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Abstract
Probability distortion—the tendency to underweight larger probabilities and overweight smaller ones—is a robust empirical 
phenomenon and an important driver of suboptimal choices. We reveal a novel contextual effect on probability distortion that 
depends on the composition of the choice set. Probability distortion was larger in a magnitude-diverse choice set (in which 
participants encountered more unique magnitudes than probabilities) but declined, resulting in more veridical weighting, 
in a probability-diverse choice set (more unique probabilities than magnitudes). This effect was consistent in two, large, 
independent datasets (N = 481, N = 100) and held for a subset of lotteries that were identical in the two contexts. It also 
developed gradually as a function of exposure to the choice set, was independent of attentional biases to probability versus 
magnitude information, and was specific to probability weighting, leaving risk attitudes unaffected. The results highlight 
the importance of context when processing probabilistic information.

Keywords  Decision-making · Uncertainty ·  Attention

Introduction

Humans routinely face consequential decisions involving 
uncertain outcomes with known probabilities, that is, deci-
sions involving risk. Monetary lotteries have been extensively 
used to study risky decision making in the laboratory (Holt & 
Laury, 2002), and empirical choice data have provided indis-
pensable insights into human preferences for uncertainty. In 

a common experimental setup, participants are faced with a 
series of choice scenarios that require a decision between two 
options, each of which offers a chance (the probability) of 
some reward (the magnitude). Lottery probabilities and mag-
nitudes typically vary from trial to trial so that participants 
encounter diverse amounts of risk and rewards. Choice data 
can then be used to estimate parameters in theoretical models 
of decision making, with which theoretical predictions can 
be tested and refined. Converging evidence from empirical 
and theoretical work has shown that, when making decisions 
under risk for explicitly stated outcomes with precise prob-
abilities (i.e., decisions from description; Hertwig & Erev, 
2009), humans tend to exhibit risk aversion (i.e., preferring 
smaller, safer rewards to larger, riskier ones; Holt & Laury, 
2002; but see also Barron & Erev, 2003 for feedback as a 
potential modulating factor) and probability distortion (i.e., 
the tendency to underweight larger probabilities and over-
weight smaller ones; Kahneman & Tversky, 1979).

Investigations into choice in the absence of risk have 
revealed that participants evaluate available options dif-
ferently depending on the choice context—specifically, 
the composition of the choice set. One contextual influ-
ence is range adaptation, whereby sensitivity to value var-
ies inversely with the range of the values available in the 
local context (Padoa-Schioppa, 2009). Another, potentially 
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related, contextual influence in trinary, risk-less choice 
involves normalized value coding in which the value of 
irrelevant options can impact decision making (Khaw et al., 
2017; but see also, Gluth et al., 2020). These contextual 
influences have been well investigated and may play criti-
cal roles in allowing the brain to efficiently allocate limited 
coding resources to the immediately relevant value range.

However, an additional contextual regularity that often 
arises in risky choice but has yet to be systematically studied 
concerns the frequency of encountering a given magnitude 
or probability. In a typical crossed experimental design, such 
as the one described in the opening paragraph, participants 
encounter several probabilities and magnitudes presented in 
all possible combinations, so that the frequency with which 
the participant encounters each value depends on the number 
of unique magnitudes and probabilities in the choice set. 
For example, in a study that crosses 3 probabilities (e.g., 
0.25, 0.5, and 0.75) with 10 magnitudes (e.g., $5–$50 in $5 
increments), participants confront each individual probabil-
ity much more frequently than each individual magnitude 
(specifically, in a 10:3 ratio). Ample evidence suggests that 
human observers can implicitly learn contextual regulari-
ties while performing a task (Sherman et al., 2020) and use 
these regularities to modulate expectations (Summerfield 
& de Lange, 2014). Moreover, variability influences atten-
tion (Jiang, 2018) which, in turn, can influence choice (Fie-
dler & Glockner, 2012; Glickman et al., 2019; Harrison & 
Swarthout, 2019; Hunt et al., 2018; Johnson & Busemeyer, 
2016; Kim et al., 2012; Smith & Krajbich, 2018; Spitmaan 
et al., 2019; Stewart et al., 2016). Thus, contexts that differ 
in the numbers of unique probabilities versus magnitudes 
they present may induce differential attention to probability 
versus magnitude information, which may influence choice. 
However, it is unknown whether or how the relative frequen-
cies of unique magnitudes and probabilities in the choice set 
influence decision making under uncertainty.

