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Abstract
We recently advanced a rodent homologue for the reward-specific, event-related potential component observed in humans 
known as the Reward Positivity. We sought to determine the cortical source of this signal in mice to further test the nature of 
this homology. While similar reward-related cortical signals have been identified in rats, these recordings were all performed in 
cingulate gyrus. Given the value-dependent nature of this event, we hypothesized that more ventral prelimbic and infralimbic 
areas also contribute important variance to this signal. Depth probes assessed local field activity in 29 mice (15 males) 
while they completed multiple sessions of a probabilistic reinforcement learning task. Using a priori regions of interest, we 
demonstrated that the depth of recording in the cortical midline significantly correlated with the size of reward-evoked delta 
band spectral activity as well as the single trial correlation between delta power and reward prediction error. These findings 
provide important verification of the validity of this translational biomarker of reward responsiveness, learning, and valuation.
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Functional comparisons between species are challeng-
ing. The status quo focus on similar behavioral tendencies 
between species is limited by the degenerative nature of 
action selection and the intrinsic weakness of applying psy-
chological labels to complex cognitive functions (Keeler & 
Robbins, 2011; Sarter, 2004). Systems-level neural activi-
ties may offer a more sensitive measure of translational 
similarity beyond behavioral tendencies. Population-level 
electrophysiology is particularly well-suited for addressing 
such questions about translatable biomarkers. Task-evoked 
electrophysiological responses offer the opportunity to iden-
tify similar spectral fingerprints between species, which may 
reflect common latent computations. Probabilistic learning 
tasks are easily transferrable across vertebrates (Amitai 
et al., 2014; Amodeo et al., 2012; Bari et al., 2010; Hyman 
et al., 2017), and reinforcement learning theory allows a 
quantification of abstract latent processes (Sutton & Barto, 
1998). Taken together, electrophysiological assessment dur-
ing reinforcement learning offers an excellent opportunity 
for comparing neural activities between species.

We recently advanced a rodent homologue for a reward-
specific, event-related potential (ERP) component observed 
in humans. The Reward Positivity (RewP) is a positive 
deflection in the human ERP that is most commonly quanti-
fied over frontocentral sites approximately 200–400 ms after 
reward presentation (Baker & Holroyd, 2011; Holroyd et al., 
2008; Proudfit, 2015). Both the RewP and its delta-band 
spectral reflection scale with the degree of positive reward 
prediction error, whereby “better than expected” outcomes 
evoke increasingly larger RewP amplitudes (Baker & Hol-
royd, 2011; Cavanagh, 2015; Holroyd & Umemoto, 2016). 
The candidate rodent homologue shares a similar sensitivity 
to positive reward prediction errors (Cavanagh et al., 2021), 
and both species’ signals are parametrically modulated 
by amphetamine (Cavanagh et al., 2022). This study was 
designed to determine the cortical source of this signal in 
mice to further test the nature of this homology.

Previous investigations of this reward-related local field 
feature only examined EEG from a frontal dura screw, leav-
ing questions of the generative neural systems unaddressed. 
Other groups have advanced similar reward-related corti-
cal signals in rats (Iturra‑Mena et al., 2023; Warren et al., 
2015), identifying cingulate gyrus (CG2) as a generative 
structure. However, other potential generative structures 
were not assessed. The source of the human RewP has not 
been rigorously tested either, but it also is often assumed to 
be generated in the dorsal cingulate (Walsh & Anderson, 
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2012). Importantly, we think that both of these assumptions 
are incomplete. As a value-related signal, we hypothesize 
that more ventral midfrontal regions may have a major gen-
erative role in this signal (Roy et al.,  2012). Most recently, 
it has been suggested that perigenual and ventral mid-
line cortices contribute meaningful variance to the RewP 
(Cavanagh et al.,  2018; Crane et al.,  2022; Whitton et al., 
2023), although conclusive evidence is still lacking. There 
is considerable evidence for anatomical homology across 
midline structures between rodents and primates, yet little 
evidence for functional homologies (Bicks et al., 2015; Heil-
bronner et al., 2016; Laubach et al., 2018; Preuss & Wise, 
2022; Schaeffer et al., 2020; van Heukelum et al., 2020). 
In line with these compelling cross-species similarities, we 
tested the hypothesis that more ventral midline regions in 
mice (e.g., prelimibic (PL) and infralimbic (IL) cortex) also 
are major generators of this signal.

