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Abstract

Uncertainty permeates decisions from the trivial to the profound. Integrating brain and behavioral evidence, we discuss how
probabilistic (varied outcomes) and temporal (delayed outcomes) uncertainty differ across age and individuals; how critical
tests adjudicate between theories of uncertainty (prospect theory and fuzzy-trace theory); and how these mechanisms might
be represented in the brain. The same categorical gist representations of gains and losses account for choices and eye-tracking
data in both value-allocation (add money to gambles) and risky-choice tasks, disconfirming prospect theory and confirming
predictions of fuzzy-trace theory. The analysis is extended to delay discounting and disambiguated choices, explaining hidden-
zero effects that similarly turn on categorical distinctions between some gain and no gain, certain gain and uncertain gain, gain
and loss, and now and later. Bold activation implicates dorsolateral prefrontal and posterior parietal cortices in gist strategies
that are not just one tool in a grab-bag of cognitive options but rather are general strategies that systematically predict behaviors
across many different tasks involving probabilistic and temporal uncertainty. High valuation (e.g., ventral striatum; ventromedial
prefrontal cortex) and low executive control (e.g., lateral prefrontal cortex) contribute to risky and impatient choices, especially
in youth. However, valuation in ventral striatum supports reward-maximizing and gist strategies in adulthood. Indeed, processing
becomes less “rational” in the sense of maximizing gains and more noncompensatory (eye movements indicate fewer tradeoffs)
as development progresses from adolescence to adulthood, as predicted. Implications for theoretically predicted “public-health
paradoxes” are discussed, including gist versus verbatim thinking in drug experimentation and addiction.

Keywords Uncertainty - Temporal discounting - Ambiguity - Risk - Adolescent brain - Decision neuroscience

“Our new constitution is now established, and has
an appearance that promises permanency; but in this

restaurant) to the profound (whether voting for one candidate
rather than another will increase the likelihood that the U.S.

world nothing can be said to be certain, except death
and taxes.” Benjamin Franklin, November 13, 1789

Uncertainty permeates our lives and influences decisions
ranging from the trivial (whether to order seafood in a steak
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constitution endures). Uncertainty comes in different varieties,
and we focus on two of them: uncertainty about outcomes
because they are probabilistic (i.e., outcomes fluctuate), and
uncertainty about outcomes because they occur in the future.
We discuss how tolerance for uncertainty of these two types
varies across individuals and across the lifespan; how two
types of critical tests adjudicate between major theories of
decision making under uncertainty (prospect theory and
fuzzy-trace theory); and how different mechanisms underly-
ing decision-making might be represented in the brain.
Implications for risk reduction and addiction are also briefly
discussed, including what we call a “public health paradox™”
(Reyna and Farley, 2006). That is, precise tradeoffs of risk and
reward often promote risk-taking (when probability of harm is
low and magnitude of reward is high for single acts, a com-
mon scenario in public health), but healthy adults typically
avoid such tradeoffs. This theoretically predicted public health
paradox applies to trying opioids, HIV-AIDS transmission from
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unprotected sex, driving without a seat belt, and not taking risk-
reduction measures during the COVID-19 pandemic, among
other behaviors (Table 1). For example, among individuals who
experimented with opioids for nonmedical use, only approxi-
mately 7% progressed to addiction (Boyd et al., 2009; McCabe
et al., 2007). Accordingly, the probability of becoming addicted
from trying opioids is relatively low (although greater at earlier
onset; McCabe et al., 2007) while the pleasure is high, paradoxi-
cally favoring a decision to try opioids from a rational choice (risk-
reward tradeoff) perspective. However, healthy adults typically
do not engage in this trade-off thinking but apply gist principles
which protects them from unlikely but substantial harm. Thus,
the “right” choice from a rational choice perspective can be the
“wrong” choice from a policy or psychological perspective, as
delineated in fuzzy-trace theory, a position supported by the sur-
prising (but predicted) direction of certain developmental differ-
ences and by health and medical outcomes, as explained below.

Other behavioral theories take the opposite perspective,
that magnitudes of risk and reward should determine risk-
reduction behavior (e.g., for a review, see Reyna, Bronia-
towski, and Edelson, 2021b). Fuzzy-trace theory does not
suggest that magnitudes are irrelevant to decision making
(see Pirrone et al., 2022), but they are only one input and
what matters more is the qualitative bottom-line gist that
integrates inputs. In particular, the focus of this article is
evidence for mental representations of the simplest gist that
governs decision-making in brain and behavior alongside
precise inputs: categorical representations.

Background: Varieties of uncertainty

The first type of uncertainty—probabilistic—is tapped
when people decide between options that vary in risk, such
as choosing between receiving $1,000 with certainty or
a 50% chance of $2,000 (otherwise nothing). The second
type of uncertainty—temporal—is tapped when people
decide between options that vary in time, such as choosing
between receiving $1,000 now or $2,000 in a year. A third
type of uncertainty undergirds the first two types: ambiguity.
Although experimenters often present choices with known
probabilities (e.g., fully specified lotteries), probabilities in the
real world are typically suffused with uncertainty (Levy and
Schiller, 2021). For example, despite an “infodemic” of read-
ily accessible information about COVID-19 (World Health
Organization, 2020), individuals do not know the probability
that they will die from COVID-19 if they choose to not wear
amask (e.g., Sinclair et al., 2021). Instead, these probabilities
are fuzzy, which matters for decision making, and theories
of brain and behavior must take this fuzziness into account.
Decisions that involve temporal delays also are uncertain.
The fuzzy ambiguity of time is illustrated in maps that fore-
cast the potential paths of a hurricane (with varying success;

Padilla et al., 2020). As shown in Fig. 1, the current position
of a hurricane is the point of origin, but as simulated time
passes, the possible paths of the hurricane diverge. As these
maps illustrate, time itself introduces uncertainty, because
the future can play out in different ways. Similarly, the prom-
ised $2,000 prize mentioned above can fail to materialize in
a year, not just because payers might have nefarious inten-
tions (i.e., they are untrustworthy), but because events inter-
vene (e.g., bankruptcy of the payer). Rather than converging
on a preordained future, uncertainty grows with distance
from the present, particularly when time periods span devel-
opmental stages, such as childhood to adulthood, because
the self and the self’s preferences change (Bartels and Rips,
2010; Hershfield, 2011; Reyna and Farley, 2006).

Hence, because of inherent ambiguity, a wise decision-maker
should embrace vagueness in mental representations of proba-
bilistic or temporal choices, such as those described above. Out-
comes might not turn out precisely on the nose of predictions,
probabilities fluctuate as conditions change, and changing con-
texts are not simply sources of bias, but, rather, they allow the
meaning of information about probabilities and outcomes to be
interpreted and revised (see discussion of the contextual relativ-
ity of gist in Reyna, Brainerd et al., 2021a). Moreover, in our
approach, useful mental representations are not vague simply to
cut mental corners, but because they distill what matters, which
often is the qualitative even categorical (i.e., the simplest) gist
of decision options. As fuzzy-trace theory outlines descriptively
and prescriptively, adaptive decision making emphasizes getting
the big picture of decision options (integrating facts and details
into a meaningful bottom-line whole) and applying core values
to that mental representation of the big picture: those values that
are simple, fundamental, and enduring.

Preferences for risk and time

Reasons beyond ambiguity also support advantages of using
fuzzy “gist” representations in decision making, including that
memory for gist endures longer than verbatim memory for details,
an important consideration evolutionarily before the invention of
writing (Reyna and Mills, 2007). Gist processing is generally
easier under stress, high arousal, or disruptive interference com-
pared with verbatim processing (Rivers et al., 2008; Venkatra-
man et al., 2011). Most important, gist representations capture
essential meaning rather than arbitrary details (the latter are cap-
tured in verbatim representations), scaffolding decision-making
that consequently reflects an appreciation of the meaning of facts.
Preferences involving time and probability derive from mental
representations of meaning grounded in different backgrounds and
experiences (Croote et al., 2020; Edelson and Reyna, 2021). This
approach motivates such questions as what does “waiting” or “a
long time” or “‘rewards” mean in a given cultural context, and how
do different scenarios translate into these meanings?

