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Abstract
Humans have conscious experiences of the events in their environment. Previous research from electroencephalography
(EEG) has shown visual awareness negativity (VAN) at about 200 ms to be a neural correlate of consciousness (NCC).
However, when considering VAN as an NCC, it is important to explore which particular experiences are associated with VAN.
Recent research proposes that VAN is an NCC of lower-level experiences (detection) rather than higher-level experiences
(identification). However, previous results are mixed and have several limitations. In the present study, the stimulus was a ring
with a Gabor patch tilting either left or right. On each trial, subjects rated their awareness on a three-level perceptual awareness
scale that captured both detection (something vs. nothing) and identification (identification vs. something). Separate staircases
were used to adjust stimulus opacity to the detection threshold and the identification threshold. Bayesian linear mixed models
provided extreme evidence (BF10 = 131) that VANwas stronger at the detection threshold than at the identification threshold.
Mean VAN decreased from −2.12 microV [−2.86, −1.42] at detection to −0.46 microV [−0.79, −0.11] at identification.
These results strongly support the claim that VAN is an NCC of lower-level experiences of seeing something rather than of
higher-level experiences of specific properties of the stimuli. Thus, results are consistent with recurrent processing theory in
that phenomenal visual consciousness is reflected by VAN. Further, results emphasize that it is important to consider the level
of experience when searching for NCC.
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Introduction

As humans, we have conscious experiences of external
events. For example, when an image flashes on a computer
screen, we might have a lower-level experience that some-
thing was there (detection) or a higher-level experience of
what it was (identification). To determine the neural mech-
anisms of these experiences of content (Aru & Bachmann,
2017), research has focused on finding the neural correlates
of consciousness (NCC): neural activity that is consistently
associatedwith particular experiences (Crick&Koch, 1990).
Because electrocortical (EEG) activity is relatively easy to
record and has excellent time resolution (Biasiucci et al.,
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2019; Luck, 2014), it has been used widely to study NCC.
In vision, two event-related potentials (ERPs) derived from
EEG have been suggested as NCC of content: visual aware-
ness negativity (VAN) at about 200 ms, and late positivity
(LP) after about 300 ms (Förster et al., 2020). Similar EEG
correlates have been observed in other modalities such as
hearing (Eklund & Wiens, 2019) and touch (Auksztulewicz
& Blankenburg, 2013). Because the early negativity (e.g.,
VAN in vision) is generated in sensory cortices (Meyer, 2011;
Snyder et al., 2015), its topography varies with modality
(Dembski et al., 2021).

The timing difference between an early process (VAN)
and a late process (LP) is important for two prominent theo-
ries of consciousness: recurrent processing theory and global
neuronalworkspace theory.Recurrent processing theory stip-
ulates that conscious experiences are mediated by early,
recurrent processing in sensory areas (Lamme, 2006, 2010).
Because VAN is believed to capture early, recurrent process-
ing, it is considered to be an NCC (Eklund & Wiens, 2018;
Förster et al., 2020; Lamme, 2018). In contrast, global neu-
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ronal workspace theory argues that conscious experience is
elicited only after activity from sensory modalities is propa-
gated to areas in the global workspace that involve reporting,
memory formation, and other cognitive processes (Dehaene
& Changeux, 2011; Dehaene et al., 2006; Mashour et al.,
2020). Because these ignition processes occur late, VAN is
only a correlate of preconscious processes whereas LP is an
NCC (Lamy et al., 2009; Salti et al., 2012).

The debate about VAN and LP as NCC has been going
on for several decades (Förster et al., 2020; Koivisto &
Revonsuo, 2010). In the last decade, however, evidence has
accumulated against the idea of LP as anNCC. This evidence
demonstrates that in contrast to VAN, LP lacks sensitivity:
LP is absent even though subjects report being aware of the
stimuli (Dembski et al., 2021; Koivisto & Revonsuo, 2010).
In vision, these studies used different designs such as inatten-
tional blindness (Dellert et al., 2021; Pitts et al., 2012, 2014;
Schlossmacher et al., 2020), attentional blink (Dellert et al.,
2022), and no-report tasks (Cohen et al., 2020; Kronemer et
al., 2022). For example, in a classic study with inattentional
blindness, Pitts et al. (2014) showed that even though sub-
jects were aware of the stimuli, LP was observed only when
the stimuli were task relevant and not when they were task
irrelevant. Similarly, in no-report tasks, LP was absent when
subjects did not have to report on their awareness of visual
stimuli (Kronemer et al., 2022). In sum, because of the lack
of sensitivity, LP cannot be considered an NCC, thus refut-
ing the claim of global neuronal workspace theory. Instead,
LP seems to reflect post-perceptual processes related to the
experimental task, such as the preparation for a report or the
detection of a stimuli as task-relevant (Dembski et al., 2021;
Förster et al., 2020; Koivisto & Revonsuo, 2010). Because
LP shows a close relationshipwith post-perceptual processes,
we discuss LP as well as VAN in the present study.

When examining NCC of content, it is important to
explore whether a particular EEG response (e.g., VAN) is
associated with particular experiences (Aru & Bachmann,
2017; Koivisto et al., 2017). A common measure of differ-
ent experiences of content is the perceptual awareness scale
(PAS) (Sandberg & Overgaard, 2015). This scale was devel-
oped with the following assumption: Because experiences
differ depending on stimuli and task, it is critical to interview
subjects about their experiences and to develop the rating
scale in close cooperation with the subjects (Sandberg et al.,
2013; Sandberg & Overgaard, 2015). In the original study
(Ramsøy & Overgaard, 2004), subjects were shown masked
visual stimuli that differed in location, color, and shape.
Interviews of the subjects revealed that in general, subjects
described their experiences in terms of four levels: nothing
(PAS1), a brief glimpse (PAS2), an almost clear experience
(PAS3), or a clear experience (PAS4). These labels summa-
rizedmore elaborate descriptions of each level of experience.

For example, the description of PAS3 referred to a feeling of
almost being certain in one’s answer. However, this refer-
ence to other psychological processes (e.g., certainty) was
included only because subjects found these helpful when
describing their conscious experiences. Because these labels
may not be adequate for other stimuli and tasks, it is recom-
mended to adjust the number of PAS levels and the meaning
and description of each level in a pilot study (Sandberg et al.,
2013; Sandberg & Overgaard, 2015).

In a recent study, Koivisto et al., 2017 claimed that
VAN is a correlate of lower-level experiences rather than of
higher-level experiences. Lower-level experiences refer to
elementary phenomenal experiences of seeing something, of
the presence of visual sensations that do not involve higher-
level operations such as categorization. These experiences
may be described as conscious detection. Higher-level expe-
riences refer to experiences of the specific properties of the
stimulus. These experiences involve higher-level operations
such as categorization and labeling. These experiences may
be described as conscious identification. To examine their
claim, Koivisto et al. (2017) recorded EEG while subjects
were shown single digits (from the set 3, 4, 6, and 7) in
the middle of the screen. On separate blocks, subjects per-
formed two tasks: a detection task and a classification task.
In the detection task, subjects had to respond whether a stim-
ulus (digit) was presented. In the classification task, subjects
had to indicate whether the digit was smaller or larger than
5. On each trial, subjects rated their conscious experience
of the digit on a modified version of the original four-level
PAS (Ramsøy & Overgaard, 2004). The main changes were
that PAS2 was defined as "I saw something (but could not
identify the stimulus)" and PAS3 was defined as "I saw the
stimulus almost clearly (and could identify it)." For each sub-
ject, the contrast and the duration of the digits were adjusted
to two awareness thresholds. The detection threshold was
targeted in the detection task and compared trials rated as
PAS2 with trials rated as PAS1 (i.e., PAS2 − PAS1). Thus,
the detection threshold captured lower-level experiences. The
identification threshold was targeted in the classification task
and compared PAS3 trials with PAS2 trials (i.e., PAS3 −
PAS2). Thus, the identification threshold captured higher-
level experiences.

For VAN-relevant mean amplitudes, results showed a sta-
tistically significant interaction between awareness and task
(Koivisto et al., 2017). Follow-up analyses showed that for
the detection task, mean amplitudes at the VAN-relevant
interval were more negative to aware trials (PAS2) than
unaware trials (PAS1), p= .014; this finding provides evi-
dence for VAN. In contrast, for the identification task, mean
amplitudes did not differ significantly between aware trials
(PAS3) and unaware trials (PAS2), p= .562. For LP-relevant
amplitudes,mean amplitudes across tasksweremore positive

123



Cognitive, Affective, & Behavioral Neuroscience

for aware than unaware trials; this finding provides evidence
for LP. Results did not suggest that LP differed by task. The
authors concluded that "the elementary phenomenal experi-
ences of ’seeing something,’ without awareness of the higher
properties of the stimulus, had a unique correlate (VAN) that
was not present at the identification threshold" (p. 1628).
Thus, Koivisto et al., 2017 claimed that VAN is an NCC of
lower-level experiences (detection) rather than higher-level
experiences (identification).

When discussing this claim (Koivisto et al., 2017), we pro-
pose that it is useful to consider two possible interpretations:
A strong version is that there is noVAN for higher-level expe-
riences (identification). A weak version is that VAN is larger
(more negative) for lower-level experiences (detection) than
for higher-level experiences (identification). The weak claim
implies only that VAN is less sensitive to identification than
detection. Accordingly, VAN should be smaller for identifi-
cation than detection.