The identification of the generative neural structures con-
tributing to this signal could provide additional evidence on 
the nature of the computation reflected by the RewP. This 
inference requires a sophisticated assessment of the topog-
raphy of function across the midline dorsoventral axis of the 
rodent. Functional segregations do not appear to confirm to 
standard dorsal-ventral subregion dissociations (e.g., CG1, 
CG2, PL, IL); rather a homologous comparison is maxi-
mally effective when considered as a caudal-rostral gradi-
ent around the genu of the callosum (Francis-Oliveira et al., 
2022; Schaeffer et al., 2020; van Heukelum et al., 2020). 
This gradient may be considered a continuum from dorsal 
action selection to ventral affective representation (van Heu-
kelum et al., 2020). In both humans and mice, this may be 
analogous to an actor-critic dissociation; dorsal premotor 
areas select actions based on context, but ventral areas rep-
resent goal value. We hypothesize that the RewP may be 
a marker of this critic-like goal value. Thus, we expect to 
find a strong role of ventral generators in mice (as well as 
in humans, someday). We investigated local field activity 
within two distinct groups of mice: CG1/CG2 vs. PL/IL. 
However, we also hypothesized that continuous measures 
of cortical depth across mice could provide a more sophisti-
cated vectorized account of the topography of the generators 
of this candidate RewP homologue.

Materials and methods

Animal subjects

Female and male C57BL/6J mice were obtained from The 
Jackson Laboratory (Bar Harbor, ME), housed in same sex 
groupings of 2 per cage in a temperature- and humidity-con-
trolled vivarium under a reverse 12-h light/dark cycle (lights 
off 0800 h) and tested during the dark phase. A total of 39 

mice (23 males) were used. All experimental procedures 
were performed in accordance with the National Institutes of 
Health Guide for Care and Use of Laboratory Animals and 
were approved by the University of New Mexico Health Sci-
ences Center Institutional Animal Care and Use Committee.

Behavioral chambers

All operant behavior was conducted in a custom acrylic 
chamber, measuring 21.6 × 17.8 × 12.7 cm, housed within 
a sound- and light-attenuating box (Med Associates, St. 
Albans, VT) as previously described (Marquardt, Sigdel, 
Caldwell, & Brigman, 2014). At one end of the chamber, a 
liquid dispenser delivered a strawberry milk liquid reward, 
which consisted of a mix of Nesquik (S.A., Vevey, Switzer-
land), Carnation powdered milk (Nestle Baking, a division 
of Nestle USA, Inc., Solon, OH), and water. There also was 
a house-light, a tone generator, and an ultrasensitive lever. 
On the other end of the chamber, there was a touch-sensitive 
screen (Conclusive Solutions, Sawbridgeworth, UK) cov-
ered by a black acrylic aperture plate, allowing two active 
touch areas measuring 7.5 x 7.5 cm separated by 0.6 cm and 
located at a height of 1.6 cm from the floor. Stimulus presen-
tation in the response windows and touches were controlled 
and recorded by the K-Limbic Software Package (Conclu-
sive Solutions, Sawbridgeworth, UK).

