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Abstract
Objective measures of animal emotion-like and mood-like states are essential for preclinical studies of affective disorders
and for assessing the welfare of laboratory and other animals. However, the development and validation of measures of
these affective states poses a challenge partly because the relationships between affect and its behavioural, physiological and
cognitive signatures are complex. Here, we suggest that the crisp characterisations offered by computational modelling of the
underlying, but unobservable, processes that mediate these signatures should provide better insights. Although this compu-
tational psychiatry approach has been widely used in human research in both health and disease, translational computational
psychiatry studies remain few and far between. We explain how building computational models with data from animal studies
could play a pivotal role in furthering our understanding of the aetiology of affective disorders, associated affective states and
the likely underlying cognitive processes involved. We end by outlining the basic steps involved in a simple computational
analysis.

Introduction

Accurate and reliable measures of animal affect (mood-
like and emotion-like states) are essential in fields such as
pharmacology and neuroscience that rely on valid animal
models for translation. They are also critical in animal wel-
fare sciencewhere animal affect is increasingly viewed as the
key determinant of welfare. However, even while remaining
agnostic as to which animal species consciously experiences
affective states (Paul et al., 2020), measuring affect in ani-
mals is challenging because it is a latent construct that can
only be inferred from its multifarious components spanning
behaviour, cognition and (neuro)physiology (Kremer et al.,
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2020;Mendl et al., 2010;Mendl&Paul, 2020). In the context
of animal models relevant to affective disorders, examples
include reduced sucrose consumption/preference as amarker
of depression-like states (Slattery et al., 2007; Willner et al.,
1987), changes in locomotor activity and willingness to enter
central areas in an open field as a measure of anxiety-like
states (Kumar et al., 2013; Royce, 1977), and behavioural
or HPA axis responses to conditioned aversive stimuli as
markers of fear- or anxiety-like states (Kumar et al., 2013).
Statistical analyses are used to describe differences in these
measures between control and treatment groups that receive a
particular affect manipulation (e.g. chronic mild stress; Will-
ner, 2017)) or are exposed to different housing or husbandry
conditions or selectively bred for expression of particular
characteristics or diseases (e.g. the Flinders sensitive line
rat; Overstreet et al., 2005), or to describe linear relationships
between putative affective states and the outcome measure
in question.

However, translational relevance is beset with uncertainty
– the links between objective measurements and subjective
affectmay bemediated bymore than one underlying process,
be influenced by other aspects of the dynamic situation, or
be non-linear. As a case in point, increased locomotor activ-
ity in an open field test has been interpreted as reflecting
both slower habituation to a novel environment, thus indicat-
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ing increased anxiety (Brenes et al., 2009; Schrijver et al.,
2002), or a greater willingness to explore a novel environ-
ment, thus indicating reduced anxiety (Carli et al., 1989).
Attempts to validate behavioural and cognitive measures
have had varying success, sometimes revealing a large degree
of heterogeneity in the relationship between markers and the
putative affective state that they are meant to reflect (Borsini
et al., 2002; Forbes et al., 1996; Lagisz, Zidar, Nakagawa,
Neville, Sorato, Paul, ... & Løvlie, 2020; Neville, Nakagawa,
Zidar, Paul, Lagisz, Bateson, ... & Mendl, 2020b; Paul et al.,
2005; Rupniak, 2003). This makes appropriate translational
exploitation hard.

One important reason for this heterogeneity is that the pro-
cesses and representations underpinning the latent affective
states are themselves hidden, are influenced differentially
by specific manipulations intended to influence affective
state as a whole (Mendl et al., 2009; Mendl & Paul, 2020;
Neville,Nakagawa,Zidar, Paul, Lagisz,Bateson, ...&Mendl,
2020b) and can exhibit significant individual differences.
For example, animals may vary in their speed of movement,
distractibility, impulsivity and the extent to which they find
sucrose appetitive and electric shocks aversive. Each of these
factorsmay potentially be influenced by affective state. How-
ever, an observed measure such as a decision/proclivity for
a particular behaviour is typically a single output dimension
which integrates, and thus mixes, all these variables.

The promise of computational modelling is its collec-
tion of sophisticated methods for unmixing. It does this by
offering a formal and explicit description of how complex
structures that are not directly observable in data, intermedi-
ate between what the animal experiences and what it does.
Computational methods should thus help us understand the
determinants and effects of affective states. Here, we intro-
duce the computational analysis of behavioural data and
discuss how it may be used to investigate preclinical aspects
of mood disorders in non-human animals and, more gener-
ally, understand affective processes. We start by explaining
the background to, and core features of, computational mod-
elling, particularly the types ofmodelsmost relevant to affect.
We then discuss computational modelling from a more prac-
tical perspective; outlining how it has been used to study
affective disorders in humans, and how it has been, and could
be, applied to animal data.

What is computational modelling
and why is it useful?

Modelling in psychology and neuroscience has various
facets. These include:

• Data analysis: quantitative ways of analysing data (e.g.
using machine learning techniques to classify images or

videos; Dolensek et al., 2020; Valletta et al.,
2017).

