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Abstract
In cognitive-behavioral conceptualizations of anxiety, exaggerated threat expectancies underlie maladaptive anxiety. This 
view has led to successful treatments, notably exposure therapy, but is not consistent with the empirical literature on learning 
and choice alterations in anxiety. Empirically, anxiety is better described as a disorder of uncertainty learning. How disrup-
tions in uncertainty lead to impairing avoidance and are treated with exposure-based methods, however, is unclear. Here, we 
integrate concepts from neurocomputational learning models with clinical literature on exposure therapy to propose a new 
framework for understanding maladaptive uncertainty functioning in anxiety. Specifically, we propose that anxiety disorders 
are fundamentally disorders of uncertainty learning and that successful treatments, particularly exposure therapy, work by 
remediating maladaptive avoidance from dysfunctional explore/exploit decisions in uncertain, potentially aversive situa-
tions. This framework reconciles several inconsistencies in the literature and provides a path forward to better understand 
and treat anxiety.
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Introduction

Pathological anxiety results from excessive fear of specific 
situations, memories, and thoughts and causes impairing 
distress and avoidance of these feared situations (American 
Psychiatric Association, 2013; Yang et al., 2021). Fear-based 
symptom clusters in anxiety are characterized by excessive 
threat responses and include somatic hyperarousal symp-
toms prominent in panic disorder, social phobia, specific 
phobia, obsessive compulsive disorder, and posttraumatic 
stress disorder (Craske et al., 2009; Levin-Aspenson et al., 
2021). These clinical presentations differ from distress dis-
orders, such as generalized anxiety disorder, that feature 
worry and rumination symptoms and show more overlap 
with depression (Watson, 2005).

Anxiety has long been conceptualized as a disorder of 
maladaptive learning (Mowrer, 1939; Rachman, 1977; Zin-
barg et al., 2022), in part due to the relative effectiveness of 
learning-based treatments, such as exposure therapy. Yet, 

exposure therapy and other psycho- and pharmacotherapies 
are only moderately effective in treating anxiety, and many 
people do not respond to or are not able to access treat-
ment (Bandelow et al., 2017; Eddy et al., 2004; Watts et al., 
2013). Recent advances in computational learning theory 
and neuroscience of learning (Craske et al., 2014; Levy & 
Schiller, 2021; Pine, 2017; Pulcu & Browning, 2019) have 
the potential to greatly improve our understanding and ulti-
mately treatment and prevention of anxiety disorders. To 
benefit from these advances, we need to fully understand 
how treatments, such as exposure therapy, change learning, 
how learning is altered in pathological anxiety, and how con-
temporary computational learning theory can inform treat-
ment. In particular, we need to understand how uncertainty-
related behavior and neural function are disrupted in anxiety 
and how these disruptions can be remediated with treatment.

Current, cognitive-behavioral conceptualizations view 
anxiety as due to excessive learned threat expectancy, main-
tained by avoidance of feared outcomes and remediated by 
deliberately encountering anxiety-producing situations 
(Craske et al., 2008; Foa & Kozak, 1986). Yet, laboratory 
studies of learning in anxiety have failed to consistently find 
enhanced aversive conditioning or excessive valuation of 
aversive stimuli (Duits et al., 2015), and many techniques 
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used in exposure therapy are inconsistent with excessive 
learned threat as the root of anxiety. Instead, uncertainty-
related disruptions often are seen in anxiety (Carleton, 2016; 
Grupe & Nitschke, 2013; Piray & Daw, 2021; Pulcu & 
Browning, 2019). However, existing theoretical frameworks 
do not explain how dysfunctional learning and decision-
making under uncertainty create avoidance and are remedi-
ated with exposure therapy. We focus on exposure therapy, 
because it is hypothesized to causally manipulate learning in 
anxiety; however, a number of other effective treatments for 
anxiety exist, including antidepressants. While we discuss 
human studies, they need to be considered in the context 
of the large animal literature on threat conditioning, avoid-
ance, and their pharmacological manipulations (for reviews 
see Borsini et al., 2002; Harro, 2018; LeDoux et al., 2017; 
Maren, 2001, 2011; Quirk & Mueller, 2008).

Here, we consider the clinical observations of exposure 
therapy alongside neurocomputational theories of uncer-
tainty and advance a view of maladaptive learning in anxi-
ety based on uncertainty-sensitive learning and exploration. 
We propose 1) that maladaptive uncertainty learning is cen-
tral to fear-based anxiety disorders, 2) that this disrupted 
uncertainty learning leads to dysfunctional explore/exploit 
decisions in aversive environments to cause impairing avoid-
ance, and 3) that successful treatment, particularly exposure 
therapy, remediates these dysfunctions. Reconceptualizing 
treatment in this way will improve our understanding of how 
therapies for anxiety disorders work, rendering them more 
effective.

Current state of exposure therapy

Learning principles and development of exposure 
therapy

Mary Cover Jones first applied learning theory to reduce 
anxiety in the 1920s (Jones, 1924a, 1924b). Building on 
the studies of conditioning of John Watson and others, she 
showed that some learning techniques successfully reduced 
fear in children with various phobias. Exposure therapy 
techniques began to be systematically developed decades 
later, including systematic desensitization (Wolpe, 1961) and 
flooding/implosive therapy (Ayer, 1972; Cooper & Clum, 
1989; Keane et al., 1989), informed by the laboratory work 
of Mowrer and others (Mowrer, 1951). The theoretical prin-
ciples behind exposure therapy were then elaborated as emo-
tional processing theory by Edna Foa and colleagues (Foa 
& Kozak, 1986). Emotional processing theory proposed 
that exposure therapy updated the maladaptive emotional 
content of memory structures through repeated experience 
with situations activating these structures. Across all of these 
approaches, the core steps of exposure therapy are clear: 

first, feared situations are identified, and then patients are 
guided through structured exposures. In these exposures, 
they engage in feared situations until a (often predetermined) 
stopping point without engaging in avoidance, escape, or 
safety behaviors.

Two points stand out from this foundational work: 
first, early theories of exposure used a behaviorist black 
box approach to fear and anxiety. In this framework, any 
fears result from conditioning by the external environment: 
anxiety, whether adaptive or not, reflects the presence of 
learned threat, maladaptive anxiety results from exces-
sive learned threat, and so repeated exposures correct this 
excessive threat. This view does not account for individual 
differences or internal, cognitive factors bearing on how 
information from the environment is processed. Although 
theories of anxiety and exposure may include internal, cog-
nitive processes (Foa & Kozak, 1986; Lovibond et al., 2008), 
acknowledge the role of proximal and distal risk factors con-
ferring individual differences (Zinbarg et al., 2022), and note 
that these individual differences likely influence learning 
(Craske et al., 2014), the assumption remains that exposure 
therapy works through normative-learning processes. Based 
on this assumption, reducing maladaptive fear and avoidance 
in pathological anxiety is equivalent to reducing experimen-
tally conditioned fear and avoidance in the laboratory.

Second, despite the clear and ongoing inspiration from 
learning principles, developing exposure as an effective 
treatment required much trial and error. Jones’ work reviews 
several approaches that she tried with different children, all 
well informed by learning principles, and notes several that 
were unsuccessful and even harmful (Jones, 1924a). Simi-
larly, Wolpe’s description of systematic desensitization is 
clearly informed by testing different approaches with his 
patients (Wolpe, 1961). Exposure therapy, therefore, did not 
neatly derive from learning theory; rather, it is the result 
of extensive experimentation and refinement. Why was 
behaviorist learning theory alone insufficient for develop-
ing an effective treatment? As we will review in the next 
paragraphs, this trial-and-error development revealed that 
many approaches that should work according to basic condi-
tioning theories alone are not effective, while the approaches 
that proved to be effective require explanation beyond that 
provided by basic learning explanations.

What is missing from our understanding 
of exposure?

Exposure therapy techniques underwent several empirical 
modifications after their initial development. For example, 
relaxation training was central to systematic desensitization 
and other early exposure formulations (Wolpe, 1961); relax-
ation was thought to serve as a competing response to inhibit 
and extinguish learned associations between anxiogenic 
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stimuli and autonomic arousal. Yet, empirical benefits of 
relaxation training are limited and experts now recommend 
against this component (Abramowitz, 2013; Rothbaum & 
Schwartz, 2002). Another major challenge to emotional 
processing theory in particular involved the time course of 
fear reduction. Emotional processing theory makes a specific 
prediction that incorporating corrective information into fear 
structures leads to fear reduction both within and between 
each exposure session. However, only between-session fear 
reduction predicts treatment outcome, necessitating a recon-
ceptualization of when and how symptom change relates to 
learning (reviewed in Asnaani et al., 2016; Craske et al., 
2008).

Attempts to augment normative learning processes during 
exposure therapy with learning-informed pharmacological, 
somatic, or behavioral interventions have not been particu-
larly successful. D-cycloserine, a partial NMDA receptor 
antagonist with effects on fear conditioning, shows mixed 
results when used during exposure sessions; the number 
and timing of doses may moderate response (Hofmann, 
2014; Mataix-Cols et al., 2017; Norberg et al., 2008), but 
targeted, preregistered tests of proposed moderators failed to 
demonstrate an augmenting effect (Smits et al., 2020). Tran-
scranial magnetic stimulation (TMS) or transcranial direct 
current stimulation (tDCS) to increase or decrease activity 
in learning-related cortical regions during exposure have not 
been consistently effective (Bulteau et al., 2022; Cobb et al., 
2021; Isserles et al., 2021; Zaizar et al., 2021). Behavioral 
approaches that normatively enhance extinction, such as 
novelty-facilitated extinction (Dunsmoor et al., 2015), do not 
improve exposure therapy outcomes in people with anxiety 
(Steinman et al., 2022). These translational failures occurred 
despite robust preclinical findings: these approaches con-
sistently change normative learning, yet do not improve 
treatment outcomes. The disappointing outcomes of these 
exposure augmentation strategies have several possible 
explanations, but they suggest that the learning processes 
responsible for symptom improvement are not successfully 
modified by strategies that augment normative learning.

