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Abstract
The Value Learning Task (VLT; e.g., Raymond & O’Brien, 2009) is widely used to investigate how acquired value impacts
how we perceive and process stimuli. The task consists of a series of trials in which participants attempt to maximize
accumulated winnings as they make choices from a pair of presented images associated with probabilistic win, loss, or no-
change outcomes. The probabilities and outcomes are initially unknown to the participant and thus the task involves decision
making and learning under uncertainty. Despite the symmetric outcome structure for win and loss pairs, people learn win
associations better than loss associations (Lin, Cabrera-Haro, & Reuter-Lorenz, 2020). This learning asymmetry could lead
to differences when the stimuli are probed in subsequent tasks, compromising inferences about how acquired value affects
downstream processing. We investigate the nature of the asymmetry using a standard error-driven reinforcement learning
model with a softmax choice rule. Despite having no special role for valence, the model yields the learning asymmetry
observed in human behavior, whether the model parameters are set to maximize empirical fit, or task payoff. The asymmetry
arises from an interaction between a neutral initial value estimate and a choice policy that exploits while exploring, leading
to more poorly discriminated value estimates for loss stimuli. We also show how differences in estimated individual learning
rates help to explain individual differences in the observed win-loss asymmetries, and how the final value estimates produced
by the model provide a simple account of a post-learning explicit value categorization task.

Keywords Reinforcement learning · Learning asymmetries · Value-based decisions

Introduction

Most real world decision making involves uncertainty. For
example, the decider may be uncertain about the value of
different options, the likelihood of payoffs from different
choices, or both. An important class of such decisions are
value-based decisions, where one processes the information
about decision options, estimates their values, and makes a

The work of Ziyong Lin was done prior to joining Amazon.

� Chenxu Hao
chenxu.hao@fau.de

1 Department of Psychology, University of Michigan,
Ann Arbor, MI USA

2 Chair of Autonomous Systems and Mechatronics, Department
of Electrical Engineering, Friedrich-Alexander Universität
Erlangen-Nürnberg, Erlangen, Germany

3 Amazon, Berlin, Germany

4 Weinberg Institute for Cognitive Science,
University of Michigan, Ann Arbor, MI USA

choice based on the value estimates (Rangel, Camerer, &
Montague, 2008).

In this work, we build on two related definitions of
value. The first is the economic value of an option (Brosch
& Sander, 2013), usually defined as expected value or
expected subjective utility—the value or utility of an
outcome multiplied by its probability of occurring (Savage,
1972). A related and more general definition of value
is specified in computational reinforcement learning (RL)
theory (Sutton & Barto, 2018), where the value of a state-
action pair is the expected cumulative discounted future
reward after taking an action in the given state (Gershman
& Daw, 2017; Sutton & Barto, 2018). In the case of single-
shot (i.e., non-sequential) decisions in which a choice only
affects an immediate outcome, the two definitions of value
are equivalent.

Values can be learned through experience (Kahneman,
2003; Gershman & Daw, 2017). This learning can
be modeled within the RL framework, which provides
functional accounts of the processes of value-based learning
and choice with a formal computational theory, and
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has been used to provide theoretical foundations for
understanding the underlying neural mechanisms of value
learning (Montague, Hyman, & Cohen, 2004; Daw, Niv, &
Dayan, 2005; Brosch & Sander, 2013). A key problem faced
by any RL agent in an uncertain environment is balancing
exploration in service of learning, and exploitation of
learned value in service of obtaining reward (Sutton &
Barto, 2018).

To understand how acquired value influences behavior,
laboratory tasks have been developed to establish associ-
ations between otherwise neutral items and win or loss
outcomes. The impact of value on subsequent processing
has been examined in a variety of cognitive processing
domains such as attention (Della & Chelazzi, 2009; Ray-
mond & O’Brien, 2009), motor control (Painter, Kritikos, &
Raymond, 2014), and memory (Aberg, Müller, & Schwartz,
2017). We focus here on a task which we refer to as the
Value Learning Task (VLT; Raymond & O’Brien, 2009).
The VLT has been used to examine how value learned
through trial-by-trial experience impacts the cognitive pro-
cessing (e.g. visual attention, perceptual and motor process-
ing) of stimuli that were previously associated with wins
or losses that occurred with low or high probability. This
paradigm has also been used to investigate learning within
win and loss contexts (Palminteri, Khamassi, Joffily, &
Coricelli, 2015; Palminteri & Lebreton, 2021).

Research adopting the VLT has largely focused on
examining the cognitive processing of stimuli previously
associated with wins or losses, and not the learning itself or
possible valence asymmetries in the learning. But a recent
meta-analysis of several VLT experiments (Lin et al., 2020)
provides evidence that people learn win associations better
than loss associations. Furthermore, in two new empirical
studies, Lin et al. (2020) demonstrated that this learning
asymmetry was evident with both monetary earnings and
non-monetary points, and was evident regardless of whether
participants received explicit instructions about the outcome
contingencies.

This learning asymmetry has been referred to as the
punishment learning paradox in past work (Mowrer, 1960;
Moutoussis, Bentall, Williams, & Dayan, 2008; Maia, 2010;
Palminteri et al., 2015; Palminteri & Lebreton, 2021), and
Palminteri et al. (2015) provide an intuitive explanation

from the perspective of learning within a loss context; we
discuss this explanation below and its relation to our model.

