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Abstract
Mood is an important ingredient of decision-making. Human beings are immersed into a sea of   emotions where episodes of 
high mood alternate with episodes of low mood. While changes in mood are well characterized, little is known about how 
these fluctuations interact with metacognition, and in particular with confidence about our decisions. We evaluated how 
implicit measurements of confidence are related with mood states of human participants through two online longitudinal 
experiments involving mood self-reports and visual discrimination decision-making tasks. Implicit confidence was assessed 
on each session by monitoring the proportion of opt-out trials when an opt-out option was available, as well as the median 
reaction time on standard correct trials as a secondary proxy of confidence. We first report a strong coupling between mood, 
stress, food enjoyment, and quality of sleep reported by participants in the same session. Second, we confirmed that the 
proportion of opt-out responses as well as reaction times in non-opt-out trials provided reliable indices of confidence in 
each session. We introduce a normative measure of overconfidence based on the pattern of opt-out selection and the signal-
detection-theory framework. Finally and crucially, we found that mood, sleep quality, food enjoyment, and stress level are not 
consistently coupled with these implicit confidence markers, but rather they fluctuate at different time scales: mood-related 
states display faster fluctuations (over one day or half-a-day) than confidence level (two-and-a-half days). Therefore, our 
findings suggest that spontaneous fluctuations of mood and confidence in decision making are independent in the healthy 
adult population.

Keywords Stress · Bayesian linear mixed models · Metacognition · Online experiment · Longitudinal experiment · 
Decision-making

Introduction

Emotions and cognition have long been known to interact 
(Damasio, 2008). Modern, holistic approaches have even 
demolished the frontiers between emotions and cognition 
by suggesting that affects form an integral part of the brain’s 
decision-making system (Barrett & Bliss-Moreau, 2009; 
Clark et al., 2018; Moors et al., 2021). In particular, mood 
as a prolonged felt experience marked by valence, motiva-
tion, and arousal (Schiller et al., 2022) modulates decision-
making and especially metacognition, that is the monitor-
ing of one’s own thought process and performance (Eldar 
et al., 2016; Vinckier et al., 2018). For example, inducing 
a transient state of sadness or anxiety can shift a subject’s 
willingness to perform a risky decision (Raghunathan & 
Pham, 1999) or boost the accuracy of confidence judgments 
(Massoni, 2014). On a longer time scale, personality traits 
also affect metacognitive judgments (H. Xu, 2020), whereas 
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metacognitive impairments and emotional dysregulation are 
associated in various psychiatric disorders (Rouault et al., 
2018). In particular, these disorders are associated with 
an unbalanced sense of confidence or simply confidence 
(Hoven et al., 2019), which refers to our capacity to per-
form and report robust evaluations of our decisions and use 
these evaluations to control our decision-making (Yeung & 
Summerfield, 2012). Confidence allows us to know when a 
decision is too risky to take and to revert decisions based on 
more recent and more compelling evidence. For example, 
confidence judgments is impaired in depressed patients (Fu 
et al., 2005), who consistently underestimate their perfor-
mance level, which could have a major impact in prevent-
ing these patients from taking the appropriate decisions to 
improve their condition. On the converse, schizophrenic and 
psychotic patients usually display inflated overconfidence 
(Jardri & Denève, 2013; Moutoussis et al., 2011; Rubio 
et al., 2011; Averbeck et al., 2011; Rouy et al., 2021.

Our understanding of the association between mood 
and metacognition is limited by the gap in the time-scale 
between short-lived, experimentally induced emotional 
states and long-lasting states, such as affective disorders. The 
link between spontaneous daily fluctuations in mood and 
metacognition in ecologically valid settings remains poorly 
understood (we use the term “spontaneous fluctuations” as 
opposed to not experimentally induced emotions, whether 
they reflect endogenous changes or exogenous changes 
linked to participants’ lives). Only a handful of studies have 
shown that positive events, such as good weather or a sports 
win, lead to more risk-seeking behavior, probably through 
their impact on mood (Otto et al., 2016; Bassi et al., 2016; 
Edmans et al., 2007). The impact of mood on confidence 
remains however unknown. In fact, whether confidence fluc-
tuates and at which time scale has to our knowledge never 
been studied, beyond the mere introspective experience that 
we sometimes feel more confident. Popular sayings seem to 
take such associations between mood state and alterations 
of metacognition for granted: “Do not promise when you 
are happy, do not decide when you are sad.” Testing such 
association could be performed by tracking spontaneous 
mood-related states and cognition simultaneously through 
longitudinal studies. Online tools now make longitudinal 
studies with many behavioral sessions in a cohort of par-
ticipants much more affordable to the experimenter (Gillan 
& Rutledge, 2021) and offer the possibility to study cogni-
tive processes in ecological settings precluded to lab experi-
ments. This is of particular importance for the translation of 
scientific insights to clinical applications, such as the diag-
nostics of affective disorders or the development of predic-
tive models for crisis prevention using digital phenotyping 
techniques, i.e., making inference of affects from patient’s 
digital data “in the wild” (Dagum, 2018; Jones et al., 2021; 
Taylor et al., 2017). To our knowledge, only one study so far 

has investigated the coupling between fluctuations of mood 
and cognition (more specifically, value-based decision-
making patterns) through longitudinal studies in a group of 
healthy adult participants learning (Eldar et al., 2018). It 
remains unknown whether daily mood fluctuations interact 
with metacognitive states, such as confidence.

Based on the ideas exposed above, we hypothesize an 
association between daily fluctuations in mood and confi-
dence. To address the above hypothesis, we developed two 
online longitudinal experiments where adult volunteers 
reported their mood, sleep quality, food enjoyment, and 
stress level and performed one of two simple visual dis-
crimination task twice per day during 10 consecutive days. 
We inferred the level of confidence by tracking how often 
subjects chose an opt-out option, available in a fraction of 
the visual task trials, which allowed avoiding to report the 
perceived stimulus. If mood and confidence fluctuations are 
indeed linked, we expect the participants to opt out less often 
during high mood episodes, whereas during low mood epi-
sodes they recur more to opting out. We also used median 
reaction times in a session as a secondary indicator of the 
participant’s confidence (Moreno-Bote, 2010; Urai et al., 
2017; Vickers, 1979; Vickers, 2014). Our results showed 
that both proxies of confidence are reliable markers of the 
session confidence level. Self-reported mood-related states 
were highly correlated with each other. In contrast to our 
original hypothesis, we found that spontaneous fluctuations 
in mood and confidence were not coupled but evolved on 
different time scales. Our results challenge the idea that fluc-
tuations of mood and confidence are intrinsically coupled in 
the healthy adult population.

Methods

General structure of the paradigm

All participants were invited to complete 20 sessions in 
10 consecutive days, i.e., two sessions per day, one in the 
morning (8-12 AM) and the other in the afternoon (4-8 
PM), starting on a Thursday morning and ending on a Sat-
urday afternoon (Fig. 1). The sessions were targeted to 
take approximately 10 minutes. In total 27 participants (20 
females, 6 males, 1 other) and 23 participants (18 females, 
4 males, 1 preferred not to answer) were recruited for the 
Numerosity (NT) and the Orientation task (OT), respectively 
(10 of them participated in both), mainly among students 
from the Pompeu Fabra University. The median age was 
25 (minimum 19, maximum 42) for the NT and 23 (mini-
mum 20, maximum 34) for the OT. We accepted all healthy, 
Spanish-speaking adults with normal or corrected-to-normal 
vision. One participant (in each task) reported a neurologi-
cal or psychological/psychiatric disorder diagnosed by a 
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professional; two (1) preferred not to report about a possi-
ble disorder in the NT (OT). We obtained online confirma-
tion of informed consent to the conditions and the payment 
modalities of the task. Irrespective of their performance, 
they were paid 2.5 € per session (5 € per day) and 40 € bonus 
for having completed all the sessions properly. Additionally, 
they had the chance to obtain a bonus payment, which was 
determined by their final score in the session; the two highest 
scoring participants of each session received a 4 € bonus. 
The session score was computed as the sum of the score 
of each trial: 3 (0) points for correct (incorrect) answers; 2 
points for deterministic opt-out election; 3 or 0 points, ran-
domly assigned, for stochastic opt-out choice (see below). 
The score and bonus schemes were explained to the subject 
by written task instructions. We informed participants of 
the bonus money they received after the end of the whole 
experiment to prevent feedback biases and maintain their 
level of motivation.