@ Springer
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5 Ih cone contains the probable path of the storm center but does not show =
e size of the storm. Hazardous conditions can occur outside of the cone.

Photo by Unknown Author is licensed under CC BY

Fig. 1 Tracking forecast for Hurricane Sandy from the U.S. National
Oceanic and Atmospheric Administration depicting growing uncer-
tainty over time in the potential path of the hurricane, generated by
mathematical models (see also Padilla et al., 2020). Because neither
the size nor severity of the hurricane is depicted, this map can only be

Despite the fluidity of meaning in context, once decision
scenarios are translated, core values can be remarkably simi-
lar across people. Thinking about probabilistic and temporal
decisions in their starkest “gisty” terms, all else equal, most
people prefer receiving certain rather than uncertain positive
outcomes. They prefer rewards now and for sure, not later
and maybe. Psychologically, these are categorical distinc-
tions. However, these preferences are traditionally assessed
by using tasks in which continuous trading off of the magni-
tude of outcomes against either time or probability is assumed
theoretically (Glimcher, 2022). For example, decision-makers
are described as discounting later, larger rewards relative to
sooner, smaller rewards, yielding a discount rate. This is tradi-
tionally a smooth function over outcome magnitudes and time
intervals. Correspondingly, risk aversion is characterized by
using continuous nonlinear functions (e.g., negatively acceler-
ated subjective valuation of objective outcome magnitudes) in
traditional expectancy value theories, such as expected util-
ity or prospect theory (Kahneman and Tversky, 1979; Trepel
et al., 2005). These functions can be flatter due to emotion or
other factors (Rottenstreich and Hsee, 2001; but see Levine,
2019), but decision dimensions still trade off and discounting
or risk aversion are generally treated as a matter of degree
(quantitative differences) not of kind (qualitative differences).

However, in both probabilistic and temporal decisions,
there are psychological discontinuities at zero risk and zero
delay, referred to as the certainty effect and present bias

used to determine whether one is at-risk (and therefore need to evacu-
ate) or not, consistent with categorical gist. This image is in the public
domain because it contains materials that originally came from the U.S.
National Oceanic and Atmospheric Administration, taken or made as
part of an employee's official duties (forecast for October 28, 2012)

(immediacy effect), respectively (as well as at other categori-
cal boundaries; Kahneman and Tversky, 1979; Laibson and
Maxted, 2022). Receiving a reward now is psychologically
distinct from receiving it very, very soon, although the literal
difference between now and very, very soon (what we call
“verbatim” differences) could be miniscule. An “instanta-
neous-gratification agent” is inside all of us. Analogously,
“soon” can occur over a fuzzy horizon of minutes to days,
but it is psychologically distinct from “later” (e.g., McClure
et al., 2007; Augenblick and Rabin, 2019). Figure 2 illustrates
these categorical discontinuities between no risk and some
risk and between no delay and some delay, as well as continu-
ous changes in probabilistic and temporal dimensions.
According to fuzzy-trace theory, people encode these
categorical distinctions (categorical gist), more fine-grained
ordinal distinctions, and continuous or precise distinctions
in parallel (cf. DeKay, Rubinchik et al., 2022), but they rely
on the simplest distinctions that allow them to accomplish a
task (e.g., the task of making a choice between two options
or of providing a monetary value that they are willing to pay
for an option; Reyna, 2012). Naturally, making a choice often
requires lower resolution in mental representations than pro-
viding an exact monetary value, a principle called task cali-
bration in fuzzy-trace theory that explains classic preference
reversals (Corbin et al., 2015; Fischer and Hawkins, 1993).
Fuzzy-trace theory does not make ad hoc assumptions
about differences in attention or weighting, although it is

@ Springer
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Fig.2 Uncertainty resulting from (increasing) delay and (growing) variability of outcomes or risk

compatible with such claims. Instead, it explains why those
phenomena are observed by using underlying psychological
and neural mechanisms that have been independently veri-
fied. For instance, the theory explains that distinguishing
between no risk and some risk (or low risk and high risk) is
not arbitrary but must reflect the qualitative meaning of this
distinction embedded in understanding what differences mat-
ter, regardless of their objective size. A seemingly tiny 1%
prevalence of COVID-19 in the early stages of the pandemic
was “high” (Reyna, Broniatowski et al. 2021b). The theory
explains known effects that other theories describe, such as
certainty effects and present bias effect, but as we discuss in
the next section, it predicts effects that disconfirm those theo-
ries, too. In this connection, we focus on two tasks that pro-
vide critical tests of prospect theory and fuzzy-trace theory.

Critical tests of theories: Truncation
and value allocation

Truncation in framing tasks

In 1991, Reyna and Brainerd introduced a manipulation
with three variations, all presenting choices, such as those

@ Springer

described above with a sure option versus a gamble, as
tests of prospect theory and fuzzy-trace theory (for reviews
of independent replications of predicted effects, see Reyna,
2012, and Kiihberger and Tanner, 2010). One variation is
just the standard version of these choices with fully speci-
fied gambles (50% chance of $2,000 and 50% chance of
$0). The prospect theory explanation of preference for the
sure option when options are phrased as gains—switch-
ing to preference for the gamble when options are phrased
as losses—turns on posited nonlinear perceptions of out-
comes and probabilities: For example, a 50% chance of
a discounted $2,000 is less than a solid $1,000 for sure,
favoring the sure option for gains (greater gains are bet-
ter) and the gamble for losses (lower losses are better)
(Tversky and Kahneman, 1986; Wakker, 2010). Fuzzy-
trace theory, in contrast, predicts that multiple literal
(verbatim) and gist representations are extracted and the
simplest categorical gist determines choices because of
(a) a gist-processing preference observed and predicted in
many cognitive tasks, and (b) both ordinal gist (less money
with higher chance ~ more money with lower chance) and
literal expected value are indeterminate (expected value:
$1,000 x 1.0 = 0.5 x $2,000 + 0.5 x $0).
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Therefore, in another variation designed to emphasize the
categorical gist representation, the gamble was truncated by
deleting the part concerning a 50% chance of $2,000 from
the body of the problem. That deleted information was given
to decision-makers as background information that preceded
the options. Thus, for gains, the decision boiled down to a
categorical contrast between gaining something for sure ver-
sus possibly gaining nothing, which accentuated preference
for the sure option for gains. For losses, the same manipula-
tion of deleting the nonzero part of the gamble accentuated
preference for the gamble. Thus, this manipulation induced
a categorical gist perspective on the decision that produced
classic gain-loss framing effects, indeed, exaggerated them,
consistent with the explanation that categorical gist causes
framing effects. (Similar effects were obtained by substi-
tuting the qualitative categories “some” and “none” for all
numerical outcomes in decision problems, another test of
the categorical gist hypothesis.)

Conversely, in yet another variation designed to empha-
size verbatim representations, deleting the part of the gam-
ble concerning a 50% chance of gaining or losing nothing
eliminated framing effects, because there was no longer a
categorical contrast between options. Note that prospect
theory predicts identical framing effects when the zero part
is deleted, because that part multiplies out to be zero in the
theorys; all of the action in the theory involves nonlinear per-
ceptions of the nonzero part of the gamble (Kiihberger and
Tanner, 2010). In sum, prospect theory’s predictions have
been disconfirmed and fuzzy-trace theory’s predictions have
been confirmed using deletion (aka truncation) manipula-
tions, the latter through assuming simple representations of
something versus nothing and preferences that respect sim-
ple differences in affective valence (something good is better
than nothing and something bad is worse than nothing).