• Mathematical modelling: mathematically operational-
ized descriptions of systems using layers of mechanistic
anddescriptive accounts (e.g. portraying thefiring of neu-
rons using the Hodgkin–Huxley model, which involves a
sophisticatedmembranegatingprocess;Hodgkin&Hux-
ley, 1952).

• Information processing (IP) modelling: characteriza-
tions of the brain as solving specifically computational
problems such as maximizing reward (e.g. using a rein-
forcement learning framework, Sutton & Barto, 2018, to
investigate how an individual might make decisions to
maximise food intake).

One impressive example of the use of data analysis for
animal affect is Dolensek et al. (2020)’s classifiers, which
predict the emotional state ofmice from images of their faces.
These authors first considered how each pixel in each video
frame of a mouse experiencing different treatments (some
intended to generate positive valence, e.g. receiving sucrose;
some generating negative valence; e.g. receiving a tailshock)
differed from baseline, and they then used a machine learn-
ing approach (seeValletta et al., 2017) to distinguish between
facial expressions elicited by these different treatments. They
also provided extensive functional validation of their classi-
fications. Although this sophisticated form of data analysis
provided useful insights into the neuronal correlates of facial
expressions in response to emotionally salient events, the
classifier was purely descriptive, rather than being based on
an explanation of how, for instance, the insula cortex rep-
resented emotional states and generated facial expression.
This is what is often referred to as a data-driven approach:
machine learning techniques are applied to large amounts of
data with the aim of classification (Huys et al., 2016).

By contrast, the overarching goal of mathematical and IP
modelling (which we will sometimes refer to collectively as
computationalmodelling, to distinguish them fromdata anal-
ysis) is to understand data using a formal characterization of
how those data might have arisen. IP modelling in particular
starts from a functional view of the brain as receiving, manip-
ulating and acting on the basis of information (Churchland
& Sejnowski, 2016; Dayan, 1994), often in a surprisingly
efficient manner. Here, there are explicit hypotheses about
the computational mechanisms underlying the data; it is a
theory-based approach (Huys et al., 2016).

For computational modelling, the ability to reproduce and
predict data is a critical test of their competence. Accord-
ingly, a core feature of such modelling is that it is generative
and not just descriptive; that is, a computational model can,
from suitable inputs, generate data to be compared with the
results of experiments (e.g. from a decision-making task).
This approach of specifying the mapping between input and
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output has beenwidely used in the field of computational psy-
chiatry, and is particularly useful when we regard affect as a
latent construct. That is, the processes characterized include
the hidden structures that link affective states to the various
manipulations and measurements mentioned above – i.e. the
observable input and output. This underlies the power and
promise of computational modelling for unearthing the neu-
ral and cognitive substrates of normative and dysfunctional
affect. Computational modelling allows great specificity and
clarity in the communication and testing of hypotheses and
theories regarding the processes underlying the observed
data. Equivalently, it provides a means for the empirical
investigation of hypotheses about the cognitive and/or neural
mechanisms underlying behaviour. Furthermore, the genera-
tive nature of computational modelling can drive the creation
of new hypotheses – for example, one could ask what would
be the behavioural output of adjusting certain parameters in
the model, or considering additional modelling mechanisms.
Thus, computational modelling enhances research in several
regards.

Here we focus on two types of questions:

1. What is the best structural account (sometimes, model
class) for the data, such as those collected in a decision-
making task;

2. What are the values of the fittable parameters (sometimes
called ’free’ parameters, i.e. those whose precise values
are not predefined in the model) within each structural
account that best capture the data (see Daw et al., 2011;
Wilson and Collins, 2019).

These questions can be asked about whole populations
of subjects, treatment (or other sorts of sub-) groups, or
even individuals – noting that it might well be that differ-
ent subjects tackle the same situation in different ways that
are best captured by different models (Piray et al., 2019).
Model comparison is used to examine competing structural
hypotheses about the cognitive or affective processes under-
lying the observed data. This involves comparing how well
different models can explain the data, using various tech-
niques to avoid overly complex models which can over-fit
the data (by encompassing what is noise).Model comparison
is used, for example, to assess whether animals use different
approaches to solve a decision-making problem depending
on their putative affective state. Parameter estimation is used
to find the parameter values within any potential model that
best explain the observed data (or, for Bayesians, the poste-
rior distributions of the parameters given the observed data
and priors that are part of the specification of the model), and
hence to summarise the data according to the key components
of the model. These estimates can be compared between ani-
mals, where there are different treatment groups and hence

different estimates are anticipated, or within animals, where
we might anticipate changes in an individual’s affect over
time.

Computational psychiatry: applying
computational methods to examine affective
disorders in humans

One central facet of the rapidly growing field of com-
putational psychiatry is the application of computational
modelling to characterise and understand neuropsychiatric
disorders, including affective disorders such asmajor depres-
sive disorder and generalised anxiety disorder. An essential
premise of computational psychiatry is that these disor-
ders arise from or induce a deviation from normal, often
approximately optimal, behaviour, and that by defining this
normativity in computationally crisp terms, we can exam-
ine the specific additional suboptimalities associated with
affective disorders (Huys et al., 2016; Montague et al., 2012;
Moutoussis et al., 2015; Stephan&Mathys, 2014). However,
it is important to note that it is unclearwhether seemingly sub-
optimal decision-making within a behavioural task is truly
flawed, as such behaviour may serve an adaptive function
outside of the context of the task (e.g. Nesse (2000); Nettle
and Bateson (2012)).

