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Abstract Identification of distinct units within a contin-
uous flow of human action is fundamental to action
processing. Such segmentation may rest in part on
statistical learning. In a series of four experiments, we
examined what types of statistics people can use to
segment a continuous stream involving many brief, goal-
directed action elements. The results of Experiment 1
showed no evidence for sensitivity to conditional proba-
bility, whereas Experiment 2 displayed learning based on
joint probability. In Experiment 3, we demonstrated that
additional exposure to the input failed to engender
sensitivity to conditional probability. However, the results
of Experiment 4 showed that a subset of adults—namely,
those more successful at identifying actions that had been
seen more frequently than comparison sequences—were
also successful at learning conditional-probability statis-
tics. These experiments help to clarify the mechanisms
subserving processing of intentional action, and they
highlight important differences from, as well as similari-
ties to, prior studies of statistical learning in other
domains, including language.
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We draw inferences and make predictions about others’
actions on a daily basis, and these tasks are supported in
part by our ability to segment continuous action into
discrete units. Past research has demonstrated that one
source of information people can use for segmentation lies
in the statistical regularities present within an action stream
(Baldwin, Andersson, Saffran, & Meyer, 2008; Swallow &
Zacks, 2008). A question left unanswered by this research,
however, is the precise type of statistical information people
capitalize on for segmentation purposes. Prior studies of
statistical learning in other modalities have clarified that
both infants and adults are sensitive to conditional-
probability statistics, a higher-order statistic encoding the
likelihood with which one element predicts the presence of
another (Aslin, Saffran, & Newport, 1998; Aslin et al.
2001; Fiser & Aslin, 2001, 2002a, 2002b; Graf Estes,
Evans, Alibali, & Saffran, 2007). The present experiments
addressed whether a similar sensitivity to conditional
probability subserves action segmentation. In this study,
we also assessed learning of another type of statistic, joint
probability. Joint probability is a distinct type of statistic
expressing the frequency with which elements co-occur.

Segmentation of action rests fundamentally on the ability
to recognize when one action has ended and another has
begun. Evidence suggests we usually accomplish this with
a high degree of ease and consistency. When asked to note
the onsets and offsets of events, people typically report
dynamic human action as consisting of units corresponding
to initiation or completion of goals, with considerable
agreement across individuals regarding where action
boundaries are located (Baldwin & Baird, 2001; Hard,
Tversky, & Lang, 2006; Zacks, 2004). Further, action
segmentation is a seemingly spontaneous, automatic, and
relatively effortless process, engaged in as an ongoing
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component of perception (Hard, Recchia, & Tversky, 2011;
Saylor & Baldwin, 2004; Speer, Swallow, & Zacks, 2003;
Zacks & Swallow, 2007; Zacks, Tversky, & Iyer, 2001).
The ease with which we recognize action units, however,
belies the complexity of the action itself and, by extension,
our ability to analyze it. Careful consideration of human
action suggests that it is, in fact, an unquestionably
complex stimulus. Even mundane, everyday intentional
action frequently lacks pauses or other clear markers of when
a goal is completed and another initiated; instead, human
action unfolds in a fairly fluid manner (Newtson & Enquist,
1976). Further, the visual scene is frequently complicated
and busy, with access to a full action unit frequently blocked
by the presence of other, occluding objects. The dynamic,
complex, and continuous nature of action thus, in principle,
poses a considerable challenge for segmentation.

The ability to analyze human action in terms of
intentions likely draws heavily from top-down inferences
regarding an actor’s desires and beliefs, as well as from
knowledge of social roles, one’s own past experience with
the action, object affordances, and other world knowledge
(see, e.g., Schank & Abelson, 1977). For example, imagine
being in a restaurant and watching a waiter deliver food to a
nearby table. Familiarity with the waiter’s goal of deliver-
ing the correct food to the diners, past experience with
actions involved in serving food, and an understanding of
the need to balance the plates while serving the diners all
aid us in recognizing the onsets and offsets of individual
action units. Use of inferences regarding goal states or
mental states on the part of the actor are unlikely to account
for the entire story behind action segmentation, however;
for instance, even infants lacking sophisticated knowledge
about goals and intentions are capable of segmenting
simple action streams (e.g., Baldwin, Baird, Saylor, &
Clark, 2001). A number of researchers have offered ideas
on what sources of information might be used by bottom-up
mechanisms in the service of segmentation, including such
features as movement, color, sound changes, and the

statistical regularities characterizing the unfolding of events
in the action stream (e.g., Avrahami & Kareev, 1994; Baird
& Baldwin, 2001; Baldwin et al., 2008; Baldwin & Baird,
2001; Hard et al., 2011; Hard et al., 2006; Newtson,
Engquist, & Bois, 1977; Tversky, Zacks, & Hard, 2008;
Zacks, 2004; Zacks, Kumar, Abrams, & Mehta, 2009).

In the present experiments, we address in detail one of
these candidate mechanisms, which is specifically sensitiv-
ity to statistical regularities among small motion elements.
To illustrate, imagine being asked to identify individual
action units performed by a person cooking a meal. Even
without extensive prior knowledge of cooking or food
preparation, basic statistical learning processes could enable
detection of which elements belong to the same action,
simply by virtue of being sensitive to the statistical
structure characterizing the stream of smaller motion
elements (e.g., grasp knife/chop vegetable might be two
small motion elements that occur with statistical regularity,
allowing them to be detected as one unit). Detection of
statistical structure could allow for linkage of the smaller
parts, promoting segmentation at a higher level of analysis
without requiring extensive top-down knowledge of inten-
tions or goals.

In this article, we examine two specific types of statistics
that might be tracked—namely, joint probability and
conditional probability. Whereas joint probability expresses
the likelihood with which multiple events co-occur,
conditional probability provides predictive information
relating the likelihood with which one event will occur,
given the presence of another event. To illustrate how joint
and conditional probabilities might differ in the structure of
an everyday stream of actions, consider a sequence of
kitchen events, including Event A (stirring soup), Event B
(tasting the soup), Event C (chopping a vegetable), Event D
(rinsing a dish), and Event E (seasoning the soup). Assume
that one needs to stir the soup throughout the cooking
process, such that Event A (stirring) occurs more frequently
than any of the other events.

A      B          D          A          C         A          D          E          B 

stir      taste         rinse          stir chop        stir rinse        season       taste 

In an event chain such as this one, the joint
probabilities P(A, B) and P(E, B) are equal, because AB
and EB both occur together one time across the sequence
of events. However, the conditional probability of B given
E, or P(B|E), is higher than the conditional probability of
B given A, or P(B|A), because E is perfectly predictive of
B, whereas A is not. That is, all occurrences of E are

followed by B, but A is followed by other elements in
addition to B (see also Fiser & Aslin, 2002a, for a similar
explanation of the distinction between joint and condi-
tional probabilities).

What implications might this have for action segmenta-
tion? It is arguably the case that the actions of seasoning
and tasting the soup (Events E and B, respectively) are
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more motivated by a single overarching goal of perfecting
the taste of the soup, whereas the actions of stirring and
tasting the soup (Events A and B) seem less linked by a
common goal. A mechanism sensitive to conditional
probability would detect seasoning and tasting as being
part of a larger unit; on the other hand, a mechanism
sensitive only to joint probability would not be able to take
into account the predictive information, instead treating
stirring/tasting and seasoning/tasting as equivalent.