We examined this question by comparing choice behav-
ior in two distinct contexts: a magnitude-diverse context 
in which participants were exposed, across trials, to more 
unique magnitudes than unique probabilities (respectively, 
21 and 5), and a probability-diverse context in which par-
ticipants were exposed to more unique probabilities than 
unique magnitudes (the inverse ratio). A subset of identical 
choice trials, the Overlapping Choice Set, appeared in both 
contexts, allowing for direct between-group comparisons. 
We found robust evidence in two independent samples that 
the probability-magnitude asymmetry selectively modulated 
probability distortion with no effect on risk attitudes. Partici-
pants showed lower probability distortion (i.e., their prob-
ability weighting was closer to optimal) in the probability-
diverse context relative to the magnitude-diverse context, 
and this difference emerged gradually while participants 
were performing the task. Moreover, the contextual effect 

on probability weighting was independent of overt attention 
to choice-relevant information, suggesting that this contex-
tual manipulation affects the subjective evaluation of prob-
abilities for decision formation independently of attention.

Methods

Participants  A total of 581 adults were tested in two stud-
ies. Study 1 was conducted on Amazon Mechanical Turk 
(“web-based,” N = 481), and Study 2 was conducted in 
person at Yale University (“lab-based,” N = 100). All par-
ticipants provided informed consent. Experimental proce-
dures were approved by the institutional review boards at 
Columbia University (web-based study) and Yale School of 
Medicine (lab-based study), and all methods were performed 
in accordance with the relevant guidelines and regulations. 
Web-based study demographics: mean age: 34.08 years 
(standard deviation [SD] = 9.68); gender: female, 199; male, 
234; other, 2; not reported or missing, 46. Lab-based study 
demographics: mean age: 26.6 years old; gender: female, 60; 
male, 40. For additional details on participant demograph-
ics, see Supplementary Material, Additional Demographic 
Information.

Data exclusions  In the web-based study, an additional 96 
people participated but were excluded due to excessive first-
order stochastic dominance violations, choosing a chance 
of 5 points over a guaranteed 5 points on half or more of 
the trials; this exclusion criterion was set a priori and has 
been used in our previous work (Grubb et al., 2016). Ten 
such people were excluded from the lab-based study. In the 
web-based study, an additional 44 datasets were collected 
but not included in the analysis for the following reasons: 18 
datasets contained trial data for more than the programmed 
number of trials, which indicates a writing error or potential 
modification by the user; 18 participants completed the study 
more than once (as judged by the mTurk ID), and only the 
first session was included in the analysis; 8 datasets had no 
mTurk ID, and we were thus unable to verify that the data 
was not from a repeat session.

Experimental task  In each study, participants made 210 
decisions between a fixed, certain gain (web-based: 5 
points; lab-based: $5) and a lottery whose magnitude and 
probability of payout varied from trial to trial (Fig. 1). To 
examine the relationship between choices and inspection 
of the lottery attributes before the choice, we included 
icons to the left and right of the fixation point indicat-
ing locations from which participants could obtain infor-
mation about magnitude or probability (Fig. 1, “Feature 
location information”). In the web-based study, partici-
pants pressed a button to indicate which information 
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they wished to reveal. In the lab-based study, we used 
eye-tracking and provided lottery feature information in 
a gaze-contingent manner if a participant maintained fixa-
tion on the side corresponding to the icon in the display.

Experimental manipulation  Participants were randomly 
assigned to one of two choice sets: a magnitude-diverse 
choice context, in which the variable lottery could be com-
prised of 1 of 5 unique probabilities but 1 of 21 unique mag-
nitudes, and a probability-diverse choice context, in which 
the variable lottery could be comprised of 1 of 21 unique 
probabilities but only 1 of 5 unique magnitudes. The range 
of magnitudes and probabilities was identical in both choice 
sets (respectively, magnitudes of 5–80 points/dollars and 
probabilities of 0.2–0.8; see below for full choice sets). Each 
lottery was presented twice (with magnitude and probability 
information spatially counterbalanced), and an identical sub-
set of 25 lotteries, the Overlapping Choice Set, was present in 
both choice contexts. Values that constitute the Overlapping 
Choice Set are shown in bold.

Magnitude-diverse choice context
% 20 35 50 65 80

/ $ 5 6 7 8 9 10 12 14 16 18 20 23 26 30 35 40 48 56 64 72 80
Probability-diverse choice context
% 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80

/ $ 5 10 20 40 80

Choice model  To estimate risk attitudes and assess probabil-
ity weighting, we fit a subjective utility model and a logistic 
function to the choice data. We modeled subjective utility 
(SU) using the functional form:

where p and m denote, respectively, the probability and 
magnitude offered by the lottery; α controls the curvature 
of the utility function, and γ indicates the degree of distor-
tion in the probability weighting function (Prelec, 1998). We 
used a maximum likelihood fitting procedure to fit the prob-
ability of choosing the lottery on each trial using a logistic 
choice function:

For additional details on parameter recovery, parameter 
identifiability, and the issue of interdependencies, see Sup-
plementary Material, Parameter Recovery and Identifiability.

