
Vol:.(1234567890)

Cognitive, Affective, & Behavioral Neuroscience (2023) 23:842–856
https://doi.org/10.3758/s13415-022-01020-0

1 3

SPECIAL ISSUE/UNCERTAINTY

Hierarchical inference as a source of human biases

Paul B. Sharp1,2 · Isaac Fradkin3,4 · Eran Eldar1,2 

Accepted: 6 June 2022 / Published online: 21 June 2022 
© The Psychonomic Society, Inc. 2022

Abstract
The finding that human decision-making is systematically biased continues to have an immense impact on both research and 
policymaking. Prevailing views ascribe biases to limited computational resources, which require humans to resort to less 
costly resource-rational heuristics. Here, we propose that many biases in fact arise due to a computationally costly way of 
coping with uncertainty—namely, hierarchical inference—which by nature incorporates information that can seem irrelevant. 
We show how, in uncertain situations, Bayesian inference may avail of the environment’s hierarchical structure to reduce 
uncertainty at the cost of introducing bias. We illustrate how this account can explain a range of familiar biases, focusing 
in detail on the halo effect and on the neglect of base rates. In each case, we show how a hierarchical-inference account 
takes the characterization of a bias beyond phenomenological description by revealing the computations and assumptions it 
might reflect. Furthermore, we highlight new predictions entailed by our account concerning factors that could mitigate or 
exacerbate bias, some of which have already garnered empirical support. We conclude that a hierarchical inference account 
may inform scientists and policy makers with a richer understanding of the adaptive and maladaptive aspects of human 
decision-making.
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Introduction

One of the most influential ideas in the study of human 
decision-making is that many of our intuitive decisions 
are based on simplifying heuristics that lead to system-
atic biases (Gilovich et al., 2002) (Box 1). Instead of 
fully and properly considering relevant information, it 
is thought that we resort to heuristics due to the lim-
ited nature of our cognitive resources and a consequent 
need to minimize computational demands (Gilovich 

et al., 2002; Kahneman, 2011; Lieder, Griffiths, & Hsu, 
2018a; Lieder, Griffiths, Huys, and Goodman, 2018). 
The far-reaching impact of this idea is highlighted by 
two Nobel Prizes in Economics awarded in 2002 and 
2017 to researchers who developed it (Grüne-Yanoff, 
2017; Guomei & Qicheng, 2003), and by its widespread 
influence on current social and economic policies (John, 
2018; Schmidt, 2017; Schwartz, 2015; Thaler, 2018a, 
b). Here, we propose that some of the most fundamental 
human biases do not reflect a computational limitation 
but rather the faithful operation of an advanced form of 
inference, namely, hierarchical inference.Paul B. Sharp and Isaac Fradkin contributed equally to this work.
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Contemporary cognitive science has given rise to a view 
of the human brain as a Bayesian inference machine (Friston, 
2012; Griffiths et al., 2010; Knill & Pouget, 2004; Piray & 
Daw, 2020; Summerfield & Tsetsos, 2012; Tenenbaum et al., 
2011). Examining this research reveals a key feature that 
distinguishes more recent models of rational inference from 
those that have been prevalent in the heuristics and biases 
literature: hierarchical structure (Benrimoh et  al., 2018; 
Diaconescu et al., 2020; Fradkin et al., 2020a, b; Fradkin, 
Ludwig, et al., 2020b; Glaze et al., 2018; Hesp et al., 2021; 
Lawson et al., 2017; Lee & Newell, 2011; Powers et al., 2017; 
Qiu et al., 2020; Reed et al., 2020; Schustek et al., 2019; Siegel 
et al., 2018; Smith et al., 2017; van Ravenzwaaij et al., 2014). 
The appeal of hierarchical models is that they use the temporal 
and structural dependencies existing in the world around us to 
mitigate uncertainty (Box 2). This is achieved by informing 
inferences about variables of interest (e.g., the expected harvest 
of fruit from a specific tree) not only with observations that 
directly reflect the variables (e.g., fruit previously harvested 
from the tree), as simple inference would, but also with 
observations reflecting indirectly related variables (e.g., fruit 
harvested from other trees in the same valley). The result is 

more informed, and thus more precise (i.e., less uncertain), 
inferences. Ample evidence supports humans’ pervasive use 
of such hierarchical inference in a range of cognitive functions, 
including perception (De Lange et al., 2018), social cognition 
(Gweon, 2021), and reinforcement learning (Behrens et al., 
2008).