Current theories of exposure also do not account for 
important treatment components. The inability to overcome 
avoidance and engage in exposures, especially during initial 
exposure sessions, is a major barrier to treatment response. 
Empirically, higher pretreatment avoidance predicts worse 
response to treatment over and above symptom severity, 
reductions in avoidance predate other symptom changes 
during exposure therapy, and avoidance is significantly 
reduced with successful treatment (Cottraux et al., 1993, 
2001; Hansmeier et al., 2021; Salcioğlu et al., 2007; Whea-
ton et al., 2018). In practice, initial exposure sessions focus 
more on reducing avoidance than on changing expectations 
of feared outcomes. Yet, current theories view avoidance as 
a byproduct of excessive fear, not a target of treatment itself. 

Avoidance is instead targeted outside of exposure through 
psychoeducation or motivational techniques. Manuals for 
exposure therapy practitioners (Foa et al., 2012) emphasize 
the need to target the patient’s idiographic “core fear,” a 
notion found in current theories of exposure. For example, 
two people with cleanliness-related obsessive-compulsive 
disorder (OCD) will require different approaches to exposure 
if one person’s core fear is harm coming to their loved ones 
from germs and the other’s is losing control of their environ-
ment. Successful exposures targeting a core fear will show 
generalization to other feared situations not directly targeted 
(such as refraining from cleaning at home generalizing to 
being able to tolerate messes in one’s child’s classroom, to 
use the first example). In contrast, exposures that do not tar-
get the core fear, despite similar content and patient fear rat-
ings (such as refraining from cleaning a break room at work 
that the person’s family will never visit), show less generali-
zation and overall symptom reduction. Yet, the necessity of 
targeting the core fear—over and above tailoring exposures 
based on patients’ fear ratings—is not addressed by current 
theories of exposure.

More recently, researchers have begun to tackle some of 
these problems and have proposed new accounts of learning 
processes in exposure that account for the need to focus on 
core fears, as well as a renewed focus on avoidance. Inhibi-
tory learning theory moves beyond a basic focus on extinc-
tion and proposes that learning deficits—specifically, failure 
to inhibit fear memories and forming new, safe contexts—
underlie the development of anxiety and poor response to 
exposure therapy (Craske et al., 2014). Problems separat-
ing dangerous and safe contexts also support the need to 
focus on core fears that share a context, rather than unrelated 
fears that span contexts. The central role of avoidance, and 
possible pathways to understand avoidance in anxiety, also 
have been the focus of recent reviews and theoretical papers 
(Krypotos, 2015; Pittig et al., 2018, 2020). However, these 
inconsistencies are yet to be fully integrated into theories 
of what goes awry in anxiety and how treatments, such as 
exposure therapy, work.

Uncertainty and anxiety

Current ideas about the role of uncertainty 
in anxiety

If, as proposed in earlier models, anxiety disorders are dis-
orders of excessive learned threat, people with pathologi-
cal anxiety should show increased threat conditioning and 
valuation of negative stimuli in the laboratory. People with 
anxiety do show behavioral, psychophysiological, and neural 
differences with paradigms, such as fear conditioning, safety 
learning, and extinction learning; however, these learning 
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differences are not consistent with the idea of greater aver-
sive conditioning in anxiety. Rather, in threat learning, 
people with anxiety disorders show elevated responding to 
safety signals (CS−) during conditioning, greater responses 
to the cue previously associated with threat (CS+E) during 
extinction (Duits et al., 2015), and greater generalization of 
learned threat (Cooper et al., 2022; Fraunfelter et al., 2022), 
accompanied by reduced ventromedial prefrontal cortex 
(vmPFC) activation (Marin et al., 2017, 2020). Outside of 
learning paradigms, people with fear-based disorders, such 
as panic disorder and posttraumatic stress disorder, show 
elevated psychophysiological responses to uncertain threat 
(Gorka et al., 2017; Grillon et al., 2008, 2009; McTeague 
& Lang, 2012a).

To account for these findings, Grupe and Nitschke (2013) 
proposed the uncertainty and anticipation model of anxi-
ety (UAMA), where anxiety is characterized by excessive 
anticipation of uncertain threat. UAMA delineates five areas 
of dysfunction: inflated estimates of threat costs and prob-
ability, hypervigilance, deficient safety learning, behavio-
ral and cognitive avoidance, and heightened reactivity to 
uncertainty; these dysfunctions relate (in both overlapping 
and distinct ways) to altered functioning of anterior mid-
cingulate cortex, vmPFC, orbitofrontal cortex (OFC), insula, 
amygdala, dorsomedial and dorsolateral prefrontal cortex, 
bed nucleus of the stria terminalis (BNST), and periaque-
ductal gray (PAG), among other areas. Similar to UAMA’s 
emphasis on uncertain threat, Lissek, Pine, and Grillon’s 
(Lissek et al., 2006) analysis of ‘”strong” versus “weak” 
situations (Mischel, 1977) in anxiety emphasizes the role 
of uncertainty. People with clinical anxiety show intact 
responding to strong situations with clear threats but show 
elevated physiological responses to weak situations with 
greater uncertainty about negative outcomes. According to 
another theory of intolerance of uncertainty in anxiety, anxi-
ety is due to difficulties tolerating the distress of uncertainty 
or insufficient information (Carleton, 2016). Crucially, these 
theories do not propose that threat processing overall is dis-
rupted in anxiety nor that anxiety results from representing 
all negative outcomes as worse or more likely. Instead, they 
propose that anxiety is specifically related to difficulties with 
threat only when it is uncertain.

Precisely defining uncertainty using computational 
process models

Extant theories converge on uncertainty-related dysfunc-
tions underlying behavioral, physiological, neural, and 
self-report impairments in pathological anxiety. Still 
unclear, though, is how these different dysfunctions relate 
to each other and what generates them: for example, is 
deficient safety learning due to the same underlying dys-
function as excessive behavioral and cognitive avoidance, 

or are these separate dysfunctions that co-occur in anxi-
ety? Whether separate or shared, what processes lead to 
these observed disruptions? In addition, commonly used 
self-report measures, such as the Intolerance of Uncer-
tainty Scale (Buhr & Dugas, 2002) are vague about the 
source of uncertainty-related issues. If someone endorses 
an item, such as “uncertainty makes me uneasy, anxious, 
or stressed,” does that mean that uncertain threat probabil-
ities cause them anxiety, that they value negative outcomes 
as more aversive, that they require greater control over 
their environment, that they have less emotion-regulation 
abilities, or some combination of the above? Similarly, 
fear conditioning and extinction studies can demonstrate 
that people with anxiety differ in responses to safe and 
threat-related stimuli but cannot explain whether these 
findings are from elevated responding to all cues in a 
threat-associated environment, difficulty distinguishing 
safe from threat-related stimuli, or other learning differ-
ences. To better understand how uncertainty relates to anx-
iety pathology, these constructs must be precisely defined 
and distinguished from each other. Computational models 
can mathematically define learning and choices processes 
affected by uncertainty and disambiguate among disrup-
tions in components of these processes (Krypotos et al., 
2020; Levy & Schiller, 2021; Montague et al., 2012).

When navigating the world, organisms must integrate and 
update information about relationships between stimuli and 
outcomes (learning) and select stimuli based on their pos-
sible outcomes (choice). Three primary families of computa-
tional models describe these learning and choice processes: 
descriptive models of choice under ambiguity and risk (Platt 
& Huettel, 2008), generative sequential sampling models of 
choice that represent evidence accumulation during deci-
sion processes (Forstmann et al., 2016; Ratcliff & McK-
oon, 2008), and reinforcement learning and similar error-
driven value update models of learning (Niv, 2009; Sutton 
& Barto, 1998; Vilares & Kording, 2011). The first set of 
models describes choice during “decisions from description” 
(Hertwig et al., 2004), or how people choose when values 
and probabilities are explicitly presented to participants. 
These models are descriptive rather than generative: they 
can decompose choices into components but cannot describe 
how these choices are generated. The second set of mod-
els, sequential sampling models, are generative models of 
choice and can describe decisions from either described or 
learned values and probabilities; however, as these models 
have not been applied to decisions involving uncertainty in 
people with anxiety (see Aylward et al., 2020; Price et al., 
2019; White et al., 2010, 2016 for nonuncertainty-related 
studies in anxiety), we will not focus on these models in 
this review. The third set of models, reinforcement learning 
and other error-driven value update models, are generative 
and describe learning and decision-making processes when 
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information about value and probabilities must be learned 
(“decisions from experience”) rather than described.