The distinction between conditional probability and joint
probability has long been a focus of the learning literature
more generally, with work in the nonhuman domain
demonstrating that animals’ associative learning typically
reflects conditional-probability learning (i.e., learning of
predictive relationships) rather than mere sensitivity to joint
probability (i.e., learning of co-occurrence frequencies; see,
e.g., Rescorla & Wagner, 1972). More recent work with
humans has also examined conditional-probability learning
distinct from joint-probability learning, and we review this
work in the following section.

Statistical learning in other domains

A largely analogous inquiry into segmentation skills within
the language domain has already established that people are
sensitive to the conditional probabilities among syllabic units.
Present even in infancy, this skill is believed to be one source
of information that, among other things, helps infants segment
the continuous speech stream into words. In the first
demonstration of infants’ sensitivity to the statistical structure
of syllables, Saffran, Aslin, and Newport (1996a) exposed
infants to a series of syllables that occurred in wordlike
groups of three (“words”). After listening to these syllables
repeated in a continuous speech stream, infants were given
the opportunity to listen to sequences whose average
conditional probabilities were 1.0 (i.e., a word) or sequences
whose average conditional probabilities were less than 1.0.
Infants preferred to listen to the latter, suggesting that they
deemed these sequences more novel than the words they had
segmented during exposure. However, as the authors later
noted, infants may also have been responding to another
statistical regularity—namely, the co-occurrence frequencies
of syllables (Aslin et al., 1998). Specifically, because each
word was presented an equal number of times in the
exposure corpus, words not only had overall higher
conditional probabilities among the syllables that comprised
them, but also occurred more frequently than any other
trisyllabic sequence. Since the frequency of co-occurrence
was higher for syllables comprising words than for other
sequences, infants may have been responding to this
difference in joint probability rather than computing condi-
tional probabilities.

Aslin et al. (1998) resolved this issue by controlling for
the frequency with which test sequences were heard during
exposure. They found that after exposure, infants again
preferred to listen to the sequences with lower average
conditional probabilities, as in the original Saffran et al.
(1996a) findings. Crucially, however, the sequences that
infants discriminated between had been presented the same
number of times during exposure. This study thus unam-
biguously demonstrated that infants were able to compute
conditional probabilities across a continuous speech stream
and to discriminate sequences whose conditional probabil-
ities differed.

Related work has demonstrated that adults are also
capable of statistical learning. By asking participants to
report which of two sequences was more familiar (analo-
gous to the familiarity/preference measures used for the
infancy work described above), studies have indicated that
adults can use statistical regularities to segment speech
(Saffran, Newport, & Aslin, 1996b), musical tones (Saffran,
Johnson, Aslin, & Newport, 1999), and visuomotor
sequences (Hunt & Aslin, 1998). Although these studies
did not directly address whether adults were computing
conditional probability, joint probability, or both, other
research has suggested that adults are indeed sensitive to
conditional probability independent of co-occurrence fre-
quency. Adults compute conditional probabilities both in
spatial configurations of shapes (Fiser & Aslin, 2001) and
in shape sequences (Fiser & Aslin, 2002a), evidenced by
their reporting of sequences characterized by higher
conditional probabilities as being more familiar than
frequency-balanced comparison sequences. Taken together
with the infancy findings of Aslin and colleagues (Aslin et
al., 1998; Aslin et al., 2001; Fiser & Aslin, 2002b; see also
Graf Estes et al., 2007, for a replication with speech),
research has suggested that sensitivity to conditional
probability is a robust mechanism that persists across
development and can function in multiple modalities.

Statistical learning in action

Prior investigations of statistical learning in other modali-
ties thus seem to suggest that discovery of higher-level
action units is likely also enabled by sensitivity to
conditional probabilities that relate successive events to
one another. Given that conditional-probability learning has
been demonstrated across a wide range of modalities (aural
and visual), a variety of input types (syllable sequences,
shape sequences, and shape configurations), and diverse
ages (infant and adult), it seems highly likely that similar
learning abilities would exist for action processing. Empir-
ical demonstration of such an ability, however, is neverthe-
less important, given the implications for current theories of
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event processing. For instance, Zacks and colleagues (e.g.,
Kurby & Zacks, 2008; Zacks, Speer, Swallow, Braver, &
Reynolds, 2007) have proposed the event segmentation
theory, an account of how the human observer perceives
and conceptualizes action in terms of events. A crucial
component of event segmentation theory rests on the
observer’s ability to make predictions about upcoming
actions. Such prediction generation is considered an
implicit, spontaneous, and online process that integrates
incoming sensory information with prior knowledge and
learning in an attempt to create a stable “event model.”
Zacks and colleagues (e.g., Zacks et al., 2009; Zacks et al.,
2007) have described a variety of cues, both top down and
bottom up, that might feed into such a predictive system;
importantly for the purposes of this article, statistical
information capturing sequential dependencies among events
is one such proposed source of information. Specifically,
Zacks and colleagues theorized that information about
statistical regularities in action would be incorporated as one
component of a relatively stable model, which in turn would
influence a person’s online processing of an event.

In event segmentation theory, prediction is proposed to
be uniquely important in signaling the onsets and offsets of
individual events. Event units correspond to periods in
which predictability is high, the observed action is
consistent with the predictions being made by the process-
ing system, and the event model is stable. For example,
within the event of cleaning off plates at the kitchen sink,
the predictive system is able to generate accurate predic-
tions of further plate cleaning based on such cues as the
person’s movements and prior knowledge about kitchen
clean-up. Event boundaries, in contrast, are experienced
when predictability is low; to extend the example above,
such boundary moments are likely to occur at the
completion of a task (e.g., cleaning off plates in the
kitchen) and before the initiation of another task (e.g.,
wiping the countertop), because these moments correspond
to a reduced ability to predict the onset of the second event.
Importantly, predictability would thus partly be determined
by action that was inconsistent with prior knowledge of
statistical regularities; when a stream of action is consistent
with previously learned statistical information (e.g., clean-
ing a plate would typically be followed by cleaning another
plate), predictability would be high, whereas seeing action
inconsistent with this statistical information (e.g., cleaning a
plate would not typically be followed by wiping a
countertop) would lead to the perception of a boundary. A
system fundamentally dedicated to prediction would likely
benefit from conditional-probability information, as this
type of statistic is itself reflective of the predictive
relationships among elements. It remains an open question,
however, what type of statistical information is actually
computed by the human observer of actions.

Explorations of conditional-probability learning for actions
also bear on issues related to statistical learningmore generally.
Debate exists regarding the degree to which statistical learning
reflects a single, domain-general mechanism. Some research-
ers have pointed to findings of similar learning abilities across
modalities as support for a domain-general approach. For
example, Kirkham, Slemmer, and Johnson (2002) suggested
that evidence found in prior research for visual statistical
learning in infants mirroring auditory learning (e.g., Saffran
et al., 1996a) is evidence for a domain-general mechanism.
On the other hand, dissociations in learnability depending on
modality have also been discovered and have been used to
argue for modality-specific mechanisms. For example,
Conway and Christiansen (2005) compared learning success
for artificial grammars across three different modalities:
touch, vision, and audition. While they found learning in all
three modalities, learning was superior in the auditory
modality; furthermore, participants were more sensitive to
items presented near the end of exposure, relative to those
near the beginning of exposure, for auditory learning,
whereas the opposite was true for tactile learning. The
authors argued that this constitutes evidence for separate,
modality-specific mechanisms. In a similar vein, other studies
have suggested that rule learning of speech is easier than
learning in other modalities and that speech is thus privileged,
with the learning mechanism itself possibly adapted for
speechlike input (Marcus, Fernandes, & Johnson, 2007).