Participants were allowed to take a break between stages. 
A fraction number layed out in the instructions title marked 
the current stage of the experiment, and the approximate 
time duration of the current stage also was displayed. We 

excluded data from three sessions of one participant in the 
NT and two sessions (from two different participants) in the 
OT, where median reaction time for some difficulty levels 
(see Methods - Stimuli and Responses) exceeded 2 seconds, 
and data from three incomplete sessions (from 2 different 
participants) in the OT. The study was approved by the Eth-
ics Committee of the Department (CIREP approval #121).

Stimuli and responses

The participants performed the experiment via a browser on 
their personal computers through the Jatos online platform 
(Lange et al., 2015). The experiment was custom-made in 
JavaScript, and data were collected on an institutional server 
managed by the Jatos team (Lange et al., 2015). Before the 
first session, we provided to each participant a personal link 
to be used once per session and an online presentation with 
detailed instructions and a few examples of the decision-
making task. The first screen in each session instructed the 
participants to make sure they had the right environmental 
conditions: be in an indoor room, turn the brightness screen 

Fig. 1  Experimental paradigm. The online experiment lasts 10 
days with two sessions per day of approximately 10 minutes: morn-
ing (8-12 am) and afternoon session (4-8 pm). Each session starts 
with three or four questions about the participant’s mood, the qual-
ity of their sleep, their enjoyment of the food, and their stress level. 
After the questionnaire, the participant completed a two-alternative 
forced choice perceptual task. In two-thirds of the trials, they could 
select a third opt-out option (‘?’ symbol on the top left trial) which 
allowed skipping the decision. Participants were instructed to select 
the opt-out option when they were unsure of the stimulus category 
to maximize their cumulative score on the session. Two stages of tri-

als in each session differed in contingencies of the opt-out option. In 
the first block called “Deterministic Opt-out” (DO stage; top row), 
the opt-out option returns a fixed number of 2 points. In the second 
block called “Stochastic Opt-out” (SO stage; bottom row), the opt-
out option yields 80% of chance of obtaining returns 3 points (like 
in the example). The other 20% do not return any point (in contrast 
to all other options, the number of points obtained was provided after 
choosing the stochastic opt-out option). On each trial task, a cue is 
presented before the stimulus, indicating the available options (an X 
for non-optout trials, a question mark for DO and a dice for SO)
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up to maximum, avoid any light source behind the screen, 
and to place themselves at 60 cm from the center of screen.

A demographic questionnaire was displayed in the first 
session with questions about participant’s age, gender, coun-
try of residence, education level, use of lens, whether they 
were diagnosed with a neurological or psychological/psy-
chiatric disorder, and/or took medication. The reply options 
were predetermined alternatives to scroll and select.

In each session (Fig. 1), we presented a questionnaire 
with 3/4 questions about their quality of life. In the morning 
session, questions were (in Spanish): “How have you felt this 
morning?” (mood); “How did you sleep last night?” (sleep); 
“How did you enjoy your last meal/snack?” (food); and 
“How did you feel about your personal and working prob-
lems this morning?” (stress). In the afternoon session, ques-
tions were the same mood, food, and stress inquiries asked 
in the morning session, with the word “afternoon” instead 
of “morning,” whereas the sleep question was skipped. To 
answer each of the four (morning) or three (afternoon) self-
reports, participants placed a cursor with the mouse along 
a horizontal continuous-scale with sad and smiling emoji 
faces at the ends (Supplementary Fig. 1). The cursors for 
the different self-reports were initially placed at the middle 
of the corresponding bar (all presented on the same screen), 
and responses could not be validated until all cursors were 
moved, preventing skipping the report. The response was 
linearly mapped onto an interval between [0,1]. Because 
the sad (smiling) emoji face was placed at the left (right) 
extreme, the corresponding quantity for the stress-report 
was inverted as (1 − cursor-position) so that a high value 
indicates high level of stress. Note that mood was thus only 
mapped on a positivity/negativity scale as in (Eldar et al., 
2018) but not along an intensity scale, which would allow 
for example to differentiate anger from sadness or joy from 
relaxation.

After the questionnaire, we presented a two-alternative 
(left/right) visual discrimination task. The participants 
answered after a 300-ms presentation of the stimulus by 
pressing the left/right arrow of the keyboard. If the par-
ticipants chose the correct answer, they received 3 points. 
An incorrect choice did not yield any point. In a fraction 
of trials, the participants had the possibility to select an 
opt-out option reflected by a third response option rep-
resented by the up arrow of the keyboard. By choosing 
this option, the subject skipped the decision and passed to 
the next trial but obtained a certain or stochastic reward, 
explained in what follows. There were two stages in each 
session, which differed in the reward scheme for opt-out 
responses, and were composed of the same number of tri-
als (120 trials for NT and 90 trials for OT). In both stages, 
two-thirds of the trials corresponded to opt-out trials (80 
trials for NT, 60 for OT). The remaining third of trials 
corresponded to non-optout trials where the option was 

not presented (40 trials for NT, 30 for OT). In the first 
stage, the Deterministic Opt-out (DO) stage, the opt-out 
option (in opt-out trials) was represented by a question 
mark icon displayed during the response window (Fig. 1) 
and returned a fixed number of 2 points. In the second 
stage, the Stochastic Opt-out (SO) stage, the opt-out option 
was represented by a dice icon and the number of points 
were chosen randomly: in 80% of the trials the opt-out 
option returned 3 points, whereas the other 20% did not 
return points. After selecting the opt-out option in the SO 
stage, participants received a feedback coin indicating the 
amount of points they received. This contrasted with the 
non-optout response trials and opt-out responses in the DO 
stage where no feedback was provided. Written instruc-
tions were displayed at the beginning of each stage inform-
ing the score scheme in place for the stage.

Before each stimulus presentation, a cue consisting of 
either a cross, a question mark or a dice was presented for 
300 ms, indicating that the trial would be a non-optout, DO 
or SO trial, respectively. In the NT (Fig. 1), two empty cir-
cles (radius = 15% of screen width) were presented on each 
side of a central cross (size = 20 x 20 pixels) for 300 ms. 
Then, white dots (radius = 20 pixels each) appeared within 
each of the circles for 300 ms (adequate grid spacing was 
introduced to prevent the circles from overlapping) (Flem-
ing et al., 2016). One of the circles always contained 50 
dots and the other a larger number of dots. The difficulty of 
the trial was manipulated by controlling the number of dots 
in the larger set of dots, which could be either 52, 56, 60, 
or 64. Participants were instructed to maintain fixation on 
the central small cross placed between the two circles and 
report whether the left or right circle included more dots. 
In the OT, the stimulus consisted of a noisy Gabor patch 
(radius = 216 pix., period = 72 pix., phase = 0; envelope = 
150 pix., middle contrast, middle average luminance) tilted 
either to the left (−45°) or right (45°). The stimulus was 
presented at fixed contrast in the center of the screen on a 
middle-gray background. After the stimulus presentation, 
the Gabor image disappeared for a short delay of 300 ms 
followed by presentation of the different response options. 
The difficulty of the trial was controlled by manipulating 
the level of noise, from 0 (noiseless Gabor patch) to 1 (com-
pletely noisy Gabor patch), following (Wyart et al., 2012). 
We used three levels of difficulty corresponding to levels of 
noise of {ns−0.08,ns,ns+0.08} where  ns is a session-adjusted 
noise level defined using an adaptive procedure (see below).

In both tasks, following stimulus presentation, the 
response options appeared on the screen, in accordance 
with the cue, without time limitation to answer. The options 
disappeared immediately after the participant's response, 
and the following trial started 300 ms after the button 
press. In a small fraction of trials, the actual stimulus pres-
entation appeared longer than 300 ms due to small timing 

1 3

145



Cognitive, Affective, & Behavioral Neuroscience (2023) 23:142–161

inaccuracies in the Internet browser. We excluded all trials 
where the stimulus display exceeded 350 ms.

Training and adaptive procedure

In the NT, on every session, a practice stage of 10 trials was 
performed before the DO and SO stages. The stimulus dif-
ficulty of the practice stage followed a staircase procedure, 
starting with 20 points of difference between the 2 circles 
and decreasing (increasing) by 3 points after correct (incor-
rects) replies. During this practice stage, performance feed-
back was provided after each trial, consisting of the image 
of a coin with 3 points for correct and 0 point for incorrect 
trials. If at the end of the practice, the difference in point 
numbers between the two circles was less than 12, the prac-
tice was considered finished; otherwise, the practice block 
was repeated as many times as necessary until the difference 
in points was less than 12.