These learning and choice models allow us to quantify 
different types of uncertainty (Bach & Dolan, 2012; Bland 
& Schaefer, 2012; Nassar et al., 2012; Payzan-LeNestour & 
Bossaerts, 2011; Yu & Dayan, 2005; Table 1; Fig. 1A). Defi-
nitions and distinctions among types of uncertainty vary, 
but one consistent distinction is between irreducible and 
reducible uncertainty. Irreducible uncertainty (also called 
known uncertainty or risk) arises from noisy relationships 
between stimuli and outcomes (e.g., from a coin flip); it can 
be precisely described but not reduced. In contrast, reduc-
ible uncertainty arises from incomplete knowledge of con-
tingencies between stimuli and outcomes and, as the name 
implies, can be reduced when learning is possible. Reduc-
ible uncertainty can be divided into two types, depending 
on whether the uncertainty is about contingencies given a 
stable relationship between stimuli and outcomes (estima-
tion uncertainty) or if it stems from uncertainty about which 
environment is currently governing stimulus-outcome con-
tingencies or the stability of those contingencies (unexpected 
uncertainty; also termed changepoint probability or vola-
tility; Nassar et al., 2012; Payzan-LeNestour & Bossaerts, 
2011; Piray & Daw, 2021). See Fig. 1B for a representation 
of irreducible uncertainty, estimation uncertainty, and unex-
pected uncertainty during a reversal learning task. With high 
volatility or frequent changepoints causing high unexpected 
uncertainty, normative learning should show high learning 
rates, particularly after poorly predicted outcomes, as repre-
sented by the Pearce-Hall model of learning (Pearce & Hall, 

1980). Meanwhile, with high noise causing high irreducible 
uncertainty, normative learning should slowly incorporate 
poorly predicted outcomes with a low learning rate, as rep-
resented by the Mackintosh model of learning (Mackintosh, 
1975; Piray & Daw, 2021).

The relationship between anxiety and these types of 
uncertainty can be illustrated with an example of someone 
who fears health problems during a panic attack (outcome) 
when navigating a crowded mall (stimulus). Irreducible 
uncertainty refers to how reliably the crowded mall causes 
a panic attack; it will be high if being in a mall is a poor pre-
dictor of a panic attack and low if being in a mall is a definite 
predictor of having (or not having) a panic attack. Estima-
tion uncertainty represents what is yet to be learned about 
the probability of the mall causing a panic attack, given the 
current set of contingencies; it will be high if more experi-
ences being in the mall will lead to a better ability to predict 
the likelihood of panic attacks, and low if this contingency is 
already learned as accurately as possible. Unexpected uncer-
tainty refers to the probability that the relationship between 
being in the mall and having a panic attack has changed. It 
will be high if the relationship between being in a mall and 
having a panic attack may have changed (e.g., after a recent 
panic attack in a similarly crowded restaurant, which may 
indicate that panic attacks in crowded areas are now more 
likely) and lower if the relationship between being in a mall 
and having a panic attack is stable.

Uncertainty engages brain regions involved in sali-
ence, value, and cognitive control (for in-depth reviews 
of neural correlates of uncertainty processing, see Bach & 

Table 1   Key terms

Term Definition Related terms

Learning The process of integrating and updating information about relationships 
between stimuli and outcomes

Choice In instrumental learning, the process of selecting stimuli based on their 
possible outcomes

Policy

Irreducible uncertainty Uncertainty from probabilistic relationships between stimuli and outcomes Known uncertainty; noise; risk
Reducible uncertainty Uncertainty from incomplete knowledge of relationships between stimuli 

and outcomes
Unknown uncertainty; ambiguity

Estimation uncertainty Form of reducible uncertainty related to lack of knowledge about current 
relationships between stimuli and outcomes

Unexpected uncertainty Form of reducible uncertainty related to possibility of changes in contin-
gencies

Changepoint probability; volatil-
ity; unexpected uncertainty

Bandit tasks Reinforcement learning tasks with a single step where chosen stimuli lead 
directly to rewards

Markov Decision Process (MDP) Description of multi-step learning based on states, rewards, and actions
State Stage in MDP arrived at from an action made at another state; terminal 

states provide rewards
Transition probability Likelihood of a state leading to another state based on an action in an 

MDP
Options Decision policy specifying a set sequence of actions between several 

linked states in an MDP
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Dolan, 2012; Soltani & Izquierdo, 2019). The dorsal ante-
rior cingulate cortex (dACC) forms the hub of the salience 
network (Seeley et al., 2007) and is required to adaptively 
adjust behavior after changepoints (Behrens et al., 2007; 
Hayden et al., 2011; Kennerley et al., 2006; Nassar et al., 
2019; O’Reilly et al., 2013). The dACC and other noradr-
energically innervated components of the salience network, 
including amygdala and insula, respond to surprising infor-
mation, although whether they selectively signal one form 
of uncertainty over another is unclear (Bach & Dolan, 2012; 
Kuhnen & Knutson, 2005; Li et al., 2011; Soltani & Izqui-
erdo, 2019). Serotonin signals from the dorsal raphe nucleus 
also communicate information about uncertainty (Grossman 
et al., 2022; Matias et al., 2017). Meanwhile, orbitofrontal, 
ventromedial, and ventrolateral prefrontal cortex and hip-
pocampus interact with these uncertainty-activated areas 
to communicate information about context and expected 

value (Bartra et al., 2013; Schuck et al., 2016; Schuck & 
Niv, 2019; Walton et al., 2011)..

A key advantage of these computational models is that 
these types of uncertainty have precise and explicit mathe-
matical definitions. For example, the irreducible uncertainty 
of a stimulus with a perfectly learned 75%/25% contingency 
can be represented by the variance of a Bernoulli distribu-
tion with a 75% probability of an outcome. This value can be 
used to quantitatively assess the effects of different levels of 
uncertainty on behavioral or physiological signals.

Choice models of decisions from description 
and findings in anxiety

Choice models of decisions from description are based 
on prospect theory and related behavioral economic theo-
ries (Kahneman & Tversky, 1979). These models measure 

Fig. 1   Types of uncertainty. A. Relationship among uncertainty 
types. B. Schematic of levels of types of uncertainty during a reversal 
learning task. Initially, outcome 1 is reinforced more than outcome 2 
(reinforcement represented by dots in top part of figure, where x-axis 
indicates trials). Halfway through, these contingencies reverse, and a 
second reversal occurs ~75% of the way through. Approximate values 
of each type of uncertainty at different points in the task are repre-
sented in the lower part of the figure. Irreducible uncertainty is ini-
tially high before converging on a value close to the true noise level; 
this form of uncertainty only increases slightly after the change-

points. Estimation uncertainty is initially high, reflecting uncertainty 
about contingencies. This uncertainty reduces while contingencies 
are learned but then increases after changepoints, reflecting the need 
to relearn contingencies once they have changed. As changepoints 
become more frequent and unexpected uncertainty increases, corre-
sponding increases in learning rate lead to faster reductions in esti-
mation uncertainty between changepoints. Unexpected uncertainty is 
also initially high and decreases while contingencies are stable. After 
each changepoint, this uncertainty increases and stays higher, reflect-
ing the increased possibility of additional changepoints
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whether, independent of value, the effects that risk (irre-
ducible uncertainty), ambiguity (similar to reducible uncer-
tainty, but pertains to situations where uncertainty cannot be 
reduced through learning), and valence (loss versus gain) 
have on whether an option is chosen. In these models, the 
probability of choosing each option is based on its expected 
value (magnitude of each outcome times its probability); risk 
aversion indicates a reduced likelihood of choosing options 
with greater risk, accounting for expected value; similarly, 
ambiguity aversion indicates a reduced likelihood of choos-
ing options with greater ambiguity accounting for expected 
value, while loss aversion indicates a reduced likelihood to 
choose options with negative values, accounting for overall 
expected value. Choices involving risk, ambiguity, and loss 
engage value-sensitive brain areas such as OFC, vmPFC, 
and nucleus accumbens as well as salience-related areas like 
amygdala and insula (Bartra et al., 2013; De Martino et al., 
2006; Hsu et al., 2005; Kuhnen & Knutson, 2005; Tom et al., 
2007). These paradigms and models do not involve learning. 
As a result, they do not represent many real-life decisions 
but are useful for determining alterations in choice behavior 
when values and probabilities are explicitly presented.

Studies of risk, ambiguity, and loss aversion in anxiety 
point to increased risk and ambiguity aversion, particularly 
with losses, but no differences in loss aversion (Charpen-
tier et al., 2017; Giorgetta et al., 2012; Hartley & Phelps, 
2012; Maner et al., 2007, but see Sip et al., 2018). This 
pattern of decision-making differences indicates that peo-
ple with high anxiety do not avoid choices with potential 
negative outcomes more than people with less anxiety, but 
they avoid choices where such outcomes are less predict-
able due to greater risk or ambiguity. These findings are 
consistent with intact valuation and decision-making with 
negative outcomes accompanied by difficulties deciding 
among uncertain, potentially negative outcomes. Risk and 
ambiguity aversion may also relate to greater psychophysi-
ological responses for uncertain, but not certain, threat in 
anxiety (Gorka et al., 2017; Grillon et al., 2008, 2009). 
These findings suggest that anxiety is related to problems 
in choice processes. However, most real-world decisions 
require learning about values and probabilities, which in turn 
affect choices based on these experiences (Hertwig et al., 
2004). Understanding how choice processes interact with 
potential learning differences in anxiety requires a fuller 
understanding of how learning and choice interact and go 
awry in anxiety.