One question that arises from these findings that is
particularly germane to this debate is whether mechanism
differences per se contribute to the observed dissociations
across modalities, or rather whether a single mechanism
produces different outputs based on input stimulus differ-
ences. This question was, for instance, integral for Gebhart,
Newport, and Aslin (2009), who examined learning for both
adjacent and nonadjacent dependencies in auditory non-
speech noise learning. The striking similarity between the
overall patterns of learning in their study and the patterns
seen in past studies of speech learning led these researchers
to suggest that statistical learning likely operates fundamen-
tally similarly across a range of materials. These researchers
also found, however, that participants required much more
exposure to the nonspeech noise elements in order to learn
the statistics, relative to the exposures required in past
studies of speech learning. Gebhart et al. attributed this
difference not to the existence of separate mechanisms,
though, but rather to the unfamiliarity or reduced encod-
ability of the nonspeech stimuli (see also Saffran, Pollak,
Seibel, & Shkolnik, 2007, for a similar argument in rule
learning). While our study is not intended to directly address
the issue of the domain specificity of statistical learning,
discerning fundamental similarities and differences in the
processing of other types of stimuli, such as human actions,
is an important contribution to the issues outlined above.
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Overview of the present study

Past work in the action domain has already provided some
initial findings regarding people’s ability to detect statistical
regularities in human actions. Baldwin et al. (2008) studied
adults’ segmentation of a novel stream of action, making use
of a methodology similar to that already used in speech
(e.g., Saffran et al., 1996b), and they found largely similar
patterns of learning for actions relative to what had been
demonstrated for speech and other modalities. Because the
present study employs a very similar methodology, a more
in-depth description of their stimuli is in order. Participants
watched a sequence of continuous human object-directed
action featuring 12 small motion elements (SMEs). SMEs
were grouped into four sequences, henceforth referred to as
actions, with each action consisting of three SMEs (e.g.,
Action 1, stack/poke/drink; Action 2, blow/touch/rattle).
Actions were randomly ordered in a continuous fashion to
construct an exposure corpus. The conditional probability
among SMEs within an action was 1.0 (e.g., for Action 1,
stack was always followed by poke, which in turn was
always followed by drink). However, when adjacent elements
crossed action boundaries, creating a part action, the average
conditional probability decreased (e.g., the conditional
probability among rattle/stack/poke was on average lower,
because rattle was not perfectly predictive of stack—that is,
P(stack | rattle) was less than 1.0). During test, participants
were shown action/part-action pairs and asked to determine
which was more familiar. Participants displayed a systematic
tendency to select actions as more familiar than part actions,
suggesting that they had segmented the stream based on the
statistical regularities inherent in the action stream.

Baldwin et al. (2008) provided a clear demonstration that
people can use statistical learning to segment human action.
Baldwin and colleagues’ design, however, like that of many
other statistical learning studies (including Saffran et al.,
1996a, as described above), did not control for the frequency
of co-occurrence of small motion elements comprising the
actions versus the part actions. Rather, sequences with
higher conditional probabilities (actions) also occurred more
frequently during exposure than the comparison part-action
sequences. It is thus ambiguous whether, in making
judgments between actions and part actions, adults were
responding based on their computation of conditional
probabilities among small motion elements, or rather to the
higher joint probabilities (co-occurrence frequencies) of the
small motion elements comprising the actions.

We addressed this ambiguity in a series of four experiments
in order to determine the type of statistic—conditional and/or
joint—that people are capable of using for action segmenta-
tion. In all experiments reported in this article, participants
watched an exposure corpus of continuous action consisting of
concatenated three-unit actions (e.g., Action 1: stack/poke/

drink). During a subsequent test phase, three-unit sequences
were presented in pairs (actions vs. part actions in Experi-
ments 1, 3, and 4, and actions vs. other actions in Exp. 2).
Participants were then asked to report which sequences were
more familiar. In Experiment 1, participants were exposed to
action sequences constructed in such a way as to control for
co-occurrence frequency during test (cf. Aslin et al., 1998). In
this way, we were able to investigate participants’ ability to
segment solely based on conditional probability. In Experi-
ment 2, we probed participants’ sensitivity to a different type
of statistical regularity—namely, joint probability information
available from co-occurrence frequencies of small motion
elements. To anticipate, participants did not appear to learn
conditional-probability statistics in Experiment 1, but they
did show evidence of sensitivity to joint probability. Thus, we
designed Experiment 3, which was similar to Experiment 1
in assessing conditional-probability learning, but this time
provided participants with more exposure to the statistically
structured input. Finally, Experiment 4 assessed both joint-
and conditional-probability learning in a within-subjects
design, enabling us to address whether individual perfor-
mance on both types of learning was related.

Experiment 1

Experiment 1 controlled for the frequency of actions and
part actions presented during test, enabling an assessment
of segmentation based solely on sensitivity to conditional
probability. Specifically, it featured an exposure corpus in
which half of the actions were presented twice as frequently as
the other two, allowing for selection of a subset of part actions
(i.e., part actions consisting of elements from the more
frequent actions) that occurred with the same frequency as
the low-frequency actions. Test trials featured these part-
action sequences compared with the low-frequency actions;
these pairings thus featured identical joint probabilities (co-
occurrence frequency), but the part actions had lower average
conditional probabilities than the actions. The selection of
actions as more familiar than part actions would thus imply
sensitivity to conditional-probability statistics.

Method

Participants A total of 32 students at a large Northwest
university (24 female, 8 male) received class credit for
participation.

Materials Following previous studies of human action
segmentation (e.g., Baldwin et al., 2008), we filmed 12
individual object-directed motions, termed small motion
elements (SMEs). Each individual SME featured a female
actress manipulating a glass bottle (see Table 1 for the full
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list). Each SME started and ended with the actress in the
same position, enabling concatenation of SMEs in any
order to result in the appearance of continuous and
physically plausible intentional motion. SMEs were
grouped into four actions, with each action consisting of
three randomly selected SMEs (e.g., in one exposure
corpus, the four actions were Action 1, empty/clean/under;
Action 2, feel /blow/look; Action 3, drink/twirl/read; and
Action 4, rattle/slide/poke).

In order to enhance the continuity of the motion stream,
transitions between individual SMEs, both within and
across actions, were smoothed using the Overlap transition
in iMovie (Version 5.0.2). SMEs were also doubled in
speed in order to create a corpus length that was
manageable for our participants. Doubling the speed in this
way yielded an action stream that appeared natural, though
at a high rate of speed. We then created an exposure corpus

(Corpus 1) approximately 24 min long that contained 120
(i.e., high-frequency) tokens of two actions, Actions 1 and
2, and 60 (i.e., low-frequency) tokens of the other two,
Actions 3 and 4. Actions were randomly ordered, with the
exception that no action could follow itself. We also
identified certain sequences for use in test called part
actions, which were sequences of three SMEs that spanned
the action boundaries (see Fig. 1 for an example).