In this paper, we reanalyze past findings from the heuristics 
and biases literature to illustrate how the use of hierarchical 
inference can produce multiple classical decision biases. 
This form of inference, however, is costly to implement. 
How then can we reconcile evidence that people intuitively 
perform hierarchical inference with observations that people 
fail to do even simple Bayesian inference properly (Tversky 
& Kahneman, 1981a)? We propose that this apparent 
contradiction can be resolved by realizing that the use of 
indirectly relevant information to reduce uncertainty produces 
behaviors that only appear erroneous if we assume that 
people are attempting simple inference. Finally, we highlight 
unique predictions regarding how diminished neurocognitive 
resources and effort can be expected to mitigate, rather than 
augment, biases, which sharply distinguishes our account of 
decision biases from previous accounts.
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Hierarchical inference is intuitive for humans

Ample empirical evidence supports our use of hierarchical 
inference across a range of domains. Perceptual neurosci-
ence, for example, has shown how higher-level inference 
about the general context portrayed by a visual stimulus 
(e.g., “I believe I’m looking at a picture of a typical day in a 
city.”) shapes lower-level inferences about individual objects 
within this context (e.g., “This blurry image must be a car 
parked next to a sidewalk.”; De Lange et al., 2018). How 
we learn and make decisions has similarly been shown to 
involve higher-level inferences that guide lower-level infer-
ences. For instance, inferences of rates of change in reward 
or punishment guide inferences concerning the reward and 
punishment associated with specific choices (Behrens et al., 
2008; De Berker et al., 2016; Eldar et al., 2016). Hierarchical 
inference is also prevalent in language. Even when we are 
very young, we routinely infer latent causes from the speech 
that we hear, including goals and emotions that are not 
directly observable from others’ speech. These higher-level 
inferences guide our interpretation of subsequent speech 
(Gweon, 2021). Without this ability to infer hierarchical 
causes, we would misinterpret sarcasm for offense, humor 
for stupidity, and so on. Indeed, our behavioral flexibility is 
often predicated on employing hierarchical inference. It is 

thus unsurprising that hierarchical inference is implemented 
in leading frameworks of brain function, including predic-
tive coding (Friston, 2012) and reinforcement learning (Bar-
tolo & Averbeck, 2021).

In what follows, we illustrate how the operation of hier-
archical inference could explain several well-established 
decision biases. In each case, we explore the novel insights 
that a hierarchical inference account affords. Importantly, 
our account does not seek to overturn all biases as non-
biases, but rather pinpoint the computations that underly 
them and thus help determine whether, or in what circum-
stances, we can construe a bias as rational and desired.

Halo effect: a paradigmatic example 
of intuitive hierarchical inference

Consider, for instance, the well-known bias that goes by the 
name of “halo effect” (Thorndike, 1920). A classic example 
of a halo effect manifests in grading an exam consisting of 
two open-ended questions: the evaluation of the question 
graded first can bias the evaluation of the second question. 
Thus, an exceptional first question makes it likely that the 
second question will be evaluated more highly than it other-
wise would have been. This behavior seems unacceptable, 

Box 2. What is hierarchical inference?
Statistical inference is deemed hierarchical when inferred variables occupy multiple levels in the inference 

model. Though hierarchical inference has many forms and uses (e.g., frequentist multilevel modelling), here 

we focus on hierarchical Bayesian inference as a model of cognitive function.