In the present computational study, we provide a clear
explanation of the observed asymmetries based on RL
computational theory (Sutton & Barto, 2018). Crucially, our
RL model must grapple with the exploration-exploitation
problem imposed by the initial uncertainty of the setting. We
next describe the VLT and key empirical findings in more
detail before introducing the computational learning model.

The value learning task

The Value Learning Task (VLT) involves a choice game
where a pair of images is presented on each trial, and
participants select one image from each pair, receiving a
probabilistic positive, negative, or zero reward as feedback.
The participants’ goal is to maximize earnings (points or
money) by learning and exploiting the expected value of
each stimulus.

An example of the probabilistic structure of a typical
VLT paradigm is given in Table 1. There are pairs of images
in win, loss, or no-change conditions. In the win condition,
a selection between a pair of images results in a win of 5
points 80% of time, and 0 points 20% of time; in the loss
condition, a selection between a pair of images results in
a loss of -5 points 80% of time and 0 points 20% of time;
in the no-change condition, a selection between a pair of
images always results in 0 points (Table 1).

The structure of the task is symmetric in that corre-
sponding stimuli from each valence condition have the same
absolute expected values, as a consequence of the symme-
try of the probabilities and rewards. To maximize earnings,
participants must learn to select the image associated with
the highest expected value within each pair. In other words,
the optimal choice for the win pair is the high probability
win image (80% win), whereas the optimal choice for the
loss pair is the low probability loss stimulus (20% loss).

The VLT has been adopted by many researchers to
examine the impact of learned value on perceptual and
attentional processing by presenting the VLT stimuli in
a variety of secondary tasks where the reward schedule
is discontinued and no longer task relevant. Despite

Table 1 The standard
symmetric payoff structure
used in the VLT: the high
probability win (A) and high
probability loss (C) stimuli
have the same absolute rewards
and expected values, as do the
low probability win (B) and
low probability loss (D) stimuli

Condition Stimulus Outcomes and Probabilities Expected Value

Win pair A +5(p = 0.8), 0(p = 0.2) 4

Win pair B 0(p = 0.8), +5(p = 0.2) 1

Loss pair C −5(p = 0.8), 0(p = 0.2) −4

Loss pair D 0(p = 0.8), −5(p = 0.2) −1
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numerous studies using the same VLT, the conclusions
drawn from the secondary tasks have varied. For example,
Raymond and O’Brien (2009) reported two effects of
acquired value on old versus new recognition of faces when
attentional capacity was limited. First, stimuli previously
associated with high probability outcomes (either win
or loss) showed a processing advantage (i.e. greater
recognition accuracy) regardless of available attention
(reduced versus full) compared to stimuli previously
associated with low probability outcomes. Second, win-
associated stimuli showed processing advantages (versus
loss-associated stimuli) when available attention was
reduced. In another example, a reach-to-grasp task showed
faster reaches toward stimuli previously associated with
high probability outcomes (versus low probability) but more
efficient reaches toward stimuli previously associated with
wins (versus loss or no-change; Painter et al. (2014)).

Asymmetries in learning wins and losses But inferences
about asymmetric valence effects on subsequent processing
depend, at least implicitly, on the assumption that the values
of win and loss stimuli have been learned equally well—
otherwise the subsequent processing differences may be due
to learning differences rather than valence per se.

Lin et al. (2020) conducted a meta-analysis of studies
adopting the VLT to compare learning for win and loss
outcomes. In each study, the probabilistic structure was
symmetric as in the example in Table 1 above. Nevertheless,
the results of the meta-analysis showed that the probability
of optimal choice was significantly higher for win-
associated stimuli compared to loss-associated stimuli,
suggesting a valence-based asymmetry. Furthermore, when
Lin et al. (2020) conducted new experiments using the
VLT, they found that the learning asymmetry was observed
regardless of whether the outcome led to monetary or point
earnings, and was also observed when participants were
provided with a description of the task structure (with
information about the specific probabilities and payoffs but
not the association between stimuli and outcomes).

From the perspective of learning in the loss decision
context, Palminteri et al. (2015) has provided an intuitive
explanation: when the punishment, i.e., loss, is successfully
avoided, the extrinsic negative reinforcement becomes
infrequent due to avoidance and so the values of the
negatively-valenced stimuli are learned less well. Our
computational model shows exactly how and why this
occurs in a learning agent grappling with the exploration-
exploitation tradeoff.

Asymmetries in explicit memory for wins and losses One
approach that Lin et al. (2020) have pursued to further
understand the nature of the learning asymmetry is to
probe participants’ explicit knowledge of the outcomes

associated with each stimulus by using a post-learning
memory task. In the studies conducted by Lin et al. (2020)
participants completed a forced choice recognition memory
task in which participants indicated the outcome most likely
associated with each image from the VLT (e.g., “very likely
to win” for the 80% win scene). Performance on the post-
learning memory task was consistent with the learning
asymmetry in the VLT: memory accuracy was superior
for optimal win scenes versus optimal loss scenes—though
interestingly, participants were overall more accurate in
identifying the outcome associated with loss-associated
images. We return to this finding later in the paper.