Although the study byKoivisto et al. (2017) is important, it
has two main limitations. First, the two threshold conditions
were obtained during different tasks with different instruc-
tions. Thus, thresholds were perfectly correlated with task
instructions. In support of the idea that task differences may
have affected results, a supplementary analysis showed that
LP at the detection threshold (PAS2 − PAS1) was larger for
the detection task than the identification task (Koivisto et al.,
2017). Thus, LP varied by task for identical stimuli at the
same threshold. Because task differences per se can affect
VAN and LP (Andersen et al., 2022; Jimenez et al., 2020;
Windey et al., 2014), it is unclear whether the main findings
for VAN and LP (Koivisto et al., 2017) were caused by dif-
ferences in threshold, differences in task, or both. Second,
the claim that VAN is not an NCC of identification is an
attempt to prove the null hypothesis (i.e., VAN = 0), but this
approach is inherently difficult to dowith null hypothesis sig-
nificance testing (Dienes, 2016;Wasserstein & Lazar, 2016).
For example, because sample size was small (N = 12), null
effects might be expected because of low statistical power
(Makin & Orban de Xivry, 2019).

Results of other EEG studies are relevant to examine the
claim that VAN is an NCC of lower-level experiences rather
than higher-level experiences (Derda et al., 2019; Jimenez
et al., 2021, 2018; Tagliabue et al., 2016). In our review of
these studies, we focus on whether findings were statistically
significant. A non-significant finding is inherently problem-
atic because it may simply be caused by low statistical power
(Makin&OrbandeXivry, 2019;Wasserstein&Lazar, 2016).
Also, counting significance is not a valid meta-analytic pro-
cedure (Borenstein et al., 2009). Nonetheless, we argue that it
is informative in the present context. If several studies found a
(statistically) significantVANfor the identification threshold,
then the strong interpretation is unlikely to be correct. Also,

if several studies found that the VAN is (statistically) smaller
at the identification threshold than the detection threshold,
then the weak interpretation would be supported.

Tagliabue et al. (2016) presented light and dark gratings
in the upper right visual field. On each trial, subjects rated
whether the grating was light or dark, and also rated their
awareness on the original PAS. Linear trend analyses over
PAS (i.e., PAS1 to PAS4) showed that VAN-relevant ampli-
tudes became increasingly more negative; this suggests that
VAN increased gradually with awareness. This finding is not
consistent with the strong interpretation becauseVAN should
not increase from PAS2 to PAS3 (and to PAS4). With regard
to the weak interpretation, no analysis examined whether the
differenceofPAS2minusPAS1was larger than the difference
of PAS3 minus PAS2. Results for LP-relevant amplitudes
showed that amplitudes increased positively with PAS.

The design of the remaining EEG studies (Derda et al.,
2019; Jimenez et al., 2018, 2021) was informed by levels of
processing (LoP) theory (Jimenez et al., 2020; Windey et al.,
2014). According to LoP theory, awareness is gradual for a
low-level stimulus/task (e.g., awareness of energy and fea-
tures), and dichotomous for a high-level stimulus/task (e.g.,
awareness of the meaning of digits and letters). To examine
this theory, the stimuli in theEEGstudies combined low-level
features (e.g., colors) and high-level features (e.g., digits). On
separate tasks, subjects focused on either the low-level fea-
tures during a low-level task (e.g., color discrimination) or
the high-level features during a high-level task (e.g., digit
identification). On each trial, subjects rated their awareness
on the original PAS (Ramsøy & Overgaard, 2004). From
our reading of Koivisto et al. (2017), results of these studies
are relevant here because the low-level stimulus/task and the
high-level stimulus/task can be viewed as separate tests of the
claim by Koivisto et al. (2017). That is, if subjects perform
a color discrimination task (low level), lower-level experi-
ences would be captured when subjects report that they can
consciously detect the stimuli without awareness of the color
(detection), and higher-level experiences would be captured
when subjects report that they can consciously identify the
colors (identification). Similarly, if subjects perform a digit
identification task, lower-level experiences would be cap-
tured when subjects report that they can consciously detect
the stimuli without awareness of the digit (detection), and
higher-level experiences would be captured when subjects
report that they can consciously identify the digits (identifi-
cation).

Jimenez et al. (2018) presented backward-masked digits
and letters in different visual quadrants. Subjects performed
two separate tasks: a low-level detection task on stimulus
location and a high-level identification task on the dig-
its/letters. In both tasks, subjects also rated their awareness
on the original PAS. Because of a lack of clear (PAS4) trials,
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these trials were combined with almost clear (PAS3) trials.
A (statistically) significant VAN was observed for the differ-
ence of weak (PAS2) minus nothing (PAS1) in the detection
task and in the identification task, supporting that VAN is an
NCC of detection. No significant VAN was observed for the
difference of PAS3/4 minus PAS2 in the identification task,
consistent with the strong interpretation. However, a signif-
icant VAN was also obtained for the difference of PAS3/4
minus PAS2 in the detection task. This later finding does not
support the strong interpretation (Koivisto et al., 2017). With
regard to theweak interpretation, no analysis explicitly tested
whether VAN is larger for the difference of PAS2 minus
PAS1 than for the difference of PAS3/4 minus PAS2. For LP-
relevant mean amplitudes, results across tasks showed that
amplitudes were more positive for PAS3 than PAS1, provid-
ing evidence for LP. It was unclear whether PAS2 differed
from the other ratings. Overall, LP did not vary with task,
similar to results reported by Koivisto et al. (2017).

In a follow-up study (Jimenez et al., 2021), subjects
viewed backward-masked, colored line drawings of objects
and animals at fixation. Subjects performed either a low-level
color discrimination task (blue or red) or a high-level catego-
rization task (object or animal). The original PAS was used,
but subjects were instructed to use PAS with regard to either
color or category. Because PAS4 was seldom used, PAS4
trials were combined with PAS3 trials. Only the color task
showed significant results: A significant VAN for the dif-
ference of PAS2 minus PAS1 and the difference of PAS3/4
minus PAS1; PAS3/4 did not differ significantly from PAS2.
These findings of null effects for the difference of PAS3/4
minus PAS2 on the color task and the categorization task are
consistentwith the strong interpretation. LPwas observed for
the difference of PAS3 minus PAS1, providing evidence for
LP. Because this effect was significant only for the category
task, results for LP are only partly consistent with previous
findings (Jimenez et al., 2018; Koivisto et al., 2017).

In another study (Derda et al., 2019), backward-masked,
colored digitswere shown at the center of the screen, and sub-
jects performed either a color discrimination task (low level)
or a magnitude judgment task on the digits (high level). The
original PAS was used, but PAS4 was excluded because of
a lack of trials. Results suggested that VAN-relevant ampli-
tudes showed a linear increase in negativity over PAS1 to
PAS3, and this linear increase did not differ by task. Thus,
results suggested that VAN increased with awareness. This
effect is not consistent with the strong interpretation because
VAN should not increase from PAS2 to PAS3.With regard to
the weak interpretation, the difference of PAS2 minus PAS1
was not significantly larger than the difference of PAS3minus
PAS2. Results for LP-relevant amplitudes showed an interac-
tion of PAS and task. LPwas observed only for the high-level
stimulus/task.

Taken together, the combined results do not consistently
support the claim that VAN is an NCC of lower-level
experiences (detection) rather than higher-level experiences
(identification) (Derda et al., 2019; Jimenez et al., 2018;
Koivisto et al., 2017; Tagliabue et al., 2016). With regard to
the strong interpretation, Jimenez et al. (2018) found a sig-
nificant VAN for the difference of PAS3 (or PAS3/4) minus
PAS2 in a low-level detection task, and two other studies
found that VAN increased linearly over PAS in a low-level
detection task (Derda et al., 2019; Tagliabue et al., 2016)
and in a high-level identification task (Derda et al., 2019).
With regard to the weak interpretation, results are unclear
because only a single study tested formally whether the dif-
ference between PAS2 and PAS1 differed from the difference
between PAS3/4 and PAS2 (Derda et al., 2019). Because
nonsignificant results were obtained, there is currently no
evidence for (or against) the weak interpretation.

Inconsistent resultsmay be caused by differences in exper-
imental design. First, it is unclear whether any previous study
is a valid test of either version of the claim (Koivisto et al.,
2017).Many studies used the original PAS (Ramsøy&Over-
gaard, 2004), but subjects may not necessarily interpret the
difference between PAS2 and PAS3 (weak vs. almost clear)
or between PAS3 and PAS4 (almost clear vs. clear) to refer
to their awareness of the identity of the stimulus. Therefore,
the difference of PAS3 minus PAS2 (or PAS4 minus PAS3)
may not necessarily capture an identification threshold unless
subjects are explicitly instructed to rate accordingly (Koivisto
et al., 2017). Second, it may be difficult to compare previ-
ous studies that used widely different stimuli (e.g., digits vs.
gratings) and manipulations of visibility (e.g., low contrast
vs. backward masking), particularly so because distributions
of awareness ratings vary strongly with the stimulus and the
manipulations of visibility (Kiefer & Kammer, 2017). Third,
studies varied in whether the stimuli were presented in the
middle of the screen or in the periphery. Compared to cen-
tral stimulation, peripheral stimulation leads tomore variable
awareness ratings, but this variability in awareness is proba-
bly caused by differences in attention (Koivisto et al., 2009).
Thus, a preferable design is to present stimuli in the middle
of the screen to reduce confounding effects of attention.

The goal of the present study was to examine the claim
that VAN is an NCC of lower-level experiences rather than
higher-level experiences (Koivisto et al., 2017). In the present
study, subjects used a three-level PAS to rate their awareness
of a ring that tilted either left or right. Lower-level expe-
riences were measured in a detection task and higher-level
experiences were measured in an identification task. Below,
we refer to lower-level experiences as detection and higher-
level experiences as identification. These terms are used only
as convenient labels, as experiences may be conceptualized
differently for other stimuli and tasks. For example, lower-
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level experiences may refer to awareness of the location of
stimuli on the screen, and higher-level experiences may refer
to awareness of whether a stimulus shows an object or an
animal.