(1)SU(p,m) = e−(−lnp)
�

m�

(2)Plotto =
1

1 + e−(SUlotto−SUref )∕�

Fig. 1   Example trial sequence from the lab-based study for a lottery 
offering a 35% chance of $20. $ and % icons at fixation indicated 
where magnitude and probability information for that trial’s lottery 
could be found; visual fixations at those locations were required to 

reveal and keep visible the information. In the web-based study, par-
ticipants were required to press and hold the left or right arrow key 
to reveal magnitude and probability information
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Payment  At the end of the experiment, one trial was ran-
domly selected, and its outcome was realized for a real bonus 
payment. In the web-based study, the magnitudes referred 
to points, with 5 being equivalent to $0.05 (explained in 
advance); in the lab-based study, the magnitudes indicated 
amounts in U.S. dollars. In addition to this bonus payment, 
participants received a flat fee of $1 (web-based study) or 
$10 (lab-based study) for participating.

Eye‑tracking (lab‑based study)  Eye position was monitored 
using a Tobii Eye-Tracking system recording at 60Hz, and a 
9-point calibration routine was used to calibrate the eye tracker 
for each participant. During the Feature Exploration phase of 
each trial (Fig. 1), real-time eye position was continuously 
obtained. Magnitude and probability information was presented 
at ±480 pixels from the center of the screen and was only, and 
selectively, revealed when horizontal eye position was greater 
than 300 or less than −300 pixels from the center of the screen.

Feature‑based attention index (FBAI)  During a given trial, 
participants could overtly attend to magnitude information, 
probability information, or neither. Overt attention to neither 
feature presumably reflects some degree of internal atten-
tion to the nonvisible, static reference ($5 for sure), or to 
previously overtly attended information (e.g., mental con-
sideration of the magnitude and probability of the lottery 
currently on offer). The proportion of time spent revealing 
either feature, through a button press (web-based study) 
or an eye movement (lab-based study), was calculated for 
each trial, and the mean across trials was computed for each 
participant.

In both studies, participants who took longer to make a 
decision spent more time viewing magnitude and probability 
information (Spearman correlation: web-based, r = 0.3927, 
p < 0.0001; lab-based, r = 0.7745, p < 0.0001), and the 
time spent viewing magnitude and probability information 
were highly correlated (Spearman correlation: web-based, 
r = 0.8662, p < 0.0001; lab-based, r = 0.7799, p < 0.0001). 
To control for these correlations, we normalized attention to 
each feature by the trial’s response time and calculated for 
each participant a Feature Based Attention Index (FBAI) as 
the average difference in the proportion of each trial (PT) 
spent attending to the two features:

Thus, an FBAI score of zero indicates an equivalent 
amount of attention to magnitude and probability informa-
tion, increasingly positive FBAI scores indicate an increas-
ingly greater attentional bias toward magnitude information, 
and increasingly negative FBAI scores indicate an increas-
ingly greater attentional bias toward probability information, 
all after controlling for RT and total viewing time.

(3)FBAI =
(

PTmag − PTprob

)

Bootstrapped confidence intervals  To create bootstrapped 
confidence intervals (CI), we randomly sampled, with 
replacement, 226 or 255 observers in the web-based study 
(51 or 49 observers, lab-based study) from the magnitude-
diverse and probability-diverse choice context groups, 
respectively. We then computed the median of each new, 
random sample and repeated the process 10,000 times. The 
inner 95% of the resulting distribution was extracted to 
determine the bounds of the CI. This process was conducted 
separately for each group and for each study.

Randomization tests on group medians  To evaluate 
between-group differences, we conducted the following 
randomization procedure: 1) group labels were randomly 
shuffled, 2) group medians were computed and the difference 
was recorded after each shuffle, 3) this process was repeated 
10,000 times to generate a null distribution, 4) the p-value 
of the randomization test was designated as the proportion 
of the null distribution greater than or equal to the actual, 
empirically observed group difference. Absolute values were 
used to make these two-tailed tests.

Results

In this experiment, we measured the impact of probability-
magnitude asymmetries in the choice set on risk tolerance 
and probability weighting. Participants were randomly 
assigned to either a magnitude-diverse choice context in 
which they were exposed across trials to more unique mag-
nitudes than unique probabilities, in a 21:5 ratio, or to a 
probability-diverse context that contained the converse. An 
identical subset of 25 lotteries, the Overlapping Choice Set 
(OCS), was present in both choice contexts. On each trial, 
participants chose between a safe, certain option ($5 for 
sure) and a risky lottery. To isolate and measure the amount 
of goal-directed attention to each distinct lottery feature, we 
took inspiration from process-tracing approaches that rely 
on mouse position to selectively reveal information (John-
son et al., 1989). We presented magnitude and probability 
on opposite sides of the screen (counterbalanced) and used 
button-press-contingent (Study 1) and gaze-contingent pres-
entation (Study 2) to ensure that only one lottery feature was 
overtly attended at a time (Fig. 1).

