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Abstract
Humans globally are reaping the benefits of longer lives. Yet, longer life spans also require engaging with consequential but
often uncertain decisions well into old age. Previous research has yielded mixed findings with regards to life span differences
in how individuals make decisions under uncertainty. One factor contributing to the heterogeneity of findings is the diversity
of paradigms that cover different aspects of uncertainty and tap into different cognitive and affective mechanisms. In this
study, 175 participants (53.14% females, mean age = 44.9 years, SD = 19.0, age range = 16 to 81) completed functional
neuroimaging versions of two prominent paradigms in this area, the Balloon Analogue Risk Task and the Delay Discounting
Task. Guided by neurobiological accounts of age-related changes in decision-making under uncertainty, we examined age
effects on neural activation differences in decision-relevant brain structures, and compared these across multiple contrasts for
the two paradigms using specification curve analysis. In line with theoretical predictions, we find age differences in nucleus
accumbens, anterior insula, and medial prefrontal cortex, but the results vary across paradigm and contrasts. Our results are
in line with existing theories of age differences in decision making and their neural substrates, yet also suggest the need
for a broader research agenda that considers how both individual and task characteristics determine the way humans deal
with uncertainty.
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Uncertainty can come in many guises, be linked to many
different sources (e.g., self vs. others), and refer to different
properties of choice options, such as their magnitude or
probability, which in turn can be static or change over time
(Dhami & Mandel, 2022; Meder et al., 2013). Given the
vast possible forms of uncertainty we face, the proliferation
of approaches and paradigms used in the psychological
sciences to understand age differences in dealing with
uncertainty is not surprising; neither are the conflicting
results concerning the existence or magnitude of age effects
in the associated paradigms (Mata et al., 2011; Best &
Charness, 2015; Seaman et al., 2022; Lighthall, 2020)
and their neural bases (Tannou et al., 2021; Samanez-
Larkin & Knutson, 2015; Lighthall, 2020). In this work, we
contribute to this area of research by reporting results from
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a neuroimaging study designed to assess age differences in
the neural basis of decision-making under uncertainty.

In what follows, we first engage with the concept of
uncertainty, including varying definitions and paradigms
used for assessment of individual and age differences in
dealing with uncertainty. Second, we provide an overview
of past empirical work examining the neural basis of
decision-making under uncertainty. Third, we review the
current empirical literature on the link between aging and
decision-making under uncertainty. Fourth, and finally, we
describe our current study, which aims to offer an empirical
contribution towards assessing age differences in decisions
under uncertainty.

Uncertainty: definition and scope

Many researchers have often used the terms uncertainty,
risk, and ambiguity interchangeably (Dhami & Mandel,
2022), but more specific distinctions between these
concepts can be made. Risk can be defined in many
ways (Aven, 2012), yet a common understanding of risky
decision-making refers to decisions that involve, at a
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minimum, uncertain gains and losses (Schonberg et al.,
2011). How individuals come to know about prospective
gains, losses, and their respective probabilities, however,
can vary. In the lab, gamified lotteries are popular tools
to assess individuals’ risk preference, as these allow
researchers to exert full experimental control over the
information provided. For example, crucial information
about magnitudes and probabilities might be described from
the outset, or might have to be learned through (repeated)
experience. The crucial aspect of decision-making under
risk, however, is that it refers to situations in which
outcomes and their probabilities are known. In contrast,
ambiguity or “Knightian uncertainty” describes situations
in which only the outcomes, but not their probabilities,
are known (Meder et al., 2013; Tymula et al., 2013;
Tymula et al., 2012). As such, relative to risk, ambiguity
might be perceived as entailing even more uncertainty
(Wu et al., 2021).

Some behavioral paradigms have natural ways of offer-
ing distinctions between risk and ambiguity. For example,
when monetary gambles are presented descriptively to par-
ticipants (e.g., the magnitude and probabilities of choice
options are stated explicitly), manipulations of risk are eas-
ily achieved. However, in some cases, participants need to
learn about options and probabilities over time, which leads
to a continuum between risk and ambiguity, because the rep-
resentation of ambiguity can change into a representation
of risk as a function of each individual’s learning expe-
rience. Importantly, some researchers have proposed that
age differences in learning can partly account for age pat-
terns in dealing with decision-making under uncertainty in
such scenarios, making it particularly interesting to examine
paradigms involving such components in order to under-
stand age differences in dealing with uncertainty (Frey et al.,
2015; Henninger et al., 2010).

In the field of economics, it is also common to make
a distinction between preferences for risk, ambiguity, and
time, because, in principle, economic agents can be given
different types of choices involving trade-offs about option
characteristics, such as their magnitudes, probabilities,
and time of delivery, independently. However, some have
proposed that there is an inherent uncertainty associated
with making decisions about the future, leading to a direct
link between risk, ambiguity, and time preferences (Epper
et al., 2011; Cohen et al., 2020). Importantly, some aging
theories have proposed that uncertainty about the future
associated with older adults’ limited time horizon is an
important factor in determining age effects in temporal
discounting (Seaman et al., 2022). Thus, it is possible that
paradigms involving risk, ambiguity, and temporal trade-
offs all tap into individuals’ processing of, and attitudes
toward, uncertainty.

We propose a research agenda that considers the
many guises in which uncertainty can be presented and
investigates age differences in the underlying cognitive and
affective processes by assessing the neural basis of decisions
under uncertainty.

Neural correlates of decision-making
under uncertainty

In this section, we provide a brief overview of studies
which have used functional neuroimaging methods to
elucidate the brain regions involved in decision-making
under uncertainty. In particular, we review studies that have
investigated risk, ambiguity, or temporal preferences, and
which can form a basis for understanding how aging can
affect the associated decision processes.

Some theories have proposed a neural risk matrix
to account for decision-making under risk (Knutson &
Huettel, 2015), which includes brain regions that promote
(ventral striatum), inhibit (anterior insula), and modulate
(dorsomedial prefrontal cortex, also referred to as the
anterior cingulate cortex) risky choice. Ambiguity, in turn,
has been suggested to elicit (stronger) activation differences
in a range of neural regions, including amygdala, inferior
and posterior parietal lobe, anterior insula, orbitofrontal
cortex, and inferior frontal gyrus (Wu et al., 2021).
Recent meta-analytic work confirms the view that risk and
ambiguity evidence both overlapping and unique neural
substrates (Wu et al., 2021). In particular, risk and ambiguity
do indeed share activation differences in anterior insula,
which has led some to suggest that the anterior insular
cortex is a key region for processing uncertainty (Wu et al.,
2021). However, whereas decision-making under risk relies
on ventral striatum and dorsomedial prefrontal cortex (i.e.,
anterior cingulate cortex) activation (Knutson & Huettel,
2015), ambiguity relies on dorsolateral prefrontal cortex
and inferior parietal lobe (Wu et al., 2021). Interestingly,
it has been argued that the additional finding of increased
involvement of anterior insula activation in decision-
making under ambiguity relative to decision-making under
risk maps onto the proposal of uncertainty being more
pronounced in ambiguity relative to risk (Wu et al., 2021).

Temporal preference refers to an individual’s tendency
to devalue future options, with high delay discounting
describing the tendency to devalue future options at a
steep(er) rate. Multiple aspects influence an individual’s
preference concerning temporally delayed options, such that
higher discounting (i.e., more devaluation), for example,
can stem from heightened sensitivity to anticipated present
rewards, lower sensitivity to anticipated future rewards, or
the suboptimal integration of present and future rewards into
an overall subjective value signal. From a neurobiological
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standpoint, each computation is associated with specific
neural correlates (Samanez-Larkin & Knutson, 2015;
McClure et al., 2004; van den Bos et al., 2014). A recent
review of the empirical literature on the neural basis of
temporal preference (Frost & McNaughton, 2017) found
evidence for the involvement of primarily striatal and
(pre)frontal cortical regions.