It should be noted that while the SMEs themselves had
clear underlying intentions and were thus meaningful (e.g.,
stack, poke, drink), the actions they comprised (e.g., stack/
poke/drink) were arbitrary and without obvious intentional
content at the higher-order level of the triad. Put another
way, actions contained no greater degree of intentional
content than did part actions, meaning that rich top-down
knowledge regarding intentional content was not available
to aid recognition of action segments. However, in order to

SME Description

Empty bottle is turned over as if to pour into open hand

Clean flat hand wipes top of bottle

Under bottom of bottle is examined

Feel index finger touches side of bottle in an up-and-down motion

Blow bottle is lifted to mouth and blown into

Look bottle is lifted to face and interior examined

Drink bottle is lifted and tipped into mouth as if drinking

Twirl bottle edge is lifted from table and spun around

Read finger traces over label and bottle is lifted from table as if to read

Rattle bottle is lifted close to ear and shaken

Slide bottle is pushed forward on the table and returned

Poke index finger is inserted and removed from top of bottle

Table 1 Small motion elements
(SMEs) in Experiments 1, 2, 3
and 4

Fig. 1 Still frames excerpted from a sample portion of the continuous action stream from Exposure Corpus 1. The actions displayed (in black
frames) are empty/clean/under and feel/blow/look; the bracketed part action clean/under/feel spans an action boundary
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avoid the concern that certain sequences were, just by
chance, a priori more readily segmentable, we created three
more exposure corpora using a control implemented in past
studies to address the same concern (e.g., Aslin et al., 1998;
Baldwin et al., 2008; Saffran et al., 1996a). Namely,
actions from Corpus 1 served as part actions in Corpus 2,
and vice versa. We further counterbalanced which actions
occurred with high frequency and which with low frequen-
cy during exposure, such that high-frequency actions in
Corpus 1 were low-frequency actions in Corpus 3 (and vice
versa; i.e., low-frequency actions in Corpus 1 were high-
frequency actions in Corpus 3), and high-frequency actions
in Corpus 2 were low-frequency actions in Corpus 4 (and
vice versa; i.e., low-frequency actions in Corpus 2 were
high-frequency actions in Corpus 4).1 The actions and part
actions from all corpora, as well as their frequencies, are
listed in Table 2.

Pairs of SME triads were selected for discrimination
during test. In each pair, one sequence was an action, and
the other was a part action (i.e., a sequence that spanned an
action boundary). Recall that in previous studies of action
segmentation (e.g., Baldwin et al., 2008), part actions
featured both lower average conditional probabilities and
lower frequencies than their comparator actions, making it
impossible to determine the type of statistic that allowed
participants to differentiate actions from part actions. In the
present study, the frequency difference between high- and
low-frequency actions (e.g., Actions 1 and 2 vs. Actions 3
and 4 in Corpus 1) allowed us to control for SME co-
occurrence frequency by selecting only actions and part
actions that were likely to have equal numbers of
occurrences during exposure (see Aslin et al., 1998, for a
similar methodology). That is, we selected part actions
consisting of elements from the high-frequency actions
(e.g., the part-action sequence clean/under/feel comprised
elements from the high-frequency actions empty/clean/
under and feel/blow/look in Corpus 1); these part actions
were likely to occur 60 times during exposure, the same
frequency as the low-frequency actions. (By way of
example, consider the 120 occurrences of the high-
frequency action empty/clean/under. Half of the time, this
was likely to be followed by the high-frequency action feel/

blow/look, a quarter of the time by the low-frequency action
drink/twirl/read, and a quarter of the time by the other low-
frequency action, rattle/slide/poke. Thus, the predicted
frequency of the part-action sequence clean/under/feel was
60, equal to the frequencies of the low-frequency actions.)
We exhaustively paired the two frequency-balanced part
actions with the two low-frequency actions to create four
frequency-balanced test trials. We then reversed the order of
presentation of each of these four pairings, to produce a
total of eight test trials. Test trials were randomly ordered,
with the exception that no test trial could directly follow its
reverse-order counterpart (e.g., a trial comparing drink/
twirl/read and clean/under/feel could not be followed by a
trial comparing these same clips in the reverse order—that
is, clean/under/feel and drink/twirl/read).

Procedure Participants were randomly assigned to one of
four exposure corpora and instructed to watch the corpus.
In order to ensure their attention to the exposure corpus,
participants were told that they would be asked questions
about what they saw after the exposure; however, no further
information was provided about the nature of the task, and
thus any statistical learning that might occur was unsuper-
vised. Immediately after the end of the exposure corpus, we
provided participants with two practice forced choice trials
to accustom them to the testing format. Practice trials
featured a pair of action sequences in succession (separated
by a black screen displayed for 1,500 ms). The trials were
separated by a 5,000-ms interval in which participants saw
written instructions on the screen prompting them to make a
response. The test actions were similar in length to the
actions and part actions, but the sequences used in the
practice trials were entirely different from those seen during
exposure and were performed by a different actor. Partic-
ipants were instructed simply to choose one of the two
action clips at the appropriate prompted response time,
basing their decision on any standard they wished.
Immediately after the practice trials were over and
participants’ understanding of the testing format was
verified, the actual test phase began, and we asked
participants to identify which of two clips was more
familiar to them based on their previous viewing of the
exposure corpus.

Results and discussion

Segmentation based on conditional probability would be
demonstrated by greater-than-chance selection of actions
as more familiar than part actions. Since the actions and
part actions presented during test were frequency bal-
anced, any systematic selection of actions would not be
possible based on joint probability information, but
instead could only be enabled by conditional probability

1 As a final check that certain sequences were not perceived as more
coherent or intentional than others, at the end of the session we asked
a subset of the participants from Experiment 4 (n = 25) whether they
had noticed any sequences as being more coherent than others. The
majority of participants (60%) answered in the negative; the remaining
participants mentioned certain sequences, but excepting two reports
that clean cohered well with drink, the sequences that participants
generated differed from one another. Thus, no sequences were
strongly identified as appearing more coherent than others, alleviating
concerns regarding the possibility of a priori segmentation of certain
sequences.
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computation. Across the eight test trials, however,
participants did not discriminate actions from part actions.
Mean action selection did not differ from chance levels
(M = 57.81%, SD = 30.40), t(31) = 1.45, p = .16 (see

Fig. 2). Additionally, only 17 of the 32 participants
selected actions more frequently than part actions (i.e.,
five or more out of eight trials), which was not significant
by a binomial test, p = .86.2

Results from Experiment 1 indicated that participants did
not reliably differentiate actions from part actions based on
conditional probability. These null results raise the possi-
bility that previous findings of adults’ action segmentation
were due to participants’ sensitivity to joint-probability
information. That is, in prior demonstrations of statistical
learning of action, participants may have recognized actions
as more familiar based simply on the fact that they had
occurred more frequently during exposure, rather than
computing the conditional probabilities across sequences.
Experiment 2 provided a direct test of whether adults are
indeed capable of computing joint-probability information
in continuous action and using it in the service of
segmentation.

= different from chance, p < .05

Fig. 2 Mean action selections in Experiments 1, 2 and 3. The error
bars represent ± 1 standard error. *Different from chance, p < .05

2 As expected, one-way ANOVAs demonstrated that performance did
not significantly differ across exposure corpora in this experiment or
in Experiments 2, 3, and 4 (all ps > .05); thus, we have collapsed
across exposure corpora in reports of the analyses.