In the OT, a practice block of 10 trials was performed 
in the first participant session only. Noise level was set to 
30%, and feedback was provided as for practice trials in the 
NT. On every session, following task instructions, partici-
pants performed a block of 60 non-optout trials where the 
level of stimulus noise was adjusted following an adaptive 
staircase, with a twofold decrease of the noise level follow-
ing incorrect trials compared to the increase after correct 
trials to adjust the participant average accuracy on the stimu-
lus to reach 66% (Kingdom & Prins, 2016; Supplementary 
Fig. 2). The size of the step also gradually decreased during 
the staircase procedure (4% increase after correct trials in 
the first 20 trials; 2% in the middle 20 trials; 1% in the last 
20 trials) to ensure convergence. The value of the noise at 
the end of this block defined  ns, i.e., the level of noise for the 
middle difficulty trials in the rest of the session. Stimuli were 
picked up from a library of preselected images generated 
with noise levels sampled according to their energy along 
the diagonal directions (Wyart et al., 2012).

Autocorrelation analysis

We computed the autocorrelation for report variables (mood, 
stress, etc.) and psychometric variables extracted from the 
decision making task in each session (proportion of opt-
out responses, overall performance in non-optout trials, 
median reaction time in non-optout correct trials, etc.). For 
each variable, we first calculated the autocorrelation (AC) 
as the Pearson correlation coefficient between the temporal 
series (consisting of one data point of each variable per ses-
sion) and the same series shifted by k sessions (or k days for 
sleep). For the psychometric variables, we subtracted the 
mean across participants to the variable in order to remove 
possible biases due to learning effects consistent across sub-
jects. The AC of short temporal series is biased negatively 

(Marriott & Pope, 1954). We removed this negative bias 
by subtracting from the AC vector the average AC vector 
from 100 randomly shuffled versions of the corresponding 
temporal series. Finally, for each variable, we computed the 
mean and standard error of the mean (SEM) of the bias-cor-
rected AC across participants. We corrected the p-values for 
comparison at different lags by using the following iterative 
procedure: we first tested significance at lag 1; if the p-value 
was larger than 0.05, then autocorrelation coefficients were 
judged nonsignificant at all lags; if the p-value was lower 
than 0,05, the coefficient was judged significant at lag 1 and 
we moved on to assessing p-value at lag 2; and iteratively 
until we found the first lag where the associated p-value was 
greater than 0.05.

Cross‑correlation analysis

We computed the cross-correlation between report vari-
ables (mood, stress, etc.) and psychometric variables 
extracted from the decision making task in each session. 
For each variable, we first calculated the cross-correlation 
(CC) as the Pearson correlation coefficient between the 
temporal series consisting of one data point of one of the 
report variables per session and the temporal series shifted 
by k sessions (only morning sessions in CC with sleep) 
of one of the psychometric variables. We subtracted the 
mean across participants to the variable in order to remove 
possible biases due to learning effects consistent across 
subjects, and removed the negative bias present in short 
temporal series following the same procedure for the auto-
correlation computation. Finally, for each pair of variables, 
we computed the mean and SEM of the bias-corrected CC 
across participant, and corrected the p-values for compari-
son at different lags by using the iterative procedure used 
for the autocorrelation for both negative and positive lags.

Difficulty‑adjusted across‑session correlations

We refined the across-session correlations of psychometric 
variables, and in particular the proxies of confidence (reac-
tion time in correct non-optout trials and the proportion of 
opt-out), whose within-session variance is inflated by the 
different difficulty levels. To do so, we first computed the 
mean value for each variable (median for RT) separately 
for each difficulty level, session, and subject, resulting in 
a total of n =  nsessions (20) x  ndifficulties (4 for NT and 3 for 
OT) points per participant. We then corrected each point 
per difficulty level by subtracting the mean value of the 
variable across sessions for that difficulty level, i.e., we 
centered the data point. Finally, these difficulty-residuals 
were entered into a linear mixed model (with statsmodels 
Python library), with the residual RT as the dependent 
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variable, the residual DO or SO as fixed effect and session 
as a random effect. The difficulty-adjusted across-session 
correlation corresponds to the weight of the fixed effect in 
the linear mixed model.

Psychometric curves

We fitted the responses of each participant in each session 
by a psychometric curve, separately in non-optout, DO, and 
SO trials. The psychometric curve captures the proportion for 
each response type (left, right, opt-out) as a function of the 
signed stimulus evidence (positive stimulus indicates evidence 
in favor of the right option). In the NT, the signed stimulus 
evidence was defined as the difference in the number of points 
between the right and left circles. In the OT, the signed stimu-
lus evidence was defined as the difference in motion energy 
between 45 and −45 degrees. The psychometric curve for non-
optout trials was computed by grouping non-optout trials of 
DO and SO stages from the same session.

Following Signal Detection Theory (SDT), the psychomet-
ric curve is determined by the level of perceptual and deci-
sion noise σ2 and the decision boundary H. When we present a 
stimulus strength e, the participant observes ê = e + η, where η 
~ N(0,σ2), with N the gaussian distribution, and the participants 
categorizes the stimulus to the right category if ê > H, and to 
the left if ê < H. Thus, the probability of answering rightwards 
can be written as

where Φ is the standard normal cumulative density function. 
We estimated the internal noise and the decision boundary 
by fitting the psychometric curve with the probit regression 
using the statsmodels Python library (Fig. 5A).

In opt-out trials, participants could select between three 
options: L (leftward), R (rightward), and O (opt-out). Fol-
lowing SDT, we postulate that participants apply two deci-
sion boundaries in the perceptual space: HL between the 
leftward and opt-out responses, and HR between the opt-
out and rightwards responses (García-Pérez & Alcalá-
Quintana, 2017). This gives rise to the following equations 
for the proportion of the leftwards, rightwards, and opt-out 
responses as a function of st imulus evidence 
pL(e) = 1 −�

(
e−HL

�

)
 ,  pR(e) = �

(
e−HR

�

)
 a n d 

pO(e) = 1 − pL(e) − pR(e). This model corresponds to an 
ordered probit regression. We estimated HL, HR and σ from 
each session data through the maximum likelihood estima-
tion method. In the few sessions where the participant did 
not opt out for a single trial, we instead fitted the psycho-
metric curve as in the non-optout trials.

(1)p (rightward | e) = ∫
+∞

H

(e + �)d� = �

(
e − H

�

)
,

Optimal decision boundary in opt‑out trials

If the participants know their internal perceptual noise level, 
then they can adjust the boundaries in the opt-out condi-
tions to maximize the expected number of points associ-
ated with the response (Barrett et al., 2013). In determin-
istic opt-out trials, given the point scheme, the expected 
number of points of the opt-out, left and right responses is 
respectively 2 points, 3p(e < 0|ê) and 3p(e > 0|ê) , respec-
tively, where the conditional probabilities refer to the 
probability that the true stimulus evidence e is positive or 
negative given the observed evidence ê . According to the 
optimal observer model, the rightward decision bound-
ary (HR) should be set as the observed evidence ê where 
the expected number of points for rightward and opt-out 
responses are equated, i.e., where p(e > 0|ê) = 2∕3 . In 
other words, the optimal observer should select the right-
ward response only if its expected accuracy is above 2

/
3 ; 

otherwise, it is more convenient to opt-out and collect 2 
points. Thus, the boundary HR should be placed such that 
p
(
e > 0|ê = HR

opt
)
= 2∕3 , while the boundary HL should 

be placed where p
(
e > 0|ê = HL

opt
)
= 1∕3.

The Bayes rule gives us that p(e|ê) ∝ p(e)p(ê|e) , i.e., the 
posterior over each stimulus strength depends both on the prior 
evidence for the stimulus strength and the likelihood of the stim-
ulus strength given the observed evidence. Assuming that the 
bias displayed by participants in the trials without the opt-out 
option is a perceptual bias H, then p(ê|e) = N

(
ê|e − H, 𝜎2

)
 , 

where the variance of the sensory noise σ2 can be estimated 
from the resulting fit of the non-optout psychometric curves and 
e corresponds to the signed stimulus strength corresponding to 
the presented stimulus. We assume that the prior over the stimu-
lus strength is a Gaussian centered on 0, i.e., p(e) = N(e| 0, ε2), 
where ε is the standard deviation of e. While the true prior 
distribution is over a set of 6/8 discrete values, it is unlikely that 
participants notice such a discrete distribution from a noisy set 
of observations. Rather we assume that they use such Gaussian 
form with the same standard deviation as the standard devia-
tion of the true distribution (notice that the gaussian form is the 
maximum-entropy distribution, i.e., the less informative distri-
bution when the mean and standard deviation are known). We 
can then further develop:

with 𝜇 = (ê − H) 𝜀2∕
(
𝜀2 + 𝜎2

)
 and v2 = σ2ε2/(ε2 + σ2).

