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Abstract
Many of our decisions take place under uncertainty. To successfully navigate the environment, individuals need to estimate 
the degree of uncertainty and adapt their behaviors accordingly by learning from experiences. However, uncertainty is a 
broad construct and distinct types of uncertainty may differentially influence our learning. We provide a semi-systematic 
review to illustrate cognitive and neurobiological processes involved in learning under two types of uncertainty: learning 
in environments with stochastic outcomes, and with volatile outcomes. We specifically reviewed studies (N = 26 studies) 
that included an adolescent population, because adolescence is a period in life characterized by heightened exploration and 
learning, as well as heightened uncertainty due to experiencing many new, often social, environments. Until now, reviews 
have not comprehensively compared learning under distinct types of uncertainties in this age range. Our main findings show 
that although the overall developmental patterns were mixed, most studies indicate that learning from stochastic outcomes, 
as indicated by increased accuracy in performance, improved with age. We also found that adolescents tended to have an 
advantage compared with adults and children when learning from volatile outcomes. We discuss potential mechanisms 
explaining these age-related differences and conclude by outlining future research directions.
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Introduction

Uncertainty is a common feature of our everyday decisions 
and actions, and we must deal with incomplete informa-
tion in many everyday situations. Despite its pervasiveness, 
uncertainty comes in many shapes and forms. For instance, 
think about trying a new coffee place; uncertainty may stem 
from not knowing some of the products offered, it may stem 
from uncertainty about the quality of their products, and it 
may even stem from uncertainty about the quality-stability 
of their products. At the counter, our decision may depend 
on what we expect to be the best at that time (i.e., oat milk 

cappuccino). Consequently, we may need to update those 
expectations or beliefs based on our experiences (i.e., How 
tasty was it?). Choosing the best course of action (i.e., 
Should I order this here again?) depends on our ability to 
learn from experiences and adjust our expectations accord-
ingly by keeping track of outcomes and the changes in those 
outcomes over time. Specific periods in life, such as adoles-
cence, have been characterized by being attuned to learning 
and navigating novel and inherently uncertain environments. 
This study is a review of recent literature on adolescent 
learning under different types of uncertainty.

Adolescence is a developmental phase between child-
hood and adulthood in which we transition into an 
adult role and develop mature social goals (Crockett & 
Crouter, 2014). The start of adolescence is biologically 
marked by the start of puberty, although the end of ado-
lescence is less clearly defined (Sawyer et al., 2018). 
In Western societies, adolescence approximately spans 
the period between ages 10-24 years (including an age 
range sometimes referred to as emerging adulthood; 
Arnett, 2000; Sawyer et  al., 2018; Jaworska & Mac-
Queen, 2015). Puberty is characterized by a rapid rise in 
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gonadal hormones, including testosterone and estradiol, 
which have a large influence on bodily characteristics, 
brain development, and behavior (Laube & van den Bos, 
2016; Schulz & Sisk, 2016). Although the exact role of 
these hormones is unknown, conceptual models have 
hypothesized that pubertal hormones trigger the limbic 
brain system to flexibly recruit cortical control regions 
and potentially boost development of higher cognitive 
and self-regulatory functions important for learning. 
For instance, recent animal work has shown that hor-
monal levels directly influence the organization of the 
prefrontal cortex and accelerated performance in a rever-
sal learning paradigm (Piekarski et al., 2017). Despite 
the link between hormonal changes and human learning 
under uncertainty still being inconclusive, it is suggested 
that these underlying neurobehavioral changes influence 
adolescent learning.

Additionally, adolescence is characterized as a life-
phase in which individuals are confronted with new 
environments that may result in temporarily heightened 
uncertainty (Hartley & Somerville, 2015; Hofmans & 
van den Bos, 2022). For example, adolescents find them-
selves confronted with new social groups when begin-
ning high school. They may also experience uncertainty 
about their social position within a new group and about 
newly formed social relationships that become more 
profound in adolescence. Adolescents may form deeper 
friendships, start romantic relations, or join certain 
groups outside of their family environment where they 
take on more roles and different responsibilities (Crock-
ett & Crouter, 2014; Suleiman et al., 2017). The poten-
tial sensitivity to learning in the adolescent brain may 
help to rapidly reduce this heightened uncertainty and 
flexibly adapt behavior to new and changing environ-
ments (Crone & Dahl, 2012). A specific hypothesis that 
has been put forward is that adolescents may be more 
attuned to detecting changing outcomes over time and 
more readily adjust their behavior compared with chil-
dren and adults (Lin & Wilbrecht, 2022; Romer et al., 
2017). We examined this hypothesis by reviewing the 
developmental literature on learning under two types of 
outcome uncertainty: 1) stochastic outcomes, in which 
the outcome variation remains stable over time; and 2) 
volatile outcomes, in which there is a change in mean-
value or probabilities of outcomes over time.

As highlighted in these examples, many changes in the ado-
lescents’ environments may social, and it is debated whether 
learning from social and nonsocial outcomes relies on the same 
computational and neural mechanisms (Ruff & Fehr, 2014). 
Although studies revealed overlap in neural mechanisms when 
processing social and nonsocial rewards (i.e., a common cur-
rency; Corlett et al., 2022; Martinez-Saito & Gorina, 2022), 
there is evidence for a degree of specificity, in which parts of 

the prefrontal cortex (e.g., the dorsal medial prefrontal cortex, 
and lateral prefrontal cortex) may respond stronger or specifi-
cally to social than nonsocial learning outcomes (Corlett et al., 
2022; Greimel et al., 2018; Martinez-Saito & Gorina, 2022; 
Apps & Sallet, 2017). However, given the limited set of stud-
ies in adolescents that contrasts learning under different types 
of uncertainty in social and nonsocial situations, we do not 
include this as a direct comparison in our review.

The goal of this review is to explore how the current 
available studies support the hypothesis that adolescence is 
particularly attuned to learning under uncertainty, in which 
we group studies based on their outcome stochasticity and 
outcome volatility. We first provide a definition of these 
different types of uncertainty and elaborate on our semi-
structured literature search and inclusion strategy. Second, 
we discuss computational methods to understand the various 
manifestations of uncertainty, including the proposed neu-
robiological measures involved. Third, we review empirical 
evidence from age-related comparisons in studies examin-
ing learning under stochastic or volatile outcomes. Finally, 
we discuss the resulting implications for our understanding 
of adolescent learning under different types of uncertainty 
and present potential next steps for future research that also 
target individual differences.