Other simplifying approaches have been offered for these
tasks, but their motivation is often empirical rather than
mechanism-driven; they make predictions that have been
repeatedly falsified; and the claims are different from those
of fuzzy-trace theory (e.g., simple-minded mental shortcuts
due to working capacity limitations). Specifically, we do
not discuss the priority heuristic (Brandstitter et al., 2006)
and other accounts that involve simplifying representa-
tions, because data from the tasks that we review disconfirm
those explanations (Venkatraman et al., 2014). However, it
is possible that these accounts could be integrated using
fuzzy-trace theory’s parallel cognitive architecture. For
example, coding efficiency in the brain (Glimcher, 2022)
is a simplification process that is likely to influence ordinal
gist representations because they are inherently compara-
tive (i.e., less-more; Broniatowski and Reyna, 2018). In this
connection, we note that fuzzy-trace theory reconciles prior
contradictory findings (e.g., Glockner and Herbold, 2011;
Johnson et al., 2008) in that it predicts that people engage

in noncompensatory and compensatory automatic processes
roughly simultaneously but rely more on the former.
Notably, “simplification” strategies differ in fuzzy-trace
theory (they are meaningful and a cognitively advanced
type of processing) compared with other simplification
approaches (e.g., impulsive or lazy processing, Pennycook
and Rand, 2019, which are separate parameters in fuzzy-
trace theory); also see Gaissmaier and Schooler (2008);
Raoelison, Thompson, and De Neys (2020). Strategy selec-
tion, or more precisely strategy emphasis, is driven by pre-
dicted individual and developmental differences (Bronia-
towski and Reyna, 2018; Reyna and Brainerd, 2011; Reyna
and Brust-Renck, 2020). The stimulus is the source of both
verbatim and gist representations and they both influence
responses, but they operate in parallel as demonstrated in
double-dissociation effects and other strong model tests that
go beyond automatic-controlled, reason-emotion, or bad-
good reasoning dichotomies (e.g., Keren and Schul, 2009;
Li et al., 2017; Melnikoft and Bargh, 2018). Thus, fuzzy-
trace theory and Sloman’s (1996) dual-processes model are
precursors of current parallel processing approaches to cog-
nitive biases, such as framing effects (De Neys, 2018; Pen-
nycook, in press; Trippas, Thompson, and Handley, 2017).

Ambiguity in framing tasks

Some theorists have explained framing (Kiihberger, 1995)
and truncation effects (Mandel, 2014) as due to ambiguity
about outcomes. Consider the classic dread-disease prob-
lem in which people choose between saving 200 people (of
600 expected to die) versus a one-third chance that 600 peo-
ple will be saved; otherwise none will be saved (losses are
phrased as the number who die). The gain frame that men-
tions 200 (of the 600 people) saved might raise the ques-
tion—what happened to the other 400 people? The sure
option could be ambiguous. To account for framing effects,
the ambiguity has to be resolved optimistically; at least 200
people will be saved and possibly more, so the sure option
is preferred. For the loss frame, the ambiguity has to be
resolved pessimistically to account for effects; at least 400
die and maybe more, so the risky option is preferred. Thus,
the ambiguity hypothesis requires two different assumptions
to account for two data points, which is not parsimonious.
Contrary to some arguments, these ambiguous readings of
framing problems are not predicted by conversational impli-
catures but, rather, violate them; for example, if more than
200 people could be saved, the normal pragmatic assumption
is that the speaker would have said so. The ambiguity hypoth-
esis also requires that people ignore wording and instructions,
such as “exact estimate” and “exactly”” 200 people are saved.

However, Mandel (2014) and Kiihberger and Tanner
(2010) among others have generated evidence suggesting
that ambiguity accounts for variance in framing effects.

@ Springer
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Mandel found, for example, that introducing the word
“exactly” eliminated framing effects and adding “at least”
to the sure option produced framing effects. But the effects
of adding the word “exactly” have not replicated consist-
ently (Chick et al., 2016; Simmons and Nelson, 2013). For
example, framing effects are routinely observed when the
words “exact” or “exactly” are used in problem information
(for meta-analyses, see Broniatowski and Reyna, 2018, and
Steiger and Kiihberger, 2018). Moreover, experiments that
provide instructions to avoid these hypothesized interpreta-
tions and explicit tests of how decision makers then interpret
framing problems have shown that most pass ambiguity tests
(i.e., they do not make the posited inferences about missing
numbers, not conforming to the ambiguity hypothesis in any
of several versions) and yet show framing effects (Chick
et al., 2016; Reyna et al., 2021a).

One broad rationale for the ambiguity hypothesis is that
exact numbers are unrealistic, an argument we also made
earlier in this article (Geurts, 2013; Kiihberger, 1995; Man-
del, 2001; Teigen, 2011). However, this does not imply that
numbers are interpreted as meaning “at least” as opposed
to “at most” or other asymmetric interpretations. Mandel
(2014) asserts that “‘at least n” and ‘exactly n’ should both
have the same gist (viz., some),” but this is not true. Fuzzy
means that saving 200 people is construed as “about” 200
and that, in one type of representation (the least precise
one and thus the favored representation), this amounts to
the qualitative category of saving “some people” when it
contrasts with the possibility of saving none (Reyna et al.,
2021a). “At least” (e.g., 200 or more) or “at most” (e.g., 200
or less) each change the balance of expected values (the
literal representations), but they also change meaning in
context. This meaning has been distinguished from some
versus none in research on numerical quantities in fuzzy-
trace theory (Brainerd and Gordon, 1994; Reyna and Brust-
Renck, 2020; Thompson and Siegler, 2010).

Part of the difficulty could be misinterpreting the expla-
nation that framing effects depend crucially on categori-
cal gist to mean that only categorical gist is processed. At
least three levels of representation are processed—cat-
egorical, ordinal, and interval for numbers and inferences,
paraphrases, and literal words for sentences—and they each
“vote” in determining responses. This assumption explains
why responses change predictably when the wording of
options changes (e.g., as in the Allais paradox), namely,
because different representations discriminate options dif-
ferently (see Table 1 in Broniatowski and Reyna, 2018, and
Figs. 1 and 2 in Reyna, 2012). When categorical representa-
tions do not discriminate options, decision makers “revert
to” more precise representations in the sense that they then
become determinative (Mar and Liu, 2022; Reyna, 2012).

Thus, it is not the case that either verbatim (e.g.,
numerical) or gist (e.g., nonnumerical) processing occurs.

@ Springer

Kiihberger and Luger-Bazinger (2016) point out that “In
framed gambles, all relevant information is presented—
outcomes and their respective probabilities—leaving no
ambiguities” and that “everybody knows that exact numeri-
cal outcomes are the essence of gambl[ing for money]” (p.
948). They concluded that this implies that gist extraction is
unlikely for gambles. However, gist extraction occurs rou-
tinely in numerical tasks, as demonstrated in many experi-
ments on the independence of verbatim and gist representa-
tions (for a review, Reyna, 2012).

However, there is another important manipulation that
has been interpreted as resolving ambiguity that changes
framing effects, which concerns us. That “disambiguation”
manipulation involves filling in the complementary amount
in the sure option (Kiihberger, 1995; Kiihberger and Tanner,
2010; Mandel, 2001). “Saving 200 people” becomes “sav-
ing 200 people and not saving 400 people”’; “400 dying”
becomes “400 dying and 200 not dying.” As other research
suggests, this information is often not unknown (the defini-
tion of ambiguity); most people pass tests indicating that
they realize that 200 saved implies that 400 are not saved.
The “implied” information also is sometimes explicitly
given in instructions; thus, it is not uncertain (Chick et al.,
2016). Framing becomes attenuated, because this manipu-
lation changes the gist (see Table 1 in Broniatowski and
Reyna, 2018).

That is, instead of saving some people (good news), the
“sure” option becomes a wishy-washy “good news” and
“bad news” gist: saving some people and not saving some
people. This option now stacks up as pretty much equivalent
to the gamble, which also contains good news and bad news.
Naturally, these assumptions apply analogously to decision
problems with losses. The roots of fuzzy-trace theory go
back to classic findings in psycholinguistics demonstrat-
ing similar effects of verbal descriptions (Clark and Clark,
1977). The effects of descriptions also demonstrate the value
of distinguishing between literal facts, which do not change
across the various transformations of problems that we have
discussed (extensional or informational equivalence), and
gist representations of those facts that involve interpretation
(cf. Fisher, 2022; that construal of semantic features shifts
falls out of this approach; Fisher, 2021). Memory research
shows that people extract independent verbatim and gist rep-
resentations of the same stimulus, the ultimate example of
informational equivalence (Reyna, 2012).