Pretraining

The weights of mice were first slowly reduced and then 
maintained at 85% free-feeding body weight. Before train-
ing, mice were acclimated to the reward by providing 3 mL 
of liquid per mouse on a weigh boat in the home cage for 2 
days. After becoming acclimated to the reward, mice were 
habituated to the operant chamber with a 30-min session 
where they could retrieve 40 µL of liquid reward after each 
magazine head dip. Mice that retrieved 10 rewards within 
10 min were then moved to bar training. During bar training, 
mice pressed a bar located to the side of the magazine to 
get a liquid reward, followed by a 5-second intertrial inter-
val (ITI). The criterion for passing bar training was 30 bar 
presses in less than 30 min. Following completion of bar 
training, mice were moved to touch training. Touch training 
required mice to first initiate each trial with a bar press, then 
touch the screen in one of the two response windows. Upon 
touching either side of the screen, mice were rewarded with 
a 1-s tone and liquid reward. There was a 5-s ITI before they 
were able to initiate a new trial. The criterion for touch train-
ing was again 30 trials in less than 30 min. Upon comple-
tion of touch training, mice were moved to punish training. 
In punish training, the mouse initiated the task by pressing 
the bar and then touched one of the two response windows. 
Touching the window with a white stimulus (of various 
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shapes) resulted in a reward as described above. Touching 
the blank window resulted in punishment, where the white 
house light was turned on for 10 s. Mice were not allowed 
to progress to a new trial until they correctly touched the 
target screen. The criterion for passing punish training was 
again 30 trials in less than 30 min. The final stage of train-
ing involved simplified version of the Probabilistic Learn-
ing Task (PLT) called FAN100. Upon initiation of the task 
via bar press, a “fan” image was shown in one screen and 
a “marble” image in the other. In FAN100, the fan image 
was always the correct stimulus, and the marble image was 
always the incorrect stimulus. Touching the fan image would 
result in the above-described reward, whereas touching the 
marble image would result in a punishment and trigger a 
correction trial. The criteria for this task was >85% correct 
choices (26/30 trials) for two consecutive days.

Mice then progressed to the final version of the PLT task. 
This task is the same as FAN100, but the fan image was 
only rewarded 80% of the time, and the marble image was 
rewarded 20% of the time. There also were no correction 
trials for an incorrect choice at this stage. Four mice used 
a version with 100/50 probabilities instead of 80/20. The 
criterion for completion of the presurgical training portion 
of this task was 70% correct choices (21/30 trials) for two 
consecutive days.

Surgical implantation and testing

After completing PLT criteria, mice were put on a special 
diet of 3 g of food for 2 days leading up to implantation. 
They were then anesthetized with isoflurane and placed in a 
stereotaxic alignment system (Kopf Instruments, Tujunga, 
CA) for fitting with a 16-channel array of 35-μm diameter, 
5-mm length tungsten electrodes (two lateral clusters sepa-
rated by 500 μm with 150-μm spacing between electrodes 
in each cluster; Innovative Neurophysiology Inc.). A 0.6- x 
0.6-mm window was drilled into the skull, and the array 
was lowered to the assigned depth. Two skull screws were 
secured to the cerebellum, and a ground wire from the array 
was wrapped around them. The entire area was then solidi-
fied with dental cement. The mouse was then given 0.15 ml 
of buprenorphine postoperatively. After 5 days of recovery, 
body weight reduction resumed, and mice were given a post-
surgery reminder session that consisted of the last pretrain-
ing regimen to ensure retention of pretraining criterion.

During each recording session, electrophysiological 
activity was recorded via a multichannel acquisition proces-
sor (PlexControl, Plexon) at a sample rate of 10,000 Hz for 
spikes and 1,000 Hz for local field potentials (LFPs). Only 
LFPs are reported here. Relevant task events and behaviors 
were time-coded as event markers in the recording file via a 
TTL pulse from the behavioral software. Each recording ses-
sion consisted of 60 trials. Only sessions with more than 30 

completed trials were included in analyses. Mice completed 
between six and 11 sessions with this criterion.

Computational modeling

In all models, state-action values were estimated for each cue, 
and a softmax choice function was used to predict the most 
likely action on each trial. State-action values ( Q values) were 
updated according to the delta learning rule with a learning 
rate (�) scaling the prediction error (�):

where prediction errors were calculated as the difference 
between reinforcements (r) and Q values:

and reinforcements were from a set of 0,1:

The probability of action selection was predicted by using 
a softmax logistic function with a free parameter for gain 
adjustment to select the highest value option (β, also termed 
behavioral consistency or inverse temperature):