Different types of uncertainty: Stochasticity 
and volatility

The definition of uncertainty has sparked discussion in 
the literature. In general, uncertainty arises from outcome 
variability or incomplete information about the outcomes. 
Despite some conceptual overlap, different forms of uncer-
tainty have been defined (Bland & Schaefer, 2012; Huet-
tel et al., 2006; Piray & Daw, 2021; Pulcu & Browning, 
2019; Soltani & Izquierdo, 2019; Yu & Dayan, 2005). 
Although other and more fine-grained distinctions have 
been made, we focus on stochasticity—also referred to as 
risk, expected or irreducible uncertainty—and volatility—
sometimes referred to as unexpected uncertainty (e.g., dif-
ferences between volatility and unexpected uncertainty; 
Bland & Schaefer, 2012). Both types of uncertainty can 
play a role in learning from repeated choices (e.g., learn-
ing task, Fig. 1A). To illustrate these different types of 
uncertainty in the lives of an adolescent, consider adoles-
cents’ interactions. Stochastic outcomes refer to situations 
in which making the same decision may result in different 
outcomes (i.e., when there is outcome variance), a pat-
tern that remains stable over time (Fig. 1B, upper panel). 
For example, meeting a friend after school is usually fun, 
but the friend is sometimes in a bad mood, which makes 
some interactions less enjoyable but still overall good. In 
contrast, volatile outcomes refer to situations in which the 
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outcomes have changed, resulting in a new mean value 
and possibly different outcome variance (Fig. 1B, lower 
panel). For example, this friend has decided that they want 
to gain popularity in high school by joining a different 
social group and often is not friendly to you anymore. 
While seemingly dramatic, these examples are prevalent 
and representative of the lives of adolescents as this devel-
opmental phase comes with erratic mood changes (Macie-
jewski et al., 2019), formation of self-identity (Klimstra 
et al., 2010; Pfeifer & Berkman, 2018) and an increased 
importance of peer status and evaluation by peers (LaFon-
tana & Cillessen, 2010; Sherman et al., 2016, 2018).

Making the distinction between stochastic and volatile out-
comes is important. The literature on reinforcement learning 
suggests that these different types of uncertainty should opti-
mally elicit different choice and learning strategies. That is, 
in an environment with high outcome stochasticity, an adap-
tive learner should integrate outcomes of their past decisions 
to form and update their internal value representation of the 
choice options. In an environment with high volatility, an adap-
tive learner should form and update expectations rapidly and 
based on recent outcomes after detecting a change (Behrens 
et al., 2007). Prior research has highlighted the importance for 
individuals to distinguish between volatility and stochasticity 
in their environment as these factors can interact (Piray & Daw, 

2021; Yu & Dayan, 2005). For example, in environments with 
high estimated outcome stochasticity, unexpected events are 
more likely to be attributed to chance even when this event has 
occurred due to a real change. In other words, the ability to infer 
stochasticity and volatility can assist individuals in the challeng-
ing task of accurately estimating and responding to outcomes 
that arise from chance (stochasticity) versus those that indicate 
a change (volatility).

Despite the relevance of differentiating these two types of 
uncertainty, most developmental studies primarily focus on 
one of the two by making use of either probabilistic rein-
forcement learning paradigms targeting stochastic learning 
environments or reversal-learning paradigms targeting mainly 
volatility in learning environments, but also including a level 
of stochasticity. In this way, it could be suggested that these 
paradigms target, but do not isolate, learning under volatility. 
For a more detailed description of the task paradigms typi-
cally used in developmental and adult samples, see Box 1. 
Although relevant for understanding adolescent learning, 
the developmental literature is yet to distinguish between the 
behavioral and neural findings of learning under stochastic-
ity and volatility. Therefore, as a first step, we reviewed and 
compared developmental studies that included an adolescent 
age range in stochastic learning contexts (without volatility) 
and volatile learning contexts (with or without stochasticity).

Fig. 1  Example of a paradigm and outcome uncertainty types. 
A Stimuli-choice-outcome sequence. In a simple two-choice probabil-
istic learning paradigm (e.g., two-armed bandit task), participants are 
shown two options and asked to choose one. After making a choice, 
they see the outcome contingent on their action. Choosing the yel-
low fractal resulted in obtaining 62 points on this trial. The goal is to 
maximize reward by choosing the option that leads to better outcomes 
over the course of the task. This goal is achieved by learning from past 
outcomes. B  Upper panel: the structure of a task environment where 
outcomes (e.g., number of points won) are distributed with some vari-
ance (SD = 15) around a mean value (M = 80), resulting in stochas-
ticity. The mean value remains stable throughout the task. Due to the 

variance in the outcomes, this type of environment is characterized by 
high stochasticity. Similarly, the lower panel shows outcomes that are 
distributed around a mean value with variance (SD = 6), but the mean 
value (20 in the first 12 trials, 75 in the following 8 trials, 15 in the last 
10 trials) changes throughout the experiment leading to increased vola-
tility in addition to the stochasticity in the environment. To optimally 
adjust their learning speed, learners need to infer whether receiving an 
unexpected outcome (either a better- or worse-than-expected outcome) 
is caused by a change (due to volatility) or if it is a result of the random 
variance in the outcomes (i.e., due to stochasticity). We illustrated dif-
ferent types of uncertainty using continuous outcomes in this example, 
but other versions include similar setups with binary outcomes as well
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Box 1. Commonly used paradigms to study learning and 
decision-making under uncertainty

Probabilistic learning
Probabilistic learning paradigms commonly consist of two stimuli or 

actions to choose from, and depending on the underlying probabilities 
or contingencies, the choice leads to either a positive (e.g., reward, 
absence of punishment) or a negative outcome (e.g., punishment, 
absence of reward) with some variance. Thus, even after the associa-
tions are learned, it is not possible to always experience the same 
(rewarding) outcome due to the noise or stochasticity in this environ-
ment. For example, in such a learning paradigm, choosing one option 
could lead to a reward 80% of the time, whereas choosing the other 
leads to a reward only 20% of the time. These outcomes for the two 
options can be either perfectly anticorrelated or independent.