Participants’ choices evidenced lawful behavior, alle-
viating potential concerns about the spatial separation of 
lottery information. To facilitate a direct, between-group 
comparison of model-free data, choices from the Overlap-
ping Choice Set trials are shown in Fig. 2. The proportion 
of lottery choices increased as the magnitude (two left 
panels) and probability (two right panels) of winning the 
lottery increased, confirming sensitivity to these experi-
mental features. The proportion of lottery choices, in each 
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experiment and in each group, was substantially less than 
what an expected value framework predicts (0.64 for the 
Overlapping Choice Set lotteries), confirming the presence 
of risk aversion with this model-free metric of risk toler-
ance. Web-based, magnitude-diverse choice context: 0.44 
(median), [0.42, 0.49] (bootstrapped 95% CI); web-based, 
probability-diverse choice context: 0.48, [0.44, 0.50]; lab-
based, magnitude-diverse choice context: 0.46, [0.44, 0.52]; 
lab-based, probability-diverse choice context: 0.54, [0.48, 
0.58].

In reporting the results of the remaining analyses, we first 
present the outcome when all trials in each choice context 
are considered, which maximizes statistical power. We then 
present the outcome when only trials from the Overlapping 
Choice Set are considered, which rules out the possibility 
that our results are an artifact of the precise magnitude-
probability pairs used in the analysis.

Experimentally manipulating the choice set had a con-
sistent impact on probability weighting, without affecting 
other parameters of the choice function. We fit the SU model 
and logistic function to individual choice data from all tri-
als and compared the resultant distributions of parameters 
independently in each study (Fig. 3A, Table 1, Table 2). 
For participants in the magnitude-diverse choice context, 
median γ estimates and their corresponding 95% confidence 

intervals were less than one—indicating a nonlinear proba-
bility weighting function. In contrast, median γ estimates for 
participants in the probability-diverse choice context were 
near one—indicating a linear probability weighting function. 
In both studies, γ estimates differed significantly between 
groups (web-based: p < 0.0001; lab-based: p = 0.0134), but 
the degree of risk aversion was statistically indistinguish-
able between groups (web-based: p = 0.8526; lab-based: 
p = 0.2995), as were estimates of σ, the slope of the logis-
tic choice function (web-based: p = 0.4887; lab-based: p = 
0.5020).

Crucially, the effect of the global choice set on prob-
ability distortion held when we restricted our analysis to 
trials in the Overlapping Choice Set (23.8% of the data; 
Fig. 3B). When we examined this subset of choice scenar-
ios that were identical in each group, we again found that 
in both studies, γ estimates differed significantly between 
groups (web-based: p = 0.0021; lab-based: p = 0.0390), 
with statistically indistinguishable estimates of risk toler-
ance (web-based: p = 0.8000; lab-based: p = 0.2263) and 
the slope of the logistic choice function (web-based: p = 
0.4793; lab-based: p = 0.5718). Given that the lotteries 
in the Overlapping Choice Set were identical, and given 

Fig. 2   Proportion of lottery choices confirms lawful behavior. Prefer-
ence for the lottery increases as magnitude and probability of reward 
increases

Fig. 3   Median parameter estimates from both studies. A) All trials. 
Error bars, bootstrapped 95% confidence intervals. ***p < 0.0001; *p 
< 0.05; n.s., not significantly different. B) Trials from the overlapping 
choice set (OCS), **p < 0.005. Seven participants in the web-based 
study are excluded because the MLE fitting procedure failed to con-
verge with the limited number of trials
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that group assignment was random, the only thing that can 
account for this between-group difference in probability 
weighting is the wider context in which these choices were 
embedded (i.e., the global choice set).

Converging evidence that the choice set exerts an impact 
on probability distortion, but not on risk tolerance or choice 
stochasticity, was obtained using a different modeling 
approach. We simultaneously fit the choice model to all 
participants’ data, clustering the standard errors (SE) on 
participants and allowing each parameter to vary as a linear 
function of the choice context and experimental setting 
(Gilaie-Dotan et al., 2014; Grubb et al., 2016; Harrison, 
2008; Harrison & Rutstrom, 2008). This produced coefficients 
indicating the extent to which risk tolerance (α), distortions 
in the probability weighting function (γ), and the slope of the 
logistic choice function (σ) depended on the composition of 
the choice context and on the experimental setting (Model 1: 
α = β0 + β1 ⨉ isMagnitudeDiverse + β2 ⨉ isLabBased; γ = 
β0 + β1 ⨉ isMagnitudeDiverse + β2 ⨉ isLabBased; 
σ = β0 + β1 ⨉ isMagnitudeDiverse + β2 ⨉ isLabBased, 
where isMagnitudeDiverse and isLabBased are dummy 
predictors representing, respectively, the choice context and 
experimental setting). Consistent with the results presented 
above, we observed a significant negative coefficient for the 
isMagnitudeDiverse predictor in Model 1 (z-test: n = 122,010, 
SE clustered on 581 participants, z = -3.25, p = 0.001), 

indicating greater distortion in the probability weighting 
function (i.e., more probability weighting) for participants 
in the magnitude-diverse choice environment, compared 
with those in the probability-diverse choice environment 
(Table 3).1 The isMagnitudeDiverse coefficients for α and σ 
were not significant (ps < 0.373), indicating that the choice 
environment manipulation specifically affected probability 
weighting. Repeating this modeling approach for Overlapping 
Choice Set trials produced consistent results: we again found 
a significant, negative coefficient for our dummy predictor 
isMagnitudeDiverse on γ only (z-test: n = 29,050, SE clustered 
on 581 participants, z = −2.98, p = 0.003; Table 4).