To isolate the neural basis of uncertainty in delay
discounting, different methodological approaches can be
used. One approach involves the calculation of an integrated
subjective value for each offer based on individuals’
choices, and the tracking of this value signal across the
brain (Seaman et al., 2018). Alternatively, uncertainty could
be captured by focusing on the neural representation of
uncertainty related to the temporal features of various
trade-offs between choice options. For example, one
can examine the neural substrates of immediacy; that
is, examine the neural functional differences between
the processing of trade-offs with and without immediate
options, under the assumption that an immediate option
involves reduced uncertainty. Research along these lines has
found decision-making relevant activation differences for
immediate relative to delayed options in ventral striatum,
medial prefrontal and medial orbitofrontal cortex (McClure
et al., 2004; Frost & McNaughton, 2017). Second, one
can consider reward delays, the logic being that longer
delays evoke higher uncertainty relative to shorter delays.
Empirical findings suggest increased activation in ventral
striatum and putamen for shorter relative to longer delays
(Wu et al., 2021).

All in all, empirical results across risk, ambiguity,
and time preferences suggest that although anterior insula
activation could code uncertainty in decisions under risk
and ambiguity, when it comes to temporal trade-offs,
uncertainty may be coded as a relative activation difference
in reward valuation and/or integration regions, such as
nucleus accumbens and the ventral medial prefrontal cortex.
Decision-making under uncertainty, whether in relation to
risk, ambiguity, or temporal trade-offs, thus seems to rely on
both common and unique brain circuitry. Yet, to what extent
age effects in decision-making under uncertainty are driven
by changes in single or several brain regions remains to
be determined.

Age differences in decision-making under
uncertainty

Empirical results on age differences in dealing with risk
are patently mixed, with meta-analyses and qualitative
reviews suggesting that age effects vary considerably across
measures (Mata et al., 2011; Best & Charness, 2015;
König, 2021). Overall, self-report measures suggest age-
related declines in the propensity to take risks (König,

2021) but task-based results are more heterogeneous, with
meta-analyses suggesting decreased risk taking with age
for gains but not losses (Best & Charness, 2015). There
is overall less work on situations involving ambiguity,
when the probability of options is not described (Tymula
et al., 2013) or needs to be learned from experience (Frey
et al., 2015; Frey et al., 2021; Mata et al., 2011). One
paradigm that has received considerable attention is the
Balloon Analogue Risk Task (BART; Lejuez et al. 2002)
but the results concerning age differences are also mixed:
Although some studies find older adults less risk-seeking
relative to younger adults (Grover, 2021; Henninger et al.,
2010; Koscielniak et al., 2016; Rolison et al., 2012; Sproten
et al., 2018; Wilson et al., 2021), a number of studies find
this result in only some conditions (Mamerow et al., 2016;
Schulman et al., 2021), report no evidence of behavioral
effects of age (Kim et al., 2022; McCleskey, 2021; Yu
et al., 2016), or find that older-adults are more risk-seeking
relative to younger adults (Cavanagh et al., 2012). Finally,
concerning age effects on temporal preferences, a recent
meta-analytic synthesis suggests overall no effect of age in
delay discounting tasks (Seaman et al., 2022).

As it stands, there is limited knowledge concerning
age differences in many paradigms involving decision-
making under uncertainty. For example, to our knowledge
only one study has investigated age differences in the
neural basis using the BART (Yu et al., 2016). Yu
and colleagues (Yu et al., 2016) found evidence that
suggests preservation of value signals for processing of
gains and losses but age differences in ventromedial
prefrontal cortex potentially reflecting age differences in
information integration. Concerning temporal preferences,
a few neuroimaging studies examining adult age differences
suggest activation differences (Samanez-Larkin et al.,
2011; Sasse et al., 2017). For example, one study found
younger adults showed more nucleus accumbens activation
for present than future rewards relative to older adults
(Eppinger et al., 2012), which could signal age differences
in the valuation of uncertainty associated with future
outcomes. However, more recent efforts aimed at isolating
age effects on the neural representation of subjective value
found no differences for temporal preferences (Seaman
et al., 2018).

There is so far relatively little in the way of a
quantitative synthesis of age differences in the neural
basis of decision-making under uncertainty (Tannou et al.,
2021), but existing frameworks and qualitative reviews
suggest that aging may be associated with changes in the
anticipation of gains and losses, as well as the integration
of different sources of information in decisions made under
uncertainty (Samanez-Larkin & Knutson, 2015; Lighthall,
2020). Crucially, age-related functional and structural brain
changes are not global but specific to particular neural
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regions (Sowell et al., 2004; Cabeza, 2002), some of
which are highly relevant for explaining age effects on
decision making. Exemplifying this approach is the Affect-
Integration-Motivation (AIM) framework (Samanez-Larkin
& Knutson, 2015), an empirically derived neurobiological
framework. By breaking the decision-making process down
into various sequential, hierarchically arranged processes,
and identifying the respective neural correlates, AIM
stipulates several pathways for how age-related anatomical
and functional change may lead to age-related differences
during varying decision-making stages (Frazier et al., 2019;
Samanez-Larkin & Knutson, 2015), including anticipated
reward-related activity in nucleus accumbens, anticipated
loss-related activity in anterior insula, integrative processes
subserved by activation in prefrontal cortices, and, in
situations involving learning, the thalamus.

All in all, the majority of aging studies reviewed above
have focused on single tasks, involved relatively small
sample sizes and extreme-group comparisons, did not
specifically target theory-relevant brain regions (Samanez-
Larkin & Knutson, 2015), nor have they adopted a
systematic approach to controlling for theoretically relevant
covariates (for a critique of the past literature see Mata
et al. 2011; Seaman et al. 2022; Frey et al. 2021). As
a consequence, we still know relatively little about the
robustness of age differences in behavioral and neural
patterns associated with many of these measures.

Overview of the current study

The review above highlights a number of key limitations of
the current literature. In particular, it has become clear that
there is a dearth of studies examining adult age differences
using multiple paradigms that allow to distinguish several
cognitive and affective processes underlying the processing
of uncertainty. We aim to contribute to this effort
by conducting an empirical assessment of a relatively
large age-heterogeneous sample aged 16 to 81 using
two paradigms, the BART and the Delay Discounting
Task. Informed by the AIM framework (Samanez-Larkin
& Knutson, 2015), we do so by analyzing activation
differences in an a priori selected set of neural regions key
for decision-making under uncertainty, and by exploring
a number of key contrasts that tap into different aspects
of uncertainty. Specifically, in the BART, we test the
importance of using average and parametric contrasts that
have been previously considered in the literature (Yu et al.,
2016) as well as a novel contrast comparing different (i.e.,
linear and exponential) reward functions that create varying
values of uncertainty. In the delay discounting task, we
consider both delay and immediacy contrasts previously
used in the literature (Frost & McNaughton, 2017).
Furthermore, we do so in a systematic, exhaustive fashion

using specification curve analysis (Simonsohn et al., 2020;
Rohrer et al., 2017), which allows us to (a) simultaneously
explore the effect of age on various behavioral and neural
operationalizations of decision-making under uncertainty
while (b) assessing and controlling for the role of
theoretically relevant covariates shown to impact decision-
making under uncertainty, including gender, education,
income, and cognitive ability (Frey et al., 2021). We thus
hope to contribute to a more systematic assessment of age
differences in the neural basis of decision-making under
uncertainty.

Method

The current analyses are based on data collected as
part of a larger multi-session research study to examine
age effects on multiple indicators of risk preference,
impulsivity, and low self-control (preprint available via the
Open Science Framework, https://osf.io/uj359), for which
we preregistered the analyses (preregistration available
via AsPredicted.com, https://aspredicted.org/98R QYR).
We did not preregister the current analyses, which are
exploratory in nature and extend the pre-registered ones by
focusing on the neural representation of uncertainty across
several brain regions and task contrasts and use a multiverse
analytic approach to exhaustively examine associations
between these different operationalizations of uncertainty
and age. To address the current research questions, we
conducted original analyses of the functional neuroimaging
data collected from two behavioral tasks featuring different
implementations of uncertainty. The original study was
reviewed and approved by the Ethikkommission Nordwest-
und Zentralschweiz EKNZ (EKNZ BASEC 2015-00094).
We complied with all regulations and ethical guidelines
during the research. Prior to participating in the study,
all participants received written as well as verbal study
materials and were required to give written informed
consent to their participation in the research. All participants
were paid for their participation in the study [15 Swiss
Francs per hour of participation, approximately 98 Swiss
Francs (∼98 USD) for participation in all sessions
of the larger study] and were further paid in cash
any additional earnings from the incentive-compatible
behavioral measures completed (e.g., as part of the tasks
completed during the neuroimaging session).