The computationally derived prediction error (Eq. 2) 
from the best-fitting model was used as a single trial regres-
sor in LFP analyses. However, the estimation of prediction 
errors may vary depending on dynamic task qualities cap-
tured by free parameters. A number of competing models 
were formally compared and prediction errors from the 
best-fitting model were used as regressors for EEG analy-
ses. The probabilities of action selection (Eq. 4) were used 
to compute the log likelihood estimate (LLE) of the subject 
having chosen that set of responses for a given set of param-
eters. The parameters that produced the maximum LLE were 
found by using the Nelder-Mead simplex method, a standard 
hill-climbing search algorithm (implemented with Matlab 
function fmincon.m). All models used the best-fitting out-
come of ten different starting points (using Matlab function 
rmsearch.m).

All models included a parameter for softmax weighting. 
The first model (M1: Vanilla) had one free parameter for 
learning rate. The second model (M2: WinLoss) included 
separate learning rates to gain and loss. The third model 
(M3: WL_Qbias) modulated M2 with a free “omega” param-
eter that weighted the initial Q values (Qa = 0.5 + Ω, Qb = 
0.5 − Ω) to account for preserved learning between sessions.

Following convention (Daw, 2011), all learning rates 
were constrained to remain between 0 and 1, and all softmax 
gain parameters were constrained to be between 0 and 10. 

(1)Qt = Qt−1 + �(�),

(2)� = r − Q,

(3)r ∈ (0, 1).

(4)p
(

Qselected

)

= exp
(

� ∗ Qselected

)

∕
∑

all
exp

(

� ∗ Qall

)

.



295Cognitive, Affective, & Behavioral Neuroscience (2024) 24:292–301	

1 3

M3 omega was constrained between −0.5 and 0.5. Charac-
terization of model fits were computed as pseudo-R2 sta-
tistics: (LLE-chance)/chance (Camerer & Ho, 1999). For 
model comparison, the Akaike information criterion (AIC) 
was used to penalize the LLE based on the number of param-
eters. Given the multiple sessions, two strategies for model 
fitting were compared: 1) fitting individual sessions before 
within-subject averaging of parameters versus 2) one model 
fit to all aggregate session data per mouse. Because AIC can-
not be compared between these approaches due to different 
sizes of data, pseudo R2 was used as an index of fit. Pseudo 
R2 was larger for individual session fits instead of one single 
aggregate fit in nearly all mice and model types (observed 
in 100% of mice in the best fitting model M3; pseudo-R2 
improvement M = 5.5%, range 3.2–8.5%).

EEG processing

Data were epoched around the time of the screen touch 
(−2000 ms to 2000 ms), which was synonymous with the 
indicator for reinforcement (tone for reward, lights for pun-
ishment). As in our previous work, we used the cerebel-
lar screw as a reference for the midfrontal LFPs, but we 
also examined three other reference schemes for posterity: 
1) average reference over all 16 leads; 2) eight anterior-to-
posterior bipolar pairs; and 3) lead 1 to lead 16. Because all 
outcomes were highly similar across all reference schemes, 
we only report on the cerebellar reference findings. All local 
field potential findings were averaged across all 16 leads 
within each mouse.

Time-frequency measures were computed by multiplying 
the fast Fourier transformed (FFT) power spectrum of single 
trial LFP data with the FFT power spectrum of a set of com-
plex Morlet wavelets defined as a Gaussian-windowed com-
plex sine wave: ei2πtfe-t^2/(2xσ^2), where t is time, f is frequency 
(which increased from 1–50 Hz in 50 logarithmically spaced 
steps), and the width (or “cycles”) of each frequency band 
were set to increase from 3/(2πf) to 10/(2πf) as frequency 
increased. Then, the time series was recovered by computing 
the inverse FFT. The end result of this process is identical to 
time-domain signal convolution. It resulted in estimates of 
instantaneous power taken from the magnitude of the ana-
lytic signal. Each epoch was then cut in length from −500 
to +1000 ms peri-feedback.