T h u s , 
p(e > a|ê) = ∫

e>a
p(e|ê)de ∝ ∫

e>a
N
(
e;𝜇, v2

)
de = 𝛷

(
𝜇−a

v

)
 . 

Using the limit a →  − ∞ where p(e > a|ê) → 1 , we see that 
the coefficient of proportionality is 1. Hence:

p(e|ê) ∝ p(e)p(ê|e) = N
(
e;0, 𝜀2

)
N
(
ê;e + H, 𝜎2

)
∝ N

(
e;𝜇, v2

)
,

p(e > 0|ê) = 𝛷

(
𝜇

v

)
.
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The implicit equation p
(
e > 0|ê = HL

opt
)
= 1∕3 can now 

be solved:

Similarly for the optimal right boundary:

In the stochastic opt-out trials, the expected number of 
points for the opt-out response is 0.8x3 = 2.4 (as the 3-point 
reward is obtained in 80% of trials), so the optimal bounda-
ries should be computed accordingly.

Overconfidence

We defined the overconfidence associated with a participant’s 
session as overconfidence (OC): OC =

∣Hopt
L−H

opt
R∣−∣HL−HR∣

∣Hopt
L−H

opt
R∣+∣HL−HR∣

 . The 
value is bounded between −1 and 1. It is positive when the 
participant opted out less than according to the optimal strategy, 
reflecting overconfidence, and negative otherwise, reflecting 
underconfidence. Notice that the distance between optimal 
boundaries is independent of the perceptual bias H but scales 
with the standard deviation of the perceptual noise σ:

Risk aversion

We defined risk aversion (RA) as the difference between the pro-
portion of opt-out responses in the stochastic (SO) and determin-
istic (DO) stages of each session (bounded between −1 and 1).

Bayesian linear mixed models

We defined Bayesian linear mixed models (BLMM) using partic-
ipant as random variable and a confidence proxy (either the aver-
age proportion of optouts or the median reaction time in correct 
NO trials in the session) as the dependent variable. The bayesian 
mixed model formula was confidence_proxy ~ 1 + 1|participant 
+ report + report|participant, where report corresponded to one 
of the four self-reports. In other words, random factors include 
both the intercept and sensitivity to the report. In other words, 
this model could account for a subject-specific dependence of 
the confidence proxy on the report. We also included a con-
trol model where the dependence on the proxy was absent, i.e., 
confidence_proxy ~ 1 + 1|participant. Bayesian mixed models 
were fitted using the bambi package in Python (Capretto et al., 
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2022) with Gaussian priors (with mean equal to the grand aver-
age of the confidence proxy for the fixed intercept; mean equal 
to zero for all other parameters; and half-student T and half nor-
mal distributions for the standard deviation in fixed and random 
factor, respectively). We performed model selection using two 
different metrics: the Watanabe-Akaike Information Criterion 
(WAIC) and the LOO (leave-one-out) cross-validation criterion 
(using the arviz package in Python).

Results

In two longitudinal online experiments, participants reported 
their affective states and performed a decision-making task 
twice a day, once in the morning and once in the afternoon, 
during 10 consecutive days, for a total of 20 sessions per partici-
pant (Fig. 1). In each session, participants started by answering 
three (morning sessions) or four (afternoon) questions about 
their mood, the quality of their sleep, their food enjoyment, 
and their stress level. After this self-report questionnaire, they 
performed one of two, two-alternative, forced-choice decision-
making tasks: one cohort of subjects (n= 27 participants) per-
formed a numerosity task (NT) where they reported which 
of two simultaneously presented circles contained more dots 
(Fleming et al., 2016), and the other cohort (n = 23 partici-
pants) performed an orientation task (OT) where they reported 
whether a noisy titled Gabor patch was titled to the left or right 
(Wyart et al., 2012; see Methods). We controlled the difficulty 
of each trial by manipulating the difference between the number 
of dots in the circles (NT) or the difference in stimulus energy 
between rightward and leftward orientation of the noisy Gabor 
patches following (OT). In a fraction of the trials, participants 
were offered an option to opt out and skip the decision, which 
resulted in a certain or stochastic number of points. Participants 
were encouraged to use the opt-out option when they were 
uncertain of the stimulus category to maximize the collection 
of points over the session. Three points were achieved with a 
correct answer and zero points for an incorrect one. The opt-out 
option, when available, ensured a fixed amount of two points in 
the first stage of the session (Deterministic Opt-out [DO]) or 3 
points with probability 80% and 0 points with probability 20% 
in the second stage of the session (Stochastic Opt-out [SO]). 
We hypothesized that the proportion of opt-out responses in the 
session would represent a robust index of the current level of 
confidence of the subject (Grimaldi et al., 2015). To determine 
whether the proportion of opt-outs is inflated by a risk-averse 
strategy, we introduced the SO task in the second stage in each 
session, where the levels of risk between the opt-out and non-
optout strategies are similar.

We also studied the reaction time in trials without opt-out 
option (non-optout trial), which is known to be larger for uncer-
tain decisions (Moreno-Bote, 2010; Urai et al., 2017; Vickers, 
1979). As introduced earlier, the SO stage allowed disentangling 
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the effects of confidence and risk aversion in the selection of the 
opt-out options (Dienes & Seth, 2010). We used the difference 
between the proportion of opt-out responses in the DO and SO 
stages in a single session as a direct index of risk aversion.

Daily fluctuations in self‑reported mood‑related 
states covary

The average values over participants of the self-report variables 
(mood, quality of sleep, enjoyment of food, stress) per session are 
illustrated in Fig. 2A. They appeared mostly stable across days, 
with a significant difference between the mean across weekend 
and week sessions for mood (two-paired t-test across NT and OT 
participants: t = 2.1, p = 0.04), stress (t = −4.02, p <  10-3) and 
food (t = 3.8, p <  10-3) reports. The difference was not significant 
for the sleep report (t = 1.1, p = 0.3). This result indicates that, 
on average, participants were in a better mood, less stressed, and 
ate better during weekend sessions compared with week sessions 
(Larsen & Kasimatis, 1990; Stone et al., 2012). At the individual 
level, these variables fluctuated substantially per session. We 
found that mood, food, and stress self-reports presented a sig-
nificant positive autocorrelation at lag 1 (i.e., around 4-16 hours 
difference between the two reports) in both tasks (two-tailed 
t-test on 1-lag correlation values across subjects, p < 0.05 for 
each variable in both experiments; Fig. 2B). Looking in greater 
detail at the 1-session autocorrelation, we found a tendency for 
the auto-correlation to be weaker between reports on one after-
noon and reports on the morning after than between reports from 
the same day’s morning and afternoon (Supplementary Table 1), 
suggesting that mood states largely did not carry over from one 
day to another. For the food self-reports, the autocorrelation 
stayed significant at lag 2 (i.e., ~24 hours difference between the 
2 reports). This suggests that these markers fluctuate at the scale 
of one or half a day: slower fluctuations were not observed. Fur-
thermore, we found strong correlations between all self-reported 
affective states (Fig. 2C): mood, food, and sleep indicators were 
positively correlated, and negatively correlated with the stress 
level, as expected (all p-values remained significant after Bonfer-
roni correction). This result indicates that, on average, when the 
participants slept and ate better, they also experienced a better 
mood and were less stressed. Remarkably, the whole pattern of 
correlations between reports was very similar in both experi-
ments (Fig. 2C). Finally, we found significant correlations at the 
individual level in a large proportion of participants (Fig. 2D, E). 
Overall, these results suggest a strong and reliable association 
between the daily fluctuations in mood, quality of sleep, stress, 
and enjoyment of food.