In the present study, the stimulus was a ring (annulus) that
was shown in the middle of the screen. The ring comprised
a Gabor patch tilting either left or right (±45◦). To avoid
confounding effects of task differences, subjects performed
two tasks on each trial: a detection task and an identification
task. Separate staircase procedures were administered con-
currently to target the detection threshold or the identification
threshold. For each staircase, opacity of the ringwas adjusted
over trials so that about half of the trials were reported as
aware and the other half as unaware. On each trial, sub-
jects rated their awareness on a three-level PAS: experiencing
nothing (PAS1), experiencing something (PAS2), or experi-
encing the orientation of the grating (PAS3). Then, they rated
whether the ring tilted left or right by choosing one of two
circles (tilting left or right). Immediately after their response
about the orientation of the grating, subjects received perfor-
mance feedback. In the present study, the detection threshold
(representing lower-level experiences)was defined as the dif-
ference between PAS2 and PAS1 (i.e., PAS2 − PAS1), and
the identification threshold (representing higher-level experi-
ences) was defined as the difference between PAS3 and PAS2
(i.e., PAS3 − PAS2).

PAS ratings were developed on the basis of a pilot study,
as recommended (Sandberg & Overgaard, 2015). PAS3 was
described as follows: The tilt is experienced to the degree
that one believes that a subsequent response about the tilt
(left or right) will be correct. Instructions emphasized that
subjects should primarily report on their conscious experi-
ence (Sandberg et al., 2013; Sandberg & Overgaard, 2015).
Performance feedback was provided only to help subjects
anchor their experience. This secondary reference to perfor-
mance and certaintywas already included in the original PAS:
PAS3 included a feeling of almost being certain about one’s
answer and PAS4 included no doubt in one’s answer (Ram-
søy &Overgaard, 2004). These definitions acknowledge that
when subjects report that they are aware of a stimulus, they
can typically identify the stimulus with certainty.

From the perspective of LoP (Jimenez et al., 2020;Windey
et al., 2014), the present stimulus and tasks are low level.
When designing the present study, we had to choose between
low level or high level because even with only a single level,
each subject took almost 90 min to complete the experiment.
Because most of the previous evidence against the strong
version of the claim comes from studies with a low-level
stimulus/task (Derda et al., 2019; Jimenez et al., 2018; Tagli-
abue et al., 2016), it seemed most informative to examine the
claim by Koivisto et al. (2017) in the context of a low-level
stimulus/task.

In most previous studies, initial staircase procedures were
used to adjust the stimulus to a level so that about half of the
trials are reported as aware and the other half as unaware (i.e.,
awareness threshold). Then, the stimulus is held constant dur-
ing the actual experiment. Although this approach avoids a
physical stimulus confound (Aru et al., 2012), it has several
drawbacks. First, subjects may be excluded because for these
subjects, the relative percent of aware and unaware trials in
the actual experiment differs too much from 50%; thus, stim-
uli were apparently not presented at the awareness threshold.
For example, Koivisto et al. (2017) excluded 4 of 16 (25%)
subjects, and we had to exclude 7 of 35 (20%) subjects in
one session and 13 of 35 (37%) subjects in a second session
in our previous study on VAN and LP (Eklund & Wiens,
2018). Second, a claim for an awareness threshold is often
based on group data. That is, across subjects, maybe half of
the trials are reported as aware, but this ignores how much
individual subjects differ from this mean. For example, a
groupmean of 50% aware trials suggests that across subjects,
half of the trials were rated as aware, but this may not apply
to any actual subject: A subject may have 70% aware and
30% unaware trials (or vice versa), and the chosen stimulus
intensity was apparently over (or under) the actual awareness
threshold. Third, for a given subject, the proportion of aware
and unaware trials is commonly analyzed across the whole
experiment. This procedure is insensitive to changes in the
awareness threshold during the experiment. For example, an
individual subject might give mostly aware responses early
in the experiment and mostly unaware responses later in the
experiment. Across all trials, half of the trials might be rated
as aware and half as unaware, but the data suggest that the
awareness threshold changed over time.

To minimize these problems in the present study, stimu-
lus opacity was adjusted continuously over trials tomatch the
detection threshold and the identification threshold. During
subsequent processing of each subject’s data for each thresh-
old, trial blocks were identified inwhich the number of aware
andunaware trials did not deviate fromchance, andonly these
trials were analyzed further. The goal of this procedure was
to ensure that the analyzed data corresponded closely to the
concept of an awareness threshold (i.e., about 50% aware
and unaware trials) both within subjects and between sub-
jects. Then, we controlled for effects of physical differences
in opacity by entering the variable of interest (awareness) in
parallel with a potentially confounding variable (opacity) in
the statistical model. This approach is recommended because
the unique contribution of each variable is assessed (Sassen-
hagen & Alday, 2016).

Notably, keeping the stimulus constant assumes that phys-
ical differences must be avoided because they necessarily
confound the results.However, this assumption seems unnec-
essarily strict, particularly so if the physical differences are
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tiny (Sassenhagen & Alday, 2016). For example, Koivisto
et al. (2017) used four different digits (3, 4, 6, and 7) and
did not report whether some digits were rated as aware more
often than other digits. A critic may argue that if aware and
unaware conditions differed in which digits were shown, it
cannot be ruled out that there was a physical stimulus con-
found. Although this is true, it appears that previous studies
have not controlled for these minor differences, apparently
because these differences were not considered to be notewor-
thy. Importantly, the statistical approach allows one to test
for a physical confound empirically by determining the con-
tribution of physical differences as well as awareness effects
(Alday&vanParidon, 2021; Sassenhagen&Alday, 2016). In
the present analyses, stimulus opacity was included as a sep-
arate predictor to examine unique contributions of awareness
on mean amplitudes (Kretzschmar & Alday, 2020; Sassen-
hagen & Alday, 2016).

In contrast to previous studies, we conducted Bayesian
analyses (Dienes, 2008, 2016; Wagenmakers et al., 2016;
Wiens & Nilsson, 2017) to measure the strength of evi-
dence for or against the presence of each of three effects: an
effect of awareness for lower-level experiences (detection),
an effect of awareness for higher-level experiences (identifi-
cation), andwhether the effect of awareness differed between
detection and identification (i.e., interaction between aware-
ness and threshold). With regard to the strong interpretation
(Koivisto et al., 2017), there should be evidence for no VAN
for higher-level experiences (identification). With regard
to the weak version of the claim, VAN should differ by
threshold: VAN should decrease from higher-level experi-
ences (identification) to lower-level experiences (detection).
Although research has shown that LP is not an NCC, we
report results for LP below because these are relevant to other
aspects of consciousness (Dembski et al., 2021; Förster et al.,
2020).

Method

Allmaterial, data, and scripts are shared as online supplement
via a public university repository (Wiens, 2023) to adhere to
the recommendations of open science (Munafò et al., 2017).

Participants

We recruited 40 student volunteers. The advertisement
stated that subjects should have normal or corrected vision
(glasses or contact lenses), be between the age of 18 to 40,
and have no mental health disorders or neurological his-
tory. However, we did not screen subjects for these criteria
except age. The sampling plan was to recruit as many sub-
jects as possible before the beginning of the Summer break in
2022. In accordance with local law and institutional require-

ments, ethical review and approval were not required for this
study. The experiment adhered to the declaration of Helsinki.
Participants provided their written informed consent to par-
ticipate in this study and that their raw data will be shared
anonymized. Participants received a 200 SEK gift voucher.
As explained below, one subject was excluded because of
too few EEG trials (n< 25) for both detection threshold and
identification threshold. One subject was excluded because
the subject did not do the tasks correctly. The remaining sam-
ple comprised 38 participants (16male; 31 right-handed; age:
M = 29.8, SD = 6.3).

As described below, subjects were excluded for either
detection threshold or identification threshold if they did not
have enough EEG trials (n < 25) after preprocessing of the
EEG data. Of the sample of 38 subjects, 32 subjects provided
data for both thresholds, 1 subject provided data only for the
detection threshold, and 5 subjects provided data only for the
identification threshold.

Stimuli and apparatus

The stimulus was of a 50-ms ring (annulus) with an inner
diameter of 26mm (2.6◦) and an outer diameter of 30mm
(3.0◦). The ring comprised a Gabor patch (spatial frequency
= 20) that was tilted either left (-45◦) or right (+45◦). Grat-
ing opacity was adjusted to increase or decrease its visibility.
Stimuli were shown on a 24-inch BenQ XL2430T monitor
at 144 Hz with a resolution of 1,920 by 1,080. The experi-
ment was performed in a dimly lit room. In-house scripts in
PsychoPy (Peirce et al., 2019) were used to generate visual
stimuli and to run the experiment.

Procedure

On each trial, subjects performed a detection task and
an identification task while seated in front of the computer
screen. Figure1 shows the structure of a trial. Each trial
started with a white fixation circle (0.7◦). After 800 to 1000
ms (randomly in steps of 50 ms), the ring was presented
for 50 ms together with the fixation circle. Between 600
to 800 ms (randomly in steps of 50 ms) after the offset
of the ring and fixation circle, an adapted PAS was shown
and subjects rated their subjective awareness of the ring
(Koivisto et al., 2017; Ramsøy & Overgaard, 2004; Sand-
berg & Overgaard, 2015). Response options for the PAS
were nothing (PAS1), something (PAS2), and clear orienta-
tion (PAS3), as explained below. Then, subjects reported the
orientation of the grating by choosing one of two schematic
representations of the two orientations. Subjects received
immediate performance feedback in that the subsequent fix-
ation circle changed color for 500 ms (green for correct and
red for incorrect). After the feedback, the next trial started
immediately.
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Critical trials (on which a grating was shown) varied in
opacity level and direction of the grating. Opacity was deter-
mined by the specific staircase (detection or identification,
see below), anddirection of the gratingwas either left or right,
resulting in 4 types of trials (plus catch trials). These types of
trials were shown in pseudo-randomized order. To simplify
the tasks and avoid memory confounds, relevant response
alternatives and the corresponding buttonswere shown on the
screen until subjects responded. After each block, response
hands were reversed and the mapping of stimuli to keys was
changed; the goal was to avoid EEG confounds from consis-
tent key-response mappings.