The value allocation task
Pwin =Pmax = gist
With framing effects accounted for, and several variations

that manipulate the expression of verbatim and gist repre-
sentations in responses, we now turn to another task that
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was invented independently (Payne, 2005) and yet elicits
the same categorical gist processing. To preview, although
gist and affective valence have been mentioned in publi-
cations on this task, this article is the first in which these
publications are brought together and shown to be critical
tests not only of prospect theory (as previously argued)
but of fuzzy-trace theory. Indeed, fuzzy-trace theory pre-
dicts value-allocation results for choices, ratings, and eye
movements and developmental differences between adults
and adolescents. We then integrate behavioral results into
a preliminary neural model and explore its implications for
addiction and other kinds of unhealthy risk-taking.

In the value-allocation task, decision-makers are pre-
sented with a series of multiple-outcome gambles (e.g., Ven-
katraman et al., 2014). Each gamble consists of a large gain
outcome, a large loss outcome, and an intermediate outcome
that is one of the following: a small gain, $0, or a small loss.
In some variations, the probabilities of the outcomes are
equal (e.g., +$45, 0.33; $0, 0.33; —$65, 0.33) and in other
variations they are unequal (e.g., +$65, 0.38; —$15, 0.26;
—$80, 0.38). In the latter, adding money to the intermediate
outcome has lower expected value than adding money to
one of the extreme outcomes (because the intermediate out-
come has lower probability). Before value allocation (e.g.,
before adding money), participants rate the desirability of
the gambles (from “least preferred” to “most preferred”),
which ensures that they are able to process differences in
expected value.

Value allocation occurs in a subsequent phase in which par-
ticipants choose how to allocate different fixed amounts (e.g.,
$15) to one of the outcomes. Allocating $15 to the intermedi-
ate outcome above (to the $0 outcome in +$45, 0.33; $0, 0.33;
—$65, 0.33) increases the probability of winning some money
as opposed to no money, which differ categorically, but it does
not maximize the amount of gains (Gmax: allocating the $15
to the +$45 option) or minimize the amount of losses (Lmin:
allocating the $15 to the —$65 option). The former strategy of
winning some money rather than none is noncompensatory
and is called Pwin or Pmax, whereas the other two strategies
are compensatory, as assumed in prospect and other utility
theories. Consistent with fuzzy-trace theory, adults across
different experiments preferred the Pwin strategy (e.g., 69%
in Venkatraman et al., 2014). The greatest preference for the
Pwin strategy occurred when allocations created categorical
changes in outcomes from no gain to gain, from loss to no loss,
and, most dramatically, from loss to gain. As Venkatraman
et al. (2014) explain, “The Pwin heuristic represents a compu-
tational simplification for complex gambles that ignores payoff
(value) magnitude information and focuses on the ‘gist’ (gain
versus loss) of an outcome value” (p. 75), but the connection
to theory that predicts this is not made.

As further predicted by fuzzy-trace theory (and described
above for framing problems), when the Pwin strategy was

not available—when adding money to the intermediate out-
come did not increase the chance of winning “something”—
choices of that outcome for allocation declined (e.g., from
69% to 41%) and Lmin increased (e.g., from 23% to 44%)
(Venkatraman et al., 2014). That is, strategy selection
reverted to more precise processing, as exemplified in the
compensatory Lmin strategy in which the amount of losses
mattered. As in framing problems, when expected values
were unequal and thus verbatim representations competed
with the Pwin gist strategy, choices of the intermediate
outcome declined (e.g., to 52%) but remained substantially
higher (favoring gist processing) than the next preferred
Lmin strategy (e.g., 36%). (See Table 2 for detailed exam-
ples and predictions.) In addition, there were individual dif-
ferences in gist and verbatim processing that echo those in
fuzzy-trace theory studies of decision-making (Reyna and
Brainerd, 2011; Reyna and Brust-Renck, 2020; Reyna et al.,
2018).

The results we have described were comparable to those
of a second and third experiment reported by Venkatraman
et al. (2014), as well as those of Payne (2005), Venkatra-
man et al. (2009, 2011), and Kwak et al. (2015), and are
reflected in multiple outcome measures used to diagnose
strategies, including eye movements. The “huge bias” (p.
85, Venkatraman et al., 2014) toward Pwin choices in Pwin-
available trials that was not present in the Pwin-unavailable
trials cannot be accounted for by prospect theory, even by
tinkering with parameter values to capture individual differ-
ences. Evidence from eye tracking also ruled out prospect
theory, regardless of assumed parameter values, as well as
other attribute-based, noncompensatory, or similar simpli-
fication approaches (e.g., the priority heuristic). Together,
these results provide evidence of a gist-processing prefer-
ence that is central to fuzzy-trace theory but which is other-
wise a mysterious empirically observed violation of extant
decision theories.

Developmental reversals: Compensatory
and noncompensatory decision strategies

The prior section summarized results indicating that most
adults prefer a gist processing strategy in the value allo-
cation task, extending fuzzy-trace theory to three-outcome
and five-outcome gambles. Not only do adults apparently
rely on gist in these tasks but they rely on the same types of
categorical gist representations and principles as implicated
in critical tests of framing effects and the Allais paradox
(some gain is better than no gain, no loss is better than some
loss, and some gain is better than some loss; Broniatowski
and Reyna, 2018; Reyna, 2012). Kwak et al. (2015) admin-
istered the valuation allocation task discussed above to a
group of adolescents and a group of young adults. Devel-
opmental theories, ranging from the neoPiagetian tradition
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Table 2 Examples of problems in the value allocation task when expected values of allocation choices are equal

I: Core problem pitting fuzzy trace theory’s prediction (Pwin) against cumulative prospect theory’s prediction (Lmin)

Outcome Probability Choose one of two Strategy Categorical gist repre-  Categorical gist principle
allocations sentation

$75 0.20

$35 0.20

$0 0.20 +$15 = $15 Pwin No gain to some gain.  Some gain is better than

no gain.
-$25 0.20
—$75 0.20 +$15 = —$60 Lmin Some loss to some loss. No categorical improve-

ment: not preferred.
II: Core problem pitting fuzzy trace theory’s prediction (Pwin) against expected utility theory’s prediction (Gmax)

Outcome Probability Choose one of two Strategy Categorical Categorical
allocations gist representation gist
principle

$75 0.20 +$15 =$90 Gmax Some gain to some gain. No categorical improve-
ment: not preferred.

$35 0.20

$0 0.20 +$15 = $15 Pwin No gain to some gain.  Some gain is better than
no gain.

—$25 0.20

—$75 0.20

III: Pwin unavailable problem indicating fuzzy trace theory’s predictions (Lmin and problem I differs from III) and cumulative prospect
theory’s predictions (Lmin and problem I is virtually identical to III)

Outcome Probability Choose one of two Strategy Categorical Categorical gist principle
allocations gist representation

$75 0.20

$35 0.20

$5 0.20 +$15 =3$20 Reference outcome Some gain to some gain. No categorical improve-
(former Pwin) ment: not preferred.

—$25 0.20

—$75 0.20 +$15 = —$60 Lmin; Some loss to some loss: Losses hurt more than

Problem I differed Revert to more pre- gains feel good (CPT).

from Problem III cise representations;

see Allais Problem 2
in Reyna & Brain-
erd, 2011; Reyna &
Brust-Renck, 2020.