Table 2 Frequencies and conditional probability information for actions and part actions in Corpora 1 and 3 and Corpora 2 and 4b

Actions and Part Actions Frequencies Conditional Probabilitya Frequencies Conditional Probabilitya

Corpora 1 and 3 Actions Corpus 1 Corpus 3

Empty/clean/under 120 60

Feel/blow/look 120 60

Drink/twirl/read 60 120

Rattle/slide/poke 60 120

Corpora 1 and 3 Part Actions Corpus 1 Corpus 3

Clean/under/feel 60 0.5 12 0.2

Blow/look/empty 60 0.5 12 0.2

Read/rattle/slide 12 0.2 60 0.5

Poke/drink/twirl 12 0.2 60 0.5

Corpora 2 and 4 Actions Corpus 2 Corpus 4

Clean/under/feel 120 60

Blow/look/empty 120 60

Read/rattle/slide 60 120

Poke/drink/twirl 60 120

Corpora 2 and 4 Part Actions Corpus 2 Corpus 4

Empty/clean/under 60 0.5 12 0.2

Feel/blow/look 60 0.5 12 0.2

Drink/twirl/read 12 0.2 60 0.5

Rattle/slide/poke 12 0.2 60 0.5

a Only conditional probabilities < 1.0 are provided within the table. These statistics refer to the likelihood with which an element within an action
would appear with the element outside the action—for instance, for the part action clean/under/feel in Corpus 1, in which clean and under are part
of one action and feel is part of a separate action, P(feel | under) = .5. Elements that are part of the same action predict one another perfectly (i.e.,
feature conditional probabilities of 1.0).
b The frequencies of part-action sequences provided here are predicted based on the frequencies and ordering of the action sequences; because
sequencing in the exposure corpora was accomplished via randomization, actual frequencies of part actions varied slightly from those given here.
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Experiment 2

If individuals are indeed sensitive to joint (rather than
conditional) probabilities in action, we would expect such a
sensitivity to enable adults to discover the segmental
structure within the same exposure corpora used in
Experiment 1. Thus, in Experiment 2, we employed the
Experiment 1 exposure corpora, but participants were asked
during test to report whether high-frequency actions were
more familiar than low-frequency actions. Such a compar-
ison allowed us to keep conditional probability constant
(i.e., the conditional probabilities for elements in both high-
and low-frequency actions were 1.0), while varying joint
probability (co-occurrence frequency) information.

Method

Participants A total of 32 university students who had not
participated in Experiment 1 (14 female, 18 male) received
course credit for participating in the study.

Materials and procedure The same four exposure corpora
were used as in Experiment 1, but different test sequences
were selected. Specifically, we exhaustively paired every
high-frequency action (120 tokens during exposure) with
every low-frequency action (60 tokens during exposure),
resulting in four test trials. We then reversed the order of
presentation of each trial to create a total of eight test
trials. As in Experiment 1, the order of the test trials was
randomly determined, except that no pair could directly
follow its reverse-order counterpart. Exposure and test
were identical to those aspects of Experiment 1, except
that the test trials now featured high- and low-frequency
actions.

Results and discussion

Sensitivity to joint probability would be demonstrated by
participants reporting high-frequency actions to be more
familiar than low-frequency actions. Across the eight test
trials, participants did indeed discriminate high-frequency
actions from low-frequency actions, reporting high-
frequency actions as more familiar, M = 62.11%, SD =
30.20 (see Fig. 2) at levels significantly greater than would
be predicted by chance, t(31) = 2.27, p = .03, Cohen’sd =
0.40. Of the 32 participants, 21 chose the high-frequency
action more frequently (five or more times out of eight
trials) than the low-frequency action, which was not
significant by a binomial test, p = .10. This nonsignificant
result was unanticipated, but nevertheless the group
performance compared against chance clearly demonstrated
joint-probability sensitivity.

Together, the results from Experiments 1 and 2 suggest
that while participants were sensitive to joint probabilities
in sequences of human action, they were unable to segment
action based on conditional probabilities. These findings
are at odds with studies of statistical learning in other
modalities, in which sensitivity to both joint and condition-
al probabilities has been demonstrated (e.g., Aslin et al.,
1998; Fiser & Aslin, 2001, 2002a, 2002b; Graf Estes et al.,
2007; but see Toro & Trobalón, 2005, in which a similar
discrepancy was reported in rats—namely, demonstration of
joint-probability but not conditional-probability learning in
speech sounds).

What might explain the discrepancy between past
studies of human statistical learning and our results? One
possible answer lies in findings that learning of condi-
tional probability requires more exposure to the statisti-
cally input than does learning of joint probability (e.g.,
Fiser & Aslin, 2002a; Graf Estes et al., 2007). Perhaps
participants in Experiment 1 did not receive enough
exposure to the input to allow for extraction of the
higher-order conditional-probability statistics, suggesting
that segmentation via conditional probability might be
possible given more extensive exposure to the action
stream.

Experiment 3

To address the possibility that participants in Experiment 1
had not received enough exposure to the action stream to
extract conditional-probability statistics, in Experiment 3
we modified the procedure from Experiment 1 in one way:
We constructed longer familiarization corpora. As in
Experiment 1, we tested participants’ discrimination of
actions from frequency-balanced part actions, and success-
ful discrimination would be indicative of conditional-
probability learning.

Method

Participants Another 32 university students who had not
participated in Experiment 1 or 2 (17 female, 15 male)
received course credit for participating in the study.

Materials and procedure Four exposure corpora were
created using the same actions as in Experiment 1, and
the same part actions were also chosen for use during test.
Actions that had occurred 120 times in Experiments 1 and 2
now occurred 180 times in Experiment 3, and actions that
had occurred 60 times in Experiments 1 and 2 now
occurred 90 times. The increase in action frequencies
resulted in corpora that were approximately 35 min in
length, an 11-min increase from Experiments 1 and 2.
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In order to enact a procedure directly comparable to
that used in Experiment 1 except for the change in length
of the exposure corpora, we again presented participants
with the same order of frequency-balanced action and part-
action pairings used in Experiment 1. Experiment 3
procedurally was thus a direct replication of Experiment
1, and any success in action segmentation based on
conditional probability would suggest that the null results
seen in Experiment 1 were due to an insufficient amount
of exposure to the action stream. Exposure and test were
thus entirely identical to those aspects of Experiment 1,
except that the exposure corpus was approximately 11 min
longer.

Results and discussion

As in Experiment 1, learning of conditional probability
would be indicated by above-chance selection of actions
over part actions. The selections did not differ from chance
levels, however. The mean action selection was 47.27%
(SD = 27.08), t(31) = −0.57, p = .57 (see Fig. 2). Only 11
participants selected actions more frequently (on five or
more of eight test trials) than part actions, which did not
significantly differ from chance levels according to a
binomial test, p = .11.

The failure to find significant above-chance selection
of actions in Experiment 3 appears to confirm the
findings observed in Experiment 1, namely that adults
are not able to segment human action according to
conditional-probability information. Despite the addition-
al exposure time, participants’ selection of actions actually
decreased (although this decrement was not a significant
change from Experiment 1, t(62) = 1.47, p = .15). Thus
far, then, the assembled evidence across the present
experiments indicates that adults display sensitivity only
to lower-order joint-probability information in human
action but do not learn conditional probabilities in action.
Alternative explanations, however, should be considered.
The average mean action selection exceeded 50% in
Experiment 1, in which participants were tested on
conditional-probability learning with a shorter, less atten-
tionally taxing exposure time. Although the result was not
significant, the fact that actions tended on average to be
selected as more familiar than part actions hints at the
possibility that at least some individuals were successfully
computing conditional probabilities and responding on
this basis. Moreover, it is possible that segmentation
based on conditional probability might be demonstrated if
we were to increase exposure time even more than was
done in Experiment 3. However, given the marginal
decrease in performance observed after our original
decision to lengthen the exposure corpus, we designed
Experiment 4 to investigate conditional-probability learn-

ing in a way that did not require participants to watch
longer sequences of actions.