The computational reinforcement learning
model

We apply computational reinforcement learning (RL) theory
(Sutton & Barto, 2018) to build models of the VLT in
order to provide new insights and possible explanations
for the observed win-loss asymmetry. Our model is
simple, but it yields interesting explanations of qualitative
phenomena from the results of trial-level simulations, and
it also provides some insights into the nature of individual
differences and performance on the subsequent outcome
memory task described above.

RL theory (Sutton & Barto, 2018) provides a formal
definition of the problem of learning from experience and
insights on how to act so as to maximize cumulative
rewards. In the standard RL problem formulation, a
decision-maker, or an agent, determines at each time step t

what action, at , to take at a given state, st (or observation),
and at the next time step receives some reward rt+1 and
transition to a new state or observation. The agent’s goal
is to maximize the expected cumulative future rewards. For
example, in the VLT, the actions that result in maximum
total reward are those actions that select the high probability
win scene in the win condition and the low probability loss
scene in the loss condition.

The Value Learning Task is a special case of the general
RL problem in that it does not involve sequential decision
making; i.e., each choice affects only immediate reward and
not future rewards. The win and loss pairs in the VLT are
thus each equivalent to a two-armed bandit task. Despite
their simplicity, bandit tasks are nevertheless interesting in
RL theory and algorithm development because they are the
minimal setting which imposes the challenge of learning
value from probabilistic outcomes along with the need to
balance exploration and exploitation.

Sutton and Barto (2018) provide a number of algorithms
for solving bandit tasks, including sophisticated methods
that approach optimal exploration strategies. We adopt here
a simple incremental algorithm that learns expected values
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via an error-driven learning rule. The form of the rule is
shared by many RL algorithms and theoretical approaches
to human and animal learning.

We denote the estimated value of action a at trial t as
Qt(a). In the VLT, the value of an action is its expected
reward. For example, the value for the high probability win
scene (80% win with a reward of 5) is 5 ∗ 0.8+ 0 ∗ 0.2 = 4.
The error-driven update is:

Qt+1(a) = Qt(a) + α(rt − Qt(a)) (1)

where α is the agent’s learning rate; α ∈ [0, 1]. When α is
0, there is no learning, and when α is 1, the agent only takes
into account the feedback from the previous trial.

At each trial, the agent makes a selection according to a
choice rule that converts current action value estimates into
choices while balancing exploration and exploitation. There
are several common choice rules, including greedy (always
choose the action with the highest estimated value) and
epsilon-greedy (choose a random action with probability ε

otherwise choose greedily). We adopt here another standard
choice rule for balancing exploitation and exploration: the
softmax rule. According to the softmax rule, at trial t ,
the probability of choosing an action A given the value
estimates for action A and B is:

P(A|Qt(A), Qt (B)) = exp(β ∗ Qt(A))

exp(β ∗ Qt(A)) + exp(β ∗ Qt(B))

(2)

where β is the inverse temperature parameter, and larger
β corresponds to greedier choices (e.g., Daw 2011).
The computed probabilities thus define a multinomial
distribution from which an action is sampled; actions with
higher value estimates are sampled more frequently, but
lower-valued actions always have a nonzero probability.
Table 2 provides an example of how the model updates
action values, converts the values into choice probabilities,
and samples an action choice for several trials in the loss

condition given a specific pair of parameters (α = 0.23,
β = 2).

Adopting the softmax rule has the analytic advantage of
directly giving a nonzero probability for each choice on
each trial conditioned on the learners value estimates, which
allows us to use maximum likelihood estimation to find the
best fitting parameters to the data. The ability of RL models
to make contact with human data at the individual trial level
is a significant theoretical benefit of their use (Daw, 2011).
In the following section we provide details on how we select
model parameters and modeling learning and choice in the
VLT at the trial level.

Error-driven learning rules with fixed learning rates
such as the rule we adopt in Eq. 1 may be contrasted
with the simple method of keeping a running average
of experienced rewards as value estimates. Rules such
as Eq. 1 are effectively computing a weighted average
of experienced rewards, where more recent rewards are
weighted more than rewards in the distant past. Such rules
have the advantage that they allow the agent to adapt to
non-stationary environments where the probabilistic payoffs
may be changing over time. They also require an initial
value estimate, which can be a locus of prior knowledge
about the environment. In the absence of prior knowledge,
common initial value estimates are zero, very small random
values with mean zero, or random values with a small
positive mean; positive initial values estimates build in an
optimism that is one method for encouraging exploration
(Sutton & Barto, 2018). For our model we fix the initial
value estimate to be zero and explore its implications.

The model thus has two free quantitative parameters
that correspond to learning rate (α) and the balance
between exploration and exploitation (β). These parameters
influence how Qt(a) is updated and how the agent makes
the selection at each trial. In our simulations below we
explore two methods for setting the parameters: maximizing
empirical fit to human data, and maximizing reward in the
task.

Table 2 Model simulation
example of a sequence of trials
at the start of the Loss pair
condition with α = 0.23, β = 2

t Condition P(C) P (D) Model choice Reward Q(C) Q(D)

0 0 0

1 Loss 0.5 0.5 C −5 −1.15 0

2 Loss 0.09 0.91 D 0 −1.15 0

3 Loss 0.09 0.91 D −5 −1.15 −1.15

4 Loss 0.5 0.5 D 0 −1.15 −0.886

5 Loss 0.37 0.63 D 0 −1.15 −0.68
...

...
...

...
...

...
...

...