Computational psychiatry studies have found that affec-
tive disorders are associated with changes in several aspects
of cognition and decision-making, including reward sensi-
tivity, learning, effort cost, and reliance on ‘hardwired’ (i.e.
non-learned) behavioural tendencies. For instance, individ-
uals suffering from affective disorders might differ from
the healthy in the extent to which they employ model-free
(i.e. reflexive, stimulus-response based, or habit based) ver-
sus model-based (i.e. reflective, stimulus-response-outcome
based, or goal directed), and Pavlovian versus instrumental
(Dayan et al., 2006; Huys et al., 2015) forms of rein-
forcement learning (RL) to solve problems. Model-free,
compared with model-based, learning models were found to
better explain the behaviour of depressed humans than non-
depressed humans on a task which pitted exploration against
exploitation (Blanco,Otto,Maddox,Beevers,&Love, 2013).
Furthermore,Huys et al. (2012) found that humanswho expe-
rienced greater levels of depression (as determined byBeck’s
depression inventory, Beck et al. (1961)) had a greater ten-
dency to dismiss further evaluation of a potential strategy
when presented with a large loss, even though this was coun-
terproductive, in a task which required them to construct a
model-based representation of the environment (Huys et al.,
2012). Similarly, humans experiencing post-traumatic stress
disorder (PTSD) and suicidal thoughts have greater difficulty
overcoming Pavlovian tendencies when it is necessary to do
so, such as when making an ‘approach’ action, which is typ-
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ically made to obtain rewards, to avoid a punisher (to which
there is an innate tendency for an ‘avoid’ response) (Millner,
denOuden, Gershman, Glenn, Kearns, Bornstein, ... &Nock,
2019; Ousdal, Huys, Mildë, Craven, Ersland, Endestad, ...
& Dolan, 2018). Effort costs have also been implicated in
MDD in computational studies; depressed patients have been
shown toweigh the cost of expending effort more highly than
non-depressed patients (Vinckier, Jaffre, Gauthier, Smajda,
Abdel-Ahad, Le Bouc, ... & Plaze, 2022), and healthy partic-
ipants given an antidepressant drug (escitalopram) showed a
reduction in effort costs relative to a placebo group (Meyniel,
Goodwin, Deakin, Klinge, MacFadyen, Milligan, ... & Gail-
lard, 2016).

Computational approaches have also been useful in the
development and articulation of theories about how affec-
tive disorders develop and are maintained. In line with the
empirical evidence presented above, it has been argued that
depression reduces recall of past outcomes (or simulation
of future outcomes) that are positive, and increases recall of
past actions (and simulation of future actions) that are effort-
ful – which consequently impacts estimates of the expected
value (i.e. combined outcome probability, outcome value,
and effort cost) of trying to obtain rewards (Bishop&Gagne,
2018). Anxiety is said to exert a similar impact on cognition,
but instead in the domain of threat avoidance; it increases
recall of past actions that have negative outcomes (and simu-
lation of future negative outcomes) and decreases recall of the
effort expended for those actions (Bishop & Gagne, 2018).
Others have posited that howwe learn about our environment,
and use the resulting information to make predictions about
future outcomes, is key to affective disorders. For exam-
ple, poor learning about negative outcomes could lead to a
vicious cycle of an individual not being able to predict, and
so repeatedly being surprised by, aversive outcomes, leading
to generation of negative prediction errors and an associated
persistent negative mood (Eldar et al., 2016). Computational
studies have demonstrated a link between prediction errors
and self-reported mood: more positive prediction errors are
associated with a more positive report of mood, and vice
versa (Neville et al., 2021a, c; Otto & Eichstaedt, 2018; Rut-
ledge et al., 2014). In a similar vein, it has been suggested that
depression may arise when an individual has a strong belief
that they inhabit a volatile world leading to poor allostatic
regulation; trying to anticipate future needs is futile when
there is such uncertainty (Clark et al., 2018).

However, it is important to note that the potential preci-
sion of computationally defined components is not always
perfectly matched with the often-questioned imprecision of
the conventional delineations of the disorders themselves
(Friston et al., 2017; Stephan, Bach, Fletcher, Flint, Frank,
Friston, ... & Binder, 2016). For example, using a reinforce-
ment learning model, a meta-analysis of human behavioural
data from a probabilistic reward task revealed that anhedonic

forms of major depressive disorder (MDD) was associated
with a reduced reward sensitivity (Huys et al., 2013). How-
ever, a separatemeta-analysiswhich included a broader range
of studies – those comparing individuals with mood and/or
anxiety disorders rather thanMDD specifically – did not find
reliable differences in reward sensitivity (Pike & Robinson,
2022). Instead, this meta-analysis found that patients showed
faster learning about punishing outcomes and slower learn-
ing about rewarding outcomes. Other studies have suggested
that mood disorders do not alter learning rates per se, but
rather the extent to which learning is modulated in an envi-
ronment dependent manner. For example, Browning et al
(2015) found that anxiety in humans is associated with a
reduced ability to modulate the speed of learning in accor-
dance with environmental volatility (Browning et al., 2015).
One hope for some in computational psychiatry is that a new
nosology will emerge from unpicking these seeming contra-
dictions (Stephan, Bach, Fletcher, Flint, Frank, Friston, ... &
Binder, 2016).