Participants

For the current analyses, we started with 189 participants
who were recruited for the neuroimaging session (52%
female, mean age = 45 years, SD = 19) as part of the
larger original study. Ten of the 189 participants had to
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be excluded from all further analyses because they had
no or incomplete fMRI data (mainly because only one
paradigm was completed due to time constraints in the
MRI facility). Data from a further two participants had to
be excluded after (partial) data collection was complete
because of faulty equipment and another two participants
were excluded because they exhibited too much head
motion (see section on neuroimaging data preprocessing for
further details). After exclusions, we included an effective
sample of 175 individuals [93 (53.14%) females, mean
age = 44.88 years, SD = 19.02, age range = 16.15 to
81.38 years] in all our analyses. A detailed characterization
of the study sample with regards to demographic and
sociodemographic variables is presented in Fig. A1. For
further information, including power analyses, participant
recruitment and screening, see Appendix A.

Materials

To capture task-related neural activation differences, par-
ticipants completed two commonly used behavioral tasks
involving different aspects of uncertainty inside the MRI
scanner, namely the Balloon Analogue Risk Task (BART)
and the Delay Discounting Task (Fig. 1). We describe each
of these in more detail below.

BART

The BART has a long tradition in behavioral and
neuroimaging research aiming to elucidate (the neural basis
of) individual differences in risk taking (Lejuez et al.,
2002; Rao et al., 2008; Schonberg et al., 2012; Helfinstein
et al., 2014; Tisdall et al., 2020). Age effects have also
been studied with the BART, at the level of both behavior
(Mata et al., 2011; Rolison et al., 2012; Mamerow et al.,
2016) and the brain (Yu et al., 2016; Tannou et al.,
2021; Wang et al., 2022). The standard implementation
of the BART involves the virtual inflation of balloons via
sequential administration of pumps (i.e., button presses),
yet participants are not informed about explosion points
or inflation capacity. Instead, participants are required to
build up a mental representation of an average explosion
point through repeated choice and the experience of choice
outcomes. Importantly, successful pumps (inflations which
do not lead to an explosion) contribute to the accumulation
of a financial reward as each successful pump is worth
a certain amount of money. In contrast, if an inflation
causes the balloon to explode, the earnings accumulated
on the current trial are lost. Participants are free to decide
whether to continue to inflate the balloon (unless it explodes
beforehand) and when to stop pumping and cash out (save)

Fig. 1 Schematic of behavioral
tasks completed during the
neuroimaging session.
(a) Balloon Analogue Risk Task
(BART). Top row: example of
an explosion trial; bottom row:
example of a cash-out trial. The
frame around the second-to-last
balloon did not appear on
participants’ screens but was
added to this schematic to
highlight a pump decision
leading to an explosion (top row,
blue balloons) versus a cash-out
decision that saves the
accumulated earnings (bottom
row, red balloons). (b) Delay
Discounting Task
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their accumulated earnings on any given trial. That is, a
reward balloon trial ends when the balloon explodes or the
participant decides to cash out. Participants are typically
asked to earn as much money as possible completing
the BART.

In a standard implementation, the BART starts off as a
paradigm of ambiguity (because participants often have no
representation of risk at the start of the trial), and only via
repeated pumping, cash-out and explosion experiences can
participants start to build up a mental representation of the
“riskiness” of balloons with regards to approximate balloon
inflation capacities. To manipulate riskiness, the standard
implementation involves two types of reward balloon, with
one featuring a higher maximum capacity (and thus higher
average explosion point) than the other. Moreover, the
standard implementation also yields the same reward (per
pump) regardless of the level of risk (that is, regardless of
how many pumps have already been administered). In the
current study, we ran an adapted fMRI version of the BART,
which manipulated some of the main characteristics of the
standard implementation.

Specifically, we adopted a version featuring three balloon
types: two different types of reward balloon (red or
blue color, assignment of balloon type to color was
counterbalanced across participants) and control balloons
to account for motor-related activity (gray color; these
did not add to participants’ earnings). For both reward
and control balloons, explosion points were drawn from a
uniform distribution with a minimum of one and maximum
of 16 pumps (that is, the maximum capacity for reward
and control balloons was 16 pumps). In contrast to
standard implementations, the two types of reward balloon
differed with regards to the underlying reward function.
For one reward balloon type, accumulation of rewards for
successful sequential pumps was driven by the standard
linear payoff function, where each successful pump earns
the same amount (e.g., 0.05 Swiss Francs). The second
reward balloon type, in contrast, was characterized by
an exponential reward function; initial reward is low and
accumulates slowly, but as the balloon grows larger (i.e.,
the stakes rise), payment per pump increases exponentially.
Simulated payment structures for both balloons are shown
in Fig. A2.

Our motivation for the two types of reward balloon
was twofold. First, we wanted to capture the idea that
taking risks ”in the wild” may pay off in the long run,
but that also means repeated exposure to and acceptance of
losses. Exponential balloons simulate such a context: over
time, pumping will lead to increasing rewards and higher
accumulated total earnings, but in the short run require
participants to explore and accept many more explosions
compared with the linear balloon. A second motivation was
the way in which we programmed the reward function (see

Appendix A for formalization of linear and exponential
reward functions), whereby exponential balloons would
initially increase uncertainty because participants would
experience even more ambiguity due to the initial lower
reward per successful pump of exponential compared with
linear balloons. We thus hoped to present participants with
an experimental manipulation that would affect behavior
and thereby lead to insights about behavioral and neural
markers for the different reward conditions, and in particular
their convergence.

Feedback was presented at the end of each trial (that
is, at the point when the balloon exploded or participants
cashed out) in the form of earnings for the current
trial, as well as total earnings accumulated across all
completed trials. We used a fixation cross to visually
separate consecutive trials, and programmed intertrial
intervals between trial offset and trial onset (range =
1000 − 11000 ms, mean = 4340 ms) as well as
predetermined but randomly drawn interstimulus intervals
between stimulus offset and stimulus onset within a trial
(range = 1000 − 2000 ms, mean = 1500 ms). Performance
inside the scanner was self-paced and incentivized, and
earnings were paid out in cash at the end of the
fMRI session.

Delay discounting

Delay discounting (aka temporal discounting) paradigms
are commonly adopted to capture individual differences
in impulsive choice (Seaman et al., 2022; Ruggeri, 2022).
In a standard implementation, smaller-sooner rewards are
repeatedly pitched against larger-later rewards, with trials
varying with respect to the intervals of delay, reward
magnitudes, and percentage differences between smaller
and larger rewards. Thus, although the BART introduces
uncertainty concerning balloon capacity and explosion
points—the magnitude and probability of incurring rewards
and losses—the delay discounting task eliminates such
uncertainties. Instead, it introduces uncertainty about the
future itself, including one’s own future self. Will I
be around to receive the payment? Will the researchers
be around to pay me? Maybe inflation will drastically
change the value of the payment? These and other
future-oriented questions could drive individuals’ decisions
between smaller-sooner and larger-later options, making the
delay discounting task a candidate measure for decision-
making under a form of prospective, existential uncertainty.

In neuroimaging studies, the delay discounting task has
been used to isolate and characterize the neural basis of
impulsive choice (McClure et al., 2004) and also to probe
age-related differences therein (Samanez-Larkin et al.,
2011; van den Bos et al., 2014; Samanez-Larkin & Knutson,
2015; Eppinger et al., 2012). In this study we followed

862 Cognitive, Affective & Behavioral Neuroscience (2023) 23:857–877



previous analyses that examined the role of the presence
of immediately available rewards on both behavioral and
neural indices (McClure et al., 2004) but with an additional
focus on age effects (Eppinger et al., 2012).