Reversal learning
Reversal learning paradigms are generally used to study cognitive 

flexibility and appear similar to the probabilistic learning paradigms. 
However, they require participants to detect when the contingen-
cies for different options are reversed after every few trials (e.g., a 
previously more rewarding option becomes less rewarding and vice 
versa). There are versions of reversal paradigms with deterministic and 
probabilistic outcomes. In deterministic reversal learning paradigms, 
the better option leads to the reward 100% of the time when chosen and 
surprising outcomes signal a reversal. In probabilistic reversal learning 
paradigms, the surprising outcomes may indicate that the stimulus or 
action associated with reward most of the time has changed or it might 
be a result of stochasticity. The frequent contingency reversals increase 
the volatility in these task environments. Some of these paradigms 
introduce reversals only after certain criteria are met (e.g., choosing the 
more rewarding option at least three times in a row; Weiss et al., 2021).

Predictive inference
Instead of probabilities, a task environment might depend on more 

continuous outcomes, such as points gained or the location of a 
hidden stimulus. The outcomes of actions vary around a mean value, 
which leads to stochasticity. While estimating the underlying mean 
value, learners should not update their expectations too much due to 
these random fluctuations (e.g., estimation and choice tasks in Jepma 
et al., 2020). However, there also might be changes in the mean 
value that are not due to stochasticity in which case learners should 
update their predictions more quickly. In a task with continuous 
outcomes, volatility would be reflected as a the rate of change in the 
generative mean value (e.g., changepoint task; Nassar et al., 2016).

Risky decision-making
Finally, there may be alternative paradigms that include an element 

of ambiguity (unknown probabilities) or risk (known probabilities) 
when learning. These experience-based, decision-making tasks 
require participants to make choices between risky and safe(r) options 
that are presented (Christakou et al., 2013; Jepma et al., 2022; Nus-
senbaum et al., 2022; Rodriguez Buritica et al., 2019). Risky options 
are generally operationalized as the ones with greater outcome 
variability, and consistently choosing such risky options can be either 
beneficial or detrimental in the long run based on their average value 
(Jepma et al., 2022; Nussenbaum et al., 2022). Thus, both the average 
expected outcome values and variability (akin to stochasticity) should 
be learned or estimated over time for different options.

Neural and computational mechanisms 
of learning under uncertainty

Neuroscientists have described well-defined, reward-learning 
networks, including cortico-basal-ganglia loops, with the stri-
atum and medial prefrontal cortex being key regions in this 

network (Haber & Knutson, 2010). The interpretation of learn-
ing signals in the brain has benefited from cognitive computa-
tional modeling that quantifies different parameters of learning 
that rely on deviations of expectations (i.e., prediction errors; 
Box 2). Rewards that exceed our expectations generate posi-
tive prediction errors, which can reinforce behavior. Conversely, 
worse-than-expected rewards generate negative prediction errors 
and lead to extinction of behavior. When the prediction error 
becomes zero, no further learning is possible and the prediction 
remains stable (Schultz, 2015). The extent to which a prediction 
error alters subsequent subjective valuation of choice options 
depends on one’s learning rate (Box 2). Prediction-error (PE) 
learning processes are assumed to depend on midbrain dopa-
mine signaling (i.e., ventral tegmental area, substantia nigra) and 
their projections (Schultz, 2007; Schultz et al., 1997). Consist-
ently, findings have pointed to a distributed network for predic-
tion error coding, including dopamine-innervated regions, such 
as the striatum, ventral medial prefrontal cortex (PFC), and ante-
rior cingulate cortex (Garrison et al., 2013), and also observed 
PEs in regions, such as the insula and lateral PFC (e.g., extensive 
meta-analysis on domain-general and domain-specific PEs, Cor-
lett et al., 2022). It is debated whether there are specific brain 
networks involved in the updating of expectations (Bruckner 
et al., 2022), but at least one study has observed learning rates 
to be related to functional connectivity between the striatum and 
ventral medial PFC (van den Bos et al., 2012). Developmental 
research has aimed to quantify age-related changes in parameters 
of reinforcement-learning models and relate these to age-related 
changes in brain functioning. The use of computational models 
in different age groups in combination with brain measures may 
provide insights in how learning develops on multiple levels of 
explanation (Lockwood et al., 2020), but see recent reviews for 
discussion on the use of computational models in understanding 
learning processes (Nassar & Frank, 2016; Eckstein et al., 2021).

Another neurobiological framework on learning under uncer-
tainty quantifies the importance of neurotransmitter systems, 
such as acetylcholine and noradrenaline (NA). Volatility, or 
unexpected changes, are thought to depend, at least partly, on 
the locus coeruleus-NA system (Bruckner et al., 2022). This sys-
tem has been associated with uncertainty in Bayesian modeling 
approaches (Box 2) with rapid learning-rate adjustments. There 
is some evidence that inhibiting NA levels by using a pharma-
cological antagonist increases individuals’ learning rate through 
which beliefs about volatility are updated (Marshall et al., 2016). 
This indicates that NA stabilizes individual’s estimate of envi-
ronmental volatility. Brain regions that have been related to 
coding uncertainty and surprise overlap partly with regions 
that are sensitive to prediction errors and include the anterior 
cingulate cortex (ACC; Behrens et al., 2007; d’Acremont & 
Bossaerts, 2016), posterior cingulate cortex (Payzan-LeNestour 
et al., 2013), and wider frontal-parietal brain regions (Kao et al., 
2020). Other work has suggested the basolateral amygdala to be 
a key region for detecting outcome volatility, which may depend 
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on the connections with the ACC, or potentially dopaminergic 
innervations (Soltani & Izquierdo, 2019). Overall, these find-
ings point to a distributed network that includes regions of the 
PFC, parietal cortex, and subcortical regions involved in learning 
under uncertainty, as well as the neurochemical involvement of, 
at least, dopamine and NA. Many of these regions undergo large 
structural and functional development during adolescence and 
into adulthood (Silverman et al., 2015; Tamnes et al., 2017), 
and similarly changes in neurotransmitter systems are prevalent 
across adolescence (Larsen et al., 2020; Wahlstrom et al., 2010). 
It is at the moment, however, unclear how these changes contrib-
ute to adolescent learning under uncertainty.