In sum, computational psychiatry has arguably been
instrumental in furthering our understanding of human affec-
tive disorders. Computational studies have revealed key
cognitive processes which might underlie the relationship
between affect and altered decision-making, which are often
difficult or impossible to disentangle with statistical analy-
ses alone. In keeping with, and in some ways extending, the
precepts of RDoC (Insel, Cuthbert, Garvey, Heinssen, Pine,
Quinn, ... &Wang, 2010), it has also contributed to the devel-
opment of new theories of affective disorders, highlighting
areas of research that may be particularly valuable in future
studies and informing diagnostic and prognostic tools.

Computational approaches to study
affective disorders using animal models

Computational models have been applied successfully to
animal data to examine and explain the role that particu-
lar neural substrates or structures play in guiding behaviour:
for instance, dopamine has been heavily implicated in the
encoding of prediction errors (Glimcher, 2011; Montague
et al., 1996; Schultz et al., 1993, 1997), and it has been
suggested that noradrenaline could modulate behaviour by
specifically altering how actions are selected (Aston-Jones
& Cohen, 2005; Doya, 2002; Swanson et al., 2022). They
have also been used to understand how individual differ-
ences and maladaptive behaviour might arise (Bathellier et
al., 2013; Noworyta-Sokolowska et al., 2019; Rivalan et al.,
2013; Spiegler et al., 2020). There is now much scope to
extend these findings by examining the influence of affect on
decision-making using a computational approach.

Empirical studies using computational approaches to
study affective disorders inevitably differ between humans
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and animals. However, it is striking that computational
approaches can be surprisingly similar – couched in the
language of reinforcement learning (RL). Indeed, the core
concepts of RL emerged from early animal behaviour studies
in experimental psychology, focusing on actual or antici-
pated reward and punisher experience (e.g. Mendl and Paul,
2020; Rolls, 2013). While there has been much debate about
what affect is (e.g. discrete vs. dimensional; Barrett et al.,
2007; Mendl et al., 2022; Mobbs et al., 2019) and how
and whether we should semantically differentiate between
affect in humans and animals (De Waal, 1999; LeDoux,
2012; Mendl et al., 2022; Panksepp, 2011), a key area of
agreement across theories is that affect helps an individ-
ual to respond appropriately to both fitness-enhancing and
fitness-threatening stimuli (Barrett & Finlay, 2018; LeDoux,
2012; Mendl et al., 2022; Mendl & Paul, 2020; Panksepp,
2005; Rolls, 2013), namely rewards and punishers, which
are encountered by humans and non-human animals alike.
At its heart, RL characterises how an individual learns
to do this through interactions with the environment. i.e.
how they can make decisions which maximise long-run
reward intake while minimising long-run punisher expo-
sure (Bellman, 1952; Sutton & Barto, 2018). This does
not distinguish humans from other animals, and hence is
an appropriate framework for translational computational
modelling.

A reinforcement learning framework for building
computational models

Building a model of decision-making within a reinforcement
learning framework typically involves calculating the imme-
diate (or long-run) value of a state, an action, or a policy to
inform the actions that should be taken tomaximise this value
(or minimise it, in the cases of punishers). The Rescorla–
Wagner learning rule (Rescorla et al., 1972; Sutton & Barto,
1981; Widrow & Hoff, 1960) is a highly popular (and influ-
ential) formal model of Pavlovian conditioning that can be
applied to many situations in which an animal must learn the
value of a stimulus (or action) through direct experience. It
states that the change in the predictive value (V ) of a condi-
tioned stimulus or action following an outcome (λ) depends
on the amount of signed ‘surprise’ produced by the outcome
(the prediction error, which is the difference between actual
and predicted outcome) and the extent to which ‘surprise’
influences learning (the learning rate, α). More formally, the
updated predictive value is the current predictive value added
to a learning-rate scaled prediction error.

For example, consider a rat in a shuttle box that can visit a
trough to receive a reward, such as sucrose solution, each
time the light above the trough illuminates (Fig. 1.); the
states could hence be ‘light illuminated’ in which the action
‘visit trough’ leads to a reward with a probability of one, and

Fig. 1 A rat in a shuttle box approaches a trough when the light above this trough is illuminated to receive a variable volume of sucrose solution.
The Rescorla–Wagner learning rule can be used to learn the value of sucrose solution
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‘light not illuminated’ in which all actions lead to a reward
of zero, assuming no other source of rewards. The volume
of the sucrose solution delivered, namely the magnitude of
the reward, fluctuates over time such that, in order to per-
form optimally, the rat has to continually learn the value of
approaching the troughwhen the light is illuminated (denoted
V in the Rescorla–Wagner learning rule; Fig. 1). This value
will depend on the experienced outcomes (denoted λ in the
Rescorla–Wagner learning rule) as well as the learning rate
(α); when learning rate is higher, the rat more closely tracks
changes in experienced reward value (Fig. 2).