The model chooses between stimulus C and stimulus D in the pair. Value estimates for both choices,
denoted Q(C) andQ(D) start at 0. On each trial, the model converts value estimates for choices into choice
probabilities P(C) and P(D), makes a selection by sampling a choice according to these probabilities,
receives a reward, and updates its value estimates using the error-driven update rule
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Simulating the Value Learning Task

Experiment structure. We simulate first the VLT in Lin et al.
(2020). This task has three pairs of stimuli: one pair in the
win condition, one pair in the loss condition, and one pair in
the no-change condition, with payoffs and probabilities as
in Table 1. The task has 300 trials across 5 blocks: 100 win
pair trials, 100 loss pair trials, and 100 no-change trials.

Over these 300 trials the model thus estimates six values:
the win-correct option, the win-incorrect option, the loss-
correct option, the loss-incorrect option, and the two no-
change options. (We focus here only on the values for the
win and loss pairs as no learning happens for the no-change
pair.) All initial values were set to zero in our analyses. On
each trial, the model makes a choice given the condition
and the softmax choice rule (Eq. 2), receives a reward
probabilistically according the parameters in task (Table 1),
and updates the value of the corresponding choice according
to the incremental update rule (Eq. 1).

Because the point schemes and monetary currencies vary
arbitrarily across VLT experiments, and any such points or
currencies must be transformed by humans into an internal
reward signal (Singh, Lewis, Barto, and Sorg, 2010), we use
a standardized reward (1 and −1) in all of our subsequent
analyses.

Setting model parameters We simulated the VLT with
parameters set in two ways: in the data-driven approach we
estimate α, β for each individual participant to maximize
fit to their choice data (details below). In the theory-driven
approach we find optimal settings of α and β—settings that
maximize expected reward in the task. This represents a
simple bounded optimality analysis to find computationally
rational (Lewis, Howes, & Singh, 2014) parameter settings
that determine the upper bound on performance given the
constraints of the learning algorithm.

We use maximum likelihood estimation to find the
pair of parameters that yields choices that best fit each
human participant’s choices. The likelihood is given directly
by the softmax rule (Daw, 2011), and the likelihood or
probability of the entire observed sequence of choices from
one participant is the product of the probabilities of their
choices on all trials:
∏

t

P (ct = A|Qt(A), Qt (B)). (3)

The product in Eq. 3 is often an extremely small number and
so it is usually better to compute the summed log-likelihood
instead, which is

∑

t

log (P (ct = A|Qt(A), Qt (B))) =
∑

t

β ∗ Qt(A)

−
∑

t

log(exp(β ∗ Qt(A)) + exp(β ∗ Qt(B))). (4)

To find α, β that maximize the quantity in Eq. 4 we use
a simple randomized grid search, sampling 100 α’s from a
uniform distribution, U(0, 1), and 100 β’s from a uniform
distribution, U(0, 10), which resulted in 10,000 pairs of
parameter settings. For each pair we computed the log-
likelihood for each individual participant’s data given each
pair of parameters and the model. Finally, we chose the
pair of parameters that produced the largest log-likelihood
as the maximum likelihood estimation of each individual’s
learning rate and selection strategy (Daw, 2011).

We found an approximation of the optimal pair of param-
eters for the task with the same randomized grid search:
we sampled 100 α’s from a uniform distribution U(0, 1),
and 100 β’s from a uniform distribution U(0, 10), yield-
ing 10000 pairs of parameters. For each pair of parameters,
we calculated the mean sum of rewards in the task over
500 simulated runs (thus 5M total simulations). Finally, we
chose the pair of parameters that produced the largest mean
sum of rewards as an approximation to the optimal param-
eters. Simulating the VLT with these parameters allows us
to see whether the qualitative empirical effects—in particu-
lar any win-loss asymmetries—persist when using the best
possible parameters for the learning algorithm. The optimal
parameter values also provide some insight into the nature
of the task itself—what the task structure is demanding
of the learner. The simple randomized grid search method
also allows us to visualize the 2-D payoff surface (Fig. 1,
described below).

Main results We simulated the VLT for all N=191
participants in Lin et al. (2020) who exceeded a minimal

Fig. 1 Total payoff given different values of α and β. The pair of
parameters that produce the highest reward is α∗ = 0.27, β∗ =
9.02, shown as a red dot. We have applied an exponential transform
(1.07total reward+5) to the simulated accumulated rewards to make the
visualization clear
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learning threshold, defined as achieving at least 65% correct
selection in the final block; we discuss the remaining
poorly-performing participants below. The model was run
200 times for each participant and so the aggregated results
represent a mean of 191×200=38,200 model runs.

Figure 2b shows the aggregate results of the model
simulating the 191 participants. The results are very similar
to the empirical results (Fig. 2a), and in particular, there is a
clear asymmetry in performance on the win and loss stimuli:
the win pairs are learned better than the loss pairs. This
difference diminishes with learning but persists through the
final block.

We also simulated learning with optimal parameters—
the settings of α and β that maximize expected reward.
Figure 2c, shows the performance averaged over 5000 runs
of the optimal parameter setting. The payoff surface is
shown in Fig. 1, which plots the total expected reward
earned in the task given different values of α and β. The
optimal values are α∗ = 0.27, β∗ = 9.02, indicating that the
best strategy is to update value estimates aggressively from
recent past trials and accordingly exploit the learned better
option in each condition. This is the result of the structure
and setup of the task, and is a function of the probabilities
(0.8 and 0.2) and number of trials. Probabilities closer to 0.5
(say 0.65 and 0.35) would impose a more difficult learning
task and result in lower optimal α levels.