Experiment 4

Experiment 4 included test pairings that allowed us to
address conditional-probability learning in a new way.
Recall that in Experiments 1 and 3, participants saw only
frequency-balanced actions and part actions at test, and in
the test phase of Experiment 2, they saw only pairings of
actions with one another. This approach allowed for
separate assessments of conditional probability and joint
probability across experiments. In Experiment 4, however,
we exhaustively paired all actions with part actions at test.
This produced a subset of frequency-balanced pairings as
well as pairings in which actions had appeared more
frequently than part actions—that is, “frequency-unbal-
anced” pairs. The logic behind this design was as
follows: If segmentation in frequency-unbalanced trials
is accomplished only on the basis of sensitivity to joint
probability (the conclusion seemingly warranted by the
data from Exps. 1, 2, and 3), performance on the
unbalanced trials should not relate to performance on
trials in which systematic action selection would require
extraction of conditional probabilities (i.e., frequency-
balanced trials). That is, a “joint-probability-only account”
would predict that performance on frequency-unbalanced
trials would be independent of performance on frequency-
balanced trials. If, on the other hand, a relationship were to
be found between performance on the two types of trials,
this would suggest that joint probability sensitivity did not
solely contribute to people’s past successful detection of
actions. To address these alternatives, we examined the
relationship between performance on frequency-balanced
and frequency-unbalanced trials.

The joint-probability-only account also entails a more
specific prediction that is important for the present study:
If indeed joint probability is the only statistic being
computed by participants, individuals who tend to select
actions at higher rates on frequency-unbalanced pairings
should still be at chance when assessing action selection
on frequency-balanced pairings. That is, if actions were
selected based only on sensitivity to joint probability
information in the frequency-unbalanced pairings, one
would not expect to see similarly high rates of action
selection on the frequency-balanced pairings, because
joint probability could not be used to detect actions on
the latter type of trial. This prediction is an important
corollary to the general idea that a joint-probability-only
account entails a lack of relationship on frequency-
balanced and frequency-unbalanced trials, because it
allows for a direct and unambiguous analysis of
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conditional-probability learning by providing an opportu-
nity to compare action selection against chance. Specifi-
cally, we planned an analysis to examine action selection
against chance on frequency-balanced trials in individuals
performing above versus below the median discrimination
on frequency-unbalanced trials.

Method

Participants A total of 32 university students (20
female, 12 male) who had not participated in any prior
studies of statistical learning received class credit for
participation.

Materials and procedure We used the same 25-min
exposure corpora used in Experiments 1 and 2. For test
trials, we exhaustively paired every action with every part
action, resulting in a total of 16 test trials with four
frequency ratio differences; 4 trials apiece featured actions
that were ten times, five times, and two times more frequent
than the comparison part actions—hereafter referred to as
the 10×, 5×, and 2× trials, respectively—as well as the 4
frequency-balanced pairs—hereafter referred to as the equal
trials (see Table 3). We thus used the same frequency-
balanced test trials employed in Experiment 1 (though we
did not reverse the order of presentation), and we
additionally featured frequency-unbalanced test trials in
which actions were more frequent than their comparator
part actions. Exposure and test were identical to those
aspects of Experiments 1, 2 and 3, except that there were 16
test trials featuring both frequency-balanced and frequency-
unbalanced pairs.

Results and discussion

Our first analysis examined participants’ overall discrimi-
nation of actions as more familiar than part actions,
independent of frequencies. A one-sample t test revealed
that actions were selected at significantly above-chance
levels (M = 67.19%, SD = 18.58), t(31) = 5.23, p < .001,
Cohen’sd = 0.93. Of the 32 participants, 24 selected actions
more frequently (on 9 or more of the 16 test trials) than part

actions, which was statistically significant by a binomial
test, p < .01.

In order to evaluate whether there was any evidence of
learning based on conditional probabilities, we next
restricted analyses only to the four trials in which actions
and part actions were equally frequent during exposure.
Here, similar to the results from Experiments 1 and 3, we
did not find any evidence of segmentation based on
sensitivity to conditional probability; on the contrary,
participants were unsystematic in their selection of actions
(M = 54.69%, SD = 31.39), t(31) = 0.85, p = .41. Also,
only 14 participants chose actions more than half of the
time (i.e., on more than two of the four test trials), which
was not significant by a binomial test, p = .60.

We now turn to the primary analyses of this experiment,
an examination of performance on frequency-balanced
pairs in relation to performance on frequency-unbalanced
pairs. A joint-probability-only account would predict no
relationship, because action selection on frequency-
unbalanced trials would be enabled solely by joint-
probability learning, and recognition of actions on
frequency-balanced trials would not benefit from this
ability. In contrast, a positive relationship would suggest
that participants’ overall above-chance action selection was
not due solely to joint-probability learning. We first
examined whether average action selection on frequency-
balanced trials was correlated with action selection on
frequency-unbalanced trials. A Pearson correlation revealed
a significant positive relationship, r(30) = .47, p = .007.

The fact that a positive correlation existed between
action selection on frequency-balanced and frequency-
unbalanced trials argues against the idea that people are
only sensitive to joint probabilities in action. The presence
of this relationship motivated the second analysis, in which
we examined action selection on frequency-balanced trials
of individuals who were above versus below the median on
selections of actions in frequency-unbalanced trials. Again,
the logic of our analysis was as follows: If action selection
on frequency-unbalanced trials were due only to joint-
probability learning, we would still expect to see at-chance
performance in the frequency-balanced trials. This is not,
however, what we observed. Instead, we obtained clear
evidence for conditional-probability learning. The mean
action selection in the equal (frequency-balanced) trials for
individuals above the median on unbalanced trials was
70.0% (SD = 27.06), which was significantly greater than
chance, t(14) = 2.86, p = .01, Cohen’sd = 0.74 (see Fig. 3).
Additionally, action selection was significantly above
chance in all other pairings as well (an unsurprising result,
given that we were selecting above-median performers on a
task demonstrated to already feature overall greater-than-
chance performance): In 10× trials, the mean action
selection was 90.0% (SD = 15.81), t(14) = 9.79; in 5×

Table 3 Small motion element co-occurrence frequency trial types in
Experiment 4

Co-Occurrence Ratio of Action
to Part Action

10× 5× 2× Equal

Action frequency 120 60 120 60

Part-action frequency 12 12 60 60
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trials, selection was 91.67% (SD = 12.2), t(14) = 13.23; and
in 2× trials, selection was 80.0% (SD = 25.53), t(14) = 4.94,
all ps < .001 (see Fig. 3).3

In contrast, individuals scoring at or below the median on
frequency-unbalanced trials did not show above-chance
action selection in the equal trials, M = 41.18% (SD =
21.23); this performance did not differ from chance levels, t
(16) = −1.24, p = .23 (see Fig. 3). As well, above-chance
action selection in the below-median individuals was only
seen when actions were ten times more frequent than part
actions (M = 67.65%, SD = 21.22), t(16) = 3.43, p = .003.
Action selection on 5× trials (M = 54.41%, SD = 23.78) and

2× trials (M = 50.0%, SD = 21.65) did not differ from chance
levels, t(16) = 0.77 and 0, respectively; ps > .05 (see Fig. 3).

Taken together, these results suggest that a certain subset of
individuals—namely, those selecting actions at high rates in the
frequency-unbalanced trials—were in fact sensitive to condi-
tional probability. The overall significant selection of actions
over part actions was thus not due solely to joint-probability
learning; 4 the findings clearly indicate that conditional-
probability learning is achieved by some individuals.

General discussion

The present experiments addressed what types of statistics
people can extract from a stream of dynamic human action,
with a specific focus on two distinct types of statistical
information—namely, joint and conditional probability.
Whereas joint probability can be calculated via sensitivity to
co-occurrence frequencies of multiple events, conditional-
probability learning in our study required extraction of
predictive relationships among multiple dynamic human
actions. We found positive evidence for both types of
learning, although conditional-probability learning was seen
in only a subset of our participants.