Opt‑out selection tracks the session‑specific level 
of confidence

Next, we analyzed behavioral data in the numerosity task 
and assessed whether the proportion of opt-out options and 

reaction times constituted solid markers of choice confi-
dence. As expected, the overall accuracy level dropped for 
increasing stimulus difficulty for non-optout, deterministic 
opt-out, and stochastic opt-out trials (Fig. 3A, top). Overall, 
the proportion of opt-out selection was 26 ± 3% (mean and 
SEM across subjects and sessions for deterministic NT tri-
als (OT: 25 ± 4) and 35 ± 4 for stochastic NT trials (OT: 
34 ± 4)). Accuracy was significantly lower in deterministic 
non-opout trials in comparison with stochastic non-optout 
trials in the three easiest levels of difficulty of the NT maybe 
due to a learning effect within the session (difficulty level 
1: t = −2.3, p = 0.03, 2: t = −3.2, p = 0.001, 3: t = −2.9, p 
= 0.004, 4: t = −1.5, p = 0.1); there is no such difference 
in the OT (Supplemental Fig. 4c). Interestingly, accuracy 
was higher in trials where the opt-out option (either sto-
chastic or deterministic) was presented but finally discarded 
by the participant than in trials where it was not presented. 
This was confirmed in a factorial 2-way ANOVA with dif-
ficulty and opt-out condition (non-optout, stochastic opt-out, 
deterministic opt-out) as factors: we found a main effect of 
opt-out condition  (Fcondition = 18.3, p <  10-7) as well as dif-
ficulty  (Fdifficulty = 451.4, p <  10-113), with no significant 
interaction between opt-out condition and difficulty (F = 0.6, 
p > 0.7). Post-hoc t-tests showed that accuracy was lower in 
non-optout trials compared with deterministic (t = −5.1, p < 
 10-4 corrected) or stochastic opt-out trials (t = −9.2, p <  10-8 
corrected). This suggests that subjects were able to estimate 
on a trial by trial basis when their choice was likely to be 
erroneous, and used to opt-out in those trials when this was 
an option. In line with this account, the proportion of opt-out 
responses strongly increased for larger difficulty (Fig. 3A, 
middle). Overall, this suggests that the selection of the opt-
out option reflects the level of confidence at a particular trial, 
as previously observed (Kiani & Shadlen, 2009).

We also confirmed that reaction times provide another 
indicator of confidence. As previously found, reaction 
times in non-optout trials followed the three hallmark sig-
natures of decision uncertainty (Kepecs et al., 2008; Urai 
et al., 2017). First, the median reaction time as a func-
tion of stimulus difficulty displayed the classical X-pat-
tern (Kepecs et al., 2008; Urai et al., 2017): reaction time 
increases for more difficult stimuli in correct trials, and 
decreases for more difficult stimuli in error trials (Fig. 3A, 
bottom). Second, faster responses were associated with 
decreased accuracy (Supplemental Fig. 4a). And third, 
faster responses predicted better performance, even when 
stimulus strength is controlled for (Supplemental Fig. 4b).

Since both opt-out selection (for opt-out trials) and reac-
tion time (for non-opt-out trials) are robust indicators of 
choice confidence on a particular trial, then the overall pro-
portion of opt-out responses and median reaction time in a 
session likely reflect the level of subject confidence at the 
particular period of time. In other words, these measures 
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Fig. 2  Session-to-session fluctuations in quality of life reports. A Mean 
values per session for mood, food, stress and sleep self-reports across par-
ticipants in the numerosity task group (full lines; n=27) and orientation 
task group (dashed line; n=23). Coloured-shaded areas indicate standard 
error of the mean (SEM). Gray-shaded areas indicate weekend sessions. B 
Autocorrelation coefficients in self-reports (star: t-test across participants, p 
< 0.05 after correction for multiple lags, see Methods). C Average correla-
tion heat map of the self-report variables across participants (**p < 0.01; 

****p < 0.0001). D Mood vs. stress reports for one exemplar participant. 
Each dot represents a session. The line represents a linear fit while the 
shaded area represents the standard error of the estimated slope. E Distri-
bution of Pearson correlation coefficients between mood and stress (mood 
and sleep) in the left (right) panel across subjects. Filled bars indicate sub-
jects with significant correlation at individual level (p < 0.05, uncorrected). 
Upright and inverted axes correspond to the numerosity and orientation 
task groups, respectively

1 3

150



Cognitive, Affective, & Behavioral Neuroscience (2023) 23:142–161 

capture a consistent bias throughout the session towards 
more confident or more uncertain judgments. We found 
that these indicators were largely stable across the 20 ses-
sions at the population level, whereas the overall accuracy 
displayed a modest improvement likely due to learning 
effects in the first two days of the experiment (Fig. 3B, top 
panel). However, at an individual level, these measures dis-
played important fluctuations, which provide a window into 
subject-specific variations in confidence. In particular, the 
autocorrelograms indicated a slow component to the fluc-
tuations in opt-out tendency (Fig. 3C). Significant positive 
correlations between the proportions of opt-out responses 
in two sessions were seen when these two sessions were 
separated as much as two-and-a-half days (both for deter-
ministic and stochastic opt-outs; Fig. 3C, middle panel). 
The same tendency was found for the median reaction time 
series, although the significance of auto-correlation weights 
did not survive correction for multiple comparison (bottom 
panel). The autocorrelations in accuracy across sessions was 
somehow shorter-lived, with significant correlation between 
two consecutive sessions (top panel).

Finally, we investigated the possible coupling between 
the values of the different psychometric variables in a 

single session. We found that the tendency to opt-out in 
deterministic and stochastic stages were very strongly 
correlated across sessions (average r across subjects: 0.5; 
t-test: p <  10-11; Fig. 3D, F). with a significant differ-
ence between the optout election in deterministic (mean 
across subjects and sessions = 18.3 %) and stochas-
tic (mean across subjects and sessions = 34.7 %) trials 
across sessions and subjects (two-sided t-test: t = −4.03, 
p = 0.0004). No significant mean correlation across ses-
sions between median reaction times and opt-out tendency 
(either in stochastic or deterministic stage; both p > 0.2) 
were observed. However, the correlation may be weakened 
because the different difficulty levels inflate the within-ses-
sion variance of each variable. We thus computed the diffi-
culty-adjusted across-session correlation between reaction 
time and opt-out selection, which removes the variance 
linked to difficulty level from each variable (see Methods). 
This more sensitive analysis revealed a significant across-
session correlation between the median reaction time in 
correct non-optout trials and both the deterministic (mean 
residual weight = 0.001, p = 0.005; Fig. 3E) and stochas-
tic (mean residual weight = 0.001, p = 0.0004) opt-out 
response proportion. The average accuracy in non-optout 

Fig. 3  Psychometric variables fluctuations (Numerosity task): A 
Mean across participants and sessions, as a function of stimulus dif-
ficulty. Top panel: accuracy (percentage in correct responses) in NO 
(non-optout), DO (deterministic opt-out) and SO (stochastic opt-out) 
trials. In opt-out trials, the accuracy is expressed as the percentage 
of correct responses out of the non-optout responses. Middle panel: 
percentage of opt-out responses, in deterministic and stochastic opt-
out trials. Bottom panel: normalized reaction time over correct tri-
als, and incorrect non-optout trials. Reaction times are normalized 
by the median reaction time across all trials in each session. In all 
panels, shaded areas indicate the standard error of the mean (SEM). 
B Psychometric values as a function of session, averaged across par-
ticipants (shaded area: SEM). Gray-shaded area indicating weekend 
sessions. C Autocorrelation coefficients of accuracy in non-optout 

trials (top panel), proportion of opt-out responses (middle) and reac-
tion time of correct non-optout trials (bottom). Star: t-test across 
participants, p < 0.05 after correction, see Methods. D Distribution 
across participants of Pearson coefficients of across-session correla-
tions of the proportion of opt-out responses in deterministic (DO) 
and stochastic (SO) opt-out stages. Filled bars indicate subjects with 
significant correlation (p < 0.05) at individual level. E Difficulty-
adjusted across-session correlation between reaction time in cor-
rect non-optout trials and the proportion of the deterministic opt-out 
response (see Methods; n = nsessions x ndifficulties = 20 x 4). Filled bars 
indicate subjects with significant correlation (p < 0.05) at individual 
level. F Matrix representing the mean correlation coefficient across 
participants (****p < 0.0001; significance remains after Bonferroni 
correction)

1 3

151



Cognitive, Affective, & Behavioral Neuroscience (2023) 23:142–161

trials in a session appeared to be uncorrelated with all 
three proxies for confidence (opt-out tendency in DO, 
SO; and average RT). Overall, these results suggest that 
the tendency to opt-out and median reaction time in the 
perceptual task could provide robust markers of a slowly 
fluctuating subject confidence. Note that a very similar 
set of results was found for the orientation task (Supple-
mentary Fig. 3).