Reinforcement learning studies of anxiety

Process-based models of learning can fill the explana-
tion gap left by descriptive models of choice by illustrat-
ing how value and uncertainty are learned and used in 
decisions. Reinforcement learning conceptualizes value 

learning as driven by prediction errors from comparing 
received to expected values (Rescorla & Wagner, 1972; 
Schultz et al., 1997). Prediction errors are then used to 
update future expectations of value; a learning rate param-
eter in the model controls how rapidly these updates occur. 
In the simplest neural account of reinforcement learning, 
dopaminergic projections from the ventral tegmental area 
to striatum, particularly ventral striatum, communicate 
prediction error signals while ventromedial prefrontal cor-
tex tracks value (Bartra et al., 2013; Diederen et al., 2016; 
Montague et al., 1996; Rangel et al., 2008). To track com-
plex environments more representative of the real world, 
basic reinforcement learning models require modification. 
Specifically, they must track dynamic changes in task con-
tingencies as well as different types of uncertainty that 
can help discern change points from other sources of vari-
ability. Behaviorally, these models incorporate effects of 
uncertainty on dynamic changes in learning rate.

Models tracking uncertainty during learning have 
shown the most consistent learning alterations in anxiety. 
Findings using these models are summarized in Table 2 
and show several commonalities (of note, the included 
studies were based on the authors’ knowledge of the lit-
erature and augmented by PubMed and Google Scholar 
searches using the terms “reinforcement learning AND 
(anxiety OR PTSD OR OCD)” but do not represent a 
comprehensive, structured literature review following 
PRISMA guidelines).

First, these studies find differences in parameters repre-
senting learning rate adjustments (including associability, 
or the amount learning rates adjust based on past absolute 
prediction errors associated with a stimulus; Le Pelley, 2004; 
Pearce & Hall, 1980), latent state formation (tendency to 
attribute outcomes to one cause versus another), and other 
learning measures dealing with uncertainty. Other parame-
ters measuring overall learning rate, choice consistency, and 
outcome valuation show little relationship with anxiety. Sec-
ond, studies with reward and loss learning conditions have 
generally found differences during loss learning only (Brown 
et al., 2018; Browning et al., 2015), although some have 
found differences in both conditions (Gagne et al., 2020).

Lastly, there may be some diagnostic specificity among 
internalizing disorders. Internalizing disorders comprise 
depression, anxiety, and related disorders (including PTSD 
and OCD) and can be further divided into fear- versus dis-
tress-based disorders and symptoms (Craske et al., 2009; 
Watson, 2005). Specifically, some studies have found learn-
ing differences that were related to fear, and not distress-
based, disorders and symptoms (Brown et al., 2018; Norbury 
et al., 2021). In contrast, a study comparing GAD and MDD 
did not find specificity to symptoms of one of these disor-
ders (Gagne et al., 2020). One explanation may be that fear-
related symptoms and disorders are more related to these 
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learning differences than distress-related disorders (Clark 
& Watson, 1991; McTeague & Lang, 2012b).

Other learning differences in the studies reviewed in 
Table 2 indicate differences in learning from good versus 
bad outcomes, but this learning impairment also appears 
in studies of depression (Abend et al., 2022; Brown et al., 
2021; Gagne et al., 2020; Lamba et al., 2020; Wise & Dolan, 
2020). The direction of results in individual studies varies; 
a recent computational meta-analysis suggested that anxiety 
and depression show greater punishment learning rates (Pike 
& Robinson, 2022). However, investigating the specificity of 
uncertainty-related learning disruptions to fear-based symp-
toms and disorders requires further studies in samples with a 
broad range of fear and distress-related symptoms and more 
precise measures of these symptom dimensions, rather than 
relying on measures such trait anxiety that measure inter-
nalizing (spanning depression and anxiety) symptoms more 
generally (Knowles & Olatunji, 2020).

Anxiety as maladaptive aversive uncertainty 
learning

Given the task design and model formulation differences 
in the studies reviewed above, what consistent learning dif-
ferences are present in anxiety? Most of the above studies 
manipulated unexpected or irreducible uncertainty, but not 
both. Adaptive learning requires simultaneously assessing 
the level of different types of uncertainty in one’s environ-
ment and adjusting learning accordingly. In tasks or blocks 
with high unexpected uncertainty (20 or fewer trials per 
block; Brown et al., 2018; Zika et al., 2022 and volatile 
blocks in Browning et al., 2015; Gagne et al., 2020), peo-
ple with anxiety show slightly slower learning overall, but 
accelerate learning more after very surprising outcomes that 
indicate obvious changes. Meanwhile, in tasks or conditions 
with high irreducible uncertainty (75%/25% contingency or 
less), people with anxiety show a generally higher learn-
ing rate, particularly after surprising losses (Homan et al., 
2019; stable blocks in Browning et al., 2015; Gagne et al., 
2020)—although this effect is less consistent (Norbury et al., 
2021; Zika et al., 2022). These patterns suggest that people 
with anxiety have an impaired ability to discern whether 
prediction errors result from irreducible uncertainty, requir-
ing a slower learning rate, or true changes in contingen-
cies, requiring a higher learning rate. As a result, they show 
lower learning rates when learning rates should be high 
from high unexpected uncertainty and higher learning rates 
when learning should be slow from noisy outcomes. Other 
proposed explanations for this pattern of results include 
that people with anxiety may infer more information con-
tent from negative outcomes (Pulcu & Browning, 2019) or 
show specific reductions in estimated irreducible uncertainty 
(Piray & Daw, 2021). Crucially, despite inconsistent results 

from individual studies, using a common theory and fam-
ily of generative models enables synthesis across studies to 
propose and test a shared impairment.

Maladaptive uncertainty learning can explain many non-
computational findings. Failure to discern between irreduc-
ible and unexpected uncertainty can lead to difficulties deter-
mining when contexts have changed, potentially explaining 
fear extinction and retention impairments commonly seen 
in anxiety (Duits et al., 2015; Marin et al., 2017). Within 
a context, difficulties estimating the amount of irreducible 
uncertainty present may impair detection of consistently 
safe stimuli, as is found with reduced safety signal learning 
(Duits et al., 2015), and discerning differences in contin-
gencies between similar stimuli, as seen with overgener-
alization of conditioned fear (Cooper et al., 2022; Fraun-
felter et al., 2022). In terms of neural function, anxiety, and 
particularly panic and other fear-based disorders, is linked 
to impaired noradrenergic function (Bremner et al., 1996; 
Charney, 1984; Hendrickson & Raskind, 2016; Kalk et al., 
2011; Naegeli et al., 2018). Disrupted noradrenergic sign-
aling leads to excessive activation of the salience network 
(Etkin & Wager, 2007; Sylvester et al., 2012), impairing 
learning about uncertainty. Altered activation of regions that 
control uncertainty signals, including prefrontal cortex and 
hippocampus, in anxiety (Aupperle & Paulus, 2010; Marin 
et al., 2017, 2020; Sun et al., 2020) lead to impaired regula-
tion of these uncertainty signals.

Avoidance and anxiety

Current theories of avoidance in anxiety

Avoidance of feared situations is a disabling aspect of anxi-
ety and the primary target in exposure therapy and other 
treatments. Why anxious people show persistent avoidance 
in the absence of outcomes is difficult to explain from the 
traditional behaviorist perspective (Richter et al., 2017). 
How is a (lack of) behavior maintained in the absence of any 
reinforcement? One influential early account of avoidance 
was Mowrer’s two-factor theory (Mowrer, 1951). It proposes 
that in the first, Pavlovian stage, aversive unconditioned 
stimuli cause the conditioned stimulus to be associated with 
fear; avoidance behavior is then reinforced by reductions 
in learned fear through instrumental learning. For example, 
if a person is bitten by a dog in a dog park, the dog park 
becomes associated with fear (stage one: Pavlovian condi-
tioning). If the person then later approaches the dog park, 
their fear increases, and leaving the area of the dog park—
avoidance—is reinforced by a reduction in this fear (stage 
two: instrumental learning). Despite providing an intuitive 
account of avoidance that is still employed clinically, two-
factor theory had several inconsistencies (Rachman, 1976; 
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Solomon & Wynne, 1954): among them, conditioned avoid-
ance is remarkably resistant to extinction, continues even if 
it does not terminate the conditioned stimulus, and persists 
in the absence of fear.

After the demise of two-factor theory, research on instru-
mental avoidance learning waned and studies of learning in 
anxiety shifted to simpler Pavlovian fear conditioning para-
digms (LeDoux et al., 2017). Some work on instrumental 
theories continued, notably resulting in Lovibond’s cognitive 
expectancy model (Lovibond et al., 2008). This model, like 
two-factor theory, proposes that the relationship between 
an aversive outcome and a conditioned stimulus is acquired 
through Pavlovian conditioning while avoidance of the con-
ditioned stimulus is learned through instrumental learning. 
However, what is learned in the first, Pavlovian, stage is the 
expectancy of a negative outcome, not fear. During the sec-
ond stage the organism learns which actions lead to the con-
ditioned stimulus and which actions lead to safer outcomes 
with a lower expectation of the negative outcome. This 
avoidance of the expectancy of negative outcomes is pro-
cessed as the removal of an aversive stimulus and so is rein-
forcing. Reframing learning in terms of expectancies, rather 
than drive reduction, addresses many of the difficulties that 
two-factor theory encountered. For example, expectancies 
maintain responses during extinction and in the absence of 
fear. However, the abstract concept of expectancy, with its 
roots in cognitive models, has been difficult to integrate into 
behavioral models of threat learning and avoidance.