Notably, we did not obtain evidence for conditional-
probability learning from the traditional experimental

4 Figure 3 displays decreasing performance as the frequency of actions
relative to part actions decreases, hinting at a role for frequency in
contributing to the findings in Experiment 4. There were indeed
differences across trial types (10x, 5x, 2x, and equal) in above-median
individuals, F(3, 42) = 4.14, p = .01, as well as below-median
individuals, F(3, 48) = 3.22, p = .03. Contrasts revealed significant
linear trends for both the above-median, F(1, 14) = 7.93, p = .01, and
the below-median, F(1, 16) = 8.59, p = .01, individuals, with rates of
action selection decreasing as the ratios of action:part-action frequen-
cy decreased. While it might thus appear that the observed linear
trends are due to decreasing action frequencies relative to the
comparator part actions, this conclusion is not definitively warranted.
The conditional-probability statistics were not equal for all part actions
used in the test trials. Specifically, for pairings in 10x and 5x trials,
conditional-probability statistics for the part actions were on average
lower than those for the part actions in 2x and equal trials. Using part
actions from Corpus 1 as an example, the part actions clean/under/feel
and blow/look/empty (used in 2x and equal trials) on average would
have higher conditional probabilities than read/rattle/slide and poke/
drink/twirl (used in 10x and 5x trials), because the likelihood of under
being followed by feel, and of look being followed by empty, was .5,
whereas the likelihood of read being followed by rattle, and of poke
being followed by drink, was .2.

The appropriate test of the role of joint probability assesses
learning in paired comparisons between 10x and 5x, as well as 2x and
equal, trials, because conditional probability statistics were constant
within the 10x/5x and 2x/equal groupings. Here, though, paired-
samples t tests revealed nonsignificant differences [for 10 x vs. 5x, t
(31) = 1.16, p = .26; for 2x vs. equal, t(31) = 1.68, p = .10], likely due
in part to decreased power. Thus, data from Experiment 4 cannot be
used to make strong claims regarding the independent role of varying
joint probability in action segmentation.

3 A possible concern is that individuals’ familiarity judgments on
early test trials influenced later judgments—that is, earlier test trials
might bias selection of sequences on later test trials. A sequence
judged as more familiar on an early test trial would, for instance,
plausibly be more likely to be judged as familiar on a later test trial,
due only to the recent judgment on the earlier trial, and not to
statistical information computed during exposure. This possibility
allows for an alternative explanation for the above-chance perfor-
mance on frequency-balanced trials for above-median individuals. The
specific version of this explanation that would be most problematic for
the present account is the following scenario: On a given early test
trial, an individual relies on joint-probability calculation to judge that
a low-frequency action (f = 60) is more familiar than a low-frequency
part action (f = 12) (e.g., for Corpus 1, judging the low-frequency
action drink/twirl/read as more familiar than the lower-frequency part
action read/rattle/slide). On a later test trial, when this same low-
frequency action is pitted against an equal-frequency part action (f =
60) (e.g., from Corpus 1, clean/under/feel), the individual is more
likely to select the action as opposed to its frequency-balanced
comparator due to its having recently been selected on the earlier trial,
not to its higher conditional probability. To ensure that this could not
explain the above-chance frequency-balanced trial performance in the
present study, we ran a secondary analysis examining performance
only on those frequency-balanced trials that featured an action that had
not yet been paired with a low-frequency (f = 12) part action. That is,
we examined performance in above-median individuals on frequency-
balanced trials on which an individual would not yet be biased to
favor a given action due to its having been selected earlier, based on
its higher frequency relative to its comparator. We again found above-
chance performance on this restricted set of frequency-balanced trials
(M = 80.95, SD = 33.88), t(14) = 3.54, p = .003. Thus, the likelihood
that this “spillover” alternative explanation could account for our
results is substantially reduced.

* = p < .05

Fig. 3 Mean action selections in Experiment 4 by above-median
and below-median individuals. The error bars represent ± 1 standard
error. *Different from chance, p < .05
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designs used in the past to reveal learning involving other
types of input (e.g., speech, static shapes, and shape
configurations; Aslin et al. 1998; Fiser & Aslin, 2001,
2002a). Namely, we first attempted to demonstrate
conditional-probability learning by asking whether an entire
group of participants could discriminate at above-chance
levels between action sequences equated in terms of joint
probability but differing in terms of conditional probability,
the standard method used by others in the past. Null results
for this experiment (Exp.1), combined with positive results
for a similar assessment of joint-probability learning (Exp.
2), appeared to suggest that past findings of statistical
learning of actions (e.g., Baldwin et al. 2008) were due
solely to individuals’ tracking of the co-occurrence fre-
quencies of action elements.

However, alternative explanations were available; past
findings of conditional-probability learning have typically
demonstrated that it requires longer exposure for successful
learning relative to the exposure required for joint-
probability learning (e.g., Fiser & Aslin, 2002a; Graf Estes
et al. 2007), and thus we addressed this possibility in two
ways. First, we exposed participants to a longer corpus of
actions, with the expectation that this would aid participants
in the relatively difficult task of extracting conditional-
probability information. Despite the provision of this
additional information, however, participants actually se-
lected actions at rates even lower than before (although this
decrement was not statistically significant). Thus, we
conducted a final experiment in which we were able to
examine conditional-probability learning in a different and
novel way.

In this last experiment, we provided participants with
discrimination (test) trials that varied in terms of the
frequencies of actions relative to their comparator part
actions; some test trials featured actions that occurred more
frequently than their paired part action, whereas others
featured actions that had occurred equally as frequently.
This design allowed us to examine the relationship between
performance on frequency-unbalanced trials with perfor-
mance on frequency-balanced trials. Performance on the
two types of trials was highly correlated. Further, individ-
uals who tended to select actions over part actions on
frequency-unbalanced trials (at above-median levels) also
selected actions over part actions on frequency-balanced
trials. Action selection among these individuals was
significantly above chance, demonstrating that at least this
subset of individuals were capable of tracking conditional
probability in dynamic human action.

Our findings are in many ways consistent with past
studies of statistical learning in other domains. Extensive
past research in statistical learning of many types of
information, including speech sounds and simple static
shapes, suggested that humans (both infants and adults) are

capable of calculating the conditional probability express-
ing predictive relationships among elements (Aslin et al.
1998; Aslin et al. 2001; Fiser & Aslin, 2001, 2002a, 2002b;
Graf Estes et al. 2007). We similarly demonstrated that
extraction of higher-order conditional-probability statistics
is possible within the action domain. However, our results
also indicated that in the action-processing context, only a
subset of our participants demonstrated sensitivity to
conditional probability. This result stands in stark contrast
to past studies of conditional-probability learning, which
have demonstrated such learning on a group level (i.e., with
entire samples).

An important question thus arises from our findings:
Why was conditional-probability learning of action only
observed in a subset of our participants? This is perhaps
especially puzzling given that we exposed participants to a
number of actions that actually exceeded the number of
words used in the language-learning study from which we
adapted our design. For instance, whereas Aslin et al.
(1998) used an exposure that contained 270 words, our
adult participants saw either 360 actions across the course
of exposure (Exps. 1, 2, and 4) or 540 actions (Exp.3).
Despite this increase in the sheer number of statistically
structured units, however, our participants on a group level
failed to show segmentation with either the short or the
long exposure.

