Skip to main content
Log in

Dopaminergic modulation of sensitivity to immediate and delayed punishment during decision-making

  • Special Issue/Preclinical Assays
  • Published:
Cognitive, Affective, & Behavioral Neuroscience Aims and scope Submit manuscript

Abstract

Effective decision-making involves careful consideration of all rewarding and aversive outcomes. Importantly, negative outcomes often occur later in time, leading to underestimation, or “discounting,” of these consequences. Despite the frequent occurrence of delayed outcomes, little is known about the neurobiology underlying sensitivity to delayed punishment during decision-making. The Delayed Punishment Decision-making Task (DPDT) addresses this by assessing sensitivity to delayed versus immediate punishment in rats. Rats initially avoid punished reinforcers, then select this option more frequently when delay precedes punishment. We used DPDT to examine effects of acute systemic administration of catecholaminergic drugs on sensitivity to delayed punishment in male and female adult rats. Cocaine did not affect choice of rewards with immediate punishment but caused a dose-dependent reduction in choice of delayed punishment. Neither activation nor blockade of D1-like dopamine receptor affected decision-making, but activation of D2-like dopamine receptors reduced choice of delayed punishment. D2 blockade did not attenuate cocaine’s effects on decision-making, suggesting that cocaine’s effects are not dependent on D2 receptor activation. Increasing synaptic norepinephrine via atomoxetine also reduced choice of delayed (but not immediate) punishment. Notably, when DPDT was modified from ascending to descending pre-punishment delays, these drugs did not affect choice of delayed or immediate punishment, although high-dose quinpirole impaired behavioral flexibility. In summary, sensitivity to delayed punishment is regulated by both dopamine and norepinephrine transmission in task-specific fashion. Understanding the neurochemical modulation of decision-making with delayed punishment is a critical step toward treating disorders characterized by aberrant sensitivity to negative consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DPDT:

Delayed Punishment Decision-making Task

SUD:

Substance Use Disorder

ANOVA:

Analysis of Variance

IP:

Intraperitoneal

OFC:

Orbitofrontal Cortex

PFC:

Prefrontal Cortex

BLA:

Basolateral Amygdala

NAcc:

Nucleus Accumbens

ITI:

Intertrial Interval

References

  • Beaulieu, J. M., Espinoza, S., & Gainetdinov, R. R. (2015). Dopamine receptors – IUPHAR Review 13. British Journal of Pharmacology, 172(1), 1–23.

    Article  PubMed  Google Scholar 

  • Blaes S. L., Orsini C. A., Mitchell M. R., Spurrell M. S., Betzhold S. M., Vera K., Bizon J. L., & Setlow B. (2018). Monoaminergic modulation of decision-making under risk of punishment in a rat model. Behavioural Pharmacology, 29(8), 745–761.

  • Cardinal R. N., Robbins T. W., & Everitt B. J. (2000). The effects of d-amphetamine, chlordiazepoxide, alpha-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology, 152(4), 362–375.

  • Cardinal R. N. (2006). Neural systems implicated in delayed and probabilistic reinforcement. Neural Networks, 19(8), 1277–1301.

  • Castrellon J. J., Meade J., Greenwald L., Hurst K., & Samanez-Larkin G. R. (2021). Dopaminergic modulation of reward discounting in healthy rats: A systematic review and meta-analysis. Psychopharmacology, 238(3), 711–723.

  • dela Peña, I., Gevorkiana, R., & Shi, W. X. (2015). Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms. European Journal of Pharmacology, 764, 562–570.

    Article  Google Scholar 

  • De Wit H., Enggasser J., & Richards J. (2002). Acute administration of d-Amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology, 27, 813–825.

  • Ersche K. D., Roiser J. P., Robbins T. W., Sahakian B. J. (2008). Chronic cocaine but not chronic amphetamine use is associated with perseverative responding in humans. Psychopharmacology, 197(3), 421–431.