Even at optimal learning and exploration rates, the
simulation results show that win trials are learned better
than loss trials, though the asymmetry is quantitatively

diminished. This suggests that the explanation of the win-
loss asymmetry cannot be simply that participants have
adopted suboptimal learning or exploration rates.

Simulation of three other VLT studies In this section we
show that the learning asymmetry exhibited by the model
of the VLT in Lin et al. (2020) also occurs when simulating
three other studies that use the same general paradigm, but
with different numbers of stimuli pairs and number of trials
(Raymond and O’Brien, 2009; Rothkirch, Tonn, Köler, &
Sterzer, 2017; Painter et al., 2014). Because we did not have
access to individual participant data from these studies, we
simulated the tasks using approximately optimal settings for
α and β, using the method described above for find the
optimal parameters.

In Raymond and O‘Brien (2009) the VLT consisted of
of six pairs of faces: two win pairs, two loss pairs, and two
control pairs. Each pair was presented 100 times randomly
in each block for a total of 6 blocks, yielding a total
of 600 trials. On each trial, a choice led to a monetary
outcome for win and loss trials (5 pence) with a probability
of either 0.8 or 0.2 (Raymond & O’Brien, 2009). We
simulated the probability of correct choice (mean of 10000
runs with optimal parameters: α = 0.32β = 9.62) within
ten 10-trial bins to match the data display in Raymond
and O’Brien (2009) (Fig. 3(a) and (b)). Both model and
human participants show the win-loss asymmetry, though
the model’s performance with optimal parameters is much
higher than the humans.

Fig. 2 (a) Human participant results (N = 191) from Lin et al. (2020):
Mean probability of selecting the correct stimulus from win pairs and
loss pairs, across the 5 blocks (100 trials total), showing better perfor-
mance for win pairs than loss pairs. Error bars represent one standard
error (SE). (b) Model simulation of probability of correct selection

for the 191 participants using best-fitting parameters for individuals.
(c) Model simulation of probability of correct selection using opti-
mal parameters; the asymmetry persists in this model, though it is
quantitatively diminished
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Fig. 3 Simulations of three studies using the VLT. The difference in learning in wins and losses persists in these studies although they have
different pairs stimuli or numbers of trials from Lin et al. (2020)

Painter et al. (2014) used twelve pairs of flute glasses
as stimuli, six of which were win pairs and the other six
were loss pairs. Each pair was presented 10 times in each
block for a total 5 blocks, yielding a total of 600 trials. The
monetary outcome for win and loss trials (20 cents in AUD)
occurred with a probability of either 0.8 or 0.2. During the
last block, participants no longer received any feedback,
indicating that participants only learned during the first 4

task blocks and were tested for their learning during the
last block (Painter et al., 2014). The empirical results and
optimal-parameter model simulation (mean of 10000 runs)
is shown in Fig. 3(c) and (d). Again, both the empirical and
simulated results show that the win condition was learned
better than the loss condition, and in this experiment the
human participants are much closer to the performance of
the optimal model.
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Fig. 4 (a) Evolving mean value estimates for the four stimuli in win
and loss pairs; mean computed from 30 runs of each of the 191 indi-
vidual participant models. (b) Evolving mean differences in value

estimates for win and loss conditions from the 191 individual par-
ticipant models. (c) Evolving mean differences from the model with
optimal α and β (5000 runs)

The final study that we simulated was Rothkirch et al.
(2017). Their task consisted of four pairs of stimuli,
two of which were win pairs and the remaining two were
loss pairs. Each pair was presented 10 times in each block
for a total of 5 blocks, yielding a total of 200 trials. The
monetary outcome for win and loss trials (5 cents) occurred
with a probability of either 0.8 or 0.2 (Rothkirch et al.,
2017). The empirical results and optimal parameter model
simulation (mean of 10000 runs) are shown in Fig. 3(e)1

and (f). There were no differences in participants’ learning
of the two pairs of stimuli within the win condition (called
“Reward” in Rothkirch et al. (2017)) and the loss condition
(called “Punishment”). But again, both the empirical and
simulated results show win pairs were learned better than
loss pairs over the blocks.

Explaining the win-loss asymmetry

The VLT paradigm in Lin et al. (2020) and the three
experiments above each have seemingly symmetric payoff
structures2 (Table 1). But our model predicts that asym-
metric learning of wins and losses will occur across all the
experiments. What gives rise to the asymmetry?

1In Fig. 3eWin and loss correct rates are calculated as the mean correct
rates of patient group and healthy control groups.
2It is worth noting that there is more than one way to define the
symmetry of the task. Our notion of symmetry is based on the
symmetric payoff structure of the task. However, symmetry could also
be represented by 1) equal absolute expected values (EVs) of the
correct win and loss options and equal differences between the correct
and incorrect options in win and loss conditions; 2) equal absolute EVs
of the incorrect win and loss options and equal differences between the
correct and incorrect options in win and loss conditions. Simulations of
the latter two task structures with the optimal parameters of this VLT
task show that the win-loss asymmetry persists (see Supplementary
Materials for results).