To facilitate the desired analyses, participants completed
80 trials of the delay discounting task inside the MRI
scanner. The 80 choice sets (i.e., trade-offs) were based on
five unique delay-pairings, namely (a) today versus in two
weeks, (b) today versus in four weeks, (c) in two weeks
versus four weeks, (d) in two weeks versus six weeks,
and (e) in four weeks versus six weeks. The difference
between smaller and larger amounts in each choice set
mapped onto eight different percentage differences (1%,
3%, 5%, 10%, 15%, 25%, 35%, 50%). We thus created
16 trials based on eight possible percentage differences for
each of the five temporal pairings, amounting to 80 trials
in total. The rewards in the choice set were generated by
drawing 80 random numbers from a normal distribution
between five and 40, and each of these 80 random values
presented the smaller reward. Based on these initial values,
we constructed the 80 unique choice sets by adding the
required percentage differences (two trials for each of the
eight possible percentage differences, for each of the five
delays) to the randomly drawn numbers, which yielded the
larger-later option. All participants completed the same 80
trials, but in randomized order. We programmed intertrial
intervals between one and 11 seconds (mean = 4.32 s).

Performance was incentive compatible, and participants
were informed at the start of the paradigm that one
of their choices was to be drawn and paid out. If the
selected trial included a smaller-sooner choice that was
today, participants received the money at the end of the
scanner session. If the drawn trial included a choice to be
realized at any other time, we matched the waiting time and
participants received the money in cash via registered post.

Covariate measures

Behavioral measures of risk preference have been shown
to suffer from low convergence, at the level of both
behavior (Frey et al., 2017; Frey et al., 2021; Mamerow
et al., 2016) and the brain (Tisdall et al., 2020; Congdon
et al., 2013). Cognitive theory [e.g., confound hypothesis
(Olschewski et al., 2018; Mata et al., 2011)] points towards
the important role of the cognitive resources required for
the completion of behavioral measures, in particular when
these rely on integrative processing, learning, working
memory, or attention, to name but a few. As many of these
cognitive processes are subject to age-related differences,
the heterogeneous life span trajectories observed for risk
preference measures may in part be due to these confounds
rather than to changes in risk preference per se (Mata
et al., 2011; Best & Charness, 2015; Mamerow et al.,

2016). To account for the influence of factors that
have been posited to exert a confounding influence on
individual differences in decision-making under uncertainty
(Frey et al., 2021), we used data collected as part
of the laboratory session of the larger study (https://
osf.io/uj359) to control for (socio)demographic (gender,
education, income) and cognitive variables (numeracy,
working memory). Participants self-reported their gender,
educational attainment and monthly personal income,
and both numeracy (Weller et al., 2013) and working
memory (Unsworth et al., 2005) were captured via
computerized tasks.

Neuroimaging data acquisition

The neuroimaging data were collected on a Siemens 3T
MAGNETOM Prisma magnetic resonance imaging (MRI)
system with a 20-channel head coil at the University
Hospital Basel. For every participant, we first acquired a
structural T1-weighted scan using a magnetization-prepared
rapid gradient echo sequence (repetition time = 2500 ms,
echo time = 4.25 ms, inversion time = 1100 ms, flip
angle = 7◦, field of view = 256 mm × 256 mm, 192
slices, voxel dimensions = 1.0 mm isotropic). This was
followed by the acquisition of the task-related functional
runs via T2*-weighted blood-oxygen-level-dependent echo-
planar imaging sequences (repetition time = 2010 ms, echo
time = 30 ms, flip angle = 78◦, field of view = 192 mm
× 192 mm, voxel size = 3 mm × 3 mm × 3 mm, 33
transversal slices per volume, 15% distance factor).

Procedure

At the time of the neuroimaging session, all participants
were once again screened for any contraindications for
MRI-safety, and provided with MRI-safe clothing. MRI-
safe glasses were available to correct for impaired vision.
Both paradigms were programmed and presented using
Eprime 2.0 software, which we linked up to the scanner
trigger signal to provide input for the temporal alignment
of the onset of volume collection. The paradigms were
presented via a projection system onto a screen behind the
scanner, which participants inside the bore could see via a
mirror located on the head coil. We recorded individuals’
choices using a Celeritas response system attached to their
right hand. Prior to completing the two paradigms inside
the scanner, participants completed short sets of practice
trials to familiarize themselves with the visual and response
components of both tasks.

For the BART, individuals were not told the exact reward
functions underlying exponential reward balloons. Instead,
participants were instructed that successful pumping on
one balloon (color) would always yield the same amount,
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whereas the other would not, and participants would need to
figure out the reward structure of this balloon themselves for
optimal performance and achieving high earnings. Because
exponential balloons introduce more uncertainty, they thus
also afford more exploration. For the delay discounting
task, participants were explicitly informed about the random
selection of a trial and the realization of their choice on that
particular trial, including any potential delays in receiving
the reward.

To ensure (especially older) individuals were as comfort-
able as possible inside the scanner and for the duration of
the scan session (approximately 60 minutes), we allowed for
extra time at the start of the session to add cushioning and
padding to individuals’ placement on the MRI table.

Main analyses

We conducted a series of key analyses to test for age effects
on behavioral and neural indices of decision-making under
uncertainty. We describe each of these steps in detail below.
Unless stated otherwise, all main analyses were conducted
using R Studio (Core Team, 2021).

Behavioral analyses

BART For the BART, we concatenated the two functional
runs of the paradigm and analyzed individuals’ performance
across the two runs. As the BART was designed to
capture individual differences in risk preference (Lejuez
et al., 2002), typical performance indices of risk taking
comprise total number of pumps, average number of
pumps, average number of pumps on trials that did
not lead to an explosion (i.e., adjusted average number
of pumps), and number of explosions, but also include
task performance indices as captured via total earnings
or reaction times (Schmitz et al., 2016). Some of the
existing scoring alternatives for the BART are (highly)
correlated (Mamerow et al., 2016; Tisdall et al., 2020), even
though they may tap into slightly different behavioral (and
potentially cognitive) components. For our main analyses of
age effects, we computed the average adjusted number of
pumps as this was the main BART performance indicator
of interest and used it in all subsequent analyses. For
descriptive purposes, we computed additional indicators
(total number of pumps, number of trials, number of
explosions, total earnings, reaction time), and tested
the associations between different BART indices using
correlation analyses. To examine if the experimental
manipulation of reward function influenced behavior on the
BART, we first computed one index per reward balloon
type, and examined mean differences between indices for
the two reward balloon types via two-sided paired-samples
t-tests.

Delay discounting Given our focus on decision-making
under uncertainty, we primarily followed previous work
contrasting behavioral patterns for immediate and delayed
options (Eppinger et al., 2012). We computed participants’
proportion of smaller-sooner choices for trials with (a)
immediate versus delayed options, (b) varying delays, and
(c) varying reward differences, as well as (d) the respective
reaction times. Informed by previous work finding the
standard index of proportion of smaller-sooner choices to
be highly positively correlated with computational indices
of temporal discounting [e.g., discounting parameter k
(Seaman et al., 2018)], we concentrated our behavioral
analyses on model-free indices of delay discounting.
Mirroring our BART behavioral analyses, we computed
correlations between the different delay discounting metrics
to ascertain their similarity.

Covariates We computed one index for each of the two
measures of fluid cognitive capacity. For numeracy, we
computed the total number of correctly solved math
problems, yielding a score between zero (no problem solved
correctly) and eight (all problems solved correctly) for
each participant (Weller et al., 2013). To capture individual
differences in working memory from the automated
operation span, we computed the total number of correctly
recalled letters (recalled correctly and in the correct order)
(Unsworth et al., 2005), which resulted in a score between
zero (no letters recalled in the correct order) and 75 (all
letters recalled in the correct order) for every participant.

Neuroimaging data analyses

Prior to running any analyses, we excluded neuroimaging
data from 12 participants (of the recruited 189 MRI
participants) due to incomplete imaging data (n = 10)
or faulty equipment (n = 2). Below we describe analy-
ses of the neuroimaging data from the remaining 177
participants. We describe the standard statistical routines
implemented in SPM12 https://www.fil.ion.ucl.ac.uk/spm/
software/spm12/ for all preprocessing routines of the raw
functional neuroimaging (fMRI) data in the Appendix (A).
After preprocessing, we excluded a further two individuals
from the statistical analyses due to excessive head motion,
resulting in an effective sample of 175 participants included
in all subsequent analyses.