Other recent theories of avoidance abandoned explana-
tions of threat avoidance as an instrumental phenomenon. 
Drawing on nonhuman studies, LeDoux and colleagues 
(LeDoux et al., 2017) proposed that avoidance behavior can 
be broken down into three, potentially sequential, processes: 
Pavlovian conditioning leading to specifies-specific defen-
sive responses (Bolles, 1970), such as withdrawal or freezing 
controlled by a lateral amygdala—central amygdala—peri-
aqueductal gray circuit; goal-directed avoidance responses 
triggered by infralimbic prefrontal cortex (analogue of the 
human vmPFC) and controlled by a lateral amygdala—basal 
amygdala—nucleus accumbens circuit; and dorsal striatum-
based habitual avoidance responses. In contrast to goal-
directed avoidance behaviors, which are outcome-sensitive 
(e.g., “I avoid the mall, because I tend to get panic attacks 
there”), habitual responses are stimulus-triggered and out-
come-insensitive (e.g., “I avoid large crowds”). LeDoux 
and colleagues refer to the concept of active versus passive 
coping to explain how avoidance goes awry in anxiety: pas-
sive coping, which they relate to maladaptive avoidance, is 
characterized by maladaptive Pavlovian defensive responses 
like withdrawal. Active coping can be more adaptive but can 
become pathological when habitual responses predominate. 
Therefore, LeDoux and colleagues propose that maladaptive 
avoidance in anxiety is caused by either excessive Pavlovian 

defensive responses or excessive habitual responses rather 
than adaptive goal-directed responses.

In a more clinically focused review, Arnaudova et al. 
(2017) suggested several other reasons for maladaptive 
avoidance in anxiety outside of instrumental learning: 
increased threat appraisal, increased automatic avoidance 
tendencies, decreased regulation of avoidance in the service 
of other goals, habitual avoidance responding from over-
training, and increasing psychological distance through 
experiential avoidance. As with models of uncertainty in 
anxiety, though, the authors do not offer a unifying frame-
work explaining how these processes relate to each other 
and disruptions in anxiety. In addition, some of these expla-
nations (increased threat appraisal, experiential avoidance, 
and decreased regulation of avoidance in service of other 
goals) can indeed be conceptualized with updated instru-
mental learning models (Huys & Renz, 2017; Lovibond 
et al., 2008). The other explanations, increased automatic 
avoidance tendencies and habitual avoidance responding, 
are similar to the processes proposed by LeDoux and col-
leagues; these are reviewed in the next paragraph.

Excessive Pavlovian withdrawal in the presence of aver-
sive stimuli in anxiety has some evidence in the literature 
(Grillon et al., 2017; Loijen et al., 2020; Mkrtchian et al., 
2017; but see Struijs et al., 2017). These studies do not show 
specificity to anxiety; instead, increased inhibition may be 
a feature of all internalizing disorders. Therefore, people 
with anxiety and other internalizing disorders may engage 
in excessive withdrawal with negative stimuli, manifesting 
as increased passive avoidance, as theorized by Arnaudova 
and colleagues (Arnaudova et al., 2017; increased automatic 
avoidance tendencies) and LeDoux and colleagues (LeDoux 
et al., 2017; maladaptive Pavlovian defensive responses). 
The evidence for habit learning abnormalities in anxiety 
is less clear. Studies with large, transdiagnostic samples 
show that increased habit learning, as measured by reduced 
model-based planning, is due to compulsive symptoms, not 
anxiety (Gillan et al., 2016, 2020, 2021; Heller et al., 2018), 
and people with anxiety actually show greater model-based 
planning in some contexts (Hunter et al., 2021). In addition, 
true habitual avoidance in humans may be much more lim-
ited than in animal studies of active avoidance (de Wit et al., 
2018); studies finding greater habitual learning may instead 
be picking up on reduced model-based learning in compul-
sivity. Regardless, maladaptive avoidance in anxiety does 
not seem to stem from an increased tendency to form habits.

Other relevant theories of defensive behaviors, including 
avoidance, come from ethology and have not been empiri-
cally tested in anxiety. One idea is that behavior depends on 
the imminence of predator threat (Fanselow, 1994; Levy & 
Schiller, 2021; Mobbs et al., 2015, 2020): animals behave 
very differently when safe (predator threat unlikely), under 
pre-encounter threat (threat not present but more likely), 
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post-encounter threat (threat present but not attacking), and 
circa-strike threat (predator attacking). Active avoidance 
behaviors are most likely during pre-encounter threat, where 
model-based planning to avoid greater threat is helpful, 
whereas passive avoidance and stereotyped defensive behav-
iors become more likely as the threat becomes imminent, 
during post-encounter or circa-strike threat (Mobbs et al., 
2020). Threat imminence theories have not incorporated 
effects of uncertainty on defensive behavior; related work 
on safety proposes that certainty about safety, the opposite 
of uncertainty about threat, reduces defensive behaviors 
(Tashjian et al., 2021), whereas greater uncertainty about 
the source of threat in anxiety may increase perceived threat 
imminence (Raymond et al., 2017).

In summary, although Mowrer’s two-factor theory 
informed exposure therapy, it fails to explain many behav-
iors. Subsequent writers offered explanations for a broader 
range of avoidance behaviors, but these explanations 
required a departure from behaviorist specifications, imped-
ing integration with current reinforcement learning theories. 
Accounts of avoidance that do not consider instrumental 
learning cannot explain instrumental behaviors that com-
prise active avoidance or else postulate behavioral tenden-
cies, such as increased reliance on habitual behavior, that are 
inconsistent with empirical findings in anxiety. Ethological 
ideas about threat imminence help to understand situations 
where avoidance behavior arises but do not address the role 
of uncertainty and have yet to be applied to anxiety. In the 
following sections, we consider how reinforcement learn-
ing can formalize some of these ideas, such as cognitive 
expectancies and a spectrum of defensive behaviors, and 
advance a process account of uncertainty learning to explain 
avoidance in anxiety.

The explore‑exploit dilemma and avoidance

Avoidance involves choices or actions, which are absent in 
Pavlovian conditioning paradigms primarily used to study 
anxiety. Choices an organism or agent makes about which 
stimuli they encounter and learn from affects what they 
know about their world. Uncertainty about the outcomes of 
available choices gives rise to the explore-exploit dilemma 
(Kaelbling et al., 1996; Sutton & Barto, 1998). This dilemma 
is whether one should choose certain, high value options 
to maximize short-term rewards (exploitation) or sample 
alternatives with lower or unknown values in the hope of 
discovering superior options and maximizing long-term 
rewards (exploration). Neurally, components of the fron-
toparietal control network as well as striatum and amygdala 
show activation to uncertainty when explore/exploit deci-
sions are required (Blanchard & Gershman, 2018; Hogeveen 
et al., 2022).

The relative benefits of exploitation versus exploration 
depend on the type of uncertainty (Cohen et al., 2007). 
Exploring to reduce uncertainty can maximize value in the 
long run if estimation uncertainty predominates, such as at 
the beginning of a block of trials (Rich & Gureckis, 2018; 
Wilson et al., 2014, but see Payzan-LeNestour & Bossaerts, 
2012). With high estimation uncertainty and several chances 
to maximize value, initial exploration reduces uncertainty, 
leading in turn to better knowledge of contingencies and 
choices resulting in higher-valued outcomes on later trials. 
Exploration also increases with high unexpected uncer-
tainty if it helps detect possible change points (Navarro 
et al., 2016). In contrast, if uncertainty is primarily irre-
ducible, exploration will not reduce uncertainty and so 
will not improve contingency knowledge for later choices. 
Exploration also is unhelpful in single-shot learning or brief 
episodes where too few future trials exist to benefit from 
reducing uncertainty (Rich & Gureckis, 2018; Wilson et al., 
2014). This effect of differences in uncertainty on explo-
ration versus exploitation is similar to uncertainty’s effect 
on learning rates: high relative estimation uncertainty leads 
to high learning rates and exploration, whereas high rela-
tive irreducible uncertainty leads to low learning rates and 
exploitation. The effect of unexpected uncertainty is unclear; 
because it leads to high learning rates, it may cause more 
exploration, or it may reduce exploration if uncertainty about 
contingencies possibly changing makes learning more about 
the current environment unhelpful.

These relationships between uncertainty and exploration 
apply to environments with rewarding outcomes. In aversive 
contexts, people show a different pattern of behavior: when 
choosing among loss outcomes, humans and other organisms 
seem to shift their goal from maximizing long-term value 
to avoiding negative outcomes as much as possible in the 
short term. In environments where all outcomes are nega-
tive, more uncertain outcomes offer the prospect of poten-
tial safety. This search for safety causes people to become 
more uncertainty seeking overall, even during single-shot 
learning (Krueger et al., 2017; Lejarraga & Hertwig, 2017). 
People also explore high estimation uncertainty options less 
when some options lead to catastrophic failure (Schulz et al., 
2018). People may overexplore when uncertainty cannot be 
reduced or controlled, as with irreducible uncertainty, and 
underexplore to stay in safe areas when uncertainty can be 
controlled, as with estimation uncertainty. The effect of 
unexpected uncertainty on exploration in aversive contexts 
has yet to be investigated, but, like estimation uncertainty, 
it may decrease exploration, especially if the option to avoid 
making any potentially dangerous choice is available.