An examination of the evolving value estimates in the
model reveals that they exhibit a different pattern for win
and loss pairs over the course of the simulated experiment.
The mean trial-by-trial value estimates for all choices in
win and loss conditions for the 191 models with α and β

fit to individual participants is shown in Fig. 4a, and b shows
the corresponding differences in values between stimuli in
the win and loss pairs. These differences are key because
they are monotonically related to differences in probability of
choice for each option. It is clear that the stimuli in the win pair
aremore sharply discriminated than the stimuli in the loss pair.

Why is this the case? In the win condition, the
value estimates for the win-correct option approach the
true expected value of 0.8 within the first 150 trials;
this is not surprising because the win-correct option is
sampled frequently. The win-incorrect option has still
not approached the true expected value of 0.2 by the
end of the experiment because it is sampled much less
frequently and the initial estimate of zero still has its
influence. Similarly, the loss-incorrect option is more slowly
approaching the true expected value of −0.8 because it is
sampled less frequently than the loss-correct option, which
is approaching the true expected value of −0.2. But the
result is that the value estimates of the loss pair stimuli are
closer together, leading to comparatively greater choices of
the incorrect loss option than the incorrect win option; put
differently, model choices in the loss pair are noisier. The
asymmetry persists when α and β are set to their optimal
values (Fig. 4c). In short, throughout the task, the loss
stimuli remain more poorly discriminated than win stimuli.

Individual differences in the VLT

We have shown that a simple RL error-driven learning
model provides an explanation of win-loss learning
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Fig. 5 Human data (error bars
represent one SE.) and model
simulations for two groups of
participants created by a median
split on the learning asymmetry;
see text for details

asymmetries in the superficially symmetric VLT paradigm,
and have shown that this asymmetry persists whether the
learning and exploration parameters are set to maximize
empirical fit to individual participants, or are set to the
computationally rational optimal setting to maximize task
reward. We now examine the extent to which the asymmetry
persists for all participants, and whether variation in the
model’s learning parameters can account for individual
differences.

Empirical data from Lin et al. (2020) suggest that the
striking asymmetric learning pattern does not characterize
all individuals: a subset of participants learned both condi-
tions nearly equally well. To help visualize this participant
variation, we characterized the learning asymmetry for each
participant (in the N=191 who achieved at least 65% cor-
rect selection in the last block) by computing the difference
between mean probabilities of correct selection of win and
loss stimuli across the 5 blocks. We then separated partici-
pants into two groups using a median split on this difference
measure. We refer to the group with lower win-loss differ-
ences as the Nearly Equal Learner Group, and the group
with greater win-loss differences as the Unequal Learner
Group.

Figure 5 shows the empirical (left panel) and best-
parameter-fit model-simulation (right panel) learning curves

for the Nearly Equal Learners (top row) and Unequal
Learners (bottom row). Note that these model simulations
are identical to the ones presented above for the N=191
participants in Lin et al. (2020);3 we are simply splitting
those results into the two different groups. The key result
here is that the asymmetry is diminished in the simulation
of the Nearly Equal Learners, though not to the extent
observed in the empirical means. This suggest that variation
in α and β provides a partial account of the individual
variation in the win-loss asymmetry.

We also explored the effect of the individual parameter
variation on predicted estimated values for participants
in the two groups (Fig. 6). Consistent with the analysis
presented above, the mean differences in value estimates for
win and loss conditions from models of participants in the
Nearly Equal Learner group are smaller than those from the
models of participants in the Unequal Learners’ group.

Each individual participant also differed in the specific
experiences on each trial. Although it seems unlikely
that these experience differences could account for the
individual differences we observed, we also ran simulations
of the model using the actual experience of each individual

3This individual difference analysis was not included in Lin et al.
(2020)

661Cognitive, Affective & Behavioral Neuroscience (2023) 23:653–666



Fig. 6 (a) Evolving mean differences in value estimates for win and loss conditions from the 95 models of the Nearly Equal Learner participants.
(b) Evolving mean differences in value estimates for win and loss conditions from the 96 models of Unequal Learners

participant—that is, forcing the model to experience
the exact same trial conditions in the same order as
the participants. We then computed optimal learning
parameters for these individual experiences to assess
whether experience alone might lead to upper bounds on
performance that vary enough to account for some of the
observed performance differences. We did not observe any
differences in the optimal model simulations, suggesting
that random experience differences cannot account for the
observed variation in individual performance (Simulation
results in the Supplementary Materials).

Finally, the model simulates the performance of most
participants who did not achieve the 65% correct selection
threshold (some of whom were operating nearly at chance).
Setting either α or β to very low levels yields poor
performance. It is possible to further divide the poor
performing participants into subgroups who learned neither
win or loss associations (N=23), or who learned wins
slightly better than losses (N=17), or losses slightly better
than wins (N=8). Only the latter small group of participants
(8 of 287) cannot be accounted for by the model. Simulation
results of these four subgroups are in the Supplementary
Materials).

Figure 7 shows the best-fitting α and β parameters for
each of the 287 participants, color coded for each of the
three groups: Unequal Learners, Nearly Equal Learners,
and Poor Performers. What is clear from this plot is that
the Nearly Equal Learners have parameter values closer to
the optimal parameters. The model thus predicts that these
participants will have the highest overall performance, a
prediction that is confirmed empirically (See Supplemental
Materials).