Individual-level contrast analyses for the BART The BART
is predicated on the assumption of being a more naturalistic
paradigm then, for example, described lotteries (Schonberg
et al., 2011; Rao et al., 2008; Lejuez et al., 2002; Mata
et al., 2011), thus should capture the neural processes
associated with pertinent risk-taking related features,
including anticipated (uncertain) rewards, losses, and their
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integration. The structure of the BART paradigm, however,
can lead to confounded processes, making it difficult to
clearly isolate these different mechanisms (Schonberg et al.,
2012; Schonberg et al., 2011); as pumping continues,
rewards accumulate, but so does the risk of explosion and
thus loss of the current reward. To deal with the paradigm’s
complex (and partly confounded) structure, we sought
to utilize different contrast analyses to tap into different
aspects of uncertainty. Specifically, to estimate voxel-wise
neural activation differences in the BART, we focused our
analyses on three contrast analyses because each of these
tapped into different aspects of uncertainty during decision
making. For details about the underlying general linear
model, see Appendix A.

Reward balloons versus control balloons A standard con-
trast of neural activation differences in the BART is that of
reward balloons versus control balloons (Schonberg et al.,
2012; Rao et al., 2008; Yu et al., 2016; Tisdall et al., 2020;
Wang et al., 2022). This contrast is thought to capture essen-
tial processes associated with decisions being made under
uncertainty, in particular because only the balloon display
phase is modeled, but not outcome or feedback phases. For
the current analysis, we contrasted average activation dif-
ferences (relative to baseline) of reward balloons with the
average activation differences associated with control bal-
loon trials (accounting for head motion). This contrast has
been shown to yield activation differences in subcortical
brain circuitry associated with the processing of anticipated
(uncertain) rewards and losses, as well as with cortical
integration regions, among others (Schonberg et al., 2012;
Wang et al., 2022). However, although standard, this con-
trast misses the rising tension associated with additional
pumping, because it treats every balloon equally, regardless
of where in the sequence of pumps this balloon occurred.

Parametric modulation of reward balloon versus parametric
modulation of control balloons To capture the rising
tension of additional pumping, we analyzed activation
differences for the parametric modulation of the (demeaned)
number of (pumps on) reward balloons and contrasted these
with the parametric modulation of the (demeaned) number
of (pumps on) control balloons. For this contrast, a value of
zero would code for the participant’s own average number
of pumps (across trials), positive values for a pump number
above average, and negative values for a pump number
below average. As the value of this regressor becomes
more positive, the participant is exceeding their own mean
pumping behavior, and is also approaching the explosion
point. By better capturing the rising tension associated with
each additional pump, this contrast is thought to better
capture the affective component of decision-making under
uncertainty. As such, the main effect for this contrast

might yield parametrically increased insula activation for
parametric pumps on reward relative to control balloons;
as pumping goes up, so does insula activation but given
the confounded nature of the paradigm (Schonberg et al.,
2011), reward-related nucleus accumbens activation might
also track increasing pumps.

Linear versus exponential reward balloons To assess
whether our experimental manipulation of reward functions
affected the neural correlates of decision-making under
uncertainty in the BART, we contrasted average activation
differences in linear reward balloons with average activa-
tion differences in exponential reward balloons. Based on
our motivation for introducing this comparison, we expected
higher average activation in nucleus accumbens and insula
for exponential compared with linear balloons, and poten-
tially also higher activation in brain regions supporting
learning and integrative processing.

Individual-level contrast analyses for the delay discounting
task To capture different facets of the temporal uncertainty
experienced in the delay discounting paradigm, we focused
our neuroimaging analyses of on two contrasts, one captur-
ing immediacy, and another capturing delay (Eppinger et al.,
2012; McClure et al., 2004). To avoid biasing the neural
contrast analysis with an imbalanced number of trials, we
removed all trials that offered a trade-off between a smaller
amount in four weeks versus a larger amount in six weeks
from the neural analyses (Samanez-Larkin et al., 2011). We
consequently (a) worked with 32 trials involving an immedi-
ate payment and 32 trials involving delayed payments only,
and (b) controlled the starting point of the delayed trials
by including only trials that offered the smaller option in
two weeks. Our contrast analyses thus focused primarily on
the temporal characteristics (Eppinger et al., 2012; McClure
et al., 2004; Samanez-Larkin et al., 2011) rather than on
localizing an integrated (subjective) value signal (Seaman
et al., 2018).

Immediacy Following previous work (e.g., (McClure et al.,
2004; Eppinger et al., 2012; Samanez-Larkin et al., 2011)),
we conceptualized uncertainty in the delay discounting task
as the differential processing of options with and without
an immediate payoff. Specifically, we sought to contrast
activation differences on trials with the sooner option being
paid out todaywith activation differences on trials for which
the sooner option started in two or in four weeks. Previous
work suggested neural differences in the processing of
immediate versus delayed rewards, including dissociation in
ventral striatal and medial prefrontal cortex (McClure et al.,
2004), furthermore pointing towards age-related differences
in striatal reward sensitivity as driving age-related decreases
in delay discounting (Eppinger et al., 2012).
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Delay Although uncertainty may pertain to the presence or
absence of immediate options, it can also be conceptualized
as the length of the delay between the sooner and the
later option. To investigate the neural markers of delay and
probe potential age-related differences therein, we specified
a second contrast between all trials that included a two-
week delay (regardless of the sooner time point) and trials
that involved a longer, four-week delay. If the temporal
distance between payments plays a role, we would expect
activation differences for these two trial types, potentially
involving higher activation in reward-related striatal regions
for shorter delays. To the extent that time horizons change
as a function of age (Carstensen, 2021), we may also expect
that longer delays lead to age-related differences in their
neural representations.

Volumes of interest Although AIM is relevant for all
aspects of the decision-making process, we were particu-
larly interested in the first two stages; the affective evalua-
tion of anticipated gains and losses, as well as integrative
mechanisms acting on these different signals in the process
of valuation. Thus, for our volume-of-interest (VOI) analy-
ses, we focused on brain circuitry proposed to be particu-
larly important for these initial processes, namely nucleus
accumbens (processing of anticipated rewards), anterior
insula (processing of anticipated losses), medial prefrontal
cortex (integration of signals into subjective value) and tha-
lamus (involved in reward learning). The VOI masks used
for the current analyses are presented in Fig. 2. We provide
a detailed description of mask construction in Appendix A.

Group-level contrast analyses Given our focus on age-
related effects on neural activation differences in a set
of a priori theoretically derived brain regions, we only
performed supplemental analyses to estimate and visual-
ize group-level (average) contrast activation differences.
Details concerning the group-level analyses and results
based on 175 participants are provided in Appendices A and
B, respectively.

Fig. 2 Volumes of interest used for extraction of activation differences
from neural contrast analyses. Coordinates are given in MNI space

Individual differences analyses

Bivariate associations Our initial analyses focused on
understanding bivariate associations between age, behav-
ioral and neural markers of decision-making under uncer-
tainty, as well as (socio)demographic and cognitive covari-
ates. For this purpose, we first computed a matrix of Pearson
correlation coefficients between all variables in our anal-
yses. Seven individuals did not disclose their personal
monthly income. In our analyses we used pairwise com-
plete observations to compute bivariate associations, and
consequently all analyses that included income were based
on 168 participants, whereas analyses that did not include
income were based on 175 participants. Second, we trans-
lated the correlation matrix into a network plot, visually
grouping variables in order to more easily identify the
extent to which different variables converge (i.e., form
clusters) or diverge based on their associations to the
other variables in the network. We used the R pack-
age qgraph (Epskamp et al., 2012) to generate the net-
work plot, specifying a Fruchterman Reingold algorithm
and a repulsion parameter of 0.7 to determine the rel-
ative spacing of variables in the network based on the
strength of their associations. To focus on the most pertinent
associations, we only included correlations with an absolute
correlation coefficient of rPearson ≥ 0.15 in the network plot.