Consider an animal that wants to estimate which trees bear the most fruit. To do so, the animal chooses a tree 

based on a prior expectation concerning how fecund the tree may be, . It then observes how much p( tree1)
fruit there currently is on this tree, , and finally updates its expectation concerning the tree’s fecundity in tree1

light of the amount of fruit it just observed, This updated expectation is referred to as a p( tree1│ tree1). 
posterior probability, and is derived using simple Bayesian inference: 

.p( tree1│ tree1) ∝ p( tree1│ tree1)p( tree1)

This type of Bayesian inference, although itself complex, ignores how nearby trees from the same valley may 

be similarly fecund. Hierarchical inference uses such nested relationships to make more informed, and thus 

less uncertain, inferences: food from a tree depends on the qualities of that specific tree, , p( tree1│ tree1)
which themselves depend on qualities of the larger valley in which the tree grows, , about p( tree1| valley)
which the animal may have some prior expectation, . After sampling a tree, the animal can use p valley)
hierarchical inference to simultaneously update its interdependent expectations concerning the tree and the 

valley: 

. p( tree1, valley│ tree1) ∝ p( tree1│ tree1)p( tree1| valley)p valley)

The expected valley fecundity will thus come to reflect all trees that have been 

sampled in that valley. Critically, since expectations from trees are now influenced 

by expectations from the valley in which they reside, the animal’s expectations 

from each tree will be biased by how much fruit it obtained from neighboring 

trees.

As depicted on the right, we can represent the nested relations involved in 

hierarchical inference using a graphical model. In the hierarchical models 

presented in this paper, variables of the model (gold circles) are estimated 

based on observations that lie at the bottom of the hierarchy (gray circles) and 

prior expectations concerning the top-level variables (not shown; often referred 

to as hyper-priors).
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because it leads to a different overall grade depending on the 
arbitrary factor of which question is graded first.

Such behavior, however, is natural under a hierarchi-
cal model, wherein the student’s knowledge on individual 
questions is assumed to reflect their typical level of knowl-
edge on the topic (Fig. 1a, right). Under this assumption, 
given that the information a grader garners from a student’s 
answer is a noisy representation of the student’s true level 
of knowledge on the question, the grader’s grade will more 
accurately reflect the student’s knowledge if it forms a com-
promise between the information garnered from the answer 
and what is known about the student’s typical level of knowl-
edge. This typical level of knowledge (and the consistency of 

knowledge across questions) can be sequentially estimated 
from the student’s answers to previous questions.

To illustrate how sequential hierarchical inference has 
the consequence that the order in which answers are graded 
impacts the overall grade, imagine that a student’s answer 
to the first open-ended question (Q1) seems highly accurate 
(Fig. 1b, green vertical line). Based on this impression and 
no specific prior expectation, the grader infers both the 
student knowledge for Q1 (Fig. 1b, middle) and her general 
knowledge on the exam topic (Fig. 1b, left). The latter 
estimate now provides a more precise prior expectation with 
regards to the student’s knowledge on Q2 (Fig. 1b, right plot, 
green). Consequently, the grading of Q2 is both more certain 

Fig. 1  Hierarchical inference produces a halo effect in grading 
questions. a A nonhierarchical model (blue) assumes that knowledge 
on different questions is unrelated. In contrast, a hierarchical model 
(gold) assumes knowledge on different questions is linked via the stu-
dent’s typical level of knowledge in the subject matter (black arrows). 
It is thus sensible that the evaluation of one answer will inform the 
evaluation of a subsequent answer. This flow of information is illus-
trated by added green and brown arrows. Because the grader does 
not re-grade earlier answers after additional information about the 
student is garnered from later answers, earlier grades do not benefit 
from (i.e., are not biased by) this latter information. Such sequential 
inference is encountered in many real-world situations where choices 
must be enacted as evidence accrues. b Hierarchical inference con-
cerning a student’s typical knowledge (top row, gold) and specific 
knowledge on two questions, the first of which received a fairly 
accurate answer (Q1, green), whereas the second received a medio-
cre answer (Q2, brown). The grader begins with an assumption that 
the student’s typical level of knowledge could equally be any level 
between 0% and 100% (illustrated in the top left plot by a uniform 