Modeling a learning outcomememory task

Following the VLT, Lin et al. (2020) administered a post-
learning memory task that aims to probe participants’
explicit knowledge of the outcome associated with each
stimulus (scenes) that appeared in the VLT.4 The task
included the 6 VLT scenes and 12 new scenes. VLT
scenes were presented 4 times each and 12 new images
each appeared twice. Participants indicated the outcome
associated with each image as follows: 1) very likely to win,
2) occasionally win, 3) no change, 4) occasionally lose, 5)
very likely to lose, 6) none (indicating a new image).

Figure 8, top panel, shows the human results for the two
groups of participants (Nearly Equal Learners and Unequal
Learners). In both groups, there is a clear interaction: the
Win-80 stimulus was very accurately categorized but the
Win-20 stimulus was categorized poorly. Each of the two
Loss stimuli were categorized about equally well, better
than Win-20 but not as accurately as Win-80. In short,
there is a clear valence difference but also an interesting
interaction. And given this interaction, when collapsing
across the paired stimuli, accuracy on the Loss stimuli is
slightly overall higher than Win stimuli—a counter-intuitive
result given the choice performance asymmetry.

We extended the learning model to also provide an
account of the performance on the memory probe task,
for those stimuli that were part of the VLT. The simple
hypothesis we pursued is the following: participants would
make the categorical judgments based on their learned

4Lin et al. (2020) reported memory task performance for all
participants who met learning criteria (N=191).
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Fig. 7 Individual best-fit parameters for all participants, distinguishing
the three groups: Nearly Equal Learners, Unequal Learners, and Poor
Performers. Parameter settings for the Nearly Equal Learners are
closer to the optimal setting (see Fig. 1); the model thus predicts that
these participants will have higher overall performance, a prediction
that is consistent with the data

values estimates for each stimuli, using a set of reasonable
thresholds over these estimates to yield the five categories.

In our initial exploration, we hand-picked the following
intuitively reasonable ranges for the thresholds or break-
points for mapping values estimates into the four categories
(we also found empirical best-fit thresholds, described
below). Recall that the observed rewards for the model were
+1, −1, or 0.

• very likely winwas defined as value estimates ≥ highest
threshold, where highest threshold ∈ [+0.50,+0.70];

• occasional win was defined as value estimates ≥ high
threshold, where high threshold ∈ [+0.17,+0.23];

• no change was defined as value estimates ≥ low
threshold, where low threshold ∈ [−0.23,−0.17];

• occasional losswas defined as value estimates≥ lowest
threshold, where lowest threshold ∈ [−0.70,−0.50];
and

• very likely loss was defined as value estimates ≤ lowest
threshold

Note that when these thresholds are applied to the
true values of stimuli, they yield the intuitively correct

categorizations of stimuli that were used as the definition of
the correct responses for computing the empirical accuracy
scores reported in Lin et al. (2020).

We then took the value estimates for win and loss
stimuli from the models for each of the 191 participants
who reached our previously specified learning criterion and
sampled 1000 sets of thresholds from their plausible ranges
to create simulated responses to the memory task.

Figure 8, second row, shows the probability of catego-
rizing stimuli correctly based on the cutoffs above for the
two groups of simulated value estimates. Figure 8, third row
shows the results with cutoff thresholds chosen to maximize
empirical fit (minimize mean-squared error between pre-
dicted and observed accuracies). It is clear that the modeling
results recover the key qualitative patterns in the human
data. From the 1000 sets of sampled thresholds, when we
set the cutoffs to maximize the categorization accuracies,
we found the same results as when the cutoffs maximize
empirical fit (see Fig. 8).

Discussion

The value learning task (VLT) developed by Raymond
and O’Brien (2009) is a simple and popular paradigm
for studying value learning and the effects that learned
value have on subsequent processing of valued stimuli.
The VLT paradigm involves learning and choice in an
uncertain environment, and that uncertainty imposes the
classic exlporation-exploitation tradeoff on the learner. But
the standard paradigm, despite the apparent symmetry in
payoff structure, yields a contrast between wins and losses:
choice performance on win stimuli is better than loss stimuli
(Lin et al., 2020; Rothkirch et al., 2017), and this pattern
holds whether participants receive points or monetary
rewards, and even when they are explicitly instructed about
the structure of the task.

We developed a simple model of the VLT based on
a standard error-driven learning rule, soft-max choice (to
balance exploration and exploitation), and neutral (zero)
initial value estimates. This model produces the asymmetry
in learning gains and losses that is evident in human
performance. This is the case despite (a) the task itself
having a symmetric design; (b) the learning and choice
rules having no special role for valence; and (c) allowing
the learning and choice rule parameters to vary widely
and include optimal settings for the task. The model
furthermore yields an explanation: the asymmetric learning
pattern arises from an interaction of incremental learning,
exploitation while exploring, and neutral initial value
estimates. As a consequence the learned values of the loss
stimuli are discriminated less well than the win stimuli. We
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Fig. 8 Memory task results (top
panels) from human Nearly
Equal Learners (N=95) and
Unequal learners (N=96) and
categorization of stimuli given
simulated value estimates for the
two groups of participants (error
bars represent one SE).
Simulation data (second-row
panels) show the mean
probability of correct
categorization for the two groups
based on 1000 sets of plausible
cutoffs. Simulation with best-fit
cutoffs (third-row panels) shows
the probability of correct
categorization for the two groups
based on the set of cutoffs that
fit empirical data the best. The
best-fit set (1: very likely win
(value estimates > +0.51), 2:
occasional win (value estimates
> +0.17), 3: no change (value
estimates > −0.17), 4:
occasional loss (value estimates
> −0.51), and 5: very likely loss
(value estimates ≤ −0.51)) are
decided by the minimum mean
squared error between P(correct
categorization) from simulation
and empirical data

have shown this asymmetric learning pattern arises in three
other experimental tasks that have a very similar structure to
the VLT in Lin et al. (2020).