If our experimentally induced manipulation of probability 
distortion relies on exposure to the choice environment, we 
might expect the effect to grow as the experiment progresses. 
To assess this possibility, we fit the SU model to trial-number-
based deciles of choice data from all participants in each choice 
context (10 bins of 21 trials each) and clustered the standard 

1  While it is true that participants in the lab-based study were found 
to be significantly more risk tolerant than those in the web-based 
study, we are agnostic as to whether or not this result is causally 
related to study location or some other methodological difference 
between the two studies (e.g., differences in the payout scheme). 
Unlike the choice set assignment, we did not randomly assign partici-
pants to participate in the lab or via the web.

Table 2   Lab-based study with eye-tracking (N = 100)

Median parameter estimates and statistical results from individual fits. Significant group differences are shown in bold

Alpha (risk preference) Gamma (probability weighting)

Magnitude-Diverse Probability-Diverse Magnitude-Diverse Probability-Diverse

Median estimate 0.4984 0.5571 0.7813 1.0745
Bootstrapped 95% CI [0.4442, 0.6481] [0.4865, 0.6676] [0.6929, 0.9312] [0.7921, 1.3187]
CI includes 1? N N N Y
Between-group randomiza-

tion test
p = 0.2995 p = 0.0134

Table 1   Web-based study with key tracing (N = 481)

Median parameter estimates and statistical results from individual fits. Significant group differences are shown in bold

Alpha (risk preference) Gamma (probability weighting)

Magnitude-Diverse Probability-Diverse Magnitude-Diverse Probability-Diverse

Median estimate 0.4676 0.4760 0.7302 1.0146
Bootstrapped 95% CI [0.4220, 0.5297] [0.4188, 0.5266] [0.6699, 0.8431] [0.9336, 1.1165]
CI includes 1? N N N Y
Between-group randomiza-

tion test
p = 0.8526 p < 0.0001
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error at the participant level. Figure 4 shows the resultant 
parameter estimates for each decile and for each choice con-
text. Confidence intervals indicate that the two groups exhibited 
minimal, and highly similar, probability weighting at the start 
of the experiment, but by the 85th trial, the two groups reliably 
diverged. Risk tolerance appears to be relatively stable through-
out the duration of the experiment and, consistent with previ-
ous results, does not differ between groups. Given the limited 
number of choices in the Overlapping Choice Set, this analysis 
focuses only on the trials from the full choice set.

Our experimental paradigm also was designed to meas-
ure overt attention to magnitude and probability information, 

allowing us to test whether differences in attention can explain 
differences in choice. Because our contexts differed in the 
relative numbers of unique values of magnitude versus proba-
bility, the most relevant attention metric is the extent to which 
participants are biased to attend to one or the other dimension. 
Thus, we devised a feature-based attentional index (FBAI; 
Methods) such that FBAI scores greater than zero indicate 
an attentional preference for magnitude information, whereas 
FBAI scores less than zero indicate a bias toward probability 
information. We found that an attentional bias for magnitude 
information is associated with less risk aversion and an atten-
tional bias toward probability information is associated with 

Table 3   Web- and lab-based studies combined (N = 581), all trials

Parameter estimates and statistical results. Robust SE, standard error clustered on participant. CI, confidence interval. Coefficients significantly 
different from zero in bold

Model 1 Coef. Robust SE z p 95% CI

Risk tolerance (𝛼)
isMagnitudeDiverse 0.0164 0.0184 0.89 0.373 -0.0197 0.0525
isLabBased 0.0551 0.0220 2.51 0.012 0.0120 0.0982
constant 0.4497 0.0133 33.74 0.000 0.4236 0.4759
Probability weighting (𝛾)
isMagnitudeDiverse -0.1639 0.0505 −3.25 0.001 -0.2628 -0.0650
isLabBased 0.1124 0.0582 1.93 0.053 -0.0016 0.2265
constant 0.8350 0.0403 20.72 0.000 0.7560 0.9140
Logistic slope (𝜎)
isMagnitudeDiverse -0.0010 0.0539 −0.02 0.986 -0.1065 0.1046
isLabBased -0.0971 0.0547 −1.77 0.076 -0.2044 0.0101
constant 0.7202 0.0401 17.96 0.000 0.6416 0.7988

Table 4   Web- and lab-based studies combined (N = 581), Overlapping Choice Set

Parameter estimates and statistical results. Robust SE, standard error clustered on participant. CI, confidence interval. Coefficients significantly 
different from zero in bold