distribution). Inferred Q1 knowledge is thus unbiased, but it informs 
the grader’s inference concerning the student’s typical knowledge, 
which serves as a prior expectation for inferring Q2 knowledge. As a 
result, Q2 knowledge is inferred with higher certainty and an upwards 
bias compared with how it would have been inferred without hierar-
chical inference (dashed line). c Grading of individual questions by 
nonhierarchical (blue clouds) and hierarchical (gold clouds) inference 
as a function of the student’s knowledge on the question, for five lev-
els of seeming answer accuracy (20%, 40%, 60%, 80%, 100%) from a 
student whose typical level of knowledge lies in the range of 50% to 
90%. Both types of grades aim to estimate the student’s knowledge 
on each question. In grading a question, nonhierarchical inference 
only relies on the answer to that question. Thus, its grades precisely 
equal the answer’s seeming accuracy. By contrast, hierarchical infer-
ence is informed by the levels of accuracy the student demonstrated 
in previous questions. Consequently, its grades smooth out the noise 
embedded in raw answers, and thus more faithfully reflect the stu-
dent’s knowledge on each question (i.e., the gold clouds are closer to 
the diagonal)
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and pulled upwards relative to how it would have been had 
it also been graded without an informative prior expectation 
(Fig. 1b, right plot, compare solid and dashed brown lines). 
Conversely, had the grader begun grading with Q2, her 
estimate of student knowledge would have been lower at the 
time she graded Q1. In this alternative scenario, Q2’s grade 
would be unbiased, whereas Q1’s grade would be biased 
downwards. Sequential hierarchical inference thus explains 
how order effects may emerge in grading as an outcome of 
a rational process.

This analysis of the halo effect illustrates how, by account-
ing for dependencies between different sets of observations, 
hierarchical inference offers more accurate estimates and 
greater certainty about them. Although certainty has not been 
empirically investigated in this context, it is interesting to note,  
anecdotally, what happened when Daniel Kahneman shuffled 
students’ exams to stop himself from being influenced by 
inferences about each student’s typical level of knowledge. 
“I was now less happy with and less confident in my grades,” 
he wrote (Kahneman, 2011).

Hierarchical inference in other heuristics 
and biases

The relevance of hierarchical inference extends to a variety 
of established heuristics and biases that characterize human 
decision-making (Fig. 2). For example, the impact of an 

incidental affective state on the evaluation of outcomes is 
typically regarded as an affective bias (Slovic et al., 2007). 
A hint that this bias may serve some form of inference is 
provided by the finding that the bias is mitigated if the affec-
tive state can be attributed to an unrelated cause (Schwarz & 
Clore, 1983). However, until recently, it remained unclear 
why by default people’s judgments are influenced by non-
specific affective states. More recent analysis has offered an 
answer to this conundrum, by showing that affective states 
may reflect hierarchical inference about general environmen-
tal changes that simultaneously increase (or decrease) the 
value of multiple related actions (e.g., a seasonal change that 
makes it easier to obtain food, water, and shelter). Affective 
biases may thus serve to properly correct learning concern-
ing individual actions to account for general environmental 
changes (Eldar et al., 2016).