This myopic focus on minimizing short-term losses in 
aversive environments appears counterproductive but could 
improve survival in real-world environments where a small 
number of negative outcomes could cause injury, illness, or 
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death and foreclose the chance of any future choices (Bate-
son, 2002; Korn & Bach, 2015; Mehlhorn et al., 2015). If 
anxiety is related to maladaptive aversive uncertainty learn-
ing, avoidance would result from increased exploitation and 
decreased exploration from misperception of uncertainty. 
However, fully formulating this effect requires an under-
standing of how instrumental avoidance relates to reinforce-
ment learning.

Temporal difference Markov decision process 
models of avoidance

Lovibond’s cognitive expectancy model was formulated 
as “cognitive,” because a behaviorist framework could 
not accommodate the concept of internal expectancies as 
a driver of behavior. However, computational theories of 
temporal difference reinforcement learning (Sutton & Barto, 
1987, 1998) are able to capture similar processes fully within 
a learning framework (Maia, 2010; Moutoussis et al., 2008; 
Seymour et al., 2004). To explain avoidance, these models 
must explain how previous actions and values influence later 

outcomes. The RL paradigms and models reviewed earlier 
can explain only single-step learning, where learning and 
choice behavior is influenced by immediate rewards and 
punishments. In RL, these are known as bandit problems. A 
more extended formulation of RL, known as Markov deci-
sion processes or MDPs, can explain how actions influence 
future outcomes as well.

MDP models of reinforcement learning describe learning 
as a multistep process, where a person (or more generally, 
an agent) travels through several states, some of which are 
associated with rewards (or losses; Fig. 2; Sutton & Barto, 
1998). Often, an outcome is only experienced at the end of 
a trip, or episode, through the MDP. States with outcomes 
are termed terminal states, as the episode ends in one of 
these states and results in reward or punishment. The values 
of earlier actions and states are learned based their rela-
tionships to the outcomes obtained in terminal states. In an 
MDP, transitions between each set of states acquire values 
that depend on the probabilities of transitioning to future 
states in the MDP (transition probabilities) and the outcomes 
received when transitioning to a terminal state. Therefore, 
an MDP consists of states, rewards (in MDP terminology, 
rewards encompass all outcomes, including negative ones), 
actions describing what is done at each state, and transition 
probabilities between states.

As an example of a very simple MDP, we can recon-
ceptualize a trial from a basic instrumental learning task 
(Fig. 2A). In the simple MDP described in Fig. 2A, all state 
transition rewards are immediately experienced. In a larger 
MDP, some state transitions lack immediate reward and must 
be learned (Fig. 2B, which is similar to the design of the 
popular two-step task; Daw et al., 2011). How choices are 
made is called a policy in MDP terminology, which can be 
the choice processes discussed earlier or learned over time 
through reinforcement learning. In the (Moutoussis et al., 
2008) and (Maia, 2010) models, the tendency to choose each 
action is slowly increased or decreased based on whether the 
resulting reward is better or worse than expected using an 
actor-critic architecture. In the two-step MDP in Fig. 2B, the 
transitions from state s5 to s4 and s5 to s3 have no immedi-
ate reward; instead, the values of these state transitions are 
learned through experience and depend on the combination 
of policy, actions, and other states’ immediate rewards.

According to temporal-difference theories of avoid-
ance learning using MDPs, each component of avoidance 
behaviors is represented by states and actions (Figs. 2C and 
D). Initially, the unconditioned stimulus is encountered, 
resulting in a negatively valued reward. Through Pavlovian 
conditioning, the state transitions more likely to lead to the 
unconditioned stimulus acquire more negative values than 
state transitions with a low probability of doing so (Fig. 2E). 
Then, when choosing actions, the agent preferentially 
chooses higher-valued state transitions less likely to result 

Fig. 2   Markov decision processes. A. MDP formulation of an instru-
mental learning paradigm or bandit task. Each trial has two stimuli: 
one with a 75% chance of leading to reward and a 25% chance of 
leading to no reward; the other stimulus has the opposite probabili-
ties. This MDP has three states: the state prior to choice (s3), where 
the agent is presented with the two stimuli; two outcome, or termi-
nal, states, s2 and s1; and two actions, choosing one stimulus (a1) 
and choosing the other (a2). Transitioning from state s3 to the two 
terminal states s1 and s2 have rewards of 1 and 0, respectively. There 
is a transition probability for each action-transition pair: Pa1(s3, s1) 
(the probability of transitioning from state s3 to state s1 given action 
a1) is 0.75, Pa1(s3, s2) is 0.25, Pa2(s3, s1) is 0.25, and Pa2(s3, s2) is 
0.75; these probabilities re-express the 75%/25% and 25%/75% out-
come contingencies for the stimuli. In this MDP, there is one choice: 
select either a1 or a2. B. MDP formulation of an instrumental learning 
paradigm with two steps to the outcome. Compared to the MDP in 
panel A, this MDP has another state (s4) with another set of stimuli 
to choose between that lead to reward, and a state (s5) where one 
chooses between stimuli that probabilistically lead to states s4 or s3. 
C. MDP of a set of possible states and actions for a person with social 
anxiety going to a party. This example illustrates a subset of potential 
states and actions (e.g., another possible state after the “make a joke” 
action is that the group laughs at your joke, but then you acciden-
tally sneeze on someone, which also leads to the core fear of negative 
social evaluation). Note that there are three terminal states: staying in 
a conversation (person’s goal, small positive reward), returning home 
without engaging in conversation (total avoidance, no reward), and 
being excluded (feared outcome, large negative reward). D. Abstrac-
tion of the MDP in Panel C. E. First stage of Pavlovian learning 
as proposed by (Moutoussis et  al., 2008) and (Maia, 2010). Values 
propagate from the terminal states to other states and actions through 
learning. Values inside each state (represented by boxes) represent the 
learned value of each state, whereas values next to arrows represent 
the change in value when transitioning between those states. F. Sec-
ond stage of instrumental learning as proposed by (Moutoussis et al., 
2008) and (Maia, 2010). Actions are taken with frequencies, denoted 
by line thickness, based on the values acquired through Pavlovian 
learning in the first stage

◂



559Cognitive, Affective, & Behavioral Neuroscience (2023) 23:546–570	

1 3

in the negative outcome (Fig. 2F). In the model of (Mout-
oussis et al., 2008), comparing the outcome after successful 
avoidance to other possible outcomes (i.e., encountering the 
unconditioned stimulus) using advantage learning (Dayan 
& Balleine, 2002) results in a positive value for avoidance 
behaviors and serves as the instrumental reinforcer. In (Maia, 
2010) the reinforcement comes from a reduction in negative 
values when transitioning into safer states. In both models, 
avoidance continues to be reinforcing even if the negative 
outcome is not experienced after initial conditioning.

It is difficult, however, for these temporal difference mod-
els of avoidance to explain avoidance in anxiety. One fea-
ture of anxious avoidance is that the feared outcome (in the 
example in Fig. 2, being socially shunned) is rarely or never 
encountered. The proposed models require this outcome to 
be experienced during initial Pavlovian conditioning. Human 
learning, however, can happen without direct experience. 
Internal simulations of possible outcomes, observational 
learning, and instructed learning all cause states to acquire 
negative values and to be avoided (Askew & Field, 2007; 
Dymond et al., 2012; Muris & Field, 2010; Olsson & Phelps, 
2004, 2007; Rachman, 1977). For example, a person who 
fears a panic attack in a public place, because it may lead 
to a heart attack and death may have learned this feared 
outcome from: simulating a possible negative outcome of 
death when feeling faint; hearing about a person who felt 
faint and then had a heart attack; observing a parent avoid-
ing feeling faint and inferring a negative outcome from the 
parent’s avoidance; or being told that chest tightness is a sign 
of a heart attack.

Another component of MDPs relevant to clinical avoid-
ance, but not yet addressed in temporal difference MDP 
models of avoidance, is the role of cached sequences of 
states and actions, or options (Sutton et al., 1999). Options 
allow sequences of states and actions to be grouped and exe-
cuted together. In scenarios where certain sequences occur 
often, such as the steps of cooking a meal, options simplify 
complex MDPs by reducing them into sets of sequences 
rather than evaluating each state and action individually. 
Humans show frequent and flexible use of options and 
similar forms of cached sequences (Botvinick et al., 2009; 
Huys et al., 2015; Xia & Collins, 2021). People may rely on 
options more with greater threat imminence, as increased 
threat imminence causes use of less cognitively demand-
ing and more model-free forms of decision-making (Mobbs 
et al., 2020). Notably, greater use of options leads to inflex-
ible behavior that disregards outcomes of intermediate steps, 
resembling habitual behavior. Unlike habitual behavior, 
options are goal-directed behaviors that can be interrupted 
if indicated. The tendency of people with anxiety to fall back 
on avoidance behavior when uncertainty is higher or in situ-
ations with greater stress may reflect a greater reliance on 
options with greater threat imminence.