Subjects used a keyboard to respond. They rated aware-
ness with one hand and orientation of the grating with the
other hand. The left hand was used to rate PAS, and the right
hand was used to report orientation, or vice versa. To rate
PAS1, PAS2, and PAS3 with the left hand, buttons S, D, and
Fwere used, respectively; and to rate PAS1, PAS2, and PAS3
with the right hand, buttons J, K, and L were used, respec-
tively. To report orientation with the left hand, buttons D and
F were used, and to report orientation with the right hand,
buttons J andKwere used.On each trial, subjects had to final-
ize each choice by pressing the space key. For each subject,
mapping of response hands to the questions was randomly
determined, and thismappingwas reversed for each block.At
the beginning of each block, the correct key-response map-
ping was shown on the screen to prepare subjects.

Before the main task, subjects familiarized themselves
with the stimuli, the PAS ratings, and the reversal of the
response hands. Subjects were presented with example trials

of the ring and asked to describe their experience. Opacity
of the ring was decreased over trials. Subjects’ experiences
matched those of pilot subjects:Nothing (PAS1) implied hav-
ing no experience of the visual stimulus, not even a faint
sensation of something. Something (PAS2) implied having a
weak sensation of something. This referred to experiencing
any part of or the whole ring without being able to iden-
tify the orientation of the grating. Clear orientation (PAS3)
implied experiencing (identifying) the orientation of the grat-
ing to the degree that subjects believed that the subsequent
response about the orientation of the grating (left or right)
would be correct.

These PAS ratings were chosen on the basis of a pilot
study, as recommended (Sandberg &Overgaard, 2015). Pilot
subjects were shown gratings that gradually decreased in
opacity and subjects were asked to describe their experience
after each grating. Subjects described their experiences in
terms of nothing (PAS1), detecting something (PAS2), and
identifying the orientation of the grating (PAS3). Although
the clarity of the grating could be stronger (PAS4), sub-
jects found that it was difficult to distinguish between PAS3
and PAS4. This difficulty shows that once the gratings were
identified, the experience of the gratings increased gradually
without any evidence for a threshold. Thus, results supported
the use of only three PAS levels. At first, we thought it would
be useful to include PAS4 anyway, but pilot subjects reported
that retaining PAS4 was confusing because they used it only
for a few trials at the very beginning of the staircase.

Initially, we planned to run the main task without perfor-
mance feedback on the orientation of the grating. However,

Fig. 1 Time course of a trial. On each trial, a fixation circle was fol-
lowed by a 50-ms presentation of a ring. Afterwards, subjects rated their
subjective awareness of the ring: "Nothing", "Something," or "Clear ori-

entation". Then, subjects reported the orientation of the grating (left or
right). They received immediate feedback on whether their identifica-
tion was correct (green) or incorrect (red)
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some pilot subjects answered PAS3 even though they were
unable to identify the orientation of the gratings (i.e., perfor-
mance was at chance, 50%), whereas others answered PAS2
even though they were able to identify the orientation of the
gratings. To reduce these individual differences in identifica-
tion thresholds,we introduced performance feedback on each
trial (see Fig. 1). Thus, PAS3 was defined as the experience
of the orientation of the grating to the degree that subjects
believed that the subsequent response about the orientation
of the grating (left or right) would be correct. When we
asked subjects informally at the end of the experiment, many
subjects reported that they found the performance feedback
helpful in anchoring their conscious experiences. They also
noted that the feedback helped them stay motivated through-
out the experiment.

Subjects practiced until they reported that they under-
stood the tasks (see Fig. 1). Instructions emphasized that
the primary task was to rate conscious experiences accu-
rately whereas identifying the orientation of the grating was
secondary. With regard to performance feedback, they were
instructed that for PAS3, their subsequent response about
the orientation of the grating should be correct. For PAS1
and PAS2, they may guess orientation and should not worry
about whether their response was correct. Further instruc-
tions were as follows: Subjects had to the press the space key
to finalize their choice to minimize response errors. Subjects
did not have to memorize the mapping between response
alternatives and keys, as the relevant response alternatives
and the corresponding keys would be shown until response.
On subsequent blocks, response hands would alternate. The
tasks consisted of blocks that lasted about 5 min each; sub-
jects were encouraged to rest for a few minutes during the
breaks.

Most subjects (ID thru 32, n = 29) performed an initial
staircase procedure (Eklund & Wiens, 2018): Two inter-
leaved staircases were used to adjust opacity to the detection
threshold (PAS2 vs. PAS1) and to the identification threshold
(PAS3 vs. PAS2). No EEG was recorded during this ini-
tial staircase. Opacity was adjusted depending on subjects’
responses on each trial. Each staircase comprised 50 trials
(half with left orientation and half with right orientation), and
step size decreased with each second reversal. To estimate
the detection and identification thresholds, a psychometric
response function (binomial with a probit link) was fitted to
the data from each staircase (Wichmann & Hill, 2001). If the
data did not suggest convergence for one or both thresholds,
the staircase procedure was repeated (13 of 29 subjects had
up to 4 staircases; mean = 2.4).

For early subjects (ID thru 32, n = 29), the main task (with
EEG recording) comprised 400 critical trials and 20 catch
trials. Trial order was pseudo-random in sections of 21 trials
(10 left, 10 right, and 1 catch).Across critical trials, half of the
trials targeted the detection threshold and the other half the

identification threshold (in random order). The interleaved
staircases adjusted opacity either according to the 1-up and
1-down rule (n = 16) or the 2-up and 2-down rule (n = 14).
We switched to the 2-up and 2-down rule for later subjects
because opacity would remain more stable and would not be
changed on every trial.

For subsequent subjects (ID 33 thru 43, n = 11), the initial
staircases without EEG recording were omitted to collect
data efficiently. Thus, two interleaved staircases (2-up and
2-down rule) were administered while EEG was recorded.
Subjects performed about 100 trials in between breaks for a
total of about 500 trials. For each trial, the probability for a
ringwas 0.475 for left and 0.475 for right, and the probability
for no ring (catch) was 0.05. For these later subjects, opacity
settings and the timings for breaks could be adjusted online
by the experimenter.

In the experiment software, opacity could be defined
between 0 (transparent) and 1 (opaque). The number of steps
(resolution) between 0 and 1 could also be defined. Over the
course of testing subjects, we adjusted opacity resolution to
improve the staircase procedure. Whereas for early subjects,
opacity resolution was 500 for both detection and identi-
fication, for later subjects, we increased it to 200,000 for
detection and 5000 for identification. A challenge in adjust-
ing resolution was that if the chosen resolution was too low,
the staircase would jump between two values (e.g., lower
value = unaware and higher value = aware). In contrast,
if the chosen resolution was too high, the staircase would
require many trials to adjust opacity to the adequate level.
Resolution values for individual subjects are reported in the
supplement. We note that there is no theoretical reason why
resolution differences between subjects should bias results;
differences in resolution determined only whether changes
in opacity between steps were relatively small or large. We
also note that we chose these resolutions without knowing
the highest resolution that could be physically resolved on
the screen. That is, which changes in input opacity values
would produce actual physical stimulus changes and which
would not (e.g., input opacities of 0.00012 and 0.00013 may
have the same opacity on the screen). After data collection
was completed, we measured the relationship between input
opacity values and actual changes in luminance on the screen
(photodiode). We varied input data between 0 and 0.1 in
20,000 steps. We set 0.1 as the maximum because trials in
the final analyses had opacities below this value. Also, we
examined 20,000 steps because this corresponded to a maxi-
mum resolution of 200,000 used in the present study. Results
showed that the software could not resolve 200,000 steps, but
there was a nearly perfect relationship between input opacity
and luminance (r =.99). In the actual analyses, we recoded
input opacity so that the range of opacity values that pro-
duced identical luminance changes was represented by the
mean opacity of the range, as further described in the sup-
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plement. As a result, individual recorded opacity values were
associatedwith different physical changes. To facilitate inter-
pretation, opacity levels for each subject were converted to
a scale ranging from 0 (transparent) to 100 (opaque); thus,
100 corresponds to a value of 1 in the software.

EEG recording

EEG data were recorded from 64 electrodes at stan-
dard 10–20 positions with an Active Two BioSemi system
(BioSemi, Amsterdam, Netherlands). An EEG cap (Electro-
Cap International, Eaton, OH) was used to position these
electrodes togetherwith two system-specific electrodes.Data
were sampled at 512 Hz and filtered with a hardware low-
pass filter at 102.4 Hz.

EEG preprocessing

All scripts are provided in the online supplement (Wiens,
2023). The continuous EEG data from the 64 standard elec-
trode positions were processed and analyzed offline with
MNE-Python (Gramfort et al., 2013, 2014). In an initial pro-
cessing step for each subject, noisy channels and eye blink
components were identified. To that end, a 1-Hz high-pass
filter and a 40-Hz low-pass filter were applied. Electrodes
were visually inspected for excessive noise. Only a few noisy
electrodes had to be interpolated (with spherical spline inter-
polation) from neighboring electrodes (M = 0.35, SD = 1.09).
Then, independent component analysis (fastica) was con-
ducted, and eye blink componentswere identified on the basis
of their topography (M = 1.05, SD = 0.38). After this initial
processing step, the raw data were read in again, bad chan-
nels were interpolated, data were average referenced, eye
blink components were excluded, and a 0.1 high-pass filter
was applied.