Averaged power was normalized by conversion to a deci-
bel (dB) scale (10*log10[power(t)/power(baseline)]), allow-
ing a direct comparison of effects across frequency bands. 
The baseline consisted of averaged power −300 to −200 ms 
before all imperative cues. A 100-ms duration often is used 
as an effective baseline in spectral decomposition, because 
pixel-wise time-frequency data points have already been 
resolved over smoothed temporal and frequency dimen-
sions with the wavelets. All ERPs were filtered with a 20-Hz 

low-pass filter. Model-derived reward prediction error (+PE) 
was regressed on all single-trial spectral decompositions, as 
well as all single-trial broadband EEG.

Statistical analysis

Mice were excluded from analyses if they had an aggre-
gate accuracy <55% (3 mice: 2 males), if histology failed 
to verify that recordings were in medial cortex (4 mice 
with leads in septum: 3 males), or if the head stage became 
detached (1 mouse: male). Two mice had exploratory arrays 
in orbitofrontal cortex (2 males) and were not included in 
this analysis. This left 29 mice (15 males) for the planned 
analyses (Fig. 1A). Because four subjects were recorded 
on an analogue amplifier, we removed these subjects from 
ERP analyses. However, all other analyses used decibel or 
regression-based outcomes, which were not affected by this 
variable.

Rewarding feedbacks were used for all analyses. 
Rewarded responses were immediately indicated by a 1-s, 
pure noise tone, which ended with the illumination of the 
magazine light and delivery of liquid reward. We used a 
priori regions of interest (ROIs) but also followed up on the 
a posterori findings observed here. For the ERP, we used 
an a priori ROI of 400–600 ms (Cavanagh et al., 2022) but 
also examined an a posteriori time window of 600–800 ms. 
For time-frequency regions of interest (tf-ROI), we used 
1–1.4 Hz from 250–550 ms (Cavanagh et al., 2021) but also 
examined an a posterori time window of 550–850 ms. The 
time-frequency PE regressions revealed a strong effect in the 
alpha band (9.5–12 Hz; see also Iturra‑Mena et al., 2023); 
we examined this feature as an a posteriori outcome.

Results

Performance

Mice learned the task well (mean [M] = 72%, standard 
deviation [SD] = 8%) with aggregate win stay (M = 66%, 
SD = 9%) and lose-switch (M = 56%, SD = 8%) tenden-
cies (Fig. 1C). Table 1 shows model fits. Each increasingly 
complex model fit better than the previous one in Pseudo 
R2, although AIC was rather similar across model types. 
This suggests that each model added an improvement in 
the prediction of behavior, but this was minimal and about 
equivalent to the AIC penalty for complexity.

Model M3 was chosen as the best-fitting model given bet-
ter pseudo R2, ambivalent AIC, and a verified conceptual-
ization of maintained learning (positive omega) instead of a 
necessary high learning rate per each session. Notably, the 
LFP analyses only leveraged the relative ranking of +PE (i.e., 
nonparametric correlation), which is largely unaffected by 
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additional parameters. A generative model of model M3 had 
nearly identical aggregate accuracy (M = 72%, SD = 8%), 
win stay (M = 65%, SD = 8%), and lose-switch (M = 56%, 
SD = 8%) tendencies. M3 omega parameters did not reliably 
change over time within each mouse across sessions (t<1), 

(Fig. 1D). Overall, all behavioral tendencies and model fits 
indicated that all mice learned the task well with maintained 
action values between sessions. Singles trial prediction errors 
were taken from model M3 fits and used as regressors for 
neural recordings.

Fig. 1   Depth recordings on a touchscreen probabilistic learning 
task. Groups are identified by color: red = prelimbic or infralimbic 
(PL/IL); n = 14, blue = cingulate gyrus (CG), n = 15. A Electro-
lytic lesion identification of the placement of 16-channel leads; each 
mouse had four anterior-posterior slices with lead placements iden-
tified. Measurements are millimeters from bregma. B Mice touched 
one of two screens to identify the most rewarding stimulus. Imme-

diately after touching the screen, a tone indicated the availability of 
liquid reward on reinforced trials. C Accuracy over sessions, as well 
as within-mouse average accuracy. Black icons show average across 
sessions. D Omega parameter from the best-fitting reinforcement 
learning model, indicating a maintained bias toward the action value 
for the optimal stimulus between sessions. Black icons show average 
across sessions
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Local field potentials