Model 1 - OCS Coef. Robust SE Z p 95% CI

Risk tolerance (𝛼)
isMagnitudeDiverse -0.0103 0.0179 −0.58 0.565 -0.0455 0.0249
isLabBased 0.0600 0.0213 2.81 0.005 0.0181 0.1018
constant 0.4647 0.0135 34.31 0.000 0.4382 0.4913
Probability weighting (𝛾)
isMagnitudeDiverse -0.1458 0.0490 −2.98 0.003 -0.2418 -0.0498
isLabBased 0.1228 0.0563 2.18 0.029 0.0125 0.2330
constant 0.7757 0.0393 19.74 0.000 0.6987 0.8527
Logistic slope (𝜎)
isMagnitudeDiverse -0.0587 0.0501 −1.17 0.241 -0.1568 0.0394
isLabBased -0.0949 0.0529 −1.80 0.073 -0.1985 0.0087
constant 0.7360 0.0397 18.56 0.000 0.6583 0.8138
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lower probability distortion. To show the consistency and reli-
ability of these correlations, Fig. 5 depicts Spearman rank-
order correlations for all trials, separately for each group and 
separately for each study. Restricting this analysis to the Over-
lapping Choice Set trials only, we observed consistent patterns 
of relationships between FBAI, risk tolerance, and probability 
weighting (Table 5), but given the much smaller number of 
trials in the subset, these correlations were statistically robust 
only in the web-based study, where the sample size was more 
than four times as large. We observed similar results with 
linear mixed-effects models in which we regressed trial-level 
FBAI on trial-level probability, trial-level magnitude, trial-
level EV, subject-level gamma parameter rank, subject-level 
alpha parameter rank, and a dummy variable indicating group 
(see Supplementary Material, Linear Mixed-effect Models 
with Trial-level FBAI). In short, across all four LME models 
(web- based and lab-based datasets, assessing all trials and 
overlapping choice set trials), individual risk tolerance was 
positively correlated with trial-level FBAI, after controlling 

for the aforementioned variables (Tables S10-S13). For three 
of the four models, individual probability weighting was nega-
tively correlated with trial-level FBAI, after controlling for the 
aforementioned variables (Tables S10-S13); in the remaining 
regression (lab-based, overlapping choice set), this p-value 
was 0.0622 (Table S13).

Given the correlations between overt attention and choice 
within each individual context, we next asked if the attentional 
biases could explain the contextual differences in probability 
weighting. The evidence did not support this hypothesis. We 
reasoned that, if attentional biases explained the contextual 
modulations, FBAI should differ across the two contexts. 
However, while a difference was found in the lab study using 
eye-tracking (with median FBAI scores of 0.0121, 95% CI 
= [0.0049, 0.0208] in the magnitude-diverse context versus 
−0.0126, 95% CI = [−0.0246, 0.0072] in the probability-
diverse context; between-group randomization test: p = 
0.0033), this difference was not replicated in the Overlapping 
Choice Set (lab study, randomization test: p > 0.8; magni-
tude-diverse, median = 0.0004, 95% CI = [−0.0110, 0.0192]; 
probability-diverse, median = 0.0025, 95% CI = [−0.0145 
0.0205]) or in the web-based study (All trials: randomization 
test: p = 0.1076; magnitude-diverse, median = 0.0005, 95% CI 
= [−0.0003, 0.0013]; probability-diverse, median = 0.0015, 
95% CI = [0.0006, 0.0025]. OCS trials: randomization test: 
p = 0.1203; magnitude-diverse, median = 0.0004, 95% CI = 
[−0.0008, 0.0025]; probability-diverse, median = 0.0025, 95% 
CI = [0.0005, 0.0047]). Thus, the contextual effects on FBAI 
were inconsistently replicated, making it improbable that they 
mediated between-group changes in probability weighting 
(which, as we noted above, were highly reliable in both par-
ticipant samples and in the full and Overlapping Choice Set).

The linear mixed-effect models mentioned above also sup-
port this conclusion, as none of the models produced a signifi-
cant effect of context (Tables S10-S13). A possible concern, 
however, is that these trial-level analyses may have missed 
contextual effects expressed at the individual subject level. To 
address this concern, we conducted additional subject-level 
analyses in which we fit the participants’ probability distortion 
parameter (gamma) as a function of context and FBAI. Using 
the ranked gamma coefficients in the Overlapping Choice Set, 
we fit them with 3 alternative models in which the predictors 
were the ranked FBAI scores from the Overlapping Choice 
Set (Table 6, Model 1), a dummy predictor of context (isMag-
nitudeDiverse; Table 6, Model 3) or both the FBAI ranks and 
the dummy predictor (Table 6, Model 2). We reasoned that, 
if the FBAI accounted for the context effect, the latter effect 
should diminish or disappear in the simultaneous model. In 
contrast to this hypothesis, the coefficients for each term were 
approximately the same whether the predictors were entered 
individually or together, suggesting that the FBAI/gamma and 
context/gamma relationships were similar if we did or did not 
control for the other factor.