Epochs were extracted from 100 ms before to 800 ms
after stimulus onset. Each epoch was baseline corrected to
the mean of the 100-ms interval before stimulus onset (-100
to 0 ms). For each subject, maximum amplitude ranges were
extracted for individual epochs (after a 30-Hz low-pass filter),
and the distribution of these amplitude ranges was inspected
for outliers. The number of identified outliers per subject was
M = 18.62 (SD = 17.89), corresponding to M = 4.21% (SD
= 3.69). The exclusion thresholds were set for each individ-
ual because subjects showed substantial variability in these
amplitude ranges. Critically, to avoid bias, inspection of tri-
als was blinded to trial type, PAS rating, and response about
orientation (Keil et al., 2014). Finally, the epoched data were
downsampled to 256 Hz.

VAN-relevant mean amplitudes were computed between
180 and 280 ms after ring onset across electrodes O1,
O2, PO3, PO4, PO7, and PO8. LP-relevant mean ampli-
tudes were computed between 350 and 550 ms after ring

onset across electrodes Pz, P1, P2, CPz, CP1, and CP2.
These intervals were identical to those in our previous study
(Eklund & Wiens, 2018), but we included more electrodes
than before. After exclusion of trials marked as bad during
EEG preprocessing, the mean numbers of valid trials for the
four conditions (unaware/aware by detection/identification)
ranged between 63.4 (SD = 20.6) and 77.5 (22.3).

Data analysis

After preprocessing of the EEG data in MNE-Python
(Gramfort et al., 2013, 2014), subsequent data analyses were
done in R using Quarto within R Studio (Allaire et al.,
2021; Bürkner, 2017; Makowski et al., 2019; R core Team,
2016; RStudio Team, 2020; Wickham et al., 2019; Xie et
al., 2019). All scripts for the main and additional analyses
are reported in the online supplement (Wiens, 2023). For
each subject, the behavioral data during EEG recording were
processed separately for each staircase (detection and iden-
tification). For detection, PAS2 represented aware and PAS1
unaware, and for identification, PAS3 represented aware and
PAS2 unaware. The consecutive trials in each staircase were
divided into blocks of 16 trials. A block was considered to
be at the awareness threshold if the proportion of aware
trials was within a reasonable range expected by chance.
For a block length of 16 trials, a binomial distribution sug-
gested that between 6 and 10 aware trials would be expected
by chance at a cumulative probability below.80. Accord-
ingly, individual blocks were considered valid if the number
of aware trials was between 6 and 10. Figure2 illustrates
this definition of valid blocks for an individual subject. One
subject had an unreasonable response pattern: Even though
opacity levels were much higher during identification than
detection, the subject reported being unaware of many iden-
tification trials (at very high opacity) while also being aware
on many detection trials (at very low opacity). This subject
was excluded completely.

For each subject, only trials in valid blocks were pro-
cessed further. For each block, opacity was mean centered
to remove drift; thus, only relative differences in opacity
within a block were considered in the analyses. Individual
trials were merged with the preprocessed EEG data, which
contained mean VAN-relevant and LP-relevant amplitudes
and marked whether each trial was considered bad during
preprocessing. In the analyses reported below, trials with
bad EEG were excluded. If subjects had fewer than 25 trials
in either unaware or aware condition for a threshold con-
dition, they were excluded. Subsequently, individual trials
were excluded separately for VAN and LP if the mean ampli-
tude deviated more than 3 SDs from the mean across all
trials and subjects (less than 1% of the remaining trials were
removed for either VAN or LP). As described below, robust-
ness checks showed that results were unaffected by different
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Fig. 2 Opacity levels and PAS
ratings for identification trials
for an individual subject. The
top panel shows opacity levels
and PAS ratings over trials. The
bottom panel shows the
proportion of aware ratings in
each block. Green denotes that
the number of aware ratings was
within chance (i.e., between 6
and 10 out of 16 trials)

criteria of block length, chance level, and exclusion of bad
EEG trials.

Bayesian robust mixed effects regression models were
used to analyze mean amplitudes at VAN-relevant and LP-
relevant mean amplitudes on trial-level data (Alday & van
Paridon, 2021; Brown, 2021; Franke&Roettger, 2019; Kret-
zschmar & Alday, 2020). The data were not centered or
standardized. Bayesian models were estimated using brms
(Bürkner, 2017, 2018). In all models, vague priors were used
for intercepts and slopes (i.e., normal distribution withM = 0
and SD = 2). Because mixed effects models include all avail-
able data, they reduce the risk for biased effect size estimates
(Matta et al., 2018). Results of the models include mean esti-
mates and Bayesian confidence intervals.

Bayesian hypothesis testing was conducted with Bayes
factors in bayestestR (Makowski et al., 2019). Bayes factors
compare different models (e.g., null vs. alternative hypoth-
esis) and provide evidence for or against a particular model
(Dienes, 2016; Wagenmakers et al., 2016; Wiens & Nilsson,
2017). Thus, Bayes factors avoid mistaking nonsignificance
as evidence for no effect (Dienes, 2008; Makin & Orban de
Xivry, 2019; Wasserstein & Lazar, 2016). The Bayes factor
(BF) is a continuous measure of the relative evidence for one
model versus another. For example, a BF10 > 3 means that
the data support the presence of an effect three times more
than the absence of an effect, whereas a BF01 > 3 suggests
the opposite (Dienes, 2016). Although BF is a continuous

measure of evidence, we use verbal labels to describe the
strength of evidence (Wagenmakers et al., 2018).

The goal of the first analysis was to show that VAN and
LP can be observed at the detection threshold. The analysis
considered only the EEG data for the detection threshold and
examined effects of awareness and opacity on mean ampli-
tudes (i.e., VAN-relevant and LP-relevant mean amplitudes).
Awareness (unaware vs. aware) and opacity (continuous vari-
able) were modeled as fixed effects and were allowed to vary
randomly across subjects (i.e., varying slopes and intercept
over subjects). Awareness was dummy coded as 0 (unaware)
and 1 (aware). Thus, awareness captured effects of aware-
ness on mean amplitudes independent of opacity. The model
formula in brms was as follows: EEG ∼ 1 + awareness +
opacity + (1 + awareness + opacity | id).

The main, second analysis examined effects of aware-
ness for both thresholds (identification and detection). Fixed
effects included the interaction of awareness and threshold
and the interaction of opacity and threshold (together with
lower-order effects). These effects were allowed to vary ran-
domly across subjects. Awareness was dummy coded as 0
(unaware) and 1 (aware), and threshold was dummy coded
as 0 (identification) and 1 (detection). Thus, the effect of
awareness captured effects of awareness for the identification
threshold, and the interaction of awareness with threshold
captured the change of the awareness effect from identifica-
tion to detection. The model formula in brmswas as follows:
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EEG ∼ 1 + threshold * awareness + threshold * opacity + (1
+ threshold * awareness + threshold * opacity | id). Note that
this model automatically includes lower-order effects (i.e.,
threshold, awareness, and opacity).

Finally, a simplified multiverse analysis was conducted to
examine the robustness of the present results (Steegen et al.,
2016). To that end, 16 analyses were conducted that differed
in their analysis settings: First, block length was either 16
or 20. Second, chance level for a block was either liberal or
conservative. For a block length of 16, the liberal criterion
(p <.80) permitted between 6 and 10 aware trials, and the
conservative criterion (p <.55) permitted between 7 and 9
aware trials. For a block length of 20, the liberal criterion
(p <.75) permitted between 8 and 12 aware trials, and the
conservative criterion (p <.50) permitted between 9 and 11
aware trials. Third, trials marked as bad during EEG prepro-
cessing were either included or excluded. Fourth, orientation
of the Gabor (left or right) was either included or excluded
as an additional predictor in the mixed models. Thus, this
criterion assessed whether orientation of the Gabor had any
effects on VAN and LP. These four criteria yielded 16 combi-
nations of analysis settings. We limited analyses to these 16
combinations because we deemed it unfeasible and unnec-
essary to run more analyses (each analysis took about 2h to
complete).

Even though opacity could vary between 0 and 100,
opacity levels were relatively low in all conditions. Across
subjects, the raw means for each condition were 0.95 (SD
= 0.34) for unaware detect, 1.16 (SD = 0.31) for aware
detect, 2.80 (SD = 1.24) for unaware identify, and 2.90 (SD =
1.24) for aware identify. Despite the tiny differences between
unaware and aware in each threshold, opacitywas included as
a predictor in themain analyses to remove its potentially con-
founding effect on mean amplitudes (Sassenhagen & Alday,
2016).

Results

Behavior

Performance in correctly reporting the orientation of
the grating (left or right) varied over conditions. The first
Bayesian logisticmixedmodel examinedwhether the propor-
tion of correct responses differed between unaware and aware
trials in the detection task. Results suggested that the esti-
mated proportion correct was similar for unaware detection
(M = 0.51) and aware detection (M = 0.53), BF01 = 13. The
second Bayesian logistic mixed model included awareness
(unaware, aware) and threshold (identification, detection).
With regard to identification, results suggested that the esti-
mated proportion correct was larger for aware identification
(M = 0.97) than unaware identification (M = 0.72), BF10

> 1.9 ∗ 1010. These behavioral findings validate the use of
PAS in our study: Subjects had lower performance during
detection than identification.

Further, we note that higher performance for unaware
identification (72%) than aware detection (53%) is not sur-
prising. In both cases, subjects responded PAS2, but the
definition of PAS2 covered a range of experiences (see
Method section). For the detection threshold, PAS2 mainly
captured experiences of aweak sensation of something (com-
pared to nothing). Thus, performancewas low for aware trials
(PAS2). For the identification threshold, PAS2 mainly cap-
tured experiences of any part of or the whole ring without
being able to identify the orientation of the grating (compared
to experiencing the orientation). Accordingly, performance
was relatively high during unaware trials (PAS2) and excel-
lent during aware trials (PAS3). Also, stimulus opacity was
generally stronger on PAS2 trials during identification (2.80)
than on PAS2 trials during detection (1.16), as reported ear-
lier. Taken together, these findings support the conclusion
that PAS2 was used to capture different experiences during
identification and detection.