  • Evenden, J. L., & Ryan, C. N. (2016). The pharmacology of impulsive behavior in rats: the effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology, 128(2), 161–70.

    Article  Google Scholar 

  • Faraone, S. V. (2018). The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neuroscience & Behavioral Reviews, 87, 255–270.

    Article  Google Scholar 

  • Fischhoff B., Broomell S. B. (2020). Judgment and decision making. Annual Review of Psychology, 71, 331–355.

  • Floresco, S. B., & Magyar, O. (2006). Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacology, 188(4), 567–585.

    Article  PubMed  Google Scholar 

  • González-Barriga F., & Orduña V. (2022) Spontaneously hypertensive rats show higher impulsive action, but equal impulsive choice with both positive and aversive consequences. Behavioural Brain Research, 427, 113858.

  • Hori Y., Nagai Y., Mimura K., Suhara T., Higuchi M., Bouret S., & Minamimoto T. (2021) D1- and D2-like receptors differentially mediate the effects of dopaminergic transmission on cost-benefit evaluation and motivation in monkeys. PLoS Biology, 19(7), e3001055.

  • Jacobs D. S., & Moghaddam B. (2020). Prefrontal cortex representation of learning of punishment probability during reward-motivated actions. The Journal of Neuroscience, 40(26), 5063–5077.

  • Jean-Richard-Dit-Bressel P., Killcross S., & McNally G. P. (2018). Behavioral and neurobiological mechanisms of punishment: Implications for psychiatric disorders. Neuropsychopharmacology, 43(8), 1639–1650.

  • Kräplin A., Höfler M., Pooseh S., Wolff M., Krönke K. M., Goschke T., Bühringer G., & Smolka M. N. (2020). Impulsive decision-making predicts the course of substance-related and addictive disorders. Psychopharmacology, 237(9), 2709–2724.

  • Koffarnus M. N., Newman A. H., Grundt P., Rice K. C., & Woods J. H. (2011). Effects of selective dopaminergic compounds on a delay-discounting task. Behavioural Pharmacology, 22(4), 300–311.

  • Larkin, J. D., Jenni, N. L., & Floresco, S. B. (2016). Modulation of risk/reward decision making by dopaminergic transmission within the basolateral amygdala. Psychopharmacology, 233(1), 121–136.

    Article  PubMed  Google Scholar 

  • Li, Y., Zuo, Y., Yu, P., Ping, X., & Cui, C. (2015). Role of basolateral amygdala dopamine D2 receptors in impulsive choice in acute cocaine-treated rats. Behavioral Brain Research, 287, 187–95.

    Article  Google Scholar 

  • Liley A. E., Gabriel D. B. K., Sable H. J., & Simon N. W. (2019). Sex differences and effects of predictive cues on delayed punishment discounting. eNeuro, 6(4).

  • Liley, A. E., Gabriel, D. B. K., & Simon, N. W. (2022). Lateral orbitofrontal cortex and basolateral amygdala regulate sensitivity to delayed punishment during decision-making. eNeuro, 9(5).

  • Mishra, A., Singh, S., & Shukla, S. (2018). Physiological and functional basis of dopamine receptors and their role in neurogenesis: Possible implication for Parkinson’s disease. Journal of Experimental Neuroscience, 12, 1179069518779829.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell, M. R., Weiss, V. G., Beas, B. S., Morgan, D., Bizon, J. L., & Setlow, B. (2014). Adolescent risk taking, cocaine self-administration, and striatal dopamine signaling. Neuropsychopharmacology, 39(4), 955–962.

    Article  PubMed  Google Scholar 

  • Morgado, P., Marques, F., Ribeiro, B., Leite-Almeida, H., Pêgo, J. M., Rodrigues, A. J., Dalla, C., Kokras, N., Sousa, N., & Cerqueira, J. J. (2015). Stress induced risk-aversion is reverted by D2/D3 agonist in the rat. European Neuropsychopharmacology, 25(10), 1744–1752.