The rat’s decision to approach the trough following illu-
mination of the light could depend on both the predicted
value of doing so and the value of any potential alterna-
tive actions (e.g. doing nothing, or visiting an alternative
food source). It is likely invalid to assume that an individ-
ual will always execute the action with the greatest value;
they may indirectly make an alternate action by mistake,
or may directly do so as a form of exploration that allows
them to gain information about the transitions and rewards
afforded by their environment. Indeed forms of matching,
such as probability matching in which participants’ choices
follow outcome probabilities (e.g. picking an option which
offers a reward with a probability of 0.6 on just 60% of trials,

even though it has the higher expected value, relative to the
alternative option, on 100% of trials), are widely prevalent
(Baum, 1974; Herrnstein, 1961; Vulkan, 2000). The softmax
function (which is a logistic sigmoid function, a functionwith
an S-shaped curve that maps any real value to the range 0–1,
when there are only two options) provides a means to turn
values of competing actions (e.g. A, which could be the pre-
dicted value of approaching the trough, and B, which could
be the value of an alternative food source) into probabilities,
according to inverse temperature parameter β (Fig. 3) which
specifies the randomness of choice with respect to current
information. A high inverse temperature results in choices
closely reflecting the relative values of competing actions,
whilst choices become more random with low inverse tem-
peratures.

This simple model illustrates that a rat’s choices between
two competing actions can be conceptualised in terms of how
it updates the values of the actions on the basis of information
from prediction errors assimilated at a specific learning rate.
This information is then used more or less faithfully, accord-
ing to the inverse temperature parameter, to guide choice
behaviour. Whilst this formal description of value-based
decision-makingmay seem ‘cold’ (Loewenstein, 2000) in the
sense that our description has not referred to affective influ-
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Fig. 2 Effects of learning rate on reward tracking in different environ-
ments. The learning rate characterises the extent to which the updated
value depends on the most recent outcome. The estimated value of
approaching the trough, calculated using the Rescorla–Wagner learning
rule shown in Fig. 1, most closely tracks the volume of sucrose solution
received when the learning rate is higher; learning occurs more rapidly
at higher learning rates. The inset panels show the average squared pre-
diction error across trials for each learning rate in each environment. The
prediction error is the difference between the reward predicted by the
individual (here, the estimated value of approaching the trough) and the
actual reward received on a particular trial, and so the average squared

prediction captures how accurately an individual estimates the reward
in the environment. In cases such as Environment 1, where the available
rewards change rapidly but systematically, a high learning rate allows
the individual a more accurate estimate of the likely reward value on
the subsequent trial; the average squared prediction error decreases as
the learning rate increases. However, in cases such as Environment 2,
where the reward has a largely unchanging average, but a high variance
(being delivered infrequently at random), a high learning rate may be
detrimental, as the estimated value will chase the noise; the average
squared prediction error is not lowest at the highest learning rate
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Fig. 3 A The softmax function to determine the probability of exe-
cuting action A when there are two possible actions (A or B) and the
value of executing each action is denoted Q(A) and Q(B), respectively;
B The softmax-determined values of the probability of approaching the
trough as the difference in values between the alternate action varies,

and as the inverse temperature parameter varies. Values for the inverse
temperature parameter of zero would mean that the action is chosen
entirely uniformly at random, while values of infinity would mean that
the action with the highest value is always chosen

ences, the quantities in the Rescorla–Wagner learning model
havebeen argued to be tightly intertwinedwith affective state.
Firstly, in humans, the prediction error has been shown to
modulate reported affect reliably: more positive prediction
errors are associated with more positively valenced affective
states and vice versa (Brielmann & Dayan, 2022; Neville et
al., 2021b; Otto & Eichstaedt, 2018; Rutledge et al., 2014).
From this,wemight be able tomake inferences about the sorts
of situations (i.e. unexpectedly good) that might lead to pos-
itive affect in animals to refine current non-pharmacological
ways to induce particular affective states. Secondly, the role
of the inverse temperature parameter inmoderating the extent
to which decisions are based on values is highly reminis-
cent of the role of affect in moderating reward processing.
For example, depression can be associated with anhedonia
and an impaired ability to use reward values for decision-
making (American Psychiatric Association, 2013; Whitton
et al., 2015), and there is some evidence from computational
studies that estimates of the inverse temperature parameter
fitted to data from depressed humans are lower on average
than those fitted to clinically healthy humans (Blanco et al.,
2013; Rupprechter et al., 2018).