IV: Pwin exaggerated problem indicating fuzzy trace theory’s prediction (exaggerated Pwin) and cumulative prospect theory’s prediction
(Lmin)

Outcome (only total Probability Choose one of two Strategy Categorical gist repre-  Categorical gist principle
shown) allocations sentation

$75 + $70 = $145 0.20

$35 + $70 = $105 0.20

$0 + $70 = $70 0.20 +$15=9$85 Reference outcome Some gain to some gain. No categorical improve-

(former Pwin) ment: not preferred.
—$25 + $70 = $50 0.20
—$75 + $70 = —$5 0.20 +$15 = $10 FTT: Pwin+ Some loss to some Some gain is better than
CPT: Lmin gain: Gamble some loss.
becomes certain gain  Categorical improve-

(possible loss elimi- ment: preferred.
nated).
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Table 2 (continued)

Modal observed preference indicated by bolding (see text). According to fuzzy-trace theory (FTT), uncertainty at the categorical gist level of
representation means that an option presents more than one qualitatively different outcome: no gain vs. gain, no loss vs. loss, and gain vs.
loss. Contrary to Venkatraman et al. (2009, p. 9), the categorical gist explanation here does “apply to risky choice problems that involve only
‘pure’ gain or loss options,” introduced in Reyna and Brainerd (1991). Pwin unavailable problems also rule out expected value and expected
utility theory because a small amount added or subtracted from the intermediate outcome does not appreciably change overall value or util-
ity, and yet large differences in preference are observed (per FTT). Additionally, Cumulative Prospect Theory (CPT) predicts that preferences
should not change as a function of whether adding money to the intermediate outcome changes its valence (e.g., improving from —10 to $10 or
improving from —$30 to —$10) due to the rank-dependent transformations applied to the extreme outcomes (as long as intermediate outcomes
are not higher in probability; Venkatraman et al., 2014, p. 75). However, when the intermediate probability is lowered (not shown), and thus
the expected value of the allocation is lower compared with the other option (Gmax or Lmin), Pwin should be avoided according to expected
value, expected utility, and CPT, whereas FTT predicts that Pwin remains most preferred though at a smaller margin because of the competing
expected value (verbatim) representation (see Allais Problem 1 in Broniatowski & Reyna, 2018; Reyna & Brust-Renck, 2020). Eye tracking and
developmental differences further differentiate FTT’s and CPT’s predictions, supporting FTT and ruling out CPT (e.g., Kwak et al., 2015; Payne,

2005; Venkatraman et al., 2014)

to contemporary information processing and dual-process
approaches, generally predict that the ability to engage in
compensatory processing (e.g., computing expected value
in which probability and outcomes trade off) increases from
childhood to adulthood (Reyna and Farley, 2006). Therefore,
most theories suggest that adults would be more (or perhaps
equally) likely to engage in compensatory processing (e.g.,
Lmin) than adolescents but certainly not less likely. Kwak
et al. (2015) found the opposite.

Adolescents were significantly more likely to choose in
accordance with the compensatory Lmin strategy than adults.
Although the Pwin categorical gist strategy was the most pop-
ular for both age groups, it was more popular among adults
than adolescents. Contrary to most developmental theories,
adolescents with higher cognitive capacity were more likely to
choose in accordance with Pwin (see Kogut and Slovic, 2016,
for a similar result). Moreover, analyses of eye movements
confirmed and expanded this account. Consistent with pre-
dictions and prior findings of fuzzy-trace theory (e.g., com-
paring children to early adolescents, Reyna and Ellis, 1994,
and adolescents to adults, Reyna et al., 2011), Kwak et al.
(2015) found that adolescents processed more information
and processed it more deliberatively (e.g., greater number,
more evenly distributed, and longer fixations). The patterns
of fixations for adolescents—but not adults—were compat-
ible with prospect theory and other utility theories (i.e., ado-
lescents had a higher “Payne index” indicative of expected
value processing). This developmental finding of objectively
superior performance in younger (children and adolescents)
compared with older samples (young and middle-aged adults)
has been dubbed “developmental reversal” in fuzzy-trace the-
ory, because it reverses typical developmental expectations,
reflecting the growth in gist processing with development
(Reyna et al., 2014). Thus, adolescents are likely sensitive to
rewards, but their risk-taking in real life is not attributable to
overvaluing rewards by itself (Edelson and Reyna, 2021) but
rather the all-too-rational combination of risk (which is in
fact low in many common circumstances) and reward (which
is in fact high in those circumstances). Indeed, as we discuss

below, brain and behavioral results buttress the hypothesis that
adolescents are more sensitive to these risk-reward tradeoffs
in decision-making than adults are.

Mechanisms of decision-making in the brain

We begin this section by briefly reviewing the neural sub-
strates of the distinct types of processing that we have just dis-
cussed in adults and adolescents. We then integrate these find-
ings with those concerning decision-making generally into a
preliminary neural framework and develop its implications for
addiction and other problem behaviors. To be sure, our con-
clusions oversimplify a more complex picture. Although it has
been widely acknowledged that differential activation takes a
snapshot of a dynamic system and this neural characteriza-
tion is incomplete, an often-overlooked shortcoming of neu-
roscientific data is the inability to connect specific strategies
to specific patterns of activation because of task confounds
(see Edelson and Reyna, 2021). Shortcomings go beyond add-
ing process measures, such as eye tracking or EEG, although
they help. Too much inference from brain to behavior is a
problem but so is not enough inference. We attempted to rec-
tify that imbalance with a provisional framework, because
understanding the behavioral functions of the brain is indis-
pensable for basic science and applied goals, such as address-
ing addiction. We dwell on process assumptions, because they
are the key to making scientific progress in this area.

Strategic assumptions

In traditional approaches to decision neuroscience, the focus
is generally on tradeoffs because the expected utility model—
that defines preferences in terms of tradeoffs—is assumed:
For probabilistic uncertainty, a safer lower-value option is
typically pitted against a riskier higher-value option. For tem-
poral uncertainty, a sooner lower-value option is typically
pitted against a later higher-value option. Activation in brain
regions is associated with choices in probabilistic paradigms.
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As examples, increased activation in the anterior insula fol-
lows risk-averse choices (Paulus et al., 2003; Preuschoff et al.,
2008) and increased activation in the ventromedial prefrontal
cortex (VMPFC) and striatum predicts risk-seeking choices
(Kuhnen and Knutson, 2005; Reyna and Huettel, 2014; Tobler
et al., 2007). Risk-seeking choices necessarily involve higher
reward values in tradeoff designs, which implicates reward
processing. VMPFC and ventral striatum (VS) encode posi-
tive values, such as reward magnitude, with increasing activa-
tion, and VMPFC, orbitofrontal cortex (OFC) and posterior
parietal cortex (PPC) encode negative values, more aversive
values, with decreasing activation. Lateral prefrontal and pari-
etal regions support executive control processes associated with
risky decisions, risk evaluation, risk propensity, and judgments
about probability and value (Barraclough et al., 2004; Glim-
cher, 2022; Huettel et al., 2005; Paulus et al., 2001; Sanfey
et al., 2003). Individual differences in risk preferences vary with
resting-state EEG during wakefulness (Gianotti et al., 2009;
Studer et al., 2013) and with slow-wave activation during sleep,
both over the right prefrontal cortex (Studler et al., 2022).

Using functional magnetic resonance imaging (fMRI),
Venkatraman et al. (2009) studied an incentive-compatible
version of the value allocation task, which as we noted
above, identifies three types of decision strategies: maxi-
mizing the magnitude of gains (Gmax), minimizing the mag-
nitude of losses (Lmin), and changing losses or nothing to
wins (Pwin). Gmax and Lmin choices reflect compensatory
choices, as they increase the magnitude of the largest pos-
sible gain or decrease the magnitude of the largest possible
loss, respectively, increasing overall subjective value. In
cumulative prospect theory, a further wrinkle is added in that
extreme outcomes (those that rank best and worst) are given
greater weight and extreme losses are especially aversive,
favoring the Lmin strategy in this task. (Rank dependence
matters when probabilities of each potential outcome are
equal.) Rank dependence is consistent with neural activation
data. High activation for both high rewards and high punish-
ments is thought to be encoded in “salience” representations.
The salience network includes the ventral striatum, dorsal
anterior cingulate cortex, anterior insula, temporoparietal
junction, and the amygdala (Kahnt et al., 2014; Levy and
Schiller, 2021). However, crucially, cumulative prospect
theory does not accommodate the Pwin strategy.