    Article  PubMed  Google Scholar 

  • Murphy J., Vuchinich R., & Simpson C. (2001). Delayed reward and cost discounting. Psychological Record, 51(4), 571-588.

  • Nestadt G., Kamath V., Maher B. S., Krasnow J., Nestadt P., Wang Y., Bakker A., & Samuels J. (2016). Doubt and the decision-making process in obsessive-compulsive disorder. Medical Hypotheses, 96, 1–4.

  • Oinio, V., Bäckström, P., Uhari-Väänänen, J., Raasmaja, A., Piepponen, P., & Kiianmaa, K. (2017). Dopaminergic modulation of reward-guided decision making in alcohol-preferring AA rats. Behavioural Brain Research, 326, 87–95.

    Article  PubMed  Google Scholar 

  • Orsini C. A., & Simon N. W. (2020). Reward/punishment-based decision making in rodents. Current Protocol Neuroscience, 93, e100.

  • Orsini C. A., Truckenbrod L. M., & Wheeler A. R. (2022). Regulation of sex differences in risk-based decision making by gonadal hormones: Insights from rodent models. Behavioural Processes, 200, 104663.

  • Owens M. M., Syan S. K., Amlung M., Beach S., Sweet L. H., & MacKillop J. (2019). Functional and structural neuroimaging studies of delayed reward discounting in addiction: A systematic review. Psychological Bulletin, 145(2), 141–164.

  • Pattij T., & Vanderschuren L. J. (2008). The neuropharmacology of impulsive behaviour. Trends in Pharmacological Sciences, 29(4), 192–199.

  • Pertovaara A., Mecke E., & Carlson S. (1991). Attempted reversal of cocaine-induced antinociceptive effects with naloxone, an opioid antagonist. European Journal of Pharmacology, 192(3), 349–353.

  • Phillips, P. E., Walton, M. E., & Jhou, T. C. (2007). Calculating utility: preclinical evidence for cost-benefit analysis by mesolimbic dopamine. Psychopharmacology, 191(3), 483–495.

    Article  PubMed  Google Scholar 

  • Pushkarskaya H., Tolin D., Ruderman L., Kirshenbaum A., Kelly J. M., Pittenger C., & Levy I. (2015). Decision-making under uncertainty in obsessive-compulsive disorder. Journal of Psychiatric Research, 69, 166–173.

  • Robbins, T. W. (2003). Dopamine and cognition. Current Opinion in Neurology, 16(Suppl 2), S1–S2.

    Article  PubMed  Google Scholar 

  • Rodríguez W., Bouzas A., & Orduña V. (2018). Temporal discounting of aversive consequences in rats. Learn Behavior, 46:38–48.

  • Shead N. W., & Hodgins D. C. (2009). Probability discounting of gains and losses: implications for risk attitudes and impulsivity. Journal of the Experimental Analysis of Behavior, 92(1), 1–16.

  • Smethells J. R., & Carroll M. E. (2015). Discrepant effects of acute cocaine on impulsive choice (delay discounting) in female rats during an increasing- and adjusting-delay procedure. Psychopharmacology, 232(14), 2455–2462.

  • Simon N. W., Gilbert R. J., Mayse J. D., Bizon J. L., & Setlow B. (2009). Balancing risk and reward: a rat model of risky decision making. Neuropsychopharmacology, 34(10), 2208–2217.

  • Simon NW, Montgomery KS, Beas BS, Mitchell MR, LaSarge CL, Mendez IA, Bañuelos C, Vokes C. M., Taylor A. B., Haberman R. P., Bizon J. L., & Setlow B. (2011). Dopaminergic modulation of risky decision-making. The Journal of Neuroscience, 31(48), 17460–17470.

  • Sofuoglu, M., & Sewell, R. A. (2009). Norepinephrine and stimulant addiction. Addiction Biology, 14(2), 119–129.