Catch trials of early subjects could not be used because of
a software bug (i.e., the grating was visible). For the remain-
ing 25 subjects, subjects received an average of 22.7 catch
trials (SD = 4.4); they were unlikely to make a false alarm by
responding PAS2 or PAS3 (M = 0.9, SD = 1.6).

EEG

Figure3a shows grand mean ERPs for VAN-relevant and
LP-relevant amplitudes during detection and identification.
Figure3b shows topographies of the difference between
aware and unaware for VAN and LP during detection and
identification.Bothfigures support the choice of intervals and
electrodes, similar to that in our previous study (Eklund &
Wiens, 2018). Figure4 shows the predicted means for VAN-
relevant amplitudes (left panel) and LP-relevant amplitudes
(right panel), as estimated by a model that includes the inter-
action of awareness and threshold.

As confirmed by statistical analyses reported below, the
figures show that during detection, there was extreme evi-
dence forVAN:Amplitudesweremorenegative during aware
than unaware trials. However, there was ambiguous support
for VAN during identification. Further, LP was present dur-
ing both detection and identification: Amplitudes were more
positive during aware than unaware trials. Critically, results
showed that effects of awareness on mean amplitudes were
larger duringdetection than identification.Accordingly,VAN
and LP decreased strongly from detection to identification.

For VAN-relevant amplitudes (see Fig. 4, left), the first
Bayesian robust linear mixed model of the detection data
showed that amplitudes were more negative to aware than
unaware; mean = −2.12 µV, 95%CI [−2.86, −1.42], BF10

123



Cognitive, Affective, & Behavioral Neuroscience

Fig. 3 Grand mean ERPs (left) and topographies (right) for VAN-relevant and LP-relevant amplitudes

> 188,000. This finding provides extreme support for VAN.
Also, the data provided extreme support for an effect of opac-
ity; mean = −3.61 µV, 95%CI [−5.12, −1.99], BF10 = 498.
The second model of the identification and detection data
showed that there was ambiguous support for VAN during
identification; for the difference of aware minus unaware,
mean = −0.46 µV, 95%CI [−0.79, −0.11], BF10 = 2.3.
Because the BF was ambiguous, we also analyzed other
Bayesian indices (Makowski et al., 2019). For the main data
set, probability of direction (pd) = 99.4%, and given a region
of practical equivalence (ROPE) between−0.1 and +0.1µV,
ROPE(full) = 2%. In the second model, there was moderate
support against an effect of opacity; mean = 0.04µV, 95%CI
[−0.91, 0.99], BF01 = 4.3. Critically, there was extreme sup-
port that VAN was larger (more negative) during detection
than identification; mean difference = −1.51 µV, 95%CI
[−2.20, −0.77], BF10 = 131. Also, there was extreme sup-
port that the effect of opacity varied by task; mean = −3.73
µV, 95%CI [−5.34, −2.02], BF10 = 594. Note that scripts

and results for this and all other analyses can be found in the
online supplement (Wiens, 2023).

For LP-relevant amplitudes (see Fig. 4, right), the first
Bayesian robust linear mixed model of the detection data
showed that mean amplitudes were more positive during
aware than unaware; mean = 1.83 µV, 95%CI [1.36, 2.30],
BF10 > 260,000. This finding provides extreme support for
an LP. Also, the data provided extreme support for an effect
of opacity; mean = 3.19 µV, 95%CI [1.92, 4.44], BF10 =
1212. The second model of the identification and detection
data showed that there was moderate support for LP during
identification; for the difference of aware minus unaware,
mean = 0.43 µV, 95%CI [0.14, 0.71], BF10 = 3.83. There
was ambiguous support for an effect of opacity; mean = 0.73
µV, 95%CI [−0.04, 1.49], BF10 = 1.12. Critically, there was
extreme support that LP was larger (more positive) during
detection than identification. Specifically, the awareness dif-
ference (aware minus unaware) was more positive during
detection than identification; mean = 1.36 µV, 95%CI [0.88,
1.84], BF10 = 3808. There was very strong support that the

Fig. 4 Predicted mean
amplitudes (and individual
95%CI)
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Fig. 5 Predicted mean
amplitudes (and 95%CI) for
VAN and LP (i.e., aware -
unaware) during detection (top),
identification (middle), and the
difference between detection
and identification (bottom) for
16 different analysis settings.
Note: The green line marks the
model with the analysis settings
reported in the main text. The
term detect - identify refers to
the difference in VAN or LP
between detection and
identification

effect of opacity varied by task; mean = 2.43 µV, 95%CI
[1.00, 3.85], BF10 = 80.

Figure5 shows results of the multiverse analysis. That is,
results of 16 analyses that differed in their analysis settings
in terms of block length, definition of chance level, exclusion
of EEG trials marked as bad during preprocessing, and inclu-
sion of orientation of the Gabor as an additional predictor.
For each analysis setting, the figure shows predicted mean
amplitudes (and 95%CI) for VAN and LP for detection and
identification and also for the interaction (i.e., whether effect
of awareness differed between detection and identification).
Figure5 suggests that results were robust to differences in
analysis settings.

Discussion

Results of Bayesian analyses (i.e., Bayes Factors) pro-
vided extreme evidence that VAN and LP for lower-level
experiences (detection) were larger than VAN and LP for
higher-level experiences (identification). For identification,
the BF was ambiguous but other Bayesian indices provided
rather strong support for the presence of VAN. Evidence for
the presence of LP was moderate. These findings demon-
strate that VAN and LP are more sensitive to the experience
of seeing something (detection) than to the experience of
identifying what was shown (identification).

Koivisto et al. (2017) pointed out thatwhen studyingNCC,
one needs to consider the level of the experience: lower-
level experiences associated with detection and higher-level
experiences associated with identification. In their study, the
original PAS was modified to distinguish between experi-
encing something without being able to identify the stimulus
(PAS2) and experiencing the stimulus and being able to
identify it (PAS3). Results showed that VAN was larger at
the detection threshold (PAS2 − PAS1) during a detection
task than at the identification threshold (PAS3 − PAS2).
There was no significant VAN at the identification thresh-
old. Results suggested that LP was unaffected by task.
The authors claimed that VAN is an NCC of lower-level
experiences (detection) but not of higher-level experiences
(identification).

This claim can be interpreted in two versions: A strong
version is that there is no VAN for higher-level experiences
(identification). A weak version is that VAN is larger (more
negative) for lower-level experiences (detection) than for
higher-level experiences (identification). Because in the orig-
inal study (Koivisto et al., 2017), detection and identification
were measured during different tasks with different instruc-
tions, results may be confounded by task differences. The
present study avoided this issue by measuring both detection
and identification simultaneously. Also, the present study
retained the critical features of defining PAS with reference
to detection and identification and of showing low-contrast
stimuli at the center of the screen (Koivisto et al., 2017).
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Bayesian analyses of the present data provided extreme
evidence that VAN and LP are larger for detection than iden-
tification. As such, the present findings replicate and extend
results of previous studies. They replicate results that VAN is
larger for detection than identification (Koivisto et al., 2017).
Critically, they extend previous results because a potential
task confound was avoided. Also, the present results show
that the effect is similar for LP as for VAN: LP is larger
for detection than identification. Whereas other studies have
reported a non-significant difference between consecutive
PAS ratings (Derda et al., 2019) or have not tested the relevant
comparison explicitly (Jimenez et al., 2018; Koivisto et al.,
2017; Tagliabue et al., 2016), the present Bayesian analyses
provide extreme evidence that VAN (and LP) are more sensi-
tive to lower-level experiences (detection) than higher-level
experiences (identification).

Other relevant EEG studies reported findings that seem
inconsistent with either version of the claim (Derda et al.,
2019; Jimenez et al., 2018, 2021; Tagliabue et al., 2016).
Most of these studies measured effects of PAS separately
for a low-level stimulus/task and a high-level stimulus/task.
Because the claim by Koivisto et al. (2017) is not specific to
a particular stimulus, differences between low-level experi-
ences (detection) and high-level experiences (identification)
for a low-level stimulus (e.g., color) and a high-level stimulus
(e.g., digit) can be viewed as separate tests of the claim. Pre-
vious studies reported that VAN-relevant amplitudes became
increasingly more negative with PAS ratings for a low-level
stimulus (Derda et al., 2019; Jimenez et al., 2018; Tagliabue
et al., 2016) and a high-level stimulus (Derda et al., 2019).
Similarly, LP-relevant amplitudes became increasingly more
positive with PAS ratings for a low-level stimulus (Derda
et al., 2019; Tagliabue et al., 2016) and a high-level stimu-
lus (Derda et al., 2019; Jimenez et al., 2021). Because these
findings suggest VAN for higher-level experiences (identi-
fication), they do not appear consistent with the claim by
Koivisto et al. (2017) and with the observed decrease in VAN
in the present study. However, there may be no contradiction
if it is assumed that in previous studies, subjects used rat-
ings of PAS2, PAS3, and PAS4 to refer to a gradual increase
in visibility. If previous subjects did not consistently inter-
pret PAS3 (or PAS4) as a qualitatively different experience in
terms of identification, previous studies might have missed
the decrease in VAN and LP for identification.

However, a critic may argue that in the present study, VAN
to identification was reduced (if not eliminated) because of
a ceiling effect. If VAN-relevant amplitudes at identifica-
tion were already maxed out to unaware trials (PAS2), then
VAN-relevant amplitudes could not have increased more to
aware trials (PAS3). As shown in Figs. 3a and 4a, mean
amplitudes at the VAN-relevant intervals were more negative
for a stronger stimulus (i.e., unaware trials at identification)
than for a weaker stimulus (i.e., unaware trials at detection).

However, opacity levels at the identification threshold were
generally low; on a scale between 0 and 100, mean opacity
was 2.80 for unaware trials (PAS2) and 2.90 for aware trials
(PAS3). Also, for identification, mean performance in cor-
rectly reporting the orientation of the grating was only 72%
on unaware trials (PAS2). Because these observations sug-
gest that stimuli at identification were relatively weak, they
argue against the idea of a ceiling effect.