In contrast to compensatory tradeoffs, as discussed, Pwin
choices follow a gist-based simplifying strategy to increase
the chances of a gain compared to a loss irrespective of reward
magnitude. In addition, some problems—Pwin-exaggerated—
allow for conversion of uncertain wins to certain wins (and
certain losses to uncertain losses). Following the same gist-
based rationale per our earlier discussion of uncertainty, a
certain win is categorically better than an uncertain win and
an uncertain loss is categorically better than a certain loss.
Ergo, most adults are predicted to forgo maximizing utility in
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order to achieve these gist-based categorical conversions (as
observed). Expected utility (or expected value) is computed in
parallel and, especially for individuals high in numeracy and in
literal processing, can offset gist strategies as options become
more disparate (but the size of numerical differences is gener-
ally not the ultimate arbiter; Broniatowski and Reyna, 2018;
Reyna and Brainerd, 2011; Reyna and Brust-Renck, 2020).

Ad hoc (auxiliary) assumptions about regret are not required
to explain the prevalence of gist-based phenomena, such as
the Pwin strategy (memory, reasoning, and psycholinguistic
research support it). Assumptions about aspiration levels are not
required, but hypotheses about aspiration level might be profit-
ably combined with gist representations to produce novel pre-
dictions (e.g., Coricelli et al., 2018). Contrary to Payne (2005),
Venkatraman et al. (2009), and others, the Pwin strategy is an
important part of “a general-purpose model of risky choice that
is consistently applied across all conditions and contexts” (p.
75). The order of emphasis of strategies—emphasizing the least
precise (categorical) distinctions and relying on more precise
distinctions if needed (e.g., in Pwin-unavailable trials)—is the
opposite of other cognitive theories (i.e., they assume precise
processing as a default, which breaks down under cognitive
load). This fuzzy-processing principle explains the otherwise
theoretically unmotivated Pwin strategy: decision-makers focus
on categorical gist and “if no option improves the overall prob-
ability of winning or not losing, individuals should shift to other
[more precise] strategies to decide between the alternatives.”
(Venkatraman et al., 2014, p. 75).

Supporting this process analysis, Venkatraman et al. (2009)
found greater activation for compensatory choices (Gmax and
Lmin) in the anterior insula (greater for Lmin) and VMPFC
(greater for Gmax), areas associated with affective evalua-
tion of decision outcomes. In contrast, Pwin choices resulted
in increased activation in the dorsolateral prefrontal cortex
(DLPEFC) and PPC, which were significantly greater than those
for Gmax and Lmin. These regions (DLPFC and PPC) are typi-
cally associated with executive functions and decision making.
Interestingly, the behavioral data showed that Pwin choices were
associated with faster response times (Venkatraman et al., 2009),
which contradicts classical assumptions of effortful prefrontal
control. Also arguing against a cognitive effort explanation, sleep
deprivation did not increase Pwin strategies but rather increased
Gmax, consistent with other studies showing increased risk tak-
ing (and reward chasing) after sleep deprivation (Venkatraman
etal., 2011). Interestingly, consistent with a less-sleep-less-gist
hypothesis, other research on gist representations in memory
show that gist processes are reduced after sleep deprivation (i.e.,
sleep increased false recall of meaning-consistent words; Payne
et al., 2009; Pardilla-Delgado and Payne, 2017).

Using functional connectivity analyses, Venkatraman
et al. (2009) also showed that, when individuals made Pwin
choices, connectivity with DMPFC increased in DLPFC and
PPC, whereas when individuals made compensatory choices,
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connectivity with DMPFC increased in the anterioir insular
(and amygdala), although not in VMPFC. Moreover, the rela-
tive strength of the connectivity between DMPFC and these
regions was significantly associated with individual differ-
ences in strategy preferences across individuals. Overall, acti-
vation in the DMPFC did not predict either type of choice,
but it predicted decisions that were inconsistent with the
preferred decision strategy, typically shifts from a noncom-
pensatory Pwin strategy to a compensatory Lmin strategy.

Venkatraman et al. (2009) also examined whether a neural
substrate of reward processing could predict strategic pref-
erences. At the end of the scanning session, each partici-
pant viewed some of their “improved” gambles, which were
resolved to actual monetary gains or losses. While partici-
pants were anticipating the outcome of each gamble, there
was increased activation in the ventral striatum (VS)—a brain
region commonly implicated in expectation and processing of
positive and negative rewards (e.g., Speer et al., 2021). Then,
when the outcome was experienced, VS activation increased
to gains but decreased to losses. Paradoxically from tradi-
tional perspectives, those individuals who showed the great-
est VS increases to gains and decreases to losses preferred
the simplifying Pwin strategy. Their brains indicated that
they were more sensitive to magnitudes of rewards, com-
pared with others, and yet they eschewed choices that maxi-
mized rewards. These results are consistent with fuzzy-trace
theory’s tenet that the use of gist-based simplifying strategies
is accompanied by application of values (social, moral, and
monetary) that reflect affective valence (Broniatowski and
Reyna, 2018; Reyna, 2021). That is, the gist representation
of options—gaining some money versus either gaining some
money or gaining nothing—requires applying simple values,
such as “gaining money is good” to elicit a preference, appar-
ently a response supported by the VS.

Developmental differences in neural substrates

As discussed earlier, developmental differences also offer an
opportunity to examine strategic variations in mental repre-
sentations—verbatim and gist—as well as changes in reward
processing over time. Table 3 presents illustrative findings con-
cerning adolescent decision and reward processing, and com-
parisons to children and adults in some studies. The studies
vary in methodology and analyses, thus making conclusions
preliminary (see also Defoe and Romer, 2022, summarizing
a recent special issue on developmental differences in risky
decision making). Many studies echo the results that we have
reviewed thus far with respect to the brain, including sensitiv-
ity to risk (e.g., activation in DMPFC and insula), sensitivity to
overall subjective value (e.g., activation in VMPFC and OFC),
and heightened sensitivity among adolescents to reward (e.g.,
activation in VS or a subarea of VS, the nucleus accumbens, or
caudate, but see Bjork and Paldini, 2015). DLPFC seems again

to reflect executive function, including learning, and subjective
value (although inconsistently).

Summarized in Table 3, Barkley-Levenson and Galvan
(2017) used a modified version of the critical value alloca-
tion task, which allows some differentiation of strategies. Eye
blink rate was used as a proxy for striatal dopamine recep-
tor function (but see Dang et al., 2017). Consistent with
the adolescent ventral striatum’s hypersensitivity to reward
observed with neuroimaging, eye blink rate was associated
with increased use of the compensatory Gmax (reward seek-
ing) strategy for adolescents—but not for adults. Indeed, ado-
lescents were more sensitive to increases in gains than adults
were, replicating findings for expected value in neuroimaging
research (Barkley-Levenson and Galvan, 2014) as well as the
behavioral results reviewed earlier (e.g., Kwak et al., 2015).

Although sensitivity to reward is a hallmark of neural imbal-
ance theories of adolescent risky decision making, the theory
does not predict that adults would be less deliberative and less
likely to use compensatory strategies compared with adoles-
cents. Fuzzy-trace theory predicts the latter effects (see also Nie-
baum et al., 2022) and accounts for linear developmental trends
in risk preference observed in meta-analyses (Defoe et al., 2015).
In this view, VS “provide[s] cost and benefit signals necessary
for verbatim-based processing engaged more heavily in adoles-
cence; greater EBR [eye-blink rate] in this model could reflect
greater reliance on verbatim-based relative to gist-based process-
ing and would therefore correlate with increased focus on reward
magnitude” (Barkley-Levenson and Galvéan, 2017, p. 8). In this
role, VS would reflect reward valuation as opposed to salience.