Box 2. Computational models used to model learning and 
choice in their simplest form

Reinforcement learning (RL) models
In their simplest and widely used form, RL models include the Rescorla-

Wagner learning rule (Equation 1b) combined with the Softmax 
choice function (Equation 2). An important element of learning in 
these models is the prediction error (PE), which is the difference 
between an expected (EV) and a received (O) outcome as a result of 
an action (e.g., choosing the right option) (Equation 1a).

  
 
Parameters in RL models that are estimated from the data and used to calculate 

PEs are a learning rate (α) and decision temperature (β). Learning rates 
reflect the degree of updating of expectations (EV), i.e., expected value of 
a stimulus or action. The EV is then updated for each stimulus or action 
separately at time t (note that there might be variations of these models where 
EVs for both options are updated simultaneously based on the outcome 
received for one of them, i.e., when the options are perfectly anticorrelated). 
Although these models can be extended in several ways, one common ver-
sion includes separate learning rates for positive (better-than-expected) and 
negative (worse-than-expected) PEs.

The choice is then determined by the Softmax function, which assigns higher 
choice probability to the option with the higher EV proportional to the dif-
ference of the EVs for different options with varying sensitivity (Equation 2). 
The decision temperature (also called inverse temperature) indicates the 
degree of this sensitivity and can indicate more or less exploratory choice 
behavior depending on its value. Learning rates determine how much influ-
ence PEs have on the updating; a higher learning rate would lead to larger 
influence of the most recent outcomes, whereas a lower learning rate would 
lead to slower integration across a history of multiple outcomes.

Bayesian Updating Models
Simple reinforcement-learning models do not incorporate uncertainty 

directly in their computational framework. In contrast, Bayesian mod-
els assume that individuals attempt to infer the environment’s hidden 
states given an individual’s observations (i.e., given the outcomes). In 
Bayesian models, uncertainty is explicitly built in. That is, in Bayesian 
learning models, there is not a single estimation of EV, but there is a 
belief distribution over the world state of interest given the observa-
tions. This belief distribution starts with a prior belief distribution and 
is updated with each observation based on Bayes rule, resulting in the 
posterior belief distribution of an individual. The posterior distribution 
is then used in the decision rule by maximizing the expected utility 
under the posterior (e.g., maximum a posteriori (MAP) decision rule), 
while the width of the distribution corresponds to uncertainty about the 
environment’s state. For more information see e.g. Ma et al. (2022a).

Semi‑systematic review approach

Semi-systematic literature reviews are used to integrate 
evidence on topics that are conceptualized and studied 
in different ways which may impede the process of a full 
systematic review and/or meta-analysis (Snyder, 2019). 
We opted for a semi-systematic review to study the devel-
opmental differences in learning performance and strate-
gies from stochastic and volatile outcomes by making use 
of an extant literature including a diverse set of studies 
on belief updating and reinforcement learning. Thus, we 
searched terms on the PubMed database related to Uncer-
tainty, Probability Learning, Reversal Learning, Reinforce-
ment; together with terms, such as Developmental, Ado-
lescent Development, Young Adult, Puberty (final search 
date July 26, 2022; see full list of terms in Supplementary 
Tables S1-2). In addition to screening these articles pub-
lished from 2010 (excluding review articles, studies that 
did not include adolescent samples and those that did not 
include any age-related analyses), we also used snowball-
ing methods by searching for the citing papers of these 
articles, and articles cited by them to identify other rel-
evant papers and preprints (Supplementary Figure S1, flow 
diagram). Tables 1 and 2 summarize all studies, including 
age ranges and paradigms, model parameters, and whether 
neuroimaging data were included. Supplementary Table 1 
includes the means of parameters estimates in the studies 
(if reported). We discuss the studies of learning under sto-
chasticity (Table 1) and volatility (Table 2) separately in 
relation to age-related differences in behavioral, computa-
tional modeling, and neural findings and make suggestions 
for future studies.

Results

Development of learning from stochastic outcomes

Table 1 lists empirical studies comparing developmental 
samples using tasks that involve outcome stochasticity. 
The majority of these studies employed probabilistic learn-
ing tasks with stable reward contingencies, and a few used 
experience-based decision-making tasks. Among these are 
studies that used a RL model (except Hämmerer et al., 2011; 
Humphreys et al., 2016; and Smith et al., 2012) and stud-
ies with (n = 7) or without (n = 12) neuroimaging. Only 
four of the reviewed studies with stochastic but stable out-
come contingencies used social rewards or feedback, and the 
nature of these were highly diverse (i.e., prosocial reward, 
reciprocity of trust, acceptance, and feedback about others’ 
mental states), hindering our ability to directly compare 
social to nonsocial tasks.

p(right)t =
1

1 + e−�(EV(right)t−EV(left)t)
(2)

PEt = Ot − EV(right)t (1a)
EV(right)t+1 = EV(right)t + a(PEt) (1b)
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When summarizing these developmental findings, we 
first consider how quickly individuals at different ages 
update values of different stimuli or actions in contexts 
with stochastic but otherwise stable outcomes which should 
evoke higher degrees of expected uncertainty. These find-
ings have been mixed. Whereas some studies reported that 
adolescents had lower learning rates than adults (Davidow 
et al., 2016; Jones et al., 2014; Rosenblau et al., 2018; Xia 
et al., 2021), others reported a decrease in learning rates 
with age (Decker et al., 2015; Jepma et al., 2020; van den 
Bos et al., 2012; Westhoff et al., 2020, 2021) or no age-
related differences (Palminteri et al., 2016; Raab & Hartley, 
2020). A subset of these studies (N = 6) reported asym-
metrical learning rates for positive (better-than-expected) 
and negative (worse-than-expected) PEs—referred to as 
positive and negative learning rates in short—instead of 
single learning rates, which further added to divergent find-
ings in the literature (Christakou et al., 2013; Jones et al., 
2014; Nussenbaum et al., 2022; Rodriguez Buritica et al., 
2019; van den Bos et al., 2012; Xia et al., 2021). If we 
look at these separately, however, positive learning rates in 
children and adolescents showed mixed findings. One study 
reported higher positive learning rates in children and adults 
relative to adolescents (Jones et al., 2014); another reported 
a marginal increase with age from childhood to adulthood 
(van den Bos et al., 2012). Two studies reported opposite 
patterns: one reported a decrease in positive learning rates 
from early adolescence to adulthood (Christakou et al., 
2013), and the other reported an increase (Xia et al., 2021). 
Yet others reported no difference in positive learning rates 
across ages (Nussenbaum et al., 2022; Rodriguez Buritica 
et al., 2019). Negative learning rates seemed to be relatively 
more consistent where children showed either the highest 
(Nussenbaum et al., 2022; Rodriguez Buritica et al., 2019; 
van den Bos et al., 2012) or similar levels (Jones et al., 
2014) compared with other age groups. Adolescents showed 
similar negative learning rates to adults (Jones et al., 2014; 
Rodriguez Buritica et al., 2019) or negative learning rates 
decreased with age (Nussenbaum et al., 2022; van den Bos 
et al., 2012), except for one study that reported an increase 
in negative learning rates with age in adolescence but not 
in adulthood (Christakou et al., 2013).