    Article  PubMed  Google Scholar 

  • Soutschek, A., Gvozdanovic, G., Kozak, R., Duvvuri, S., de Martinis, N., Harel, B., Gray, D. L., Fehr, E., Jetter, A., & Tobler, P. N. (2020). Dopaminergic D1 receptor stimulation affects effort and risk preferences. Biological Psychiatry, 87(7), 678–685.

    Article  PubMed  Google Scholar 

  • Starcke K., Tuschen-Caffier B., Markowitsch H. J., & Brand M. (2010). Dissociation of decisions in ambiguous and risky situations in obsessive-compulsive disorder. Psychiatry Research, 175(1-2), 114–120.

  • St Onge J. R., & Floresco S. B. (2009). Dopaminergic modulation of risk-based decision making. Neuropsychopharmacology, 34(3), 681–697.

  • St. Onge, J. R., Abhari, H., & Floresco, S. B. (2011). Dissociable contributions by prefrontal D1 and D2 receptors to risk-based decision making. The Journal of Neuroscience, 31(23), 8625–33.

  • Stopper C. M., Khayambashi S., & Floresco S. B. (2013). Receptor-specific modulation of risk-based decision making by nucleus accumbens dopamine. Neuropsychopharmacology, 38(5), 715–728.

  • Wade, T., de Wit, H., & Richards, J. (2000). Effects of dopaminergic drugs on delayed reward as a measure of impulsive behavior in rats. Psychopharmacology, 150, 90–101.

    Article  PubMed  Google Scholar 

  • Westbrook A., van den Bosch R., Määttä J.I. , Hofmans L., Papadopetraki D., Cools R., & Frank M. J. (2020). Dopamine promotes cognitive effort by biasing the benefits versus costs of cognitive work. Science (New York, N.Y.), 367(6484), 1362–1366.

  • Woolverton, W. L., Freeman, K. B., Myerson, J., & Green, L. (2012). Suppression of cocaine self administration in monkeys: effects of delayed punishment. Psychopharmacology, 220(3), 509–517.

    Article  PubMed  Google Scholar 

  • Winstanley, C. A., Theobald, D. E., Cardinal, R. N., & Robbins, T. W. (2004). Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. The Journal of Neuroscience, 24(20), 4718–4722.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yates, J. R., & Bardo, M. T. (2017). Effects of intra-accumbal administration of dopamine and ionotropic glutamate receptor drugs on delay discounting performance in rats. Behavioral Neuroscience, 131(5), 392–405.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yates, J. R., Perry, J. L., Meyer, A. C., Gipson, C. D., Charnigo, R., & Bardo, M. T. (2014). Role of medial prefrontal and orbitofrontal monoamine transporters and receptors in performance in an adjusting delay discounting procedure. Brain Research, 1574, 26–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zech M. P., Schäble S., & Kalenscher T. (2022). Discounting of future rewards and punishments in rats. eNeuro 9(6), ENEURO.0452-21.2022.

  • Zeeb F. D., Robbins T. W., & Winstanley C. A. (2009). Serotonergic and dopaminergic modulation of gambling behavior as assessed using a novel rat gambling task. American College of Neuropsychopharmacology, 34(10), 2329–2343.

Download references

Acknowledgments

The authors thank Dr. Daniel Gabriel, Tiya Qualls, Boula Baskhairoun, Zachary Mikkelson, Sharoderick Lowe, Jason Leonidas Martinez, and Kayrine Cortes for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas W. Simon.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open practices statement

None of the experiments or analyses reported here were pre-registered. All raw data, behavioral protocols, and Matlab script are available upon request.

This work was supported by R15DA046797 (NWS). The authors have no conflicts of interest to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minnes, G.L., Wiener, A.J., Liley, A.E. et al. Dopaminergic modulation of sensitivity to immediate and delayed punishment during decision-making. Cogn Affect Behav Neurosci 24, 304–321 (2024). https://doi.org/10.3758/s13415-023-01139-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13415-023-01139-8

Keywords

Navigation