Temporal uncertainty

As van den Bos et al. (2015) argue, impatient or impulsive
choices in the delay discounting task can result from valuing
immediacy of rewards (present bias) or discounting the future.
The VS seems to reflect what is valued: in this instance, not
the larger reward as in probabilistic decision making but the
immediate reward. In this connection, van den Bos et al. (2015)
report that adolescents are more impatient than adults, but this
was not tied to reward valuation directly (“hedonism”). As
development proceeded from adolescence to adulthood, fall-
ing discount rates reflected increased structural connectivity
with DLPFC and increased functional connectivity (negative
coupling) between DLPFC and VS. Thus, developmental dif-
ferences were attributed to maturation of executive functions,
such as cognitive control and greater future orientation.
More generally, when rewards are offered immediately, a
single value-related signal has been identified at two locations:
the ventral striatum (VS) and the ventromedial prefrontal cortex
(VMPEC) (McClure et al., 2004). Later rewards do not easily
elicit this reward-related signal. When decision-makers take
longer to respond, thought to reflect patient choosing, activation
has been observed in the DLPFC and the PPC. This work has
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been interpreted as evidence for a beta (impatient) module and an
independent delta (patient) module predicted by theory. However,
independence has been challenged by findings that increasing
rewards in the later option elicited activation in regions partial
to immediacy, VS and the VMPFC (Kable and Glimcher, 2007).

As we argued at the outset, and as suggested by the brain
activations associated with each, probabilistic uncertainty and
temporal uncertainty seem to share processing components.
The effects of manipulating the presence or absence of zero
(or “nothing”) to induce shifts in gist (categorical “something
vs. nothing” contrasts in decision problems) or verbatim pro-
cessing (computing expected value or utility) has been used in
both probabilistic decision making and temporal discounting
tasks (Reyna et al., 2014, 2021; Zhang and Slovic, 2018). For
example, in temporal discounting tasks, making hidden zeros
explicit increases patience: a sooner smaller reward but noth-
ing later versus a larger later reward but nothing now (Rahimi-
Golkhandan et al., 2017). This good-news/bad-news explication
seems to create more decision conflict for impulsive choosers
than an objectively identical formulation without the explicit
zeros that may be processed at a more fine-grained level.

Consistent with this framework, repeated Transcranial
Magnetic Stimulation (rTMS) to the DLPFC (which takes that
region offline temporarily) in a delay discounting task had two
different kinds of effects (Ballard et al., 2018). Large magni-
tudes (presumably because they make the delayed option differ-
entially attractive relative to the immediate option) and explicit
zero manipulations (presumably because they change the gist)
reduced discounting (choosing the sooner option) relative to
control groups. However, rTMS to DLPFC reduced both the
magnitude effect relative to baseline and reduced the hidden
zero effect relative to baseline; the latter effect was “‘unantici-
pated” by Ballard et al. (2018). These effects are consistent with
the idea that DLPFC encompasses both gist representations as
found by Venkatraman et al. (2009) and other higher order men-
tal functions, such as cognitive control and associated inhibition
(Ballard et al., 2018; Figner et al., 2010).

An integrated framework: Implications
for addiction

Figure 3 brings together many of the components that we
have reviewed (and others we have not). A major novel
aspect of the framework is combining fuzzy-trace theory with
research from alternative theories, including major decision
theories, such as prospect theory and similar expected util-
ity approaches. The implications of the framework can be
illustrated by the example of addiction. Addiction often is
initiated in adolescence or young adulthood and is thought
to reflect heightened attraction to reward and immature
cognitive control systems (including impulsivity and delay
discounting, Amlung et al., 2017). As shown in the figure,

these factors are likely to play a role in initiation that has
been documented, although confounds plague this literature
due to the difficulties of pulling apart factors, such as risk
opportunity, risk preference, reward valuation, impatience/
impulsivity, and underdevelopment of cognitive control and
inhibition (Romer, Reyna, and Satterthwaite, 2017).

The core brain areas associated with probabilistic and
intertemporal decisions largely overlap with those assumed
to play a crucial role in the development and maintenance of
addictive disorders (Brand, 2022; Volkow and Baler, 2015).
Volkow and Baler (2015) proposed the so-called “NOW
vs. LATER circuits” crucially involved in addiction and
other pathologies. Consistent with our framework, corti-
cal regions, especially DLPFC, MPFC, VMPFC, OFC, and
ACC, and subcortical regions, especially dorsal and ventral
striatum are assumed to be involved in NOW vs. LATER
decisions. Main processes are driven by tonic dopamine
signals in the DLPFC (favoring choices for later rewards)
and phasic dopamine signals triggering VMPFC and ven-
tral striatum leading to choices of immediate rewards (but
see Kable and Glimcher, 2010). Several signals from other
regions, including OFC, insula, and amygdala, interact with
the circuits and mediate through the processing of inter-
nal states, experiences, and information/estimation about
possible alternative options and their associated levels of
uncertainty. It is assumed that repeatedly choosing imme-
diate gratifications (e.g., drugs, instant lotteries, or highly
processed food) can reinforce preexisting vulnerabilities in
the two circuits.

Research on substance related and nonsubstance related
addictions as well as animal models suggest that, during the
development of addiction, there is a shift from involvement
of ventral to dorsal striatum related circuits (Brand et al.,
2019; Fineberg et al., 2010; Zhou et al., 2018). Brand (2022)
assumes the ventral striatum to be especially involved in
early stages of the addiction process as part of the so-called
“feels better” path characterized by positive and negative
reinforcement mechanisms and related reward expectancies.
In later stages, the dorsal striatum is assumed to be more
and more involved as part of the additional “must do” path
associated with compulsive, habitual behaviors. The DLPFC
and other regions associated with self-control are engaged
in the “stop now” process, which is assumed to counteract
the two paths (Brand, 2022).

Clinical implications mostly point to the importance to
reduce discounting by improving self-control and reducing
impulsivity. However, there might be other routes to reduce
vulnerability to addiction (addressing similar networks, but
less effortful strategies) as we discuss below. The DLPFC
may play a crucial role here. As stated earlier, this region is
not only involved in inhibition and other higher-order cogni-
tive control, but it also is associated with decisions reflect-
ing gist representations and affectively valenced principles.
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Dorsolateral prefrontal cortex (DLPFC)

- Representation of prospects and subsequent decision utility
computations (Trepel et al., 2005)

- Inhibition, self control (e.g., Hare et al., 2009)

Posterior parietal cortex (PPC)

- Tracking of magnitude, probability (Dorris & Glimcher, 2004;
Huettel et al., 2005); relative magnitude (Jocham et al., 2014)

- Subjective (discounted) value (kable & Glimcher, 2007, 2010;
Peters & Biichel, 2009, 2010)

Dorsal striatum (caudate nucleus + putamen)
- Stimulus-response associations (Cox & Witten, 2019)
- Outcome uncertainty (Reyna & Huettel, 2014)

- Strategic (social) behavior (steinbeis et al., 2012)

- Subjective value of delayed reward (Ballard et al., 2018; Kable &
Glimcher, 2007, 2010; Peters & Biichel, 2009, 2010, 2011; see Frost et al., 2017) Gist (P, )

- Value integration (Rodriguez et al., 2015)

- Representation of delays (wittmann et al., 2007)

Left (especially):

- Impulse control (steinbeis et al., 2012)

- Resist immediate reward (no effect on valuation) (Figner et al., 2010)
- Lower discount rate (k) (He etal., 2016)

Right (especially):

- Sensitivity to risk (rather reward magnitude) (knoch etal., 2006)

- Valuation/ integration of (social) norms (Dixon & Christoff, 2014)

Dorsomedial prefrontal cortex (DMPFC):

- Conflict detection (Pochon et al., 2008; Liston et al., 2006; Badre &
Wagner, 2004)

- Risk aversion (Schonberg et al., 2011)

- Reward magnitude (esp. immediate reward) (Ludwig et

Ventral striatum (nucleus accumbens)

- Anticipation of (risky) reward (zalocusky et al., 2016)

- Stimulus-outcome associations (Cox & Witten, 2019)

- Representation of reward at delays (Ballard & knutson,
2009; Ludwig et al., 2015; Peters & Biichel, 2009, 2011)

- Representation of delay magnitude (Cooper et al., 2013)

Amygdala

- (Emotional) Representation of (negative) outcome
®  (Wood & Bechara, 2014)