In contrast, findings from most studies indicate a 
decrease in choice stochasticity and exploration (i.e., 
inverse temperature) in adults compared with children 
and adolescents in most studies (Decker et al., 2015; 
Jepma et al., 2020; Nussenbaum et al., 2022; Palminteri 
et al., 2016; Rodriguez Buritica et al., 2019; Westhoff 
et al., 2021; Xia et al., 2021; but see Davidow et al., 
2016, and van den Bos et al., 2012). Moreover, learning 
performance—as indicated by the proportion of choices 
for the option with higher underlying mean value, cor-
rect responses, or more accurate predictions depending 

on the task characteristics—generally increased with age 
(Christakou et al., 2013; Cohen et al., 2010; Humphreys 
et al., 2016; Jepma et al., 2020; Jepma et al., 2022; Jones 
et al., 2014; Nussenbaum et al., 2022; Palminteri et al., 
2016; Rosenblau et al., 2018; Westhoff et al., 2021; Xia 
et  al., 2021) . Compared with the number of studies 
that reported an age-related increase in learning per-
formance, fewer studies reported a decrease in perfor-
mance from adolescence through adulthood (Davidow 
et al., 2016; Raab & Hartley, 2020), or they reported no 
age-related differences between adolescents and young 
adults (Rodriguez Buritica et al., 2019) but found that 
children and older adults performed worse than adoles-
cents and young adults (Decker et al., 2015; Hämmerer 
et al., 2011). One study also found a U-shaped relation-
ship with age from childhood to mid-late adolescence 
with lowest performance between ages 10-13 years 
(Smith et al., 2012).

Neuroimaging findings show that in a learning context 
with outcome stochasticity, PEs scale with the activity in 
the ventral striatum, and medial PFC (Cohen et al., 2010; 
Davidow et al., 2016; Jones et al., 2014; van den Bos et al., 
2012; Westhoff et  al., 2021). In a social learning task 
where participants made predictions about the preferences 
of peers, activation in the fusiform cortex was associated 
with PEs (Rosenblau et al., 2018). In terms of age-related 
differences, studies reported 1) no age-related change in PE 
responses when learning for self (Westhoff et al., 2021), 2) 
peak striatal activity in adolescence (Cohen et al., 2010), 
3) greater hippocampal PE-related activity in adolescents 
vs. adults (Davidow et al., 2016), and 4) greater activa-
tion in insula with positive PEs specific to adolescents 
(Jones et al., 2014). The expected values and predictions 
in these tasks correlated with the medial PFC responses, 
which were stronger in adults relative to adolescents (Jones 
et al., 2014; Rosenblau et al., 2018). In addition, one study 
investigating the functional connectivity between striatum 
and medial PFC reported enhanced connectivity during the 
receipt of positive versus negative feedback, which also 
increased with age (van den Bos et al., 2012).

Taken together, these findings are difficult to recon-
cile in terms of systematic developmental changes. The 
reported inconsistencies seem due to the variety of tasks 
(e.g., some requiring higher working-memory capacity 
or social tasks) and computational models (e.g., single 
vs. asymmetrical learning rates) used as well as sample 
characteristics. For example, there are inconsistencies 
in the cutoff ages that different studies used in order to 
group participants as children, adolescents, and adults. 
Combined with differences in analytic approaches (e.g., 
age used as a continuous variable vs. grouping vari-
able), such sample differences may have contributed 
to mixed findings when comparing ages. Despite this, 
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most studies using stable probabilistic learning tasks that 
involve expected uncertainty (due to outcome stochastic-
ity) somewhat consistently reported a decrease in choice 
stochasticity (Decker et al., 2015; Palminteri et al., 2016; 
Westhoff et al., 2021; Xia et al., 2021 but see Davidow 
et al., 2016; and van den Bos et al., 2012) and an increase 
in performance from childhood to adulthood (Decker 
et al., 2015; Hämmerer et al., 2011; Jones et al., 2014; 
Palminteri et al., 2016; Rosenblau et al., 2018; Westhoff 
et al., 2021; Xia et al., 2021 but see Davidow et al., 2016; 
Raab & Hartley, 2020; and Smith et al., 2012).

Results: Development of learning from volatile 
outcomes

Dynamic and volatile environments contain reversals or sud-
den changes in the outcome statistics that evoke unexpected 
uncertainty. In these environments, typically the challenge 
is to optimally respond to unexpected outcomes, because 
they might signal either a change or occur due to stochastic-
ity or noise in the environment. Table 2 shows the overview 
of developmental studies that used tasks with high volatil-
ity, such as probabilistic or deterministic reversal learning 
tasks (n = 6) and a predictive inference task (n = 1; Bruck-
ner et al., 2020). The majority (n = 6) of these studies also 
employed computational models to analyze the behavioral 
patterns. All studies recruited adolescents. Except for one 
study, which compared children to adolescents (Weiss et al., 
2021), the others compared younger participants to adults. 
A subset of studies (n = 3) included neuroimaging findings. 
Except for one experimental condition in one of the reported 
studies (i.e., videos showing an individual smiling and giv-
ing thumbs up; Weiss et al., 2021), all studies with volatile 
outcomes focused on learning from nonsocial reward or 
feedback.

Similar to tasks that involved outcome stochasticity but not 
volatility, these studies using tasks with higher volatility also 
reported mixed findings regarding age-related differences in 
the patterns of learning rates. Some studies reported no dif-
ferences in learning rates (Bruckner et al., 2020; Javadi et al., 
2014; Waltmann et al., 2023). Others reported higher learn-
ing rates in adolescents compared with adults (particularly 
for negative outcomes; Hauser et al., 2015), or found higher 
learning rates in adolescents than in children (Bruckner et al., 
2020; Weiss et al., 2021). In contrast, a recent study reported 
lowest negative learning rates in adolescents among all the 
age groups (Eckstein et al., 2022). Only two of these studies 
modeled and reported on both positive and negative learning 
rates (Eckstein et al., 2022; Hauser et al., 2015), whereas oth-
ers reported on a single learning rate.