Figure 2 shows the ERPs (Fig. 2A, B) and broadband regres-
sions with +PE (Fig. 2C, D). As shown in Fig. 2B, the PL/IL  
and CG groups differed in RewP amplitude (t(23) = 2.61,  
p = 0.02) but not in the regression with +PE (t(27) = −1.45, 
p = 0.16; Fig. 2D). While there was an apparent representa-
tion of +PE-related variance in the late a posteriori window 
(Fig. 2C), this was not statistically significant, and none of the 
ERP or EEG +PE correlations scaled with the depth of the 
lead in either window.

Figure 3 shows the time-frequency outcomes for power 
(Fig. 3A) and power +PE correlation (Fig 3B). An unpre-
dicted alpha-band response from 250–850 ms also was 
apparent in the power +PE correlation (Fig. 3B), particu-
larly for the PL/IL group. Figure 3C-D shows how the a 
priori delta band tf-ROI scaled with the depth of the lead, 

both for raw power as well as for the tf-ROI +PE correla-
tion. This depth-related variance was most strongly preva-
lent in CG subjects. These findings were similar for the a 
priori early (250–550 ms) and a posteriori late (550–850 
ms) windows, as well as across all four reference schemes, 
suggesting a robust effect. 

The a posteriori alpha band power tf-ROI from 250–850 
ms was not different between groups (t(27) = −0.54, p 
= 0.59), although the alpha +PE correlation was signifi-
cantly larger in the PL/IL group (t(27) = 2.10, p = 0.04). 
Power in the alpha band tf-ROI similar scaled with depth 
(rho(27) = 0.49, p = 0.01), but this was primarily observed 
in the PL/IL group (rho(12) = 0.63, p = 0.01) and not the 
CG group (rho(13) = 0.41, p = 0.13). The alpha +PE cor-
relation also was scaled with depth (rho(27) = 0.41, p = 
0.03), but this was not particularly prevalent within either 
subgroup (p’s > 0.14).

Table 1   Model parameters and fits. All values are mean (SD)

Alpha Alpha gain Alpha loss Beta Omega AIC Pseudo R2

M1: Vanilla 0.26 (0.11) 3.47 (1.24) −70.00 (8.21) 17.81 (10.04)
M2: Win Loss 0.25 (0.14) 0.23 (0.12) 5.90 (1.49) −70.05 (8.40) 20.27 (10.29)
M3: M2 + Qbias 0.10 (0.12) 0.29 (0.12) 7.68 (1.99) 0.11 (0.08) −70.01 (8.95) 22.84 (11.05)

Fig. 2   Average event-related potentials from local field record-
ings. All leads and sessions were first averaged within each mouse; 
the ERP shown is the grand average across mice. A Win versus loss 
trials, with time windows of interested indicated in magenta. B The 

mouse homologue of the RewP was larger in the PL/IL group than 
the CG group. C Single trial correlation of +PE with broadband EEG 
activity. D This single trial correlation did not differ between groups 
in either time window of interest. *p < 0.05.
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Discussion

We identified a robust correlation between reward-related 
local field signatures and cortical depth. The ERP feature 
previously identified as a RewP homologue was significantly 
larger in the PL/IL group than the CG group (Fig. 2B). The 
delta band spectral feature previously identified as a corre-
late of reward prediction error was larger in deeper probes 
(Fig. 3C), as was the single trial correlation between delta 
power and positive prediction error (Fig. 3D). These find-
ings replicate and extend work from multiple different labs 

(Cavanagh et al., 2021; 2022; Iturra‑Mena et al., 2023; War-
ren et al., 2015) and provide important verification of the 
validity of this translational biomarker.