Fig. 4   Probability weighting and risk tolerance as a function of task 
exposure. See main text for details. Error bars, 95% confidence intervals
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Fig. 5   Attention–choice correlations using individually estimated 
model parameters. Top row: web-based study. Bottom row: lab-based 
study. Leftmost columns: probability weighting. Rightmost columns: 
risk tolerance. Blue circles: participants in the magnitude-diverse 

choice set. Red circles: participants in the probability-diverse choice 
set. Samples sizes for each Spearman correlation given by largest 
rank in each panel

Table 5   Attention–choice correlations using individually estimated model parameters from the OCS trials only

MD magnitude-diverse, PD probability-diverse. Coefficients significantly different from zero in bold

Web-Based Lab-Based

Alpha Gamma Alpha Gamma

OCS trials MD PD MD PD MD PD MD PB
Correlation with FBAI 0.2722 0.1360 −0.3107 −0.3057 0.1866 0.1236 −0.2393 −0.1495
p-value <0.001 0.0309 <0.001 <0.001 0.1899 0.3973 0.0908 0.3054

Table 6   Attention–choice correlations and between-group differences in probability weighting

See text for details. Double-headed arrows indicate relevant comparisons

Web-based Lab-based

Coefficient p-value Coefficient p-value

Model 1: gamma ~ FBAI
FBAI –0.29504 <0.001 –0.2007 0.0453
Model 2:
gamma ~ FBAI + isMagnitudeDiverse
FBAI –0.3065 <0.001 –0.1998 0.0439
isMagnitudeDiverse –38.708 0.00132 –10.164 0.0752
Model 3:
gamma ~ isMagnitudeDiverse
isMagnitudeDiverse –31.883 0.01130 –10.224 0.0780
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Discussion

We report a novel effect of the choice context on probability 
weighting during risky choice: a dependence on the ratio of 
unique magnitudes and probabilities in the choice set. Par-
ticipants who experienced a choice set in which five unique 
probabilities were paired with 21 unique magnitudes made 
choices consistent with distorted probability weighting: 
overweighting of low probabilities and underweighting of 
high ones. In contrast, participants who experienced the 
converse (21 unique probabilities paired with five unique 
magnitudes) made choices consistent with a more veridical 
(i.e., optimal) assessment of probability information. Sev-
eral lines of evidence attest to the robustness of this context 
effect. First, the effect replicated in two independent samples 
of participants who completed the task on Amazon Mechani-
cal Turk and in the laboratory. Second, the effect held for 
a subset of lotteries that were identical in the two contexts, 
ruling out artifacts related to different choice options. Third, 
this context effect was specific to probability weighting with-
out affecting risk aversion or the stochasticity of the choice, 
ruling out that it was due to nonspecific factors like arousal 
or general engagement in the task. Finally, the context effect 
emerged during the experiment, with between-group differ-
ences in probability weighting developing gradually as a 
function of exposure to the choice set, as would be expected 
if it were due to gradual learning of the context-specific 
probability/magnitude contingencies.

The context effect on probability weighting could not 
be accounted for by effects commonly discussed in the lit-
erature in the context of risk-less choice. In our design, the 
probabilities and magnitudes that participants encountered 
spanned identical ranges in both choice sets, so between-
group differences in probability weighting could not be 
explained by range adaptation (Padoa-Schioppa, 2009). 
Moreover, the values in the two contexts had nearly iden-
tical means (probability, 0.5 in both contexts; magnitude, 
28.5 vs. 31), and we did not include an irrelevant option in 
either choice context, ruling out potential explanations based 
on normalized value coding (Khaw et al., 2017) and value-
based attention to irrelevant options (Gluth et al., 2020). 
Thus, our findings suggest that probability weighting is spe-
cifically sensitive to the number of discrete probabilities (vs. 
magnitudes), or to the precision of the probabilities, in the 
global choice context.

One plausible mechanism that may have explained our 
result involves changes in attention to the choice-relevant 
features. Many previous studies have shown that differences 
in attention—directed either to the lottery as a whole (Hunt 
et al., 2018; Smith & Krajbich, 2018; Stewart et al., 2016) 
or to its constituent parts (Fiedler & Glockner, 2012; Glick-
man et al., 2019; Harrison & Swarthout, 2019; Johnson & 