Applying computational modelling to amarker
of affective state: Judgement bias

One potential measure of affect that has lent itself to com-
putational modelling, and could be used to study affective
disorders, is judgement bias (see Fig. 4a). In the character-
istic paradigm quantifying this measure, subjects’ responses
to stimuli that provide ambiguous information about whether

an action will lead to a more- or less-preferred outcome are
used to infer their affective state, with so-called ‘optimistic’
or ‘pessimistic’ resolutions of the ambiguity being associ-
ated respectively with positive and negative affect (Mendl
et al., 2010; Paul et al., 2005). For example, in the first non-
human task of this sort described byHarding et al. (2004), rats
were trained to press a lever to obtain sucrose when one tone
played, and to refrain from pressing the lever when a differ-
ent tone played in order to avoid the presentation of aversive
white noise. Once this discrimination was learnt, they were
presented with tones intermediate between the two trained
tones. When these ambiguous tones sounded, rats in putative
negative affective states, resulting from unpredictable hous-
ing and husbandry conditions, were slower to press the lever
and tended to be less likely to press it indicating enhanced
anticipation of a negative outcome, in line with predictions.

Meta-analyses have indicated that, in general, judgement
bias provides a valid measure of affective valence (Lagisz,
Zidar, Nakagawa, Neville, Sorato, Paul, ... & Løvlie, 2020;
Neville et al., 2021b). However, these meta-analyses also
identified substantial heterogeneity in the extent to which
judgement biases reflected the affective state assumed to
have been induced in different studies. Insights into this
heterogeneity could be offered by computational analysis
approaches that can dissect how different cognitive processes
underlying the decisions made (e.g. reward or punish-
ment sensitivity / valuation; outcome probability estimation)
combine to influence choices, and are affected by experi-
mental manipulations. Computational analysis of judgement
bias data is aided by the substantial framework for mod-
elling perceptual decision-making and making decisions to
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Fig. 4 The judgement bias task and a drift-diffusion approach to mod-
elling the ensuing data:AAnimals are trained to associate one stimulus
with a rewarding outcome, and another with an aversive outcome. The
key data are how an animal responds to an ambiguous stimulus; B
Drift-diffusion modelling describes how an animal might come to make
a decision about what the ambiguous stimulus represents. The animal
accumulates evidence during the stimulus presentation (dark graywind-

ing line) and makes a decision when they hit a particular threshold. The
time it takes to make a particular decision will depend on: where the
thresholds are relative to each other (boundary separation) and to the
starting point, the rate and average direction of evidence accumulation
(drift rate), as well as additional non-decision time (e.g. to execute an
action once a decision has been made)

maximise rewards (seeMaand Jazayeri, 2014;Ratcliff, 1978;
Sutton and Barto, 2018), as well as the ease with which
large amounts of data can be collected for individual ani-
mals (Jones et al., 2018).

We know of only three studies that examined judgement
bias in animals using computational modelling. One of these
studies employed aBayesian decision-theoreticmodel to dis-
sect the effects of short-term pre-exposure to food rewards
(assumed to generate a positive state) or airpuffs (assumed to
generate a relatively negative state) on subsequent decision-
making under ambiguity in rats. This model begins with
the reinforcement learning aligned assumption that rats will
make decisions that maximise rewards and minimize pun-
ishers; they will make the ‘optimistic’ response when the
expected value of doing so is great than that of the ‘pes-
simistic’ response. Computation of these expected values
requires an estimate of the probability that the presented tone
will lead to a reward (or a punisher) given a rat’s perception of
the tone, the distribution of which can be calculated accord-
ing to Bayes rule. This study found that rats pre-exposed
to airpuffs weighted rewards more highly than punishers, in
agreement with an independent measure of reward valua-
tion. Whilst unexpected, other studies have also found that
mild stress can enhance valuation of reward (Ironside et al.,
2018). Also unexpectedly, these rats showed a bias towards
the risk-prone response (Neville et al., 2020a). The mod-
elling thus suggested that judgement biases do not solely
arise from differences in ‘optimism’ or ‘pessimism’ in the
sense of heightened or reduced expectations of the proba-
bility of rewards, but may also be influenced by variation
in the context-dependent valuation of rewards or punishers.
The study highlights the value of computational modelling
as a tool to dissect the processes underlying affective influ-
ences on judgement biases. Whilst the original judgement

bias hypothesis emphasised the role of affect in determining
whether an animal probabilistically anticipates a positive or
negative outcome when presented with an ambiguous stim-
ulus, computational modelling demonstrated that this may
be an oversimplification of what happens in the task, and
that valuation of rewards/punishers plays a role too. In sup-
port of this, a human judgement bias study used a Bayesian
decision-theoretic model to show that both perceived prob-
ability and valuation of decision outcomes may influence
decision-making, and that these processes can be differ-
entially altered by affective manipulations and even have
opposing effects on decisions (Iigaya et al., 2016).

These findings indicate that computationalmodellingmay
start to provide explanations for some of the heterogeneities
in judgement bias results that were revealed in recent meta-
analyses. For example, two different underlying processes
(e.g. estimates of outcome probability and value) mediat-
ing the interface between affect and decision-making may
sometimes cancel each other out leading to a null result. It
is therefore vital to understand precisely how a particular
manipulationmight have influenced both affect and decision-
making processes, and use of computational modelling can
aid this.