Normative approach to overconfidence

While the proportion of opt-out responses in a session pro-
vides an intuitive measure of the confidence level of the 

participant, we also used a model-based approach based on 
signal detection theory (SDT) to define a normative meas-
ure of overconfidence. According to the SDT framework, in 
non-opt-out trials there is a single boundary in the observer 
perceptual space that is used as a decision criterion to select 
between a leftward or a rightward response. A simple fit 
to participant responses in non-optout trials allows to infer 
the decision boundary H as well as the perceptual noise 
(Fig. 4A). When the opt-out option is present, there are now 
two decision boundaries HL and HR that separates lefwards 
and opt-out responses for the first, opt-out and rightwards 
responses for the second. An optimal observer would place 
these boundaries, such as to maximize the expected number 

Fig. 4  Psychometric curves. A Example psychometric curve in non-
optout trials in one session for a participant performing the numeros-
ity task. The sigmoid reflects the fit by a probit sigmoid function (H: 
estimated decision boundary; see Methods). B Optimal psychometric 
curves inferred for deterministic opt-out trials of this participant-
session. The grey, red, and black curves represent the probability of 
leftwards, opt-out and rightwards responses, respectively (Hopt

L  and 
Hopt

R: left and right optimal decision boundaries). C, F Example of 

the psychometric curve in deterministic (C) and stochastic (F) opt-out 
trials for the same participant and session as in panel A. Lines rep-
resenting the psychometric fits for each type of choice (HL and HR: 
left and right decision boundaries). D, E Distribution of across-ses-
sion Pearson correlation coefficient of bias (d) and perceptual noise 
(e) between non-optout and opt-out trials (DO: red/upright histogram; 
SO: blue/inverted histogram) in the numerosity task. Filled bars indi-
cate subjects with significant correlation (p < 0.05) at individual level
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of points. For example, in the deterministic opt-out stage 
where correct responses are rewarded by 3 points while opt-
outs yield 2 points, the optimal boundary HL is placed at the 
point in the perceptual space corresponding to a 2

/
3 probabil-

ity of a leftward stimulus (and similarly for HR). The position 
of this point can be evaluated analytically and depends on 
the value of the perceptual noise (see Methods for details). 
We can estimate boundaries HL and HR from responses in the 
opt-out condition and compare the distance between these 
estimated boundaries to the distance between the optimal 
boundaries (Fig. 4B). A larger than optimal inter-boundary 
distance reflects a larger than optimal use of the opt-out 
option, i.e., can be associated with an underestimation in 
the probability of a correct judgment. By contrast, a smaller 
than optimal inter-boundary distance reflects less frequent 
than optimal resorting to the opt-out response, which signals 
an overestimation of the probability for a correct judgment. 
We define an overconfidence metrics (see Methods) based 
on the relationship of the estimated interboundary distance 
to the optimal inter-boundary distance, as a metric bounded 
between −1 and 1, where 0 reflects optimal distance, posi-
tive values reflect overconfidence and negative values reflect 
underconfidence (see fluctuations on overconfidence across 
sessions in Supplementary Fig. 5).

We estimated decision boundaries and perceptual noise 
from the pattern of responses in non-optout, deterministic 
opt-out and stochastic trials in each session and each par-
ticipant (Fig. 4C, F). Decision boundaries were significantly 
tilted towards left choices (two-paired t-test across partici-
pants and sessions t = −4.3, p <  10-4). The SDT framework 
predicts that only the position of boundaries should vary 
between opt-out and non-optout trials, while the percep-
tual noise should not. Indeed, we found a strong correlation 
between the perceptual noise estimated from opt-out and 
non-optout trials belonging to the same session (Fig. 4E). 
This was observed for deterministic as well as stochastic 
opt-out trials, and for both NT and OT. We also predict that 
the decision bias should be preserved in opt-out trials. If 

the value of the decision boundary H reflects a bias of the 
mapping of the stimulus onto the perceptual space (e.g., if 
the number of dots in the left circle are consistently under-
estimated), then boundaries HL and HR should be similarly 
biased. Indeed we also found a strong correlation across ses-
sions between the bias in the non-optout trials—defined sim-
ply as H—and the bias in the opt-out trials—defined as the 
middle point between HL and HR (Fig. 4D). These analyses 
confirm that SDT provides a sound framework for under-
standing participant responses and validate our normative 
approach to overconfidence derived from this framework.

Mood and confidence fluctuate independently

In the prior analyses, we have characterized the dynam-
ics and relationships between mood-related states on one 
hand, and between psychometric markers on the other hand. 
We finally evaluated whether the evolution of self-reports 
and psychometric markers were coupled. In particular, we 
hypothesized that mood correlates across sessions with the 
different proxies for confidence. At odds with our hypoth-
esis, at the population level, we found no correlation across 
sessions between the confidence proxies (proportion of opt-
out choice, median reaction times) derived from the percep-
tual tasks and mood or any of the other quality of life self-
reports. The correlation between mood and median reaction 
time was negatively correlated, as predicted (mean r = 
−0.09), but the marginal significance (t-test, p = 0.03 uncor-
rected) did not survive Bonferroni correction for multiple 
comparison (Fig. 5A). To further test if the correlation could 
emerge with a specific dimension of the opt-out behavior, 
we separated the stimulus-insensitive and stimulus-sensitive 
portions of the opt-out responses in each session by extract-
ing the slope and the intercept of a simple linear regression 
of the opt-out proportion by stimulus difficulty. Neither the 
intercepts nor the slopes correlated across sessions with 
any of the quality of life reports. Furthermore, we reasoned 
that our normative definition of overconfidence may pro-
vide a better proxy to confidence than the raw proportion of 
opt-out responses in the session, and so we also tested for 
correlations of the overconfidence index with the quality 
of life self-reports. None of the correlations were signifi-
cant. Self-reports also were not coupled significantly with 
other psychometric variables such as the overall accuracy 
(for non-optout trials) in the session, or the degree of risk 
aversion. Overall, we did not find any significant mean cor-
relation between a self-report and a psychometric variable.

At the individual level, however, we found that a sig-
nificant subset of participants (4 of 27 in NT, binomial test 
with p = 0.01 uncorrected) exhibited significant correlation 
between the proportion of opt-out choice and mood: two 
subjects opted out significantly less in sessions where they 
reported better mood, whereas two other subjects opted out 

Fig. 5  Lack of robust correlation between self-reports and psy-
chometric variables. A Mean of correlation coefficients between 
self-report and psychometric variables (proportion of opt-out 
responses in DO stage, proportion of opt-out responses in SO stage, 
mean accuracy in non-optout trials, median reaction time in correct 
non-optout responses, overconfidence in DO stage, overconfidence in 
SO stage, risk aversion, stimulus-insensitive and stimulus-sensitive 
components of opt-out responses), averaged across participants (*p < 
0.05 uncorrected) for both the numerosity and (NT) the orientation 
(OT) task groups. B Distribution of Pearson coefficients of correla-
tion between the proportion of opt-out responses (deterministic: red/
upright histogram; stochastic: blue/inverted histogram) and each self-
report along sessions for the NT group. Filled bars indicate subjects 
with significant correlation (p < 0.05) at individual level. C Cross-
correlation coefficients between both opt-out election types (DO 
in solid line and SO in dashed line) and each self-report for the NT 
group

◂

1 3

154



Cognitive, Affective, & Behavioral Neuroscience (2023) 23:142–161 

significantly more (Fig. 5B, top-left panel). This result could 
indicate a subject-specific relationship between mood state 
and the level of confidence. This pattern was not found in 
the OT (no significant correlation in any participant). We 
aimed to confirm this possible subject-dependent relation-
ship between confidence and mood by using a more prin-
cipled approach. We defined a Bayesian mixed model (or 
Bayesian hierarchical model) where the confidence proxy 
in the session was used as the dependent variable, and par-
ticipant was taken as the random factor. In other words, this 
model included both subject-specific and subject-unspecific 
sensitivity of the confidence proxy to the mood report. This 
model was compared with a control Bayesian mixed model 
that included neither of these two terms. Bayesian modelling 
allows us to potentially obtain evidence not only against the 
null hypothesis but also in favor of it. Model comparison 
using the WAIC criterion confirmed that there is moder-
ate evidence for a subject-specific influence of mood onto 
confidence proxies (difference in WAIC for explaining the 
proportion of opt out responses in the NT: 3.3; for explaining 
median reaction time: 1.0; see Supplemental Fig. 6). Simi-
lar results were found for the influence of stress over confi-
dence (difference in WAIC for optout: 11.2; for explaining 
median reaction time: 1.0). Using an alternative criterion 
(LOO-CV) provided very similar results. Moreover, the  r2 
of the different mixed models was not much larger than the 
 r2 of the respective control models  (r2 difference of 0.01 for 
the association between either confidence proxy and mood 
report in NT). In other words, incorporating the subject-
specific effect of mood (or other reports) only marginally 
increased how well the confidence proxy could be predicted 
(Supplemental Fig. 7).

Finally, we investigated whether confidence and mood 
states could be coupled but with a certain delay by comput-
ing the cross-correlation between the proportion of opt-out 
responses and the different self-report measures. The cross-
correlograms were all flat (Fig. 5C), indicating an absence 
of coupling at the population level between affective states 
and confidence proxies.