- Stimulus salience/ relevance (Mahler & Berridge, 2009;
" J Reyna & Huettel, 2014)

- Magnitude of received immediate reward
(Ludwig et al., 2015)

- Size of the “tag effect” (Peters & Biichel, 2010)

2012; Rushworth et al., 2012)

Valuation of desirable stimuli/ goals (Hare et al., 2009)

- Value integration (kahnt et al., 2011)

- Cost/ benefits tradeoff (Reyna & Huettel, 2014)

- Discounted value of future rewards (Peters & Biichel, 2011)

- Subjective (discounted) value (kable & Glimcher, 2007, 2010;
Peters & Biichel, 2009, 2010, 2011)

- Integration of reward and emotion (Manuel et al., 2019)
Magnitude sensitive choices, gains (G

Posterior (PCC):

(McClure et al., 2004, 2007)

etal,, 2019)

al,, 2015)
- Decision at indifference point (Frost et al., 2017)
5 inco h preferred f - Insular cortex
Clngu!ate cortex - Integration of sensory, affective, bodily information with
Anterior (ACC) information about uncertainty (singer et al., 2009)
Ventromedial prefrontal cortex (VMPFC) - Tracking value of switching to an alternative (kolling etal., - anterior: evaluation of possible outcomes (tracking of

Choice uncertainty/ decision conflict (Reyna & Huettel, 2014)
- Value of chosen option (Massar et al., 2015)

- Hard choice (Monterosso et al., 2007)

- Episodic tag effect (peters & Biichel, 2010)

- Involvement of immediate (vs. only delayed) reward

- Future reward magnitude (Ballard & knutson, 2009)
- Subjective value of reward (Peters & Biichel, 2009, 2010; Schiller

arousal, uncertainty/risk, magnitude, variance); action
selection; outcome processing (error awareness, harm
prevention, social outcomes) (Droutman et al., 2015)
posterior: urge processing; signaling homeostatic imbalance;
(Droutman et al., 2015), anticipation of potential loss (Canessa etal.,
2013)
- Discounting delayed rewards/ anticipation of bodily effects of
receiving reward at different delays (seliitto et al., 2016)
Magnitud losses )

ensitive choices, losses (L

Fig. 3 Provisional integrative framework for probabilistic and tempo-
ral uncertainty. Black text = probabilistic uncertainty and valuation
tasks. Blue text = temporal uncertainty tasks. Red text = tasks that dis-
criminate gist strategies Badre & Wagner, 2004; Ballard & Knutson,
2009; Canessa et al., 2013; Cooper et al., 2013; Cox et al., 2019; Dixon
& Christoff, 2014; Dorris & Glimcher, 2004; Droutman et al., 2015;
Figner et al., 2010; Frost & McNaughton, 2017; Hare et al., 2009; He
et al., 2016; Jocham et al., 2014; Kable & Glimcher, 2007, 2010; Kahnt

Accordingly, simple gist-based strategies could counteract
the driving paths to addiction (also on a neural level) and
support health-promoting choices.

From this fuzzy-trace-theory based foundation, various
practical implications can be derived, including implica-
tions for interventions and public health communications
(e.g., Reyna and Farley, 2006; Reyna, 2018; Wolfe et al.,
2015). Principles of fuzzy-trace theory can be used to design
the content of prevention and intervention programs by pre-
senting (additional) information in a gist-promoting way
(supporting avoidance of unhealthy risks) that is consistent
with people’s preexisting values, thereby reducing reliance
on policy mandates. For example, following up on Reyna
and Mills (2014) on interventions for reducing sexual risk,
addiction prevention programs could add information on the
basic bottom-line meaning of decision options in addition
to the exact numbers on risks. At the policy level, it can be
inferred that instead of dictating “right” choices or trying to
change people’s values, another path can be taken to promote
healthy choices. Presenting the gist of possible options in an
accurate and understandable way can enable individuals to

@ Springer

et al., 2011; Knoch et al., 2006; Kolling et al., 2012; Liston et al., 2006;
Ludwig et al., 2015; Mabhler et al., 2009; Manuel et al., 2019; Massar
et al., 2015; McClure et al., 2004, 2007; Monterosso et al., 2007; Peters
& Biichel, 2009, 2010, 2011; Pochon et al., 2008; Reyna & Huettel,
2014; Rodriguez et al., 2015; Rushworth et al., 2012; Schonberg et al.,
2011; Schiiller et al., 2019; Sellitto et al., 2016; Singer et al., 2009;
Steinbeis et al., 2012; Venkatraman et al., 2009; Wittmann et al., 2007;
Wood et al., 2014; Zalocusky et al., 2016

link the decision to their own relevant values, which in turn
promotes (self-generated) advantageous decisions and sus-
tainable positive impact on behavioral outcomes.

An important factor that we have not discussed in detail is
that adolescence and young adulthood are periods of explo-
ration in which risky behaviors are initiated despite ambigu-
ity (Tymula et al., 2012). That is, adolescents are primed to
approach ambiguity rather than to be averse to it, an attrac-
tion to uncertainty that is not typical of other stages of life.
Initiation of substance use seems to be a function of such
willingness to approach despite uncertainty, plus reward and
control factors, but also because of the public health para-
dox to which young people are more susceptible. As we have
discussed, adolescents are more likely to weigh risk against
reward and to process them using compensatory strategies.
This “rationality bias” makes them vulnerable to normatively
rare but individually catastrophic outcomes, such as addiction.

Additionally, in adolescence there is a peak in sensa-
tion seeking and reward sensitivity (Galvan, 2013; Reyna
et al., 2011; but see Insel and Somerville, 2018; van Dui-
jvenvoorde et al., 2014), which may lead to (the subjective
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value of) the experience of immediate reward outweighing
the uncertainty caused by potential risks. Ambiguity seeking
also could trigger experimenting with drugs, because one
does not know what (possibly very rewarding event) one
is missing. However, neither reward seeking nor ambiguity
seeking is sufficient by themselves to explain developmental
differences in risk preference. Major developmental trends
and prediction of risky behavior are linked to increasing
emphasis with development on categorical gist in risky deci-
sion making—such as it only takes once to get HIV-AIDS.
What begins in experimentation can progress to addiction
much like a bullet fired in Russian roulette, a low probability
event. It is low probability, because most adolescents escape
the phase of experimentation, especially if they have miti-
gating factors, such as higher levels of cognitive control or
lower levels of attraction to reward.

Our framework suggests that there is another System—a
System 3 approach to reducing vulnerability to addiction,
including inducing categorical gist thinking about risk,
that is distinct from the difficult tasks of trying to modify
either System 1 unthinking attraction to reward or System 2
deliberation and cognitive control (Reyna and Mills, 2014).
This approach harnesses gist-based intuition as advanced
but automatic cognition; grounded in research on learning
and memory, it suggests methods for recognizing gist and
encouraging retrieval of relevant values in context, processes
that can operate largely unconsciously. We see enormous
potential in bringing together the process mechanisms of
fuzzy-trace theory with etiological process models of addic-
tion for deriving more effective prevention and interven-
tion programs. This approach would not necessarily seek
to change the level of perceived risk in a verbatim sense,
but it should decrease risk-taking when probabilities of
adverse events are low and uncertain but outcomes are cata-
strophic—bridging a predictable gap in risk communication
between policymakers and the public.

In this view, the processes of the DLPFC may consist of
more than white-knuckled self-control but, rather, reapprais-
ing risky situations and connecting them more clearly to sali-
ent affective valence (simple good-bad signals) and social
values. Results also suggest that what is rewarding undergoes
reappraisal with development and experience, so that what is
patient and in the future becomes more highly valued.

More generally, it is time to reevaluate traditional ways of
thinking about uncertainty whether probabilistic or tempo-
ral. Evidence about anomalies in choice and valuation need
to be integrated with major theories of decision-making to
better develop interventions that preserve well-being. The
meaningful categorical gist of decisions is not a one-off
strategy for solving toy problems but is how mature deci-
sion-makers approach most decision problems by default.
Communicating effectively with those decision makers
requires understanding their perspective.
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