These reward-specific delta-band responses appear to 
be unique in rodent frontal cortex. Other experiments have 
revealed cortical theta band activities during rewarding activi-
ties, but theta appears to be tightly linked to action-related 
processes, not feedback-related information like in this report. 
Theta is observed in general control of consummatory behav-
ior (Amarante & Laubach, 2021), including motor actions 
associated with licking frequency (Horst & Laubach, 2013) 

Fig. 3   Average time-frequency activity from local field recordings. A 
Win versus loss trials, with time windows of interested indicated in 
magenta. B Single trial correlation of +PE with spectral activity, 
highlighting a small low-frequency delta band effect which replicates 
prior findings, as well as a novel and unexpected alpha band finding 

particularly in the PL/IL group. C Recording depth predicted the size 
of the delta-band response to wins, particularly in the CG group. D 
Recording depth similarly scaled with the single trial +PE regressed 
delta-band activity, again primarily in the CG group. *p < 0.05; **p 
< 0.01
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and reward-dependent vigor (Amarante, Caetano, & Laubach, 
2017). Notably, this theta presence is not as simple as motor 
execution but can include control-related processes, such as 
motor inhibition (Müller Ewald et al., 2022) and post-error 
adjustment (Narayanan, Cavanagh, Frank, & Laubach, 2013; 
Olguin et al., 2023). Whereas these delta versus theta band 
features appear to align with evaluative versus executive pro-
cesses, the current report also revealed prediction error sen-
sitive alpha band activity, particularly in PL/IL areas. It is 
unknown what alternative or nested process this alpha activity 
may represent, but it appears similar to recent observations 
of reward-evoked alpha/beta power in rat CG (Iturra‑Mena 
et al., 2023).

It remains unknown how this delta band signal reflects 
cortical interaction with dopaminergic midbrain and stri-
atum, which are traditionally associated with the mecha-
nistic instantiation of reinforcement learning. The RewP 
and rodent RewP homologue occur about the same time as 
phasic midbrain dopaminergic neuron responses to rewards 
in humans (200–400 ms; Zaghloul et al., 2009) and mice 
(200–700 ms, Dabney et al., 2020; Eshel et al., 2016). Nota-
bly, Iturra‑Mena et al. (2023) demonstrated highly similar 
delta band activities in nucleus accumbens simultaneous 
with the CG delta band response. This suggests that these 
low-frequency activities may be used to communicate across 
cortical and subcortical areas. It is our working hypothesis 
that this cortical signal reflects cross-modal integration facil-
itating computationally complex assessments of the multi-
dimensional value of a reward; we expect that this cortical 
activity may thus precede the striatal activity.

Limitations and future directions

There are many outstanding questions about the nature of the 
RewP homology between species. We have focused on one 
type of task, but we predict that the rodent RewP homologue 
will have the same cross-task and cross-modality domain 
generality as the human RewP. We further predict similar 
dorsal versus ventral specificities in the information content 
represented in this signal. We suggest that this might fol-
low a rough actor-versus-critic dissociation, possibly prefer-
entially signaled by theta versus delta-band activities. The 
unexpected alpha band representation of +PE in PL/IL sug-
gests a possible mechanism for area-specific network inter-
actions, possibly with striatum (Iturra‑Mena et al., 2023).

A fully validated animal model of a human, domain-
specific, neural response has high biomedical value. There 
is strong enthusiasm for animal models of psychiatric deep 
brain stimulation predicated on translatable functional bio-
markers (Roberts & Clarke, 2019; Rudebeck et al., 2019). 
The similarities between rodent IL and human subgenual 
cingulate offer a compelling base for such a model (Bal-
sters et al., 2020; Heilbronner et al., 2016), as well as for 

investigation of pharmacological antidepressants (Fullana 
et al., 2019). This rodent model also may inform somewhat 
untestable hypotheses in humans, such as mechanisms of 
cortico-striatal or cortico-midbrain network interaction.

Conclusions

The human RewP appears to be a transdiagnostic biomarker 
of reward responsiveness, learning, and valuation. An ani-
mal homologue of the RewP offers a chance to test mecha-
nistically the network-level systems underlying these reward 
domains. We anticipate that the cross-species translatability 
of this bio-signal will further bolster our mechanistic under-
standing of reward-related disfunctions in major depression, 
schizophrenia, addiction, and Parkinson’s disease.

Funding  This project was funded by NIMH 1R01MH119382.
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