There exist other and more established computational
models that can be applied to judgement bias data and
afford valuable information about the putative processes
underlying decision-making, one example of this is drift-
diffusion modelling (see Fig. 4b). This is the approach that
the other two studies took to investigate judgement bias in
animals. These studies yielded results in line with predic-
tions, finding that negative affect induced in rats using an
anxiogenic drug increased the decision threshold for mak-
ing an ‘optimistic’ response (i.e. more evidence needed to be
accumulated for a decision to be made) (Hales et al., 2016),
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and positive affect induced using an antidepressant had drug-
dependent effects on decision-making – either decreasing
the evidence required to make an ‘optimistic’ versus a ‘pes-
simistic’ response (altered starting point), or increasing the
ease with which the favourable stimuli were classified as
requiring an ‘optimistic’ response (altered drift rate) (Hales
et al., 2017). These models thus allowed the likely influence
of affectmanipulations ondifferent putative decision-making
processes to be identified.

Without these computational models, or without addi-
tional measures that more directly test whether an aspect
of decision-making that could be parameterised in the model
has been altered by an affect manipulation (e.g. using sucrose
preference tests to measure the hedonic value of sucrose),
the inferences that can be made from judgement bias stud-
ies would be restricted. For example, without drift-diffusion
modelling, it would only be possible to make qualitative
statements about the distribution of reaction times for the
‘optimistic’ and ‘pessimistic’ responses, rather than describe
what underlies changes in the reaction time distribution pre-
cisely and quantitatively (e.g. via the values of the starting
point parameter, which quantifies asymmetries in reaction
time distributions for the different responses). Moreover,
with standard non-computational analyses, while it is possi-
ble to infer that a particular manipulation resulted in changes
in decision-making, itwould beharder to infer anything about
the cognitive mechanisms that may have led to the observed
changes in decision-making (see Neville et al. (2020a) for
example), or to assess how a combination of different factors
or individual differencesmay influence decision-making (see
Rivalan et al. (2013) for example). The Bayesian decision-
theoretic modelling discussed above provides this added
insight (Iigaya et al., 2016; Neville et al., 2020a). Computa-
tionalmodelsmay also reveal that some of themechanisms in
the decision-making process are more tightly linked to affect
than others. For example, in the case of drift-diffusion mod-
elling, studies have shown that changes in the non-decision
time parameter can reflect a whole host of factors that bear
little or no relation to affect, including alcohol intoxication,
age, and fatigue (Theisen et al., 2021; Ulrichsen, Alnaes,
Kolskar, Richard, Sanders, Dorum, ... & Westlye, 2020; van
Ravenzwaaij et al., 2012).

Computational modelling may also be more sensitive at
detecting differences in affective state than conventional
analyses. This is firstly because computational analyses can
be basedon the data as awhole, contrary to conventional anal-
yses which typically use one-dimensional data. For example,
drift-diffusion models are jointly fitted to the reaction time
and accuracy data which aids identification of different types
of biases, such as separating discriminability from response
biases. It is secondly because, as outlined above, it allows
decision-making processes that are most heavily influenced
by affect to be disentangled from those that have little, no, or

even opposite effects on decision-making and which may
dilute the influence of affect manipulations on decision-
making as a whole.

One clear example of the benefit of a computational
approach comes from a judgement bias study with human
subjects alluded to earlier (Iigaya et al., 2016). In this, par-
ticipants completed a judgement bias task with variable
rewards and losses across trials in either a pleasant room
or an unpleasant room – a manipulation designed to alter
affective state. No differences in decision-making between
the treatment groups were identified using a conventional
analysis. However, differences were observed when the data
were analysed using a computational approach. Participants
in the unpleasant room exhibited a stronger bias towards
the ‘pessimistic’ response which would lead to more ‘pes-
simistic’ decision-making as predicted. At the same time,
and as found in a similar animal study (Neville et al., 2020a),
they weighted wins more heavily than losses (cf. Ironside et
al. (2018)) which would contrarily lead to more ‘optimistic’
decision-making. The computational analysis therefore not
only identified a treatment effect, with useful information
about how specific processes were influenced by this treat-
ment, but it also helped to explain why no treatment effect
was observed using a conventional approach to analysis.

Applying computational modelling in other studies
of animal affect

Another decision-making taskwhich is valuable for the study
of animal affect is the probabilistic reward task. Similar to the
judgement bias task, animals are first trained to discriminate
between two stimuli. For example, to press a left response
key when a short line appears and to press a right response
key when a long line appears. Differing from the judgement
bias task, testing involves assessing the extent to which a
response bias emerges when asymmetries are introduced to
the probabilistic schedules for the stimuli, such as reward-
ing correct responses to the long line with 60% probability
and short line with 20% probability. Lower response biases
have been reported as reflecting deficits in hedonic capacity
that are characteristic of poorer mood states (e.g. anhedonic
forms of major depressive disorder) (Kangas et al., 2022).
The probabilistic reward task has been successfully devel-
oped for use in multiple species (Hisey et al., 2023; Kangas
et al., 2020;Wooldridge et al., 2021) and it would be interest-
ing to extend to the non-human animal versions the collection
of computational modelling methods that have been applied
to human data (Huys et al., 2013).

