had been preexposed to tones and lights in one
context and were then conditioned to lick for water to the CS,
in either the same or a different context. Control animals were
not preexposed to the stimuli. The conditioning measure is the
square root of the difference between pre-CS and CS entries to
the magazine. The pattern is similar to that in the simulation
(especially given that there has been no attempt to "fit" the
data in any of these simulations).

Conclusions

Our primary conclusion is that it is possible to combine the
principles behind MKM and APECS successfully. A corol-
lary is that this was not as straightforward a task as might
initially have appeared to be the case! The most obvious
combination failed to deliver the performance needed, and
only by moving toward a more sophisticated model that
integrated the conceptual principles of both components in
a different (but ultimately elegant) fashion were we able to
finally overcome these difficulties. There may well be a
lesson for us here, that a simple, additive approach to
modeling is not the way forward, but instead the challenge
will be to construct an appropriate framework that allows us
to make use of tried and tested ideas in new ways.

The architecture that we finish with as a result of our
investigations is the one shown in Fig. 6. This is the autoas-
sociative MKM—-APECS hybrid given in the bottom panel
of Fig. 1, expressed in its most elegant form. It simply
requires an additional set of reciprocal connections from
the hidden layer back to the input layer to function and
delivers the stimulus—stimulus based representational capa-
bilities of MKM along with the ability to learn stimulus—
outcome associations in the way that APECS can. The
computations required remain exactly as described already,
and so there is a need to distinguish between external input
and "internal" input to the input units, but, with this proviso,
the system is a simple one and the architecture is straight-
forward to implement.

We have been able to show that this hybrid model is
capable of replicating some of the notable successes of
MKM (latent inhibition and perceptual learning, the Espinet
effect) and APECS (first- and second-order RR), with the
advantage that these phenomena can now be explained by
means of one model rather than two. The challenge for us
now is to both predict new phenomena by means of new
simulations and to develop the model so as to accommodate
the effects of stimulus history (we intend to add an imple-
mentation of Mackintosh's [1975] alpha model to this in
much the way that Suret and McLaren [2005] did to MKM;
see McLaren & Dickinson, 1990, for a discussion of this
point) and to make it real-time rather than trial driven, as it is

at present. Another area that will need investigation is
whether the representational approach taken in McLaren
and Mackintosh (2002) and further developed in Livesey and
McLaren (2007, 2009, 2011) is required to allow us to
explain the representation of stimuli that show dimen-
sional variation leading to effects such as peak shift. We
are currently unsure how this investigation will turn out. On
the one hand, the computational techniques used in
McLaren and Mackintosh (2002) allow for a relatively
assumption-free approach to the issue of how to represent
dimensional variation and allow us to maximize the represen-
tational resources available to an elemental model. But we are
conscious that some of this machinery may be redundant when
taken in the context of a hybrid model that has configural
capabilities. A careful assessment will be needed to arrive at a
solution to this issue that will preserve representational power,
forestall unwanted interactions between model components,
and meet our criteria for elegance and simplicity of integration
that have proven useful guides in getting us to this point.
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