One possible explanation for the discrepant findings is
that our small motion elements may have differed in
encodability in comparison to the syllables used by Aslin
et al. (1998), as well as the simple shapes used in past
studies of visual statistical learning (Fiser & Aslin, 2001,
2002a, 2002b). Recall that Gebhart et al. (2009) found that
participants required much more exposure to nonspeech
noises to learn the underlying statistical structure, and that
these researchers attributed this difference to the fact that
the nonspeech noises were less familiar, and thus likely less
encodable than speech syllables. Although the SMEs that
we used in the present experiments are likely at least
moderately familiar, other differences exist between our
stimuli and the elements used in past studies that may
similarly contribute to encodability. First, in terms of basic
perceptual features, our SMEs are arguably far more
complex than the units used in past studies of visual
statistical learning. In order to encode our SMEs, partic-
ipants would have had to process evanescent, dynamic
events rather than static simple shapes or shape config-
urations. Second, our elements possessed meaning in and of
themselves that both speech syllables and shapes did not.
For example, the SME rattle features an event (albeit brief)
that itself invites sophisticated and potentially processing-
intensive inferences regarding the intentions of the actor.
Further, our elements were nameable (e.g., rattle, blow,
drink), whereas the syllables and shapes used in past studies
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had no conventional linguistic labels (since the shapes used
in past studies were relatively simple but had no linguistic
labels). It is possible that the more complex perceptual
attributes of our SMEs made them more difficult to encode.
Further, although the richer conceptual and linguistic
content inherent in our SMEs might make them individually
more meaningful, and hence possibly more memorable, it is
possible that integrating them into higher-level action units
was consequently more difficult. Determining what attrib-
utes contribute to encodability (e.g., perceptual complexity,
conceptual richness, or linguistic factors) is an inviting
topic for future research in statistical learning and can
further contribute to resolving whether differences observed
in statistical learning are due to mechanism differences per
se, as opposed to stimulus-based encodability differences.

Assuming that action may indeed be harder to encode,
our findings give rise to yet another unanswered question:
What contributed to only a subset of our participants
succeeding in exploiting conditional probability for seg-
mentation purposes? Is it possible that certain individuals
would never be capable of learning predictive relationships
among action elements on such a higher-order level, and
that the below-chance performance on frequency-balanced
trials demonstrated by half of our participants is indicative
of this lack of ability? Given the likely importance of
calculating such statistics (e.g., learning to predict events
based on the contingent relationships among action ele-
ments), this seems an improbable conclusion. Indeed, this
ability seems especially fundamental with respect to the
role it could play in segmentation, according to theories of
action processing such as Zacks and colleagues’ event
segmentation theory (Kurby & Zacks, 2008; Zacks et al.
2007). Recall that knowledge of sequential dependencies
gained through statistical learning is posited as one source
of information that feeds into the predictive system
responsible for creating and maintaining the stability of
the event model. If some individuals truly were limited to
learning only about co-occurrence frequencies of actions, as
opposed to contingent, predictive relationships among
elements, the power of statistical learning in contributing
to their action processing would be substantially reduced.
Further, we would then likely see profound downstream
variability in the way that different individuals process,
interpret, and predict actions, and yet the consensus from
the literature is that both segmentation and higher-level
mental-state inferences unfold relatively uniformly and
automatically, at least among normally developing individ-
uals (e.g., Wellman, 2002; Zacks et al. 2001).

Instead, it seems likely that external transient factors
contributed to our individuals’ varying performance pro-
files, including variations in motivation or alertness. It is
also possible that these factors may have included more
stable individual differences in functions such as working

memory or allocation of attentional resources, basic
cognitive processes that have been demonstrated to vary
among individuals (see, e.g., Baddeley, 2001). Determining
exactly which factors were at play in contributing to these
differences is an important topic for future work. In general,
most research on statistical learning has focused on
comparing learning of various types of statistics (e.g., joint
vs. conditional probability or adjacent vs. nonadjacent
dependencies; see, e.g., Aslin et al. 1998; Gebhart et al.
2009; Newport & Aslin, 2004; Toro & Trobalón, 2005) or
differences across various modalities (e.g., Conway &
Christiansen, 2005) rather than differences among individ-
uals. However, some studies have been directed at revealing
variation in performance on a single statistical learning
task; for example, Ludden and Gupta (2000) showed that
statistical learning of speech is impaired when cognitive
load demands are increased, hinting at the possibility that
stable individual differences related to cognitive processing
might relate to statistical learning. Further, Evans, Saffran,
and Robe-Torres (2009) found that statistical learning of
both speech and nonspeech stimuli was impaired in
children with specific language impairment and that
individual differences in learning were correlated with
vocabulary. Variation has also been demonstrated in
normally developing populations; for instance, Misyak,
Christiansen, and Tomblin (2010) found that differences in
individuals’ learning trajectories of nonadjacent dependen-
cies in linguistic stimuli predicted later performance on an
online language-processing task. These observations, cou-
pled with our own results, point to a clear need to further
elucidate the causes for these variations as well as their
outcomes.

Another way of gaining understanding regarding indi-
vidual variation—as well as more broadly in elucidating the
processes underlying segmentation—would be to explore
alternative measures of segmentation. We chose to assess
participants’ explicit reports of familiarity for different
sequences, a methodological decision that allowed us to
draw comparisons to a number of past studies in other
domains that used the same measure (e.g., Fiser & Aslin,
2001, 2002a). However, it would be instructive to examine
segmentation evidenced in other ways, as well. For
instance, Abla and Okanoya (2009) studied the event-
related potentials of individuals as they watched a statisti-
cally structured sequences of shapes. The researchers found
that individuals who later performed well on a familiarity-
based behavioral segmentation test also displayed larger
N400 amplitudes at the onsets of statistically coherent
shape triplets after a period of exposure. The results of this
study hold promise in providing a more implicit, online
measure of segmentation, and future work in the action-
processing domain might benefit from a similar incorpora-
tion of neurophysiological measures. In another exploration
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of alternative methods for assessing segmentation, we are
currently adapting a methodology devised by Hard,
Recchia, and Tversky (2011), who discovered evidence of
attentional surges in response to action boundaries. The
prediction derived from these findings, and the one that is
currently being explored, is that individuals’ attention at the
junctures between actions should be modulated as a function
of statistical learning. Specifically, as an observer learns the
statistical structure characterizing a sequence of actions, they
should start to show similar surges of attention at action
boundaries (i.e., at onsets of SME triplets comprising actions).
This method may shed light on both the dynamic process of
statistical learning as it unfolds, and also provide further
insight into possible mediating attentional processes underly-
ing the individual differences that we observed.

In sum, our results point to important similarities as well
as dissimilarities in the nature of statistical learning. People
can indeed learn the conditional probabilities structuring
dynamic human action, a result that parallels those in other
domains. Our results thus indicate that prior findings of
statistical learning in actions (Baldwin et al. 2008) are
likely due, at least in part, to individuals’ sensitivity to
conditional probability. On the other hand, we also
demonstrated that there is substantial variation in the ability
to detect action segments on the basis of conditional
probability; only individuals who were also especially
successful in detecting more-frequent actions showed
sensitivity to conditional probability. The ability to recog-
nize statistical regularities in action is likely a crucial
component of the human action-processing system, allow-
ing observers to use bottom-up information to feed
predictions about how events will unfold. Our findings
regarding how joint-probability learning and conditional-
probability learning contribute to this process mark an
important step in understanding the function that statistical
learning has in people’s ability to process and make sense
of human action.
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