In the present study, subjects had to detect a ring and iden-
tify its orientation (left or right). This stimulus and task are
considered low level by LoP (Jimenez et al., 2021; Windey
et al., 2014).We used a low-level stimulus/task because most
of the results that seemed inconsistent with the claim by
Koivisto et al. (2017) used a low-level stimulus/task (Derda
et al., 2019; Jimenez et al., 2018; Tagliabue et al., 2016).
LoP predicts that for a low-level stimulus/task, conscious
experiences are gradual, whereas for a high-level stimu-
lus/task, conscious experiences are dichotomous (Windey et
al., 2014). Importantly, this distinction does not seem rele-
vant for the present study that focused on differences between
two thresholds for the same stimulus. Accordingly, there is
no a priori reason why the present findings for VAN would
not generalize to a high-level stimulus (e.g., digits or letters).

The strong version of the claim by Koivisto et al. (2017)
is that there is no VAN at the identification threshold (PAS3
− PAS2). Support for the absence of an effect is difficult
to obtain with null hypothesis significance testing (Dienes,
2008; Makin & Orban de Xivry, 2019; Wasserstein & Lazar,
2016), particularly so if statistical power is low because of
small sample size. Because sample size was 12 in the study
by Koivisto et al. (2017), a non-significant VAN is unin-
formative. In the present study, we used Bayesian analyses
to measure the evidence for or against an effect (Dienes,
2016; Makowski et al., 2019; Wagenmakers et al., 2016;
Wiens & Nilsson, 2017). The BF provided ambiguous sup-
port for VAN at the identification threshold (BF10 = 2.3);
there was about as much evidence against as for the pres-
ence of VAN. Also, as shown in the middle left panel of
Fig. 5, many 95%CIs for VAN at identification overlapped
zero. Strictly speaking, these results do not resolve whether
there is VAN at identification. Although it would have been
possible to continue data collection until the BF is strong
enough (in either direction), it was not feasible to do so in
the present study. Furthermore, the BF is only one of vari-
ous valuable Bayesian indices (Makowski et al., 2019). For
the present study, these other Bayesian indices provide rather
strong support for VAN at identification (Wiens, 2023). First,
the probability of direction (pd) is defined as the proportion of
the posterior that is in the same direction as the median of the
posterior. For the main data set, pd = 99.4%; this means that
the probability for a negative difference score (i.e., VAN) at
identification is almost 100%. Second, the region of practical
equivalence (ROPE) may be used to define a region within
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which effect sizes are considered to be practically equiva-
lent to zero. When we (arbitrarily) defined ROPE to range
between −0.1 and +0.1 µV, less than 2% of the posterior
distribution fell within this ROPE. This means that the prob-
ability for a negligible effect size was very low. With regard
to LP, results provided moderate support for LP at identifi-
cation (BF10 = 3.8). Thus, the BF suggested that there was
three times more evidence for than against the presence of
LP, but estimated LPwas small. As shown in the middle right
panel of Fig. 5, results of the same datawith 16 different anal-
ysis settings confirmed that the findings for LP were robust.
Taken together, for identification, BF results provided only
ambiguous evidence for VAN and moderate evidence for LP.
However, other Bayesian indices (pd, ROPE) provided rather
strong support for VAN at identification.

Results from several older studies appear consistent with
the idea of VAN for higher-level experiences (Koivisto &
Revonsuo, 2008; Koivisto et al., 2005, 2009; Wilenius &
Revonsuo, 2007). In a study of low-contrast line drawings
(Wilenius & Revonsuo, 2007), a secondary analysis (N =
10) yielded VAN to trials when subjects reported to be very
or absolutely sure about the content of objects compared
with trials when subjects reported not be sure. Similarly,
Koivisto et al. (2005) showed backward-masked letters (H,
T, or U), and for each block of trials, one of the letters was
defined as the target. A secondary analysis (N = 8) with con-
stant masking conditions yielded VAN for aware target trials
(hits) compared with unaware target trials (misses). Other,
similar studies also reported VAN to masked, lateralized
letters (N = 10, Koivisto et al. 2009) and masked gratings
(N= 13, Koivisto and Revonsuo 2008). Unfortunately, all of
these results may be confounded. First, if PAS1 trials (noth-
ing) and PAS2 trials (something) are grouped together as
unaware trials (e.g., Wilenius and Revonsuo, 2007), then the
difference of aware minus unaware (i.e., PAS1 and PAS2
combined) does not isolate effects of higher-level experi-
ences. For example, imagine that mean amplitudes are 0 µV
for PAS1 trials, −0.2 µV for PAS2 trials, and −0.2 µV for
PAS3 trials. Although there is no VAN at identification (i.e.,
PAS3 − PAS2 = 0), the difference of PAS3 trials minus the
combined PAS1 and PAS2 trials would be −0.1. Critically,
this difference would be completely driven by VAN to detec-
tion. Second, it may be that as soon as subjects can detect a
target, they can identify it. If so, the difference between aware
target trials and unaware target trials would be a combination
of detection as well as identification. Importantly, to isolate
effects of higher-level experiences, a critical design feature
is that subjects may rate their experiences in terms of noth-
ing (PAS1), lower-level experiences (PAS2), and higher-level
experiences (PAS3), as in the present study. When testing
for VAN for higher-level experiences, PAS3 trials have to
be compared only with PAS2 trials (while PAS1 trials are
excluded). Notably, a study using magnetoencephalography

(MEG) showed rectangles that differed in orientation (Ander-
sen et al., 2016). Results showed that activity in occipital
sources in the VAN range differed between PAS2 and PAS3.
Although these results were obtained withMEG, it is reason-
able to assume that in studies with the critical design feature,
VAN should be obtained for higher-level experiences. In fact,
in the present study, whereas BF results were ambiguous,
results of other Bayesian indices (pd, ROPE) provided rather
strong support for VAN at identification.

In the present study, BF results provided extreme evi-
dence for LP at lower-level experiences (detection) and
moderate evidence for LP at higher-level experiences (iden-
tification). Further, BFs provided extreme evidence that LP
decreased from detection to identification. Although these
results resembled those for VAN, they do not imply that LP
is an NCC. In the last decade, many studies in vision have
shown that LP lacks sensitivity: Even though subjects are
aware of the stimuli, LP is absent (Cohen et al., 2020; Dellert
et al., 2021, 2022; Förster et al., 2020; Koivisto & Revonsuo,
2010;Kronemer et al., 2022; Pitts et al., 2012; Schlossmacher
et al., 2020). Thus, the present results likely indicate that
LP was present because of the task relevance of the stim-
uli. As shown in Fig. 4 (right), LP-relevant amplitudes were
lowest when subjects reported seeing nothing (i.e., unaware
detection) and increased when subjects were aware of the
task-relevant stimuli. These findings suggest that LP-relevant
amplitudes are sensitive to task-relevant stimuli that are
detected. Also, the present findings provide convincing evi-
dence that LP decreases fromdetection to identificationwhen
confounding effects of task differences are avoided. Thus,
the present results extend previous studies that either did not
address the present question or reported non-significant find-
ings, which are not diagnostic (Derda et al., 2019; Jimenez et
al., 2021; Koivisto et al., 2017; Tagliabue et al., 2016). From
the LoP perspective, an interesting question is whether LP to
identification might be larger for a high-level stimulus/task
than for a low-level stimulus/task as used here. In support,
two studies found larger LP for a high-level stimulus/task
than a low-level stimulus/task (Derda et al., 2019; Jimenez
et al., 2021) and one study reported no statistically signifi-
cant difference (Jimenez et al., 2018). However, because it
is unclear whether these studies specifically targeted higher-
level experiences in terms of identification, it is unresolved
whether these findings can be generalized.

Finally, we discuss two particular features of the present
study. First, EEG data were recorded during staircase pro-
cedures that adjusted opacity over trials to target lower-level
experiences (detection) and higher-level experiences (identi-
fication). During preprocessing of each subject’s data, trials
were analyzed in blocks, and trials were retained only if
the number of aware trials within a block did not devi-
ate from chance. The goal of this approach was to ensure
that the analyzed data matched the concept of an aware-
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ness threshold (i.e., similar numbers of aware and unaware
trials) both within subjects and between subjects. We con-
trolled for differences in opacity by including opacity as a
separate predictor in the statistical model. This approach is
common in linguistics because when using different linguis-
tic stimuli, it is often impossible to avoid stimulus differences
(Sassenhagen & Alday, 2016; Winter, 2019). Rather than
assuming that stimulus differences must be avoided at all
cost, the statistical approach determines whether stimulus
differences affect the outcome variable. Recommendations
are to try to keep the stimulus differences at a minimum
and to estimate their effects on the outcome variable by
modeling them explicitly (Sassenhagen & Alday, 2016). In
the present study, opacity differences between aware and
unaware trials were small. Nonetheless, opacity and aware-
ness were modeled as separate predictors to estimate their
unique contribution. In all statistical models, results showed
that awareness affectedVAN-relevant andLP-relevant ampli-
tudes independently from opacity (Fig. 5).