Specification curve analysis Specification curve analy-
sis, SCA (Simonsohn et al., 2020) provides a method to
systematically assess and visualize, through exhaustive
combination, the (variance in) effect sizes for a given set
of predictor, outcome, and confounding variable(s). In this
study, we performed one SCA to examine the effect of age
on behavioral and neural indices of decision-making under
uncertainty while controlling for covariates. Our SCA thus
included one predictor (age), 24 outcome variables, and
five covariates (sex, education, income, numeracy, working
memory). The outcome variables comprised four indices of
performance (three from BART, one from delay discount-
ing), 12 neural indices from BART (three contrast analyses
with extraction from four VOIs each), and eight neural
indices from delay discounting (two contrast analyses
with four VOIs each). The total number of specifications
given the selected predictors, outcomes, and covariates was
derived through additive combinations of age, outcomes,
and covariates, with the restriction that a specification (i.e.,
a model) always contained age, one outcome, and one
unique combination of covariates. This approach resulted
in 24 × 25 = 768 unique specifications. Every specification
was estimated via ordinary least squares regression models
using the R package specr (Masur & Scharkow, 2020).
We report the median age effect across all specifications,
and also report the number of null, positive, and negative
age effects. For a more detailed discussion of the rationale
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behind SCA, see Appendix A. Due to missing income infor-
mation for seven participants, specifications that included
income were based on 168 participants, and specifications
that did not include income were based on 175 participants.

Permutation testing To ascertain the robustness of the over-
all set of effects, we followed a permutation-based approach
(Rohrer et al., 2017) to calculate the global significance of the
observed SCA.We estimatedwhether the empirically observed
set of effects deviated systematically from the to-be-expected
false-positive effects if there was, in fact, no systematic rela-
tionship between age and the outcomes of interest. For this
purpose, we first generated 500 shuffled data sets by randomly
sampling the age variable (with replacement), and in a

second step computed a SCA for each of the 500 new shuf-
fled data sets. We then counted how many of the shuffled
new data sets yielded a larger number of age effects than
observed in the original (unshuffled) data set, and divided
this number by the number of shuffled data sets (i.e., 500).

Results

Behavioral results for BART

In a first step, we computed summary indices of risk taking
and performance in the BART, separated by reward balloon
type (Fig. 3). We found no behavioral differences between
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linear and exponential reward balloons with regards to
indices of risk taking (all p > 0.05) (Table B1), suggesting
participants did not adjust their behavior as expected.
On average, participants earned 6.45 CHF in the BART,
but we did find a difference with regards to earnings
in the two reward balloon types, such that participants
earned significantly less money on exponential compared
to linear balloons (mean difference = 1.10 CHF, p <

0.001). The (direction of the) difference in earnings may be
due to insufficient exploration on the exponential balloon.
Specifically, pumping on exponential balloons pays off
in the long run (Fig. A2, right panel), but participants
also need to experience relatively more explosions (i.e.,
losses). Thus, exponential balloons expose participants to
increased uncertainty (at least initially, given the task
instructions and lack of information pertaining to the exact
reward structure of exponential balloons) and require more
exploration. Across participants, the (adjusted) average
number of pumps was much lower than what would
have been necessary to experience the steep incline in
payment per extra pump (Table B1), thus it is possible that
participants did not fully realize the potential of exponential
balloons. We visually explored age-related differences in
the summary indices of risk taking and performance in the
BART for the two reward balloon types (Fig. B1); the results
suggest that age did not have a marked effect on BART
behavioral indices. Furthermore, earnings across balloon

types were similar for younger (6.40 CHF), middle-aged
(6.45 CHF), and older participants (6.50 CHF).

Based on these results, we aggregated across reward
balloons and performed all subsequent analyses on indices
of risk taking on reward balloons. As expected, the adjusted
average number of pumps was positively correlated with
number of pumps (rPearson = 0.84), earnings (rPearson =
0.69) and number of explosions (rPearson = 0.44), highly
negatively correlated with number of trials (rPearson =
−0.73), but not correlated with reaction time on reward
balloons (rPearson = −0.1) (Fig. B2). Based on these results,
we computed an index for the adjusted average number of
pumps across the two balloon types for our main analyses.
However, due to the novelty of this BART implementation,
in particular the idea that the exponential balloon may
introduce even more uncertainty which may interact with
age, in addition we also entered adjusted average number of
pumps for the linear and the exponential balloon as separate
outcome variables into our main analyses.

Behavioral results for delay discounting

To understand general patterns of behavior for the delay
discounting task in our study, we computed various choice
proportions and reaction times (Fig. 4). Specifically, across
the sample, we looked at the average proportion of smaller-
sooner choices across all trials as well as for trials with
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particular properties, including immediacy (i.e., trials for
which the smaller option was delivered today), delay (i.e.,
for the five different delays), and reward difference (i.e.,
the eight magnitude differences between the smaller and
the larger option). For each of these trial types, we also
analyzed mean reaction times. The overall pattern for choice
proportion and reaction times mirrors previously published
findings (Eppinger et al., 2012) (Table B2), including a
higher mean proportion of sooner choices for trade-offs with
immediate options than for sets with delayed rewards only
(Fig. 4, panel a and b). Taking the smaller-sooner option
was also more frequent for smaller differences between the
sooner and the later options, dropping below 50% (i.e.,
higher proportion of delayed choices) for options with a
difference of at least 15% between the smaller and the
larger payment (Fig. 4, panel c). We did not see marked
reaction time differences as a function of immediacy, delay,
or reward difference (Fig. 4, panels c-e, Table B2 We
visually explored age-related differences for the various
summary indices of delay discounting (Fig. B3); the results
suggest that age did not have a marked effect on delay
discounting indices.

As multiple indices of choice can be used, we exam-
ined the correlation between the number and proportion
of smaller-sooner choices, proportion of smaller-sooner
choices when an immediate option is present, and overall
reaction time. As expected, the number and proportion of
smaller-sooner choices was highly correlated, yet we found
no evidence for strong associations between choice and
reaction time (Fig. B4). For our main analyses (and to match
up with our neuroimaging contrast analyses for delay dis-
counting), we used the proportion of immediate choices
(out of all trials with a today option) in all our subsequent
analyses probing age effects.

Bivariate associations between study variables

Based on the correlation matrix for associations between
study variables (Fig. B6), we generated a network plot
for all Pearson correlation coefficients with an absolute
magnitude of r ≥ 0.15. As shown in Fig. 5, a few
noteworthy patterns emerged. First, behavioral indices
between paradigms diverged (that is, were not or negatively
correlated and thus were located further away from each
other in the network plot) whereas behavioral indices
within paradigm (for the BART) converged (that is, were
positively correlated and thus formed clusters inhabiting
similar space in the network plot). Second, although
behavioral markers of pumping behavior in the BART
were sporadically associated with BART neural markers,
the proportion of immediate choices in delay discounting
was mainly uncorrelated with neural markers of delay

discounting contrasts. Third, BART neural indices extracted
from the average contrast of reward versus control balloons
and from the parametric modulation contrast showed strong
positive associations, suggesting that these two contrasts
capture similar neural processes. Interestingly, this did not
apply to BART indicators extracted from the contrast of
linear versus exponential reward balloons, which formed a
separate cluster on the opposite side of the plot. Fourth,
neural markers from delay discounting correlated strongly
within contrast, but were not associated across contrast.
This pattern suggests that neural markers associated with
immediacy and delay capture different processes.

Focusing on the main variable of interest, we observed
heterogeneous associations between age and behavioral
as well as neural markers of decision-making under
uncertainty. For example, age was associated with neural
indices extracted from the BART (primarily with indices
from the average reward vs. control balloons contrast and
the parametric risk modulation contrast). In contrast, age
was not associated (i.e., absolute correlation coefficient
lower than 0.15) with behavioral indices from either
paradigm, and was also not associated with neural markers
extracted from delay discounting contrast analyses. As
expected, age was negatively associated with indices
of cognitive capacity and positively associated with
income.