With regard to the inverse temperature parameter, 
these studies reported either no age-related differences 
(Hauser et al., 2015; Weiss et al., 2021) or increases with 

age (Eckstein et al., 2022; Javadi et al., 2014), indicat-
ing less exploration or noisy choices with age. A recent 
study found that adolescents were less sensitive to par-
ticularly positive reinforcement than adults, which leads 
adolescents to show more response switching akin to 
more exploratory/noisy choice behavior (Waltmann et al., 
2023). In addition, whereas some studies reported peak 
performance in adolescence compared with other ages 
(Eckstein et al., 2022; van der Schaaf et al., 2011; Weiss 
et al., 2021), or better performance of adolescents than 
adults in early trials of more volatile phases (Waltmann 
et al., 2023), the others did not find any differences in per-
formance between adolescents and adults (Bruckner et al., 
2020; Hauser et al., 2015; Javadi et al., 2014).

Neuroimaging findings show that in a learning context 
with high volatility, PEs were found to be associated with 
the activity in the striatum, ventral medial PFC, and posterior 
cingulate cortex, yet with neglectable or very limited age-
related differences (Hauser et al., 2015; Javadi et al., 2014; 
Waltmann et al., 2023). One study reported an increased right 
insula response to negative PEs in adolescents compared with 
adults (Hauser et al., 2015). Another study reported that 
activity in the medial PFC scaled with choice probability 
predicted by the computational model and was stronger in 
adults than adolescents (Waltmann et al., 2023).

Although all these studies involved volatility, the char-
acteristics of the experimental paradigms, computational 
models used, and samples varied considerably. This group 
of studies most commonly employed probabilistic learning 
tasks. However, even when we only compare the probabilis-
tic reversal tasks that involve choosing between two options, 
the exact probabilities associated with a given outcome were 
80%, 75%, or 60% in different studies. The outcomes could 
be gain and loss, gain and no gain, or loss and no-loss. In 
addition, there were inconsistencies in the cutoffs used to 
define different age groups along with differences in the ana-
lytic approach to assess age-related effects in these studies 
similar to those in studies that employed tasks with stochas-
tic outcomes. Despite these differences, it seems that ado-
lescents either performed comparable to adults (Bruckner 
et al., 2020; Hauser et al., 2015; Javadi et al., 2014) or bet-
ter (Eckstein et al., 2022; van der Schaaf et al., 2011; dur-
ing early reversal phases in Waltmann et al., 2023; recently 
similar findings were reported in Chierchia et al., 2022) in 
such dynamic and changing environments with higher levels 
of volatility.

Interim summary: Comparing the development 
of learning from stochastic to volatile outcomes

The results suggest that adolescents might have an advantage 
over younger and older age groups when learning in dynamic 
environments with volatile outcomes. Particularly, they might 
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perform relatively better than adults when learning from vol-
atile outcomes compared with learning from only stochastic 
outcomes where they generally seem to perform worse than 
adults. More specifically, among the studies, three of six that 
included adolescents and adults showed that adolescents were 
better at learning from volatile outcomes than adults (note 
that this was only true in early reversal phases in Waltmann 
et al., 2023); the other three showed no age-related changes 
from adolescence to adulthood. Interestingly, none of these 
studies reported that adolescents performed worse (i.e., fewer 
correct choices) at learning from volatile outcomes. Although 
the results for stochastic outcomes appear to be somewhat 
mixed, there seemed to be an improvement in learning from 
stochastic but stable outcomes with age. Eleven of 17 studies 
that reported on learning performance showed that adoles-
cent's learning improved with age, whereas two studies found 
an age-related decline and three did not find age-related dif-
ferences in performance between adolescents and adults.

Only 10 among the 26 studies reviewed included neu-
roimaging data. Moreover, the heterogeneity of the learn-
ing paradigms and modeling approaches in the reviewed 
studies makes it difficult to compare the neural correlates 
of the processes involved in learning under stochastic and 
volatile outcomes. Interestingly, most of these studies do 
not find age-related differences in the processing of PEs in 
these regions (but see Cohen et al., 2010). Also, we did not 
identify any regions that dissociated learning from stochastic 
outcomes and volatile outcomes. One explanation is that 
these learning processes may overlap and depend on the 
same learning systems in the brain. Alternatively, different 
levels of volatility (or surprise) may target more specific 
neural systems, although there are limited indications for a 
distinction in learning systems in the developmental com-
parison we included.

Discussion and future directions

Mechanisms underlying adolescent learning 
and decision‑making under different types 
of uncertainty

From this review, our findings indicate that adolescents, 
compared with children and adults, seem to have a rela-
tive advantage when learning from volatile outcomes. 
When learning from stochastic outcomes adolescents, 
compared with adults, have a relative disadvantage, 
but future studies are needed to identify the underly-
ing causal mechanisms for this effect. These empirical 
studies may suggest at least several candidate mecha-
nisms. First, although the findings for learning rates 
were largely mixed, explorative or noisy choices—e.g., Ta
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as indicated by the (inverse) temperature parameter—
decreased from adolescence to adulthood across learn-
ing tasks (Nussenbaum & Hartley, 2019). On average, 
these exploratory or noisy choices can result in gaining 
less reward or incurring greater loss in environments 
where outcomes are stochastic, but stable. However, in 
environments where outcomes are volatile, these choices 
can result in faster detection of changes in outcomes, 
as the lower value options keep being sampled instead 
of avoided entirely (Denrell, 2005; Fan et  al., 2022; 
Lloyd et al., 2022). The decrease in exploratory or noisy 
choices with age is therefore one potential mechanism by 
which adolescents might perform better when learning 
from volatile outcomes than when learning from only 
stochastic outcomes relative to adults.