Second, we reanalyzed the data with 16 different analy-
sis settings to examine the robustness of the present results.
Similar to fMRI data, EEG data can be preprocessed and
analyzed in many different ways, and many of these differ-
ent ways are equally valid (Carp, 2012; Keil et al., 2014).
However, because EEG involves many preprocessing steps,
it is often unresolved how robust the reported results are to
the chosen preprocessing steps (Trübutschek et al., 2022).
For researchers, the chosen analytic path may seem ade-
quate to the data, but if analytic decisions are not made
independently from the actual data, the risk for false posi-
tives increases strongly (Gelman&Loken, 2013, 2014; Luck
& Gaspelin, 2017). Preregistration is a preferred method to
assure other researchers that theoretically, results should be
unbiased because preprocessing steps and analyseswere cho-
sen without any prior knowledge of the data (Nosek et al.,
2018). In lieu of preregistration, we conducted 16 reanalyses
of the data by varying several settings that we considered to
be obvious candidates in affecting EEG results. Accordingly,
we varied block length, chance level for a block, inclusion
of outlier EEG trials, and inclusion of Gabor orientation in
the statistical models. We did not vary the choice of elec-
trodes and intervals. However, Figs. 3a and 3b suggest that
the choice of intervals and electrodes captured VAN and LP
well without overfitting (Keil et al., 2014; Luck, 2014). More
advanced robustness checks are available, such as specifi-
cation curve analysis, but these often require thousands of
analyses (Simonsohn et al., 2020). Computing numerous
models is feasible for frequentist analyses (that take sev-
eral seconds) but not for the Bayesian analyses that we used,
which took about 2h per analysis. In sum, we varied relevant
analytic settings to examine the robustness of the present
results. Even though the number of alternative analyses was

limited for practical reasons, their results attest to the robust-
ness of the present findings.

Taken together, the present findings are important for
recurrent processing theory (Lamme, 2006, 2010). A cen-
tral tenant of this theory is that phenomenal consciousness
is mediated by early, recurrent processing in sensory areas.
Because VAN occurs relatively early and is generated in sen-
sory areas (Dembski et al., 2021; Meyer, 2011; Snyder et al.,
2015), VAN has been treated as an index of this process-
ing (Eklund & Wiens, 2018; Förster et al., 2020; Lamme,
2018). In support, the present results showed extreme evi-
dence for VAN for lower-level experiences (detection) and
some evidence for VAN for higher-level experiences (identi-
fication). Thus, the present results are consistentwith the idea
that phenomenal consciousness is captured by VAN. How-
ever, because VAN was larger (more negative) for detection
than identification, results suggest that VAN is more sensi-
tive to lower-level experiences than higher-level experiences.
However, even if VAN is not an ideal NCC of higher-level
experiences, neural activity in relevant sensory areas has been
shown to be an NCC. For example, when source activity in
occipital areaswas extracted frommagnetoencephalography,
machine learning could classify correctly between consecu-
tive PAS ratings (Andersen et al., 2016). In sum, the present
results emphasize that when searching for NCC, it is impor-
tant to consider the level of experience and that a particular
measure such as the VAN may be particularly sensitive to a
particular level of experience.

In sum, Bayesian analyses provided extreme evidence that
VAN is larger for detection than identification. These find-
ings demonstrate that as an NCC, VAN is more sensitive
to lower-level experiences of seeing something (detection)
than to higher-level experiences of specific properties of the
stimuli (identification). Consistent with the idea that lower-
level experiences are generated in sensory cortices, VANwas
strongest to these lower-level experiences. Thus, these results
are consistent with recurrent processing theory in that phe-
nomenal visual consciousness is reflected by VAN. Further,
results emphasize that it is important to consider the level of
experience when searching for NCC.

Open Practices Statement: The data and materials for the
experiment are available via a public university repository
(Wiens, 2023).During review, the link is private.After accep-
tance, the link will be available at this https://doi.org/10.
17045/sthlmuni.21354195.

Author Contributions StefanWiens: Conceptualization,methodology,
formal analysis, resources, data curation,writing - original draft, writing
- review & editing, visualization, supervision, project administration &
funding acquisition. Annika Andersson: Conceptualization, method-
ology, investigation, writing - original draft, writing - review & editing.
Josef Gravenfors: Conceptualization, investigation, writing - review&
editing

123

https://doi.org/10.17045/sthlmuni.21354195
https://doi.org/10.17045/sthlmuni.21354195


Cognitive, Affective, & Behavioral Neuroscience

Funding Open access funding provided by Stockholm University. This
work was supported by a grant to Stefan Wiens from Marianne and
Marcus Wallenberg Foundation (MMW 2019–0102)

Availability of data and materials All material, scripts, and data are
available at a public university repository (Wiens, 2023)

Code Availability Scripts are available at a public university repository
(Wiens, 2023)

Declarations

Ethics approval The experiment adhered to the declaration of Helsinki.
In accordance with local law and institutional requirements, ethical
review and approval were not required for this study

Consent to participate Participants provided their written informed
consent to participate in this study

Consent to publish Participants provided their written informed con-
sent to having their raw data shared and published anonymized

Conflict of interest The authors have no competing interests to declare
that are relevant to the content of this article

Declaration of competing interest The authors declare that the research
was conducted in the absence of any commercial or financial relation-
ships that could be construed as a potential conflict of interest. The
funder had no say in the experiment

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Alday, P. M., & van Paridon, J. (2021). Away from arbitrary thresh-
olds: Using robust statistics to improve artifact rejection in ERP
(preprint). PsyArXiv. https://doi.org/10.31234/osf.io/wqrb5

Allaire, J. J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins,
A., ... Iannone, R. (2021). Rmarkdown: Dynamic documents for r.
manual. https://github.com/rstudio/rmarkdown

Andersen, L. M., Pedersen, M. N., Sandberg, K., & Overgaard, M.
(2016). Occipital MEG activity in the early time range (<300
ms) predicts graded changes in perceptual consciousness.Cerebral
Cortex, 26(6), 2677–2688. https://doi.org/10.1093/cercor/bhv108

Andersen, L. M., Vinding, M. C., Sandberg, K., & Overgaard, M.
(2022).Task requirements affect the neural correlates of conscious-
ness. European Journal of Neuroscience, 15820,. https://doi.org/
10.1111/ejn.15820

Aru, J., & Bachmann, T. (2017). In and Out of Consciousness: How
Does Conscious Processing (D)evolve Over Time? Frontiers in
Psychology, 8,. https://doi.org/10.3389/fpsyg.2017.00128

Aru, J., Bachmann, T., Singer, W., & Melloni, L. (2012). Dis-
tilling the neural correlates of consciousness. Neuroscience &
Biobehavioral Reviews, 36(2), 737–746. https://doi.org/10.1016/
j.neubiorev.2011.12.003

Auksztulewicz, R., & Blankenburg, F. (2013). Subjective Rating of
Weak Tactile Stimuli Is Parametrically Encoded in Event-Related
Potentials. Journal of Neuroscience, 33(29), 11878–11887. https://
doi.org/10.1523/JNEUROSCI.4243-12.2013

Biasiucci, A., Franceschiello, B., & Murray, M. M. (2019). Electroen-
cephalography. Current Biology, 29(3), R80–R85. https://doi.org/
10.1016/j.cub.2018.11.052

Borenstein,M., Hedges, L. V., Higgins, J. P. T., Rothstein, H., &Ebooks
Corporation. (2009). Introduction to meta-analysis. John Wiley &
Sons, Ltd. OCLC: 1224788447. 10.

Brown, V. A. (2021). An Introduction to Linear Mixed-Effects Mod-
eling in R. Advances in Methods and Practices in Psycholog-
ical Science, 4(1), 251524592096035. https://doi.org/10.1177/
2515245920960351

Bürkner, P. .-C. (2017). Brms?: An R Package for Bayesian Multilevel
Models Using Stan. Journal of Statistical Software, 80(1), 1–28.
https://doi.org/10.18637/jss.v080.i01

Bürkner, P. .-C. (2018). Advanced Bayesian Multilevel Modeling with
the R Package brms. The R Journal, 10(1), 395. https://doi.org/10.
32614/RJ-2018-017

Carp, J. (2012). The secret lives of experiments: Methods reporting in
the fMRI literature. NeuroImage, 63(1), 289–300. https://doi.org/
10.1016/j.neuroimage.2012.07.004

Cohen, M. A., Ortego, K., Kyroudis, A., & Pitts, M. (2020). Dis-
tinguishing the Neural Correlates of Perceptual Awareness and
Postperceptual Processing. The Journal of Neuroscience, 40(25),
4925–4935. https://doi.org/10.1523/JNEUROSCI.0120-20.2020

Crick, F., & Koch, C. (1990). Towards a neurobiological theory of con-
sciousness. Seminars in the neurosciences, 2, 263-275. Retrieved
June 4, 2019, fromhttp://resolver.caltech.edu/CaltechAUTHORS:
20130816-103136937

Dehaene, S., & Changeux, J.-P. (2011). Experimental and Theoretical
Approaches to Conscious Processing. Neuron, 70(2), 200–227.
https://doi.org/10.1016/j.neuron.2011.03.018

Dehaene, S., Changeux, J.-P., Naccache, L., Sackur, J., & Sergent, C.
(2006). Conscious, preconscious, and subliminal processing: A
testable taxonomy. Trends in Cognitive Sciences, 10(5), 204–211.
https://doi.org/10.1016/j.tics.2006.03.007

Dellert, T., Krebs, S., Bruchmann, M., Schindler, S., Peters, A., &
Straube, T. (2022). Neural correlates of consciousness in an atten-
tional blink paradigmwith uncertain target relevance.NeuroImage,
264, 119679. https://doi.org/10.1016/j.neuroimage.2022.119679

Dellert, T., Müller-Bardorff, M., Schlossmacher, I., Pitts, M., Hof-
mann, D., Bruchmann, M., & Straube, T. (2021). Dissociating
the Neural Correlates of Consciousness and Task Relevance
in Face Perception Using Simultaneous EEG-fMRI. The Jour-
nal of Neuroscience, 41(37), 7864–7875. https://doi.org/10.1523/
JNEUROSCI.2799-20.2021

Dembski, C., Koch, C., & Pitts, M. (2021). Perceptual awareness nega-
tivity: A physiological correlate of sensory consciousness. Trends
in Cognitive Sciences, 25(8), 660–670. https://doi.org/10.1016/j.
tics.2021.05.009

Derda, M., Koculak, M., Windey, B., Gociewicz, K., Wierzchoń, M.,
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