Nevertheless, this asymmetric learning pattern for win
and loss stimuli does not arise uniformly across participants:
a subset of the participants learn wins and losses nearly
equally well. The model partially explains this variation in
terms of individual variation in the learning and exploration
parameters. From simulating each participant’s individual
task experience with both the optimal parameters and best-
fitting parameters, we were also able to rule out random
variations in task experience as the source of the individual
differences.

A simple extension of the model that uses the learned
value estimates to simulate a post-learning outcome
memory task provides further evidence for the asymmetric
value estimates that the model naturally produces, and thus
indirectly for our assumption of an initial neutral value
estimate. It yields the observed win-loss interaction in the
human data and even accounts for the surprising finding
that accuracy in categorizing outcomes of loss-stimuli is
slightly better than win-stimuli (Results of overall correct

categorization for win- and loss-stimuli in Supplementary
Materials). However, despite nearly equal or unequal
learning of the win- and loss-stimuli in the behavioral task,
the qualitative effects on subsequent memory performance
were the same. This suggests that the win-loss asymmetry in
learning does not directly drive effects on subsequent tasks.
Instead, the learned value estimates were better predictors
of the subsequent memory task. Thus, a promising avenue
for future work is to quantitatively model value learning as
we have done here, and use the learned value estimates as
parameters of computational models of downstream tasks.

There are several aspects to note for this model.
First, we have selected a standard softmax rule as the
model’s choice rule. Other choice rules such as the
reinforcement learning diffusion decision (Fontanesi, Gluth,
Spektor, and Rieskamp, 2019) and ε-softmax (Shteingart,
Neiman, & Loewenstein, 2013) may also be able to predict
the empirically observed learning asymmetry. While the
standard softmax rule associates action selection with the
estimated action values and indicate that action selection
can become sensitive to the action values, the ε-softmax
choice rule (Shteingart et al., 2013) can associate values and
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choices while maintaining a certain level exploration. This
could potentially reduce sampling bias in the simulations,
which partially contributes to the learning asymmetry.
Similarly, an adaptive inverse temperature parameter that
reduces during the task may also reduce the sampling bias
by maintaining exploration. Besides different choice rules,
future work may also explore how other learning rules such
as the decay learning rules (Don, Otto, Cornwall, Davis, &
Worthy, 2019) may affect the model prediction on the win
and loss learning asymmetries.

Second, this model also provides explanations for the
win-loss asymmetry with minimal assumptions where two
parameters, the learning rate (α) and the inverse temper-
ature parameter (β), are considered. Other models may
differentiate between win and loss contexts and implement
different learning rates correspondingly (Palminteri et al.,
2015). Such models are worth exploring for future work.

In addition, it is worth noting that, for this model, valence
is relevant insofar as exploitation wants to pursue greater
reward. But valence in the sense of positive/negative does
not play a special role. Therefore, such a computational
model is very useful for researchers to have as a baseline
model for any value learning task, to draw out the
implications of the simplest set of assumptions that do not
assume a special role for positive/negative valence. In this
sense, it is also a way to put into sharper focus any real
valence-related differences that do emerge.

We discuss two limitations of our model. First, although
the model simulations reflect the general characteristics
of human performances by people in different groups, the
model cannot account for the performance of the small
percentage (< 3%) of individuals who performed better
in the loss condition than the win condition. It is possible
that individuals who learned losses better than wins have
a different internal reward function that transforms point
or monetary observations into an internal reward signal,
but this could be very challenging to estimate. Second, our
model does not take into account the possibility that humans
may also learn the structure of the task in ways that allow
them to update value estimates for the stimulus in the pair
other than the one that is chosen. In other words, in the VLT,
feedback on one stimulus in a pair does provide information
about the value of the other stimulus. It is possible that this
more efficient task structure learning accounts for some of
the performance differences of participants in the Nearly
Equal Learners group. A more sophisticated structured
Bayesian RL model could be developed to account for such
learning.

The model-based analysis provides some insights into
what we could do to reduce the asymmetry in learning in the
VLT, without compromising the task’s symmetric design.
Again, the asymmetric pattern is a result of the interaction
of incremental learning, the balance between exploration

and exploitation, and zero initial values. One clear way to
reduce the asymmetry in learning is to adjust the initial
values for the actions by allowing an extra block at the
beginning of the experiment as a purely exploration phase,
where participants are instructed to learn as much about
each option as possible, without concern for exploitation.
Adjusted initial values could lead to a smaller difference in
learned value estimates between win and loss conditions,
and may subsequently produce smaller differences in
performance for categorizing win and loss stimuli. This
solution needs to be tested with further empirical work.

Supplementary Information The online version contains supple-
mentary material available at https://doi.org/10.3758/s13415-022-010
50-8.
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