Second, adolescents may be more prone to perceive 
volatility in environments in which outcomes are in real-
ity only stochastic (Jepma et al., 2020). This could indi-
cate that adolescents either expect more volatility in their 
environment or that they mistake stochastic outcomes 
as signals of volatility. Furthermore, adolescents who 
estimate higher volatility in such environments may have 
both higher learning rates and engage in more explora-
tory or noisy choices (Jepma et al., 2020). The majority 
of studies we reviewed employed learning tasks with a 
choice component. In such tasks, both the updating of the 
expected values and choice behavior play a role in deter-
mining performance. Thus, making use of designs that 
examine these processes partially independently (e.g., an 
estimation task without a choice function, and a proba-
bilistic learning task with a choice function as in Jepma 
et al., 2020) under different types of outcome uncertainty 
may help better understand the mechanisms that give rise 
to age-related differences in performance when learning 
from volatile and stochastic outcomes.

Finally, neurobiological, hormonal, and environmental 
changes that take place during adolescence may explain why 
the developmental changes in learning from stochastic and 
volatile outcomes occur and relate to the changes in explora-
tion, noise, and perceptions of volatility. In a developmen-
tal perspective, an interesting question for future research 
is therefore whether, for instance, pubertal onset is tied to 
these cognitive computations and expectations. In addition, 
studies have suggested that pubertal changes may initiate a 
cascade of neurobiological changes that influence learning 
and brain plasticity, including for instance dopamine func-
tioning (Larsen & Luna, 2018). More research is needed to 
combine learning in stochastic and volatile environments to 
these developmental changes in hormonal and neurotrans-
mitter functioning. Longitudinal studies, in particular, could 
be crucial in differentiating the effects of age versus puberty 
on learning in diverse uncertain situations.

Understanding the links between volatility, 
exploration, and noise in empirical studies

In decision making, noise refers to random fluctuations that 
can affect the accuracy and consistency of our judgments or 
actions, whereas exploration refers to the process of seeking 
out new information or options to improve our understand-
ing of a situation, which would then be used to identify bet-
ter courses of action. Across our reviewed studies, one of the 
more consistent developmental differences in computational 
model parameters was observed in the inverse temperature. 
Although historically considered to reflect exploration (Daw 
et al., 2006), this parameter could be interpreted as a form of 
exploration, as decision noise, and sometimes these accounts 
are difficult to distinguish.

Recent frameworks, such as those proposed by Gershman 
(2018) and Wilson et al. (2014), provide a more nuanced 
view on exploration and are promising for future develop-
mental studies. For example, some decision contexts may 
call for directed exploration (e.g., when there is relative 
uncertainty, the more uncertain option may be favored). 
Other decision contexts call for random exploration (e.g., 
when the total uncertainty is high, not dependent on rela-
tive uncertainty) (Fan et al., 2022; Gershman, 2018; Tomov 
et al., 2020). When the outcomes of the options are volatile 
as opposed to only stochastic, this also leads to more explo-
ration (Fan et al., 2022). Random exploration is thought to 
be stable across development, but interestingly, the strategic 
use of directed exploration has been suggested to emerge 
across adolescence (Somerville et al., 2017). This puts for-
ward a promising hypothesis regarding age-related changes 
in goal-directed exploration and its interactions with out-
come uncertainty, which can be targeted by using specific 
experimental paradigms and models (Fan et  al., 2022; 
Tomov et al., 2020).

Another recent framework that would be interesting to 
test using a developmental perspective disentangles deci-
sion noise from computation noise (Findling et al., 2019). 
According to this framework, the variability in choice behav-
ior that would be traditionally attributed to decision noise 
(or “exploration”) could be, to a large degree, explained by 
noise in the updating of the action values (i.e., computation 
noise; Findling et al., 2019; Findling & Wyart, 2021). An 
interesting feature of computation noise is that it increases 
with the magnitude of the prediction errors, particularly 
in volatile environments (Findling & Wyart, 2021). The 
potential benefits of increased computation noise in volatile 
environments could be to support the flexibility to adapt to 
unpredictable changes or balancing the cost of computa-
tion precision. It is a possibility that the increased choice 
stochasticity in adolescents that we observed in the stud-
ies reviewed also can be attributed to computation noise. 
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However, no study to date has directly examined age-related 
changes in computation noise. This remains to be addressed 
in future studies.

One important point to consider is that several of the 
tasks analyzed in our review, including those that involve 
volatile task environments (e.g., implementing a mean-level 
shift in the reward structure), typically incorporate stochastic 
elements (Fig. 1; Supplementary Table S3). At the moment 
almost no developmental studies explicitly estimate stochas-
ticity and volatility (but see Jepma et al., 2020). However, 
such an approach is important when the goal is to under-
stand the mechanisms that give rise to behavioral differences 
when learning from outcomes that involve different types of 
uncertainty. For example, adolescents may be more prone to 
perceive volatility in environments in which outcomes are, 
in reality, only stochastic (Jepma et al., 2020). Recent mod-
els that explicitly estimate both stochasticity and volatility 
(Piray & Daw, 2021) can be combined with paradigms that 
manipulate stochasticity and volatility within the same indi-
viduals while keeping other task characteristics as similar 
as possible (Behrens et al., 2007). These experimental and 
methodological advances would allow us to examine more 
directly the developmental differences in learning under sto-
chasticity and volatility.

Testing these frameworks also requires studies with 
larger samples or multiple studies using the same task and 
models. As mentioned in our interim summary and Table 1 
(see also Supplementary Table S3 for reported means of 
parameter values), most studies include different para-
digms with slightly different computational approaches, 
making it difficult to directly compare parameter values 
across studies. The issue of generalizability of computa-
tional approaches is clearly outlined in previous reviews 
(Eckstein et al., 2021; 2020). In brief, their findings show 
that in many cases, computational parameters cannot be 
directly compared between studies, because the processes 
that are captured depend on task characteristics, such as 
feedback valence, memory load, choice of parameters, 
volatility, and others. We therefore capitalized on a com-
parison of age (groups) within studies and subsequently 
summarized these findings for task environments that 
differ in volatility versus stochasticity. Also, differences 
between studies may occur due to variations in sample 
characteristics. Studies covering the period of adolescence 
have relied on different age ranges and cutoffs (Table 1), 
in which the youngest adolescents included were aged 10, 
12, 13, or 14 years and the oldest were aged 14, 15, 17, 18, 
and 19 years. Finally, although not reported here, socio-
economic status, or education levels may differ between 
studies and/or age groups. For future studies, these sample 
characteristics are important to consistently report in the 
literature (Qu et al., 2021).