Busemeyer, 2016; Kim et al., 2012; Spitmaan et al., 2019)—
can explain differences in risky choice. Other authors have 
proposed that variability in a decision-relevant dimension 
influences attention (Horan et al., 2019; Pearce & Mack-
intosh, 2010) and saliency (Bordalo et al., 2012). Thus, 
participants may have differentially attended to probability 
versus magnitude information in the two contexts, poten-
tially enabling them to estimate more veridically the prob-
ability in the probability-diverse relative to the magnitude-
diverse context. In contrast to this prediction, we found that 
the robust group differences in probability weighting were 
not accompanied by analogous differences in attention. 
Consistent with an earlier study by Pachur and colleagues 
(2018), who looked at attention to outcome and probability 
information for gains and losses, we found that, in the gain 
domain, an attentional bias toward magnitude information 
was predictive of reduced risk aversion while a bias toward 
probability information was predictive of reduced probabil-
ity distortion. However, these correlations were only found 
within each context and could not explain the differences 
in choice across contexts. The attention-choice correlations 
were approximately equivalent in the magnitude-diverse 
and probability-diverse contexts and controlling for atten-
tion did not alter the magnitude of the context effect on 
probability weighting. Thus, our findings suggest that the 
mechanisms by which context affects probability distortion 
are independent of our measure of selective attention—the 
time that participants allocated to inspecting magnitude 
versus probability information. An important question for 
future research, which may require a direct experimental 
manipulation of attention to resolve, is whether the effects 
are mediated by other aspects of selective attention, such as 
attention-induced changes in perceptual sensitivity and/or 
internal prioritization of (e.g., time spent thinking about) 
each type of information.

In the absence of an explanation based on overt attention, 
a plausible mechanism for our contextual effect involves dif-
ferences in expectation for probability information. Predic-
tive coding theories (Friston, 2010) posit that brains use a 
“simple but remarkable powerful trick or stratagem” to “get 
to know the world and act in it. […] That trick is trying to 
guess at the incoming sensory stimulations as they arrive, 
using what [is known] about the world” (p.1, Clark, 2016). 
Psychophysical and neuroscientific evidence that expecta-
tion plays a fundamental role in perceptual decision making 
is quickly amassing (Egner et al., 2010; Kok et al., 2013; 
Rao & Ballard, 1999; Richter et al., 2018; for a review, 
Summerfield & de Lange, 2014), with extensive empirical 
work confirming that “[p]erception and perceptual decision-
making are strongly facilitated by prior knowledge about 
the probabilistic structure of the world” (p. 764, de Lange 
et al., 2018). Thus, in our experiment, participants may have 
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implicitly learned the set of values available in a context, 
creating expectations that then influenced their treatment of 
probability information.

The effects of expectations may be mediated by several 
mechanisms. One possibility is related to the fact that the 
probability-diverse set included some “atypical” probabilities 
(e.g., 0.23, 0.62, 0.77), whereas the magnitude-diverse con-
text contained more “standard” probabilities (e.g., 0.2, 0.5, 
0.8). If participants bring to the task expectations, derived 
from long-term experience, about the probabilities and mag-
nitude values that they are more likely to encounter in an 
experiment (i.e., expectations about common probabilities 
encountered in everyday life), this may influence their use of 
probability information. It is possible that participants in the 
probability-diverse environment find their expectations vio-
lated by the presence of many “atypical” probabilities, which 
causes a change in how they use probability information; 
such an implicit violation would not occur for the magnitude-
diverse group, because they only encounter “standard” prob-
abilities. A second possible explanation may lie in the fact 
that participants experienced more repeated exposure to the 
same unique probability in the magnitude-diverse relative 
to the probability-diverse context. The greater probability 
distortion in the magnitude-diverse set may come from short-
term adaptation or repetition suppression driven by repeated 
and frequent exposure to the same probabilities (Grill-Spec-
tor et al., 2006; Krekelberg et al., 2006). A third hypothesis 
is based on the fact that participants could better anticipate 
the unique probability of each trial in the magnitude-diverse 
relative to the probability-diverse set (i.e., each unique prob-
ability had, respectively, a 1/5 chance vs. only 1/21 in the 
two contexts), suggesting that probability distortion may be 
enhanced by a better prior expectation of the specific prob-
ability. Dissecting the possible contributions of nonstandard 
probabilities, repetition suppression and prior expectations to 
our context effect will be important topics for future research.

A salient feature of our data was that, while between-
group differences in probability weighting emerged gradu-
ally as a function of exposure to the choice context, risk tol-
erance remained constant and was insensitive to context. The 
stability of risk attitudes we found in this task is consistent 
with previous findings that risk tolerance is related to gray 
matter thickness in the parietal lobe—a structural parameter 
that is unlikely to change rapidly during an experimental 
session (Gilaie-Dotan et al., 2014; Grubb et al., 2016; Jung 
et al., 2018; Quan et al., 2022). Thus, although risk atti-
tudes show marked differences in different domains and with 
different methods of elicitation (Hertwig et al., 2019), our 
results suggest that, for monetary lotteries, these attitudes 
are robust to differences in the composition of the choice set 
and are modulated by contextual factors distinct from those 
affecting probability weighting.

Conclusions

We documented a novel effect on probability weighting 
related to the number of discrete probabilities and magni-
tudes in the choice set, which provides a novel experimental 
manipulation for investigating the mechanisms of probability 
weighting and its implications for decision formation.
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