To ascertain the robustness of the observed associations
for age, in particular when controlling for covariates, we
adopted a SCA (Simonsohn et al., 2020), a multiverse
analytic approach to test associations between age and
markers of decision-making under uncertainty for various
combinations of covariates.

Specification curve analysis

A summary of the number of empirically observed age
effects is provided in Table 1. As shown in the top
panel of the specification curve (Fig. 6), we obtained
mainly null effects of age on varying operationalizations
of uncertainty, both for behavioral and neural markers (n
null effects = 624). This conclusion is also reflected in
the median age effect across all 768 unique specifications
being 0.008 (i.e., close to zero). Looking at particular sets
of specifications, we found no significant associations (at
p = 0.05) between age and delay discounting; older
adults did not take the immediate option less often than
younger participants, nor did we find evidence for neural
activation differences in the four regions of interest for
the immediacy contrast. We did see an effect of age on
Medial Prefrontal Cortex (MPFC) activation differences
for the delay contrast (median adjusted R2 = 0.03 for 32
significant specifications), suggesting that the difference
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Table 1 Summary of age
effects estimated using
specification curve analysis

Number of specifications 768 (100%)

Number of positive effects 58 (7.55%)

Number of negative effects 86 (11.20%)

Number of null effects 624 (81.25%)

Median age effect 0.008

Number of shuffled data sets with >144 significant specifications 7/500

Permutation test p value 0.014
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Fig. 6 Specification curve analysis. Top panel displays the standardized regression coefficients (95% CI) for age on varying outcomes of decision-making
under uncertainty, ordered by effect magnitude. Tick marks in the lower panels indicate the exact specifications. P = predictor. Colors indicate
significant (p≤ 0.05) positive (blue) and negative (orange) effects
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in MPFC activation for delays of two weeks versus four
weeks becomes smaller with increasing age. Interestingly,
we found no effect of age on nucleus accumbens activation
differences, suggestive of preserved reward sensitivity
during delay discounting (Eppinger et al., 2012). The latter
results may also explain the absence of any behavioral
effects of age observed in this study and in previous meta-
analytic work (Seaman et al., 2022).

The results for age effects on BART indices were more
heterogeneous for both behavioral and neural markers. First,
although we observed positive age effects for four (12.5%)
unique specifications that included the adjusted number of
pumps for exponential balloons as an outcome variable
(Fig. 6), we found no robust associations between age and
behavioral BART indices at the level of bivariate associa-
tions (Fig. 5). This divergence of results suggests that the
specificity and robustness of this association remains to be
clarified. Second, we observed some convergence of age
effects on neural indices extracted from the BART. Specif-
ically, age was negatively associated with insula activation
extracted from the contrast of reward and control balloons
(median adjusted R2 = 0.02 for eight significant specifica-
tions) and the contrast between parametric modulation of
risk in reward versus control balloons (median adjusted R2

= 0.07 for 24 significant specifications). Furthermore, age
correlated positively with MPFC activation extracted from
the contrast of reward and control balloons (median adjusted
R2 = 0.05 for 22 significant specifications) and MPFC acti-
vation extracted from the contrast of parametric modulation
of risk in reward versus control balloons (median adjusted
R2 = 0.12 for 32 significant specifications). Age was also
found to be negatively associated with nucleus accumbens
activation differences extracted from the reward versus con-
trol balloons contrast (median adjusted R2 = 0.01 for six
significant specifications), and positively associated with
MPFC activation extracted from the contrast of linear ver-
sus exponential balloons (median adjusted R2 = 0.01 for
16 significant specifications). Regardless of contrast, we
found no associations between age and thalamus activation
differences.

Overall, the SCA approach allowed us to systematically
and exhaustively analyze age effects on varying opera-
tionalizations of decision-making under uncertainty, not
only confirming the bivariate analyses, but also yielding
a clearer, visually more accessible idea of the conver-
gence and divergence of age effects given different outcome
variables and (combinations of) covariates. In summary,
operationalization—that is, how we assess individual dif-
ferences in uncertainty-based decisions—seems to play a
potentially larger role than the inclusion or exclusion of
different covariates.

Permutation testing

To assess the global significance of the SCA, we adopted
a permutation-based approach to generate a distribution of
false-positive results under the null hypothesis (Fig. B7).
Out of 500 shuffled data sets (that is, data sets for which
we randomly sampled the age variable with replacement),
seven yielded a higher number of significant effects than
observed in the unshuffled data (number of significant
effects in the unshuffled data = 144). In other words, if there
were in fact no systematic association between age and the
outcome variables, the probability of observing the global
set of significant specifications as observed here would be
1.4% (Table 1).

Discussion

In this study we aimed to systematically examine age
effects on different behavioral and neural indices of
decision-making under uncertainty in a large sample of
participants between 16 and 81 years of age (N = 175) while
controlling for theoretically relevant covariates, including
gender, education, income, and cognitive ability. We used
two common decision-making tasks, the BART and a
delay discounting task, as these are thought to capture
decisions under uncertainty in the context of risk and trading
off temporal options, respectively. In addition to adopting
different tasks, we also computed different neuroimaging
contrasts as these allowed us to examine whether age
differentially affects the contrast-specific neural processes
(e.g., immediacy vs. delay of temporal options). In what
follows, we summarize our results in the context of previous
findings, discuss pertinent implications of our findings, and
highlight some limitations while providing an outlook on
how to advance our understanding of the effects of age on
dealing with uncertainty.

Summary of results and implications

Overall, we found no evidence for wide-ranging age effects
on decision-making under uncertainty. First, with respect
to behavior, we found no robust age effects on risk-taking
behavior in the BART, nor did we find evidence for age
impacting trade-offs between present and future rewards.
Thus, although some have suggested behavioral differences
between younger and older adults (Wilson et al., 2021;
Henninger et al., 2010; Eppinger et al., 2012), our results are
in line with studies reporting no effect of age on either the
BART or the delay discounting task (Yu et al., 2016; Seaman
et al., 2022). Second, with respect to neural correlates, our
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results were more heterogeneous, mainly as a function of
the two different paradigms.

For the BART, we observed negative effects of age
on insula activation for both the average and parametric
activation contrast, and both of these contrasts also yielded
positive effects of age on activation differences in medial
prefrontal cortex. Concerning the former, the observed age-
related reductions in anterior insula activation are in line
with previous findings (Samanez-Larkin & Knutson, 2015),
suggesting that the dampened neural coding of anticipated
(that is, uncertain) losses presents a key mechanism for
explaining why older adults may display more risk-taking
behavior than younger adults (Cavanagh et al., 2012).
However, as we found no effect of age on behavior, and
behavior was overall not related to neural markers, the
observed age effects on anterior insula activation appear to
be inconsequential for behavior in the BART. Interestingly,
the observed positive effect of age on medial prefrontal
cortex activation corroborates our previous finding of
decreased deactivation in older relative to younger adults in
the BART (Yu et al., 2016). Overall, the observed age effects
on medial prefrontal cortex activation in the BART are in
line with previous results, suggestive of age differences
in the integration of core components such as anticipated
rewards and losses into a subjective value signal (Samanez-
Larkin et al., 2011; Samanez-Larkin & Knutson, 2015).
In contrast, recent work using simple decision scenarios
(e.g., delay discounting) found no effect of age on neural
subjective value (Seaman et al., 2018), yet the presence
of more complex, to-be-integrated decision components in
paradigms like the BART may account for the different
results (Olschewski et al., 2018; Mata et al., 2011; Seaman
et al., 2018).