Individual differences in learning 
and decision‑making with uncertainty

The developmental studies that were identified in this review 
largely ignored the subjective experience of uncertainty. 
Uncertainty is perceived to be threatening by most people 
and is associated with stress (de Berker et al., 2016; Grupe 
& Nitschke, 2013; Peters et al., 2017). Anxious individuals 
have been shown to have difficulties processing the cues in 
their environment to estimate the type of uncertainty and 
adjust their learning accordingly (Piray & Daw, 2021; Pulcu 
& Browning, 2019). For example, individuals with higher trait 
anxiety and transdiagnostic anxious and depressive symp-
tomatology showed little difference in learning rates between 
volatile compared with stable (stochastic) environments, 
whereas optimal learners increase their learning rates (i.e., 
learn faster) in volatile environments (Browning, 2015; Gagne 
et al., 2020). According to a recent conceptual framework 
(Piray & Daw, 2021), learners simultaneously make infer-
ences about the stochasticity and volatility in an environment, 
which are compensatory processes influencing the adjustment 
of learning rates. Within this framework, anxiety is suggested 
to be mainly associated with the maladaptive functioning of 
the processes involved in stochasticity inference such that anx-
ious individuals assume higher volatility in environments that 
are actually stable but highly stochastic. Alternatively, anxi-
ety might be related to reduced exploration and adaptation of 
exploratory behavior to volatility where exploring more might 
be beneficial (Fan et al., 2022; Lloyd et al., 2022). Anxiety 
and depressive symptoms are particularly relevant to include 
from a developmental perspective, as the onset of anxiety dis-
orders and depression are most prevalent during adolescence 
(Blakemore, 2019; de Lijster et al., 2017; Kessler & Bromet, 
2013; McLaughlin & King, 2015). To what extent uncertainty, 
and the mechanisms that may drive the experience of uncer-
tainty, play a role in the development of mental health symp-
tomatology is an important question for future developmental 
studies. A longitudinal perspective will be crucial to unravel 
who is at risk for developing mental health illnesses.

Uncertainty in social environments

Our review includes paradigms that examine learning in both 
social and nonsocial environments. However, most studies in 
our review use abstract paradigms, which necessitate individ-
uals to learn a stimulus-outcome association based solely on 
their personal experiences without any social cues. Although 
learning through prediction errors can occur in both social and 
nonsocial contexts (Ruff & Fehr, 2014), learning in a social 
context may sometimes involve different strategies than learn-
ing in a nonsocial context (Hackel et al., 2020). Also, many 
of the uncertainties that adolescents learn to navigate in this 
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phase of life stem from social interactions as they begin to 
interact with their environments as autonomous individuals, 
take on various social roles, and form new friendships and 
romantic relationships (Crockett & Crouter, 2014). Moreo-
ver, adolescence is a developmental phase in which social 
reorientation takes place such that importance of peers and 
salience of social information becomes more prominent 
(Crone & Dahl, 2012; Nelson et al., 2005, 2016). This sup-
ports the relevance of learning and decision-making in social 
contexts given that adolescents’ understanding of what their 
peers value and think should considerably weigh into their 
value estimations and influence their decisions (Pfeifer & 
Berkman, 2018). It is therefore important for adolescents to 
learn about and update their knowledge of the characteristics 
of other people (e.g., what and whom they like; Jones et al., 
2014; Rosenblau et al., 2018, or how trustworthy they are; Ma 
et al., 2022b) and social groups (e.g., how cooperative or trust-
worthy they are; Westhoff et al., 2020). For building social 
ties, it is important to learn how consequences of our actions 
influence ourselves and others (e.g., whether our actions are 
harmful for others; Westhoff et al., 2021) or by observing oth-
ers and benefiting from their experiences (Rodriguez Buritica 
et al., 2019). There have been efforts to address the impor-
tance of studying the uncertainty processing in social contexts 
during adolescence (Blankenstein et al., 2016; Hofmans & 
van den Bos, 2022; Ma et al., 2022b). For example, one study 
used computational models to examine uncertainty in social 
contexts directly and found that adolescents have weaker prior 
expectations about the social behavior of their peers, which 
resulted in faster learning about their peers (Ma et al., 2022b).

Additionally, it has been suggested that adolescents’ ability 
to adapt to volatile social environments may manifest in the 
increased variability of their moods (Gregorova et al., 2022). 
For example, their positive or negative mood may signal a 
general increase or decrease of social rewards in the adolescent 
environment, thereby facilitating quick adjustment to interac-
tions with friendly (positive mood) or hostile (negative mood) 
others. However, in cases where one’s mood largely biases 
their learning or where one engages in suboptimal learning 
(e.g., estimating higher volatility in an environment with stable 
but stochastic outcomes), increased mood variability may pose 
a risk for mental health problems (Gregorova et al., 2022). 
Taken together, future research is needed to unpack how the 
uncertainty in adolescents’ social environments may provide 
rich and adaptive opportunities for learning.

Conclusions

The ability to tailor learning and decision-making under 
uncertainty is crucial for adaptive behavior, especially given 
that uncertainty is intrinsic to most real-life situations. In this 
review, we discussed different types of uncertainty, focusing 

mainly on two types of outcome uncertainty: stochasticity and 
volatility, as these have different influences on learning and 
decision-making. Taking a developmental approach, with a 
focus on adolescence as a period characterized by change and 
uncertainty, we summarized the recent findings from stud-
ies that compared different age groups in learning tasks that 
involved different types of uncertainty. While we observed 
that the findings were mixed, there were interesting consist-
encies in the age-related differences in model parameters and 
performance. The findings suggest that the development of 
learning under uncertainty might depend on the statistics of 
the environment and the type of uncertainty that the individual 
is exposed to. Interestingly, adolescents may have an advan-
tage when learning from volatile outcomes. In contrast, ado-
lescents’ more exploratory or noisy choice behavior seems a 
disadvantage when learning from stochastic outcomes in rela-
tively stable contexts. This is possibly an adaptive response 
to the rather complex and continuously changing environ-
ments that adolescents encounter in real life. Future studies 
are needed to test this relationship more directly and expose 
mechanisms through which adolescents gain this advantage 
in learning. Together, these findings contribute to the under-
standing of adolescence as a sensitive period for learning in 
uncertain and dynamically changing environments.
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