Discussion

In this longitudinal online study, we assessed for the first 
time whether daily fluctuations in mood and related variables 
(stress, sleep, food enjoyment) are coupled to fluctuations in 
metacognitive states (including confidence, response vigor, 
discrimination performance, and risk aversion). Participants 
directly reported their mood-related states at the beginning 
of each bi-daily sessions, whereas metacognitive states were 
inferred from the behavior in a simple discrimination task 
with an opt-out option (Fig. 1). First, we found a strong cor-
relation between the different mood-related variables, visible 

at the level of individual participants (Fig. 2). The different 
reports fluctuated rapidly, as the value of one session cor-
related significantly with the value half-a-day later but not 
one day later (except for food enjoyment). Second, the pro-
portion of opt-out responses provided solid markers of the 
confidence of the participant in a particular session (Fig. 3). 
We found that the median reaction time on non-optout trials 
provides a secondary proxy of session-confidence, although 
it may be corrupted by other physiological or psychological 
states such as vigor. We also derived participant overconfi-
dence in a normative setting based on the signal detection 
theory framework (Fig. 4). Confidence fluctuated at a slow 
time scales, with auto-correlations of the time series with a 
lag up to two-and-a-half days. Finally, none of the mood-
related variables correlated significantly with any metacog-
nitive variable in the same session at the population level 
(Fig. 5). In particular, mood did not appear to correlate with 
confidence. An exploratory analysis revealed however that 
the correlation between mood and the proportion of opt-out 
responses was found at the individual level in a significant 
fraction of participants in the NT. Overall, our results sug-
gest that mood-related states and metacognitive states fluc-
tuate independently in the healthy adult, with slower fluc-
tuations for confidence than for the mood-related variables.

Our results related to the discrimination task follow a 
long tradition of collecting implicit markers of metacogni-
tive states (including confidence) from behavioral measures. 
Confidence that humans have in decision-making tasks is 
often measured by asking them to explicitly report their 
confidence in a decision or series of decisions (de Martino 
et al., 2013; Schustek et al., 2019). However, these reports 
have some drawbacks: they are not intuitive, participants 
may feel little motivation to report accurately their confi-
dence level, and they can be contaminated by learning pro-
cesses (Solovey et al., 2016). Importantly, affective states 
and mood in particular may interfere with the process of 
explicitly reporting a confidence measure (on top of the 
possible association with the confidence feeling itself). We 
used an implicit measure of confidence to test core relation-
ships between confidence and mood states without potential 
contamination by the reporting process. Implicit markers 
of confidence rely on an economic paradigm where confi-
dence is linked to the willingness to bet on their own choice 
and the magnitude of the bet (Grimaldi et al., 2015; Insa-
bato et al., 2016; Sanders et al., 2016). We used an opt-out 
mechanism where in a portion of trials participants could, 
instead of reporting the stimulus category, secure a fixed 
number of points (DO stage) or bet on a lottery (SO stage). 
Such opt-out or wagering scheme has been used in a large 
range of settings, from perceptual discrimination in non-
human primates (Kiani & Shadlen, 2009), rodents (Kepecs 
et al., 2008) and humans (García-Pérez & Alcalá-Quintana, 
2017) to movie selection in adults (Bhatia & Mullett, 2016). 

1 3

155



Cognitive, Affective, & Behavioral Neuroscience (2023) 23:142–161

In line with these studies, we found that the use of opt-out 
responses in our participants could be tied to the subjective 
expected accuracy in the discrimination, i.e., the confidence 
about the choice. First, resorting to the opt-out increased 
with stimulus difficulty, when expected accuracy is bound 
to decrease. Second, for a fixed stimulus difficulty, the accu-
racy of responses increased when the opt-out response was 
presented but waived compared with trials where the opt-out 
response was not presented. This suggests that participants 
selected the opt-out response when their internal estimate 
of the stimulus category did not ensure a high probability 
of correct response, thus avoiding potential errors (Kiani & 
Shadlen, 2009). We also used reaction time in non-optout 
trials as another proxy for confidence (de Martino et al., 
2013; Moreno-Bote, 2010; Vickers, 1979). We replicated 
the findings that reaction times in such discrimination task 
display the three hallmark signatures of decision uncertainty, 
including the typical X-pattern expected of a confidence 
proxy, with faster responses associated with larger stimu-
lus strength in correct trials, but slower responses associ-
ated with larger stimulus strength in error trials (Sanders 
et al., 2016; Urai et al., 2017). Spontaneous daily variations 
in confidence have to our knowledge never been reported 
(see Morphew, 2021 for slower variations). Here, both prox-
ies of confidence fluctuated slowly across sessions, with a 
time scale of up to 2 days (4 sessions). Of note, the two 
confidence proxies (proportion of opt-out responses and 
median reaction time) were weakly but significantly cor-
related across sessions (Fig. 3E). This suggests that they 
might at least partially report on the confidence construct. 
It is possible that the weak correlation was due to reaction 
times being also influenced by other factors, such as vigor, 
or the particular position of the hand of the subject on the 
keyboard.

We introduced a normative estimation of overconfidence 
that assesses how much participants resort to the opt-out 
option compared with what would be optimal given their 
level of perceptual noise (Moore & Healy, 2008). The defi-
nition is based on the framework of signal detection theory 
(Barrett et al., 2013; Massoni et al., 2014). We confirmed 
beforehand that signal detection theory provided a reason-
able account of the pattern of choices both in non-optout 
and opt-out trials. In opt-out trials, we assumed that the 
decision space is splitted according to two boundaries: the 
boundary between left and opt-out responses, and the bound-
ary between opt-out and right responses (García-Pérez & 
Alcalá-Quintana, 2010; García-Pérez & Alcalá-Quintana, 
2017; Pritchett & Murray, 2015). We also found that both 
the level of perceptual noise and the bias were consistent 
between the opt-out and non-optout trials in the same ses-
sion. The overconfidence is based on comparing the dis-
tance between decision boundaries used by participants and 
the distance between optimal boundaries, which depends 

on the level of perceptual noise. Thus, underestimating 
the perceptual noise leads to overconfidence, as measured 
by our normative index. We believe this definition offers 
a normative approach to measuring implicitly the level of 
overconfidence in healthy subjects and pathological popula-
tions. We speculate that this measure is very much related to 
self-confidence, which was previously measured as a latent 
factor affecting confidence ratings throughout a battery of 
cognitive tasks (Kleitman & Stankov, 2007).

We tested for the first time, to our knowledge, the pos-
sible link between spontaneous fluctuations in mood states 
and confidence in the healthy adult population. No signifi-
cant correlation at the group level was found between the 
reported quality of life states and the implicit confidence 
markers extracted from the decision-making task. It is 
important to note that these nonsignificant effects are prob-
ably not related to a lack of statistical power in our data, as 
some temporal correlations between quality of life states 
and between confidence markers reached very strong sig-
nificance levels. We do not think that this lack of association 
was due to the asymmetry by which mood-related states and 
confidence were measured (explicit reports vs. implicit met-
ric constructed from behavior in a decision-making task), as 
a reliable association was found between mood and another 
metacognitive measure in a paradigm with exactly the same 
asymmetry (Eldar et al., 2018).The autocorrelograms of the 
different variables revealed that confidence proxies fluctu-
ated at a slower time scale (up to two-and-a-half days) than 
mood states (half-a-day). Altogether, we found support for 
fluctuations of mood and confidence with different dynami-
cal properties and little to no interaction. We did find how-
ever a small subset of participants that displayed significant 
correlations (some positive, some negative) between mood 
reports and the proportion of opt-out responses in the NT 
cohort. This suggests that a subject-specific link between 
mood and confidence may exist in some individuals. Indeed, 
a bayesian mixed model incorporating such subject-spe-
cific influence of mood report on confidence proxy better 
accounted for the experimental data than a control model 
without such influence. The difference was however mod-
est, both in terms of model selection metrics and variance 
explained. Testing on a larger cohort would be needed to 
confirm this exploratory finding and explore the demo-
graphic or personality features associated with such a link.