Alongside additional judgement bias studies and the
probabilistic reward task, there is much scope for novel
behavioural tasks to be developed for translational inves-
tigation of other affective disorders using a computational
approach in animals. This would be closely aligned with
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the field of computational psychiatry (i.e. more direct back-
translation from human to animal subjects). It will no doubt
be aided by the rise in the development of accessible operant
equipment (e.g. using the readily programmable Raspberry
Pi), which allows increased flexibility in task design and
opportunities for home-cage testing where large amounts
of data can more readily be collected (Akam, Lustig, Row-
land, Kapanaiah, Esteve-Agraz, Panniello, ... & Costa, 2022;
Jolles, 2021).

The outcomes of such computational analyses can be
examined in more detail and bolstered by investigating the
neuro(physiological) underpinnings of the model. Combin-
ing computational approaches with neuronal recordings and
stimulation, or with genetic models, would allow a more
detailed and mechanistic understanding of the neural bases
of affective disorders. Importantly, this would also allow
investigation of putative causal links between neurobiolog-
ical alterations and affective disorders. Opportunities for
such research are obviously very limited or not possible
in human participants (Saez & Gu, 2023), so non-human
subjects offer far richer opportunities to advance our under-
standing of affect. More specifically, the influence of affect
could be directly parameterized in the model, with clear
hypotheses about the potential neural substrates thatmight be
associated with these parameters. An exploratory approach
could also be used; trying to identify neural substrates whose
activities correlate with an aspect of the model or particular
parameter, where those aspects or parameters are putatively
associated with affective state. Furthermore, this linking of
theory to measurable biological processes is arguably key to
advancingour understandingof affective states in non-human
animals. For example, this could involve exploring potential
correlations between parameter estimates and physiological
measures such as hippocampal atrophy (a potential neurolog-
ical biomarker ofMDD; (Poirier et al., 2019)), exploring how
components of the model relate to real-time neural activity
or physiology such as endogenous fluctuations in dopamin-
ergic activity or serotonergic activity (both of which have
been implicated in affective disorders; (Ruhé et al., 2007)),
or examining howpharmacologicalmanipulations (e.g. using
antidepressants) influence parameter estimates. This would
help to better elucidate the biological consequences of more
positive or negative affect in a structured manner that is
grounded in theory. Together with computational psychiatry
research with human participants, which importantly allows
insight into how affect is subjectively experienced, this will
aid our understanding of the precise links between affect,
behaviour and neurophysiology.

Practically, thiswould also allowbetter assessment of both
the impact of potential pharmacological treatments for mood
disorders and the impact of any potential refinements to ani-
mal welfare. Moreover, combined with home-cage testing,
it might also be possible to repeatedly test animals and gain

readouts for their affective states longitudinally. This could
be highly useful for monitoring animal welfare and captur-
ing points at which welfare is deteriorating. For instance, it
could be used alongside information, such as weight loss or
tumour size (Wallace, 2000), to inform humane endpoints for
animal studies. This might allow greater consideration of the
potential subjective experience of the animal when making
these important ethical decisions.

In sum, we suggest that a computational approach will
advance fields reliant on measures of animal affect by: (1)
grounding research in affective theory and evidence from
studies of humanpsychiatry; (2) paving theway for the devel-
opment of computational biomarkers that provide a refined
and reliable measure of affective valence; and (3) allow-
ing a more complete and mechanistic understanding of how
positive or negative affect (and good or poor welfare) is asso-
ciated with changes in behavioural or (neuro)physiological
markers.

Conclusions

The field of computational psychiatry is rapidly growing and
promises to further our understanding of human affective
disorders. However, there is something of a dearth of trans-
lational computational psychiatry studies. This is surprising
given the importance of the study of affect in non-human ani-
mals to improve our understanding of affective disorders and
how to treat them (including those that we might observe in
captive or companion animals), and our assessment of ani-
mal welfare.We consider that computational analyses will be
able to play a pivotal role in developing improved measures
of animal affect and welfare, furthering our understanding of
the aetiology of affective disorders, including those that may
be induced in domestic species under our management and
care, and the likely underlying processes involved.

More generally, although we focused on how computa-
tional approaches canbeused to capture processes of aberrant
decision-making in major depressive disorder and anxiety
disorders, they have also been applied to a whole host of
other neuropsychiatric disorders (Series, 2020), including
substance use disorders (Goldway et al., 2023; Gueguen et
al., 2021), attention deficit hyperactivity disorder (ADHD)
(Ging-Jehli et al., 2021), obsessive–compulsive disorder
(OCD) (Fradkin et al., 2020; Loosen & Hauser, 2020),
schizophrenia (Valton et al., 2017), and Tourette syndrome
(Rae et al., 2019; Schüller et al., 2020). All of these could also
benefit from the translational approach we are advocating.
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