Viewing avoidance as the outcome of temporal differ-
ence learning allows us to model differences in learning and 
choice explicitly and examine their relationships with avoid-
ance behavior. The few existing studies on temporal differ-
ence MDP-like learning in anxiety provide some insight 
into how avoidance behavior may arise in anxiety. (Vervliet 
et al., 2017) measured self-reported positive emotion as a 
proxy for model-derived positive prediction errors during 
an avoidance task. Participants’ reported emotions showed 
similar patterns as prediction errors inferred from a tempo-
ral difference account of avoidance, but participants with 
less distress tolerance had less specific relief signals. They 
proposed that intolerance of distress, common to all inter-
nalizing disorders, may be linked to overgeneralized avoid-
ance learning. Initial modeling simulations also show that 
modified policies representing pessimistic or catastrophizing 
choice processes lead to excessively negative valuation and 
avoidance as well as risk aversion (Gagne & Dayan, 2022; 
Zorowitz et al., 2020). This form of choice process, where 
avoiding negative outcomes is favored over maximizing 
reward, may better represent normative, negative outcome-
avoiding behavior in aversive environments than anxiety, 
however. Other theoretical work has suggested that excessive 
active avoidance results from differences in policy, where 
even slightly negative values are not chosen, or from learn-
ing, where state transitions would take on more negative 
values (Raymond et al., 2017); however, these learning and 
choice alterations have not been empirically demonstrated 
in anxiety. To our knowledge, no work has yet connected 
the maladaptive uncertainty learning seen experimentally 
in anxiety to these models of avoidance.

Uncertainty‑sensitive markov decision‑process 
models and anxious avoidance

Examining how uncertainty shapes explore/exploit decisions 
with temporal difference MDP models can help us under-
stand how anxious avoidance may result from maladaptive 
uncertainty learning in anxiety. Adding uncertainty to tem-
poral difference MDP models means that choices depend 
not only on learned values but also, through explore/exploit 
effects, on uncertainty (Fig. 3). Increases in exploitation will 
increase selection of known, safe states, while increased 
exploration will decrease reducible uncertainty and increase 
certainty about transition probabilities, but also lead to ter-
minal states with negative outcomes more often. Meanwhile, 
in an aversive environment, policies shift to minimize nega-
tive outcomes in the short term. This shift can be repre-
sented by discarding choices whose range of potential out-
comes include more negative values, as in the risk avoiding 
policies reviewed above (Gagne & Dayan, 2022; Zorowitz 
et al., 2020). Therefore, normative behavior in uncertain, 
aversive MDPs will show avoidance of uncertain states 
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from increased exploitation of safer states. This avoidance 
maintains high uncertainty and perpetuates avoidance by 
preventing exploration of more uncertain states. Addition-
ally, increases in any form of uncertainty will reduce the dis-
tinction between early safe and threat-related stages, causing 
previously safe stages to be perceived as more dangerous.

We propose that in anxiety, impaired learning about 
aversive uncertainty will increase the amount of estimation 
uncertainty (from impairments in detecting true change 
points) and unexpected uncertainty (from problems learn-
ing about irreducible uncertainty that cause change points 
to be over-inferred). Because these types of uncertainty 
normatively increase exploitation, greater estimation and 
unexpected uncertainty in anxiety will further increase 
exploitation of safer states and avoidance of uncertain states. 
Continued avoidance of uncertain states will maintain inap-
propriately elevated uncertainty estimates, ensuring contin-
ued avoidance.

Uncertainty about threat elicits distress and arousal 
above what is caused by threat itself (Bechara et al., 1997; 
de Berker et al., 2016) and causes uncertain states to be per-
ceived as distressing. This distress increases with maladap-
tive increases in uncertainty, as commonly experienced by 
people with anxiety and may explain why states with higher 
uncertainty are perceived as aversive. Ethologically, uncer-
tainty can modulate perceived threat imminence: one can-
not rule out a worst-case scenario where the threat is near. 

Perceptions of greater threat imminence resulting from high 
uncertainty could shift defensive behaviors along the threat 
imminence spectrum toward more model-free or cached 
actions (Fanselow, 1994; Mobbs et al., 2015, 2020). This 
shift would promote passive avoidance behaviors, such as 
withdrawal from or freezing in states with uncertain threats. 
It also may lead to greater reliance on options and similar 
decision-making heuristics, resulting in inflexible avoidance 
behaviors. Neurally, reduced or altered frontoparietal net-
work activation in the presence of altered uncertainty signals 
in anxiety (Grupe & Nitschke, 2013; Hauner et al., 2012; 
Sylvester et al., 2012) may underlie changes in explore/
exploit decision-making.

Integrating maladaptive aversive 
uncertainty learning, avoidance, 
and exposure therapy

Exposure as remediating maladaptive uncertainty 
learning and resulting avoidance in anxiety

States high in uncertainty, particularly estimation and unex-
pected uncertainty, will be avoided in aversive environments. 
Exposure therapy encourages exploration of these avoided 
states. Through repeated exploration of states initially esti-
mated to have high uncertainty, people with anxiety update 

Fig. 3   Effects of uncertainty on explore/exploit decisions within a 
Markov decision process. Top, effect of each type of uncertainty on 
exploration in appetitive and aversive environments. In rewarding 
environments, irreducible uncertainty decreases exploration, while 
estimation uncertainty increases; effects are opposite in aversive envi-
ronments. Effects of unexpected uncertainty have been less studied, 
so are qualified with ?, but appear to increase exploration in appeti-

tive contexts and so may decrease exploration in aversive contexts. 
Bottom, possible levels of uncertainty under different circumstances 
and effects on exploration in aversive environments. As anxiety is 
hypothesized to primarily affect uncertainty estimation in aversive 
environments, explore-exploit behavior should show few differences 
with anxiety when learning about reward.
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uncertainty estimates closer to normative values (Fig. 4)—in 
contrast to the traditional account of exposure as extinction, 
where repeated encounters with feared stimuli normalize 
exaggerated learned threat. These reductions in uncertainty 
have further effects. First, states acquire more certainty about 
their likelihood of leading to feared versus safe outcomes. 
This certainty increases the value of states as their probabil-
ity of leading to the feared outcome decreases. Second, the 
reduction in uncertainty itself increases exploration relative 
to exploitation, encouraging further experiences with pre-
viously avoided states. This increase in exploration is the 
opposite of the feedback cycle caused by avoidance—while 
avoidance maintains incorrect uncertainty estimates, in turn 
perpetuating avoidance, increased exploration remediates 
and reduces uncertainty estimates which in turn favors more 
exploration. Meanwhile, decreases in uncertainty reduce 
negative emotions, by reducing uncertainty-related distress, 
and enable use of more flexible decision-making strategies 
through decreased perceptions of threat imminence.

Conceptualizing exposure as reducing avoidance and 
uncertainty in this framework can account for empirical 
findings inconsistent with some previous theories, notably 
the different effects of between and within session fear 
reduction on treatment outcomes. In exposure therapy, 

each individual exposure exercise would serve as a single 
episode of an MDP. In MDPs, values and uncertainties are 
generally only updated once the episode is over; therefore, 
uncertainty estimates will not be updated until the patient 
completes the exposure and fails to encounter the feared 
outcome. After completing the exposure, maladaptive 
uncertainty estimates are updated for the next episode. 
Therefore, though some habituation to uncertainty-related 
fear and discomfort may occur during each exposure ses-
sion, particularly if a single session contains repeated 
exposure experiences, the primary driver of response is the 
between-session update in uncertainty values. This update 
will manifest primarily in changes in between-session dif-
ferences in reported fear, consistent with clinical findings.

Reductions in perceived uncertainty could affect other 
aspects of avoidance. By reducing threat imminence, 
lower uncertainty can diminish passive avoidance behav-
ior and reliance on inflexible options. Exposure also may 
directly target the use of options and other forms of cached 
sequences. Instead of engaging in stereotyped sequences of 
avoidance behaviors (e.g., always using a remote entrance 
in a mall and taking a longer path to the intended store to 
avoid crowds), exposures encourage alternate behaviors 

Fig. 4   Illustration of changes in value and types of uncertainty with 
anxiety, avoidance, and successful  exposure therapy, and effects on 
changes in value and uncertainty on avoidance. Example scenario, 
from the social anxiety MDP in Fig.  2, illustrates a choice between 
an avoidance behavior, leaving the group to stand by the snack table, 
and a nonavoidance behavior, making a joke during the conversa-
tion. In normative behavior, the nonavoidance behavior has higher 
value but also greater irreducible uncertainty (e.g., there is a greater 
risk that making a joke will go poorly and lead to negative outcomes 
compared to leaving to get a snack). With high anxiety, before devel-
oping avoidance behaviors, uncertainty is miscalculated as greater 
estimation and/or unexpected uncertainty rather than irreducible 
uncertainty, leading to greater tendency to avoid the more uncertain 
stimulus and choose the safe avoidance behavior. Engaging in avoid-

ance behaviors increases the value of the avoidance vs. nonavoidance 
behavior (due the temporal difference learning processes illustrated 
in Fig.  2E and F). Additionally, greater experience with outcomes 
stemming from the avoidance behavior reduces uncertainty asso-
ciated with the chosen behavior while the uncertainty associated 
with the unchosen, nonavoidance behavior is not reduced. Both of 
these processes increase the tendency to avoid. Initial exposure ses-
sions begin to correct uncertainty associated with the nonavoidance 
behavior through experience with that choice’s outcomes. Avoidance 
is decreased relative to pre-exposure behavior but is still higher than 
normative behavior. After repeated exposures, the relative values of 
avoidance vs. nonavoidance behavior normalize along with further 
corrections in uncertainty calculations. As a result, the tendency to 
avoid becomes similar to normative behavior
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incompatible with these sequences (e.g., taking the most 
direct path to the store) and induce more flexible behavior.