The absence of a consistent link suggested by this study 
defies our original hypothesis, which was based on a series 
of adjacent findings. For example, Culot and colleagues used 
a combination of films, pictures, and recalls to induce nega-
tive and neutral emotions; they found that induced negative 
mood leads to overall lower levels of reported confidence 
in the numerosity task (while leaving actual performance 
unchanged) (Culot et al., 2021). Three key differences in 
the paradigm could explain the discrepancies of the results: 
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1) emotions were induced by the paradigm in their study, 
whereas we only measured spontaneous variations in mood; 
2) mood, in their study, was a short-lived emotional state, 
evolving from one block of trials to the other, whereas 
reported mood is an affective state, in our experiment, sus-
tained a prolonged period of time (Schiller et al., 2022) and 
fluctuated over days; 3) our study covered all the range of 
mood states, from negative to positive, whereas their study 
only focused on negative emotions. The same fundamental 
differences (especially the first two) apply to other related 
studies that found a link between induced emotional states 
and metacognitive judgments. This includes notably reports 
that induced positive emotions reduce the sensation of task 
difficulty (Culot & Gevers, 2021); that induced anxiety asso-
ciated with a lower level of overconfidence (Massoni, 2014); 
that induced sadness reduces risk aversion, while induced 
anxiety enhances it (Hartley & Phelps, 2012; Raghunathan 
& Pham, 1999); and that momentary mood modulates the 
valuation of both positive and negative outcomes when sub-
jects gamble or decide to opt in or out a challenging task 
(Eldar & Niv, 2015; Vinckier et al., 2018). Future studies 
are needed to understand which of these factors are key to 
the association between mood and metacognitive states, 
including confidence: the spontaneous vs. induced nature 
of the mood-related state or the time scale of its fluctua-
tions (minutes, days, or years). Note that while we looked for 
within-subject coupling between mood and metacognition, 
there are clear signs of across-subject associations between 
psychopathological symptoms and metacognitive abilities. 
For example, a symptom dimension related to anxiety and 
depression correlates with lower confidence and heightened 
metacognitive efficiency on the numerosity task (Rouault 
et al., 2018), while stable anxiety traits are also associated 
with increased risk aversion (Maner et al., 2007). We also 
failed to find any link between natural daily fluctuations in 
either mood or stress level and risk aversion (Fig. 5). This 
contrasts with previous findings, which found that unex-
pected positive events (such as good weather or a sports win) 
increase risk-seeking behavior (Otto et al., 2016; Bassi et al., 
2016; Edmans et al., 2007) and that the effect was mediated 
through improving mood (Bassi et al., 2016).

The lack of a consistent correlation between daily fluctua-
tions of mood and metacognition comes as a surprise given 
the strong association between deficits in mood and metacog-
nitive processes in several psychiatric disorders. For example, 
depressed patients, who primarily suffer from sustained nega-
tive mood states, also display increased underconfidence in 
their own decisions (Fu et al., 2005). On the contrary, schizo-
phrenic patients, who suffer from dysregulated mood, gener-
ally express inflated overconfidence in their own decisions and 
poor insight about their dysfunctions (David et al., 2014; Rouy 
et al., 2021, a phenomenon usually linked to circular infer-
ence (Jardri et al., 2017; Jardri & Denève, 2013). Again, we 

can only speculate about why these associations are present 
in psychiatric disorders but apparently absent in endogenous 
fluctuations in the healthy population. The link may be only 
present in pathological conditions, or for very slow and stable 
features (i.e., the association may be across individuals but 
not within individuals). Given the very diverse etiology of 
these different disorders, it is also possible that the mood and 
metacognitive dysregulations represent independent manifes-
tations of the disorder.

Our results also speak to the debate about neural under-
pinnings of confidence. According to one view, confidence 
is encoded in the same brain structures that perform decision 
making (Pannunzi et al., 2015; Grimaldi et al., 2015). An 
opposing view claims that confidence is encoded in inde-
pendent structures (Faivre et al., 2018; Grimaldi et al., 2015) 
mainly located in frontal and limbic areas (Kepecs et al., 
2008; Komura et al., 2013), as evidenced by studies using 
transcranial magnetic stimulation during confidence judg-
ments (Rounis et al., 2010) or measuring the subject-specific 
level of gray matter (Fleming et al., 2010). Given that lim-
bic and frontal areas are the primary centers for affective 
and emotional processing, that latter view would be more 
inclined to predict an association between mood and con-
fidence, because the two would be colocalized in the same 
structure. Our study however failed to find evidence for such 
an association.

Beyond confidence and risk aversion, other markers of 
cognitive function are thought to be affected by mood states, 
quality of sleep, and the diurnal rhythm (Leone et al., 2017). 
For example, extreme sleep deprivation and stress exposure 
leads to a decrease in perceptual task performance and slow-
ing of the responses (Lieberman et al., 2002). We found 
no sign of such relation between spontaneous and moderate 
fluctuations of sleep and stress and either the accuracy or 
speed of responses. More recently, lower quality of sleep 
in the general population was found to abolish the differen-
tial sensitivity to risk aversion under gain and loss frames 
(Xu et al., 2021). This behavioral result was mirrored by 
a reduction in the bad sleepers of the difference between 
the EEG responses to negative feedback in the gain vs loss 
frames. Moreover, depression is associated both with lower 
mood and reduced motor vigor (Carland et al., 2019; Van De 
Leemput et al., 2014). In constrast to these results, we did 
not find any relationship between spontaneous fluctuations 
in mood and response times in a discrimination task.

Our experimental design aimed at tracking longitudinally 
the evolution of mood and metacognitive states of subjects 
in ecologically valid conditions, in order to unveil how these 
dimensions evolve and co-evolve over a period of 2 weeks. 
Findings in this area could contribute to a better under-
standing of affective states disorders. Indeed, the standard 
clinical symptom-based categorization of affective disorders 
has been widely criticised due to the absence of objective 
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diagnostic criteria that take into account the neurobiology 
of affective states and the broader context in which they take 
place during the life of an individual (Hyman, 2010). Novel 
approaches to the diagnosis of mental disorders, such as the 
RDoC (Insel, 2014), support a holistic view on mental health 
that stresses the importance of analyzing affective states 
longitudinally at multiple scales and multiple timeframes. 
Empirical studies (Van De Leemput et al., 2014) found that 
in the transition to depressed state, the mood of patients 
fluctuates more slowly (e.g., higher autocorrelation) and cor-
relates negatively with anxiety, a result compatible with the 
negative relationship between mood and stress reported in 
our data. Similarly, recent studies characterized depression 
as the result of an interaction between micro- and macro-
behavioural patterns repeated over time (Wichers, 2014), 
a result also confirmed by computational modelling of lon-
gitudinal self-reports (Bringmann et al., 2013). Our find-
ings are consistent with these results as we find that mood 
fluctuations are predictable over time and strongly correlate 
with fluctuations of other mental and physical dimensions 
(e.g., appetite and sleep). In that we extended the notion 
of wellbeing from the purely affective domain to a broader 
spectrum that includes both mental and physical states and 
points at an underlying holistic well-being model comprising 
multiple dimensions and timescales (Rutledge et al., 2014).

In the past decades, the growing smartphone adoption 
has enabled the collection of longitudinal datasets of affec-
tive states in the wild (Gillan & Rutledge, 2021; Sano et al., 
2015; Taquet et al., 2020, 2021; Taylor et al., 2017). Indeed, 
daily fluctuations of affective states are very well reported 
through smartphones during longitudinal studies involving 
large cohorts over longer periods of time (Moturu et al., 2011; 
Sano et al., 2015; Triantafillou et al., 2019). These studies sup-
port the validity of mobile technology to track mental wellbe-
ing and show for example a predictive relationship between 
sleep quality and mood, with poor sleepers reporting high PSS 
(self-reported Perceived Scale Stress) and subjective low hap-
piness (de Wild-Hartmann et al., 2013). Our dataset, collected 
with a similar online platform in the wild, supports these find-
ings showing a significant relationship between sleep quality, 
stress level, and mood (Moturu et al., 2011; Sano et al., 2015; 
Triantafillou et al., 2019). We complement these findings by 
showing that the enjoyment of food is linked with mood, stress 
levels, and quality of sleep.

A relevant application that motivates the longitudinal study 
of mood and cognitive states in the wild is the development of 
digital phenotyping models to infer physical and mental condi-
tions and drive personalized treatment (Huckvale et al., 2019; 
Insel, 2018). Digital phenotyping aims at tracking and model-
ling behavioral variables of subjects via passive smartphone 
sensing with the purpose of extracting digital biomarkers pre-
dictive of physical and mental health (Torous & Firth, 2016). 
Importantly, the majority of digital phenotyping applications 

rely on passive smartphone sensing to extract correlates of 
affective and mental states based on behavioral markers but 
do not attempt at accessing explicitly any cognitive dimension 
(Marsch, 2020). Advances in the study of decision making and 
metacognition will potentially foster more sophisticated digital 
phenotyping applications by enhancing passive data collection 
with the active delivery of decision-making tasks. Indeed, the 
principles on which our decision making task is based can be 
embedded into games or recommender systems interfaces to 
implicitly test the way subjects take perceptual or value based 
decisions and use the extracted decision making parameters to 
infer affective and mental states (Brown et al., 2014).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13415- 022- 01038-4.
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