Concerning contrast selection, we only found negative
effects of age on nucleus accumbens activation for the
average but not the parametric contrast analysis of reward
versus control balloons. Mechanistically, this pattern of age
effects on nucleus accumbens activation has been suggested
to be indicative of older adults experiencing more difficulty
with the representation of a clear reward prediction error
signal due to suboptimal reward learning (Samanez-Larkin
& Knutson, 2015). This explanation may, in fact, account
for the divergence of age effects on nucleus accumbens
activation as a function of contrast, because the parametric
contrast aims to identify regions which track progress
over time, in particular the escalating risk associated
with additional pumps, yet this should in principle be
uncorrelated to reward prediction error. However, as this
is the first time that age effects have been systematically
studied on different BART contrast analyses, the robustness
of this finding needs to be examined. Furthermore, we found
that age was negatively associated with medial prefrontal
cortex activation for a novel contrast of linear versus

exponential reward balloons, a pattern which yet again
points towards age-related differences in the computation
of an integrated value signal (Samanez-Larkin & Knutson,
2015). We should note that we did not find robust
behavioral differences between the two reward balloons,
thus it is currently unclear to what extent the observed
age effect in medial prefrontal cortex for this particular
contrast can illuminate age differences in decision-making
under uncertainty.

For the delay discounting paradigm, we only observed
an effect of age on medial prefrontal cortex activation
for shorter relative to longer delays, but did not find the
previously reported age effects on ventral striatal activation
differences observed for immediate versus delayed options
(Eppinger et al., 2012; Samanez-Larkin et al., 2011). Thus,
our results are suggestive of preserved reward sensitivity
when trading off smaller-sooner versus larger-later options.
Similar results were reported by Seaman and colleagues
(Seaman et al., 2018), who directly targeted age differences
in the neural representation of subjective value in varying
discounting paradigms, also finding no age differences.
More generally, the lack of age differences in the delay
discounting paradigm poses questions for the mechanistic
role that changing time horizons have been proposed to play
across the adult life span (Carstensen, 2021); we return to
this point in discussing the limitations of our work.

In the aggregate, our results suggest some age differences
in the processing of anticipated gains and losses in the
context of the BART but these effects do not generalize
to the delay discounting task, thus limiting support for the
idea of general age-related differences in the processing
of uncertainty.

Our results also have some important methodological
implications. First, our results suggest that the choice of
task matters for identifying age differences in the neural
basis of decision-making under uncertainty. We considered
only two tasks but a research agenda that aims to broadly
cover the links between aging and uncertainty would require
examining many more different measures that have so far
coexisted in the literature but only rarely been compared
directly in within-subject designs. We hope to see future
work covering multiple tasks and task variations that can
provide a better understanding of the task characteristics,
if any, that elicit age differences when dealing with
uncertainty. Second, our results suggest that there is some,
but limited, contribution of the choice of neural contrasts
(e.g., average vs. parametric) in identifying age differences
in the neural basis of decisions under uncertainty. This is
important because it suggests that heterogeneous results
found in the past or future literature may not principally
derive exclusively from the choice of contrast. That said, it
would be interesting to assess to what extent this conclusion
is specific to the tasks we considered or whether this is
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a more general characteristic of the decision paradigms
currently used in the literature. Third, we found that the
inclusion of covariates in our analyses, such as measures of
cognitive ability, did not play a major role in determining
individual and age differences observed, which is against
the idea that cognitive ability is a major determinant of
age differences in tasks, such as the BART, that rely on
updating beliefs over time (Mata et al., 2011). Future work
needs to determine if this hypothesis needs to be rejected
completely, or, alternatively, what the boundary conditions
are for cognitive task demands to exact an influence on age
effects on decision-making under uncertainty. Furthermore,
although our paradigms were incentive-compatible and
paid out real financial rewards, both previous research
(Horn & Freund, 2022) and our results for specifications
that included income suggest that certain methodological
choices—like the incentive structure or controlling for
individuals’ ability to “buffer” financial losses—may not
be as potent a determinant of decision-making under
uncertainty as previously assumed (Camerer & Hogarth,
1999).

Limitations and future directions

There are five main limitations to our work that we should
point out. First, we should note limitations concerning
our choice of tasks for investigating age differences in
dealing with uncertainty. Our work focused on two very
different tasks that were not specifically designed to
isolate specific mechanisms of uncertainty in a comparable
fashion across the two. Further, although some have praised
measures, like the BART, that simulate the thrill and
engagement of real-world risk taking, others have criticized
the difficulties in isolating specific cognitive and neural
processes in such paradigms (Schonberg et al., 2011) and
non-representative task design (Steiner & Frey, 2021). More
broadly, recent work has pointed out some limitations of
behavioral paradigms concerning, for example, their test-
retest reliability (Frey et al., 2017) that pose a challenge
for individual and age differences research. Concerning
the delay discounting task, we focused on a small set of
magnitudes and time intervals, which can also limit the
conclusions for age differences that perhaps are expressed
more clearly at longer time intervals (Seaman et al., 2022;
Leverett & Garza, 2022). Moreover, while we focused our
analyses on age effects observed via temporal contrasts—
as opposed to, for example, on tracking subjective value
across the brain (Seaman et al., 2018)—examining the
neural conjunction of temporal contrasts and subjective
value can shed more light on the common and unique
computations captured by the different analytical methods.
Future work could benefit from expanding the battery
of measures as well as from conducting more thorough

measure development for the purpose of neuroimaging
research in order to adopt measures that can isolate
particular processes and that have the desired psychometric
properties.

Second, we introduced a novel experimental manipula-
tion concerning the use of exponential and linear reward
functions in the BART. The rationale for investigating dif-
ferent reward functions was that this could allow better dis-
crimination of the role of exploration and varying values of
uncertainty. Although we did not collect feedback from par-
ticipants about whether they detected a difference between
balloon types, we did not observe noticeable behavioral
or neural differences between the two balloon types, sug-
gesting that participants may not have perceived them as
sufficiently different or did not have enough opportunity
to learn about these differences in our study. We believe
that future studies should nevertheless consider more exten-
sive testing of different formulations of such principles, for
example, in representative task designs that more strongly
vary learning opportunities or measure participants’ beliefs
over time (Steiner & Frey, 2021) to help uncover individual
and age differences in dealing with uncertainty.

Third, recent work has called for increased attention
to issues of sample size and power in neuroimaging
studies (Marek et al., 2022). We have aimed to address
some of these concerns by targeting neural regions of
interest derived from the aging literature and adopting
a multiverse approach to provide protection concerning
spurious findings. In the future, however, similar work may
profit from using larger samples stemming from extant
panels (e.g., Dunedin Study, Lifebrain) or establishing
research consortia that can more easily target larger samples
for discovery purposes of neural markers of age differences
in decision-making under uncertainty.

Fourth, we focused on a limited set of functional
activations from a small set of brain regions and thus our
results cannot provide a full account of the computational
role of these regions or their role in a larger network of
regions. Past work suggests that functional and structural
connectivity between key neural regions can account for
some individual (age) differences in decision making
(Samanez-Larkin et al., 2011; van den Bos et al., 2014;
Kohno et al., 2017; Leong et al., 2016) and future
efforts could use some of the data reported here or
adopt similar approaches to assess the role of brain
connectivity in accounting for age differences in decisions
under uncertainty. However, our decision to focus a
priori on a small set of well-described regions with
empirically demonstrated relevance for age effects on
decision making (Samanez-Larkin & Knutson, 2015)
was motivated by the desire to follow a principled
approach to the selection of outcome variables; less
principled approaches (Marek et al., 2022) have often
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resulted in the (unsurprising) convergence of effect sizes
around zero, thereby masking and, potentially, undermining
the contribution of neuroimaging approaches to our
understanding of the role of biological markers to complex
phenotypes.

Fifth, and finally, we focused our efforts on under-
standing the relatively well-controlled domain of the lab-
oratory but cannot provide insight into the consequences
of age differences in the neural basis of decision-making
under uncertainty for real-world, everyday decisions. Future
efforts could consider adopting a more ambitious strategy
that integrates laboratory testing with a battery of measures
covering more consequential decisions and real-world out-
comes, such as financial status or health choices (Li et al.,
2015); only then will we be able to make a contribution
to determining the role of neural aging in how people treat
uncertain gains and losses “in the wild”.

Conclusion

We have examined adult age differences in decisions under
risk using two behavioral tasks. Our results provide little
evidence for behavioral differences but point out a few age-
related differences in the processing of anticipated gains
and losses that may be associated with uncertainty but
are evident in only one of the tasks. As a consequence,
our work suggests the need for a larger research agenda
that considers how different forms of uncertainty and
associated task characteristics determine age differences in
decision making.
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