One open question is whether exposure therapy reduces 
learned uncertainty estimates or uncertainty learning itself. 
It is possible that, given multiple exposure sessions, patients 
become more accurate at updating values based on irreduc-
ible and unexpected uncertainty and show an improvement 
in underlying learning mechanisms. However, learning itself 
may not change during exposure, especially if exposure is 
not extensively practiced. Corrections in uncertainty esti-
mates, but not vulnerabilities in uncertainty learning itself, 
may explain relapse after response to exposure therapy 
(Vervliet et al., 2013) and serve as a treatment target for 
novel therapeutic approaches.

Practical advantages of incorporating uncertainty 
into anxiety treatment

Reconceptualizing clinical anxiety in our proposed frame-
work resolves many of the issues with exposure therapy and 
other forms of anxiety treatment. This framework addresses 
components of exposure that are not explained well by 
current theories of exposure therapy and explains how 
nonbehavioral treatments can also remediate maladaptive 
uncertainty learning. It also facilitates applications of basic 
research into learning processes and synergistic somatic 
treatments to exposure therapy.

First of all, remediating maladaptive uncertainty learning 
explains how components like avoidance and the need to 
target core fears relate to exposure therapy. This framework 
places avoidance as a central target of exposure: avoidance 
results from miscalculations of uncertainty and is reduced 
through exploration during exposure. Maladaptive avoid-
ance, therefore, represents the extent of uncertainty miscal-
culations and decreases as uncertainty calculations are reme-
diated. The importance of ensuring a focus on a patient’s 
core fear also can be explained within this framework: a core 
fear is represented by a specific terminal state in a specific 
MDP. Targeting portions of a MDP that are related to the 
core fear will lead to changes in uncertainty in that part of 
the MDP, rather than in other parts of the MDP (or other 
MDPs altogether) that do not affect that core fear.

Second, changes in uncertainty can also be accounted for 
by non-behavioral approaches. Although they target mala-
daptive uncertainty learning in different ways, shared effects 
on uncertainty may explain similar processes and outcomes 
across treatment approaches (Arch & Craske, 2008; Car-
penter et al., 2018). Cognitive therapy techniques such as 
cognitive challenges and behavioral experiments also test 
relationships among components of an MDP to remediate 
maladaptive uncertainty calculations. “Downward arrow,” 
where patients make concrete connections between each 
layer of fear until reaching their core fear, and similar 

cognitive techniques make relationships between sequences 
of actions and states explicit, breaking up options. Third-
wave mindfulness approaches target the distress resulting 
from increased uncertainty by embracing the inability to pre-
dict and control outcomes; these and other distress tolerance-
focused approaches may reduce the effect of uncertainty on 
explore-exploit decisions and so reduce the effect of mala-
daptive uncertainty calculations on avoidance.

Next steps for understanding uncertainty 
dysfunctions in anxiety and treatment mechanisms

Conceptualizing disrupted uncertainty learning as the basis 
for avoidance and other impairments in anxiety provides sev-
eral avenues to test this hypothesis and its predictions. First, 
although anxiety is related to greater physiological responses 
to uncertain threat in Pavlovian paradigms, the hypothesized 
relationship between impaired uncertainty learning, miscal-
culated uncertainty estimates, and avoidance needs to be 
tested using instrumental learning paradigms. These learn-
ing paradigms should use computational process models to 
derive precise measures of uncertainty and behavioral avoid-
ance. Follow-up studies should investigate specifics about 
this relationship. Specifically, it is currently unclear whether 
uncertainty learning impairments result in avoidance only 
for fear-based disorders, versus for internalizing disorders 
more generally, and whether using disorder-specific stimuli 
(e.g., angry faces for people with social anxiety) has differ-
ent effects than using generally aversive stimuli (e.g., losing 
points or receiving an electric shock).

Another area to test is whether differences in neural 
responses to threat in anxiety are due to impaired uncer-
tainty processing. Overlapping brain regions and networks 
are implicated both in anxiety and uncertainty processing, 
particularly the salience and frontoparietal networks and 
regions including dorsal anterior cingulate cortex, vmPFC, 
insula, amygdala, BNST, and PAG. Neuromodulators, such 
as norepinephrine, serotonin, and dopamine, also are hypoth-
esized to play roles in uncertainty processing and anxiety.

Clinically, alterations in uncertainty, and reductions in 
these alterations with successful exposure therapy, should 
correspond with several observations in anxiety. If anxious 
avoidance is due to altered uncertainty learning, greater 
uncertainty learning dysfunctions should increase with 
greater anxious avoidance as well as more severe anxiety 
symptoms overall. As a readout of impaired uncertainty esti-
mates, changes in avoidance should predict and correlate 
with overall symptom improvement and treatment success. 
Additionally, if changes in maladaptive uncertainty learn-
ing with treatment reduce disruptions in uncertainty esti-
mates, the extent of changes in uncertainty learning with 
treatment should predict reduced risk of relapse after treat-
ment. One issue with these proposed relationships is the 
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difficulty of accurately measuring behavioral avoidance; 
future work should test if ecological momentary assessment, 
passive sensing, or other novel approaches can provide valid 
measurement of avoidance behavior (Craske & Tsao, 1999; 
Rashid et al., 2020).

A full theory of maladaptive aversive learning and avoid-
ance in anxiety does not just allow a better understanding of 
current approaches; this theoretical framework can be used 
to test augmentations and novel treatments and to tailor treat-
ment components to individual patients. Basic human and 
non-human neurobehavioral learning research can be used 
to 1) test components of normative learning and decision-
making to better understand how normative learning occurs 
in MDPs with uncertain, aversive outcomes, and 2) given a 
specified learning difference in clinical anxiety, to test how 
this difference can be remediated. Interventions incorporat-
ing insights from basic research on potential learning targets 
would then be tested in people with clinical anxiety. Possible 
treatments could affect several targets: they could remediate 
disrupted uncertainty learning, correct miscalculated uncer-
tainty, or encourage exploration of uncertain states in nega-
tive environments. Such treatments could include new psy-
chotherapy techniques, including those that draw on basic 
learning research, as well as somatic and pharmacological 
approaches targeting these processes.

Maladaptive aversive uncertainty learning and avoidance 
also should be connected to other impairments in anxiety. 
Fear-based disorders show hyperarousal and attention bias 
to threat. These impairments could be due to altered calcu-
lations of uncertainty that cause the world to be less well 
predicted and, by moving along the threat imminence spec-
trum, appear more threatening. Normative studies show that 
uncertainty during learning tasks affects attention (Stojić 
et al., 2020; Walker et al., 2019; but see Wise et al., 2019), 
but this has not been studied in anxiety. The use of psycho-
metrically valid measurements will be particularly important 
for assessing this relationship (Price et al., 2019; Rodebaugh 
et al., 2016; Woody et al., 2017). Understanding these rela-
tionships will lead to a fuller explanation of impairments in 
anxiety and how they can be jointly targeted.

This theoretical framework also enables links between 
dysfunctional uncertainty learning and risk factors for anxi-
ety to be studied. Understanding how early life stress, per-
ceptions of control, anxiety sensitivity, and other risk fac-
tors for anxiety (Zinbarg et al., 2022) potentiate, maintain, 
and are caused by disrupted uncertainty learning can show 
how these risk factors can be modified or buffered. Longi-
tudinal studies will be especially important to understand 
the relationships between these risk factors and uncertainty 
learning and avoidance over time (Struijs et al., 2018; Wise 
et al., 2022).

These research directions illustrate the limits of our pro-
posed framework: many components require further testing 

before this framework can influence clinical practice. In 
addition, we make assumptions based on the current state 
of the literature (e.g., the distinction between fear- and 
distress-based disorders), which will require updates as our 
knowledge in these areas evolve. We also do not account 
for aspects of anxiety symptoms and exposure therapy pro-
cesses that are more transdiagnostic, such as the role that 
increasing distress tolerance has on the ability to stay in 
anxiety-provoking situations. Additionally, the function of 
exposure therapy in non-fear based disorders, like general-
ized anxiety disorder or in eating disorders, is not explained 
by this framework.

More generally, our proposed framework exemplifies 
the benefits of drawing from both clinical knowledge and 
neurocomputational findings in computational psychiatry 
research. By integrating clinical knowledge from trial-and-
error and verbal theories via clinical experience, lived expe-
rience, case reports, and clinical trials with basic knowledge 
from theoretical work and studies of basic behavior and neu-
ral function in humans and other organisms, we can identify 
gaps in knowledge and work to fill them, with the goal of 
improving treatment and prevention of psychiatric illness.

Conclusions

Exposure therapy and other treatments for anxiety show 
moderate success, but exposure therapy is based on theo-
retical assumptions (i.e., that pathological anxiety results 
from excessive learned threat) inconsistent with the empiri-
cal literature. Instead, uncertainty-related learning dis-
ruptions predominate in anxiety. Computational process 
models, particularly reinforcement learning and other error-
driven learning models, precisely define different types of 
uncertainty and their effects on behavior. Research using 
these models suggests that anxiety is related to difficulty 
discerning irreducible uncertainty (uncertainty from noisy 
outcomes) from unexpected uncertainty (uncertainty from 
changes in the relationships between stimuli and outcomes). 
In instrumental learning, uncertainty affects learning and 
decision-making through effects on decisions to explore 
versus exploit. Uncertainty-sensitive, temporal difference, 
Markov decision processes can explain normative avoidance 
behavior, the relationship between disrupted uncertainty 
learning and avoidance in anxiety, and how treatments, such 
as exposure therapy, reduce avoidance through remediating 
uncertainty calculations. In turn, this framework provides 
avenues for further research to better understand anxiety and 
its treatment.
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