The effects of “anchors” (Tversky & Kahneman, 1974) 
and “frames” (Tversky & Kahneman, 1981b) on people’s 
estimations and evaluations have similarly been regarded 
as irrational biases. Such biases manifest, for instance, 
when people give different answers to two logically 
equivalent but differently framed questions. Endeavoring 
to understand the root of this irrational behavior, substan-
tial research has investigated the processes through which 
these biases are produced. Such research has found, for 
instance, that an anchoring bias may arise either because 
the anchor serves as an initial estimate that is gradually 
adjusted until reaching a plausible value (Tversky & 

Fig. 2  Biases that violate simple Bayesian inference but are con-
sistent with hierarchical inference. Each bias constitutes a well-
established property of human decision-making. From the point of 
view of nonhierarchical Bayesian inference (blue models) the biases 
are unjustified, but hierarchical models (gold) show how, given cer-
tain assumptions, the biases can reflect rational inference. Note that 

the gold “hot-hand illusion” model is not strictly hierarchical, but it 
involves “hierarchical-like” inference wherein inferred variables are 
constrained by other inferred variables. Bidirectional arrows are used 
to indicate that known facts may either depend on the quantity of 
interest or the quantity of interest may depend on them. See Box 3 for 
equations describing each model
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Kahneman, 1974) or because the anchor primes relevant 
knowledge with which it is consistent (Strack & Muss-
weiler, 1997).

Elucidating the algorithm that produces a bias, how-
ever, does not necessarily reveal why a bias exists. Indeed, 
dissenting voices have suggested that anchors and frames 
should not be construed as exerting irrational influences, 
because they may reflect relevant knowledge on the part 
of the individual who designed the decision problem. For 
instance, it has been suggested that “a speaker is likely 
making an unspoken recommendation when using a posi-
tive frame” (Gigerenzer, 2018; Sher & McKenzie, 2006). 
Such an inference may give rise to multiple different types 
of framing effects (Levin et al., 1998), because a speak-
er’s recommendation could shed light on the value of an 
item (attribute framing) or indicate what type of outcomes 
(risky-choice framing) or features (goal framing) should 
be given priority. In agreement with this suggestion, more 
recent research has found that framing effects are elimi-
nated when the frame is made uninformative by disambigu-
ating provided information (Mandel, 2014), and anchoring 
biases are decreased or eliminated when anchors are made 
irrelevant (Fudenberg et al., 2012; Ioannidis et al., 2020) or 
unnecessary (Jacowitz & Kahneman, 1995; Wilson et al., 
1996). Accordingly, we propose that framing and anchoring 
biases constitute additional manifestations of hierarchical 
inference, wherein the frame or the anchor are used to infer 
relevant knowledge on the part of the experimenter, which 

is in turn used to infer the target quantity (Fig. 2). Such 
hierarchical inference could be implemented by means 
of any of the algorithms previously suggested to produce 
these biases.

Finally, it is noteworthy that a previously established 
bias, the hot-hand fallacy in basketball (Gilovich et al., 
1985), has recently been shown not to be a fallacy (Miller 
& Sanjurjo, 2018; Ritzwoller & Romano, 2022), indicat-
ing that basketball viewers and players may be making 
well-founded “hierarchical-like” inferences (Fig. 2) when 
they identify a hot streak.

These biases offer an illustrative set of examples for 
how hierarchical inference may give rise to judgments 
that are biased yet rational. This is not to say that all 
biases can be explained in this way, nor that other biases 
that we have not discussed cannot. Thus, for instance, 
hierarchical inference might also give rise to the avail-
ability heuristic (Tversky & Kahneman, 1983), which 
may possibly be conceptualized as an inference of the 
frequency of an event based on how frequently we have 
previously encountered it, which is in turn inferred from 
how quickly information about it comes to mind (since 
repetition improves recall; Hintzman, 1976). To facilitate 
further investigation and quantitative testing of a hier-
archical inference account of these and other biases, in 
Box 3 we provide equations for generative hierarchical 
models that may explain the computations that produce 
each bias.

Fig. 3  Hierarchical inference neglects incidental but not causal 
base rates. a If a causal base rate is given, the nonhierarchical model 
shown in blue is appropriate. However, given an incidental base 
rate, accounting for possible differences between the cab companies 
in proneness to accidents requires the hierarchical model shown in 

gold. b Prior assumptions about accident proneness (top row) affect 
the probability inferred by the hierarchical model that a blue cab was 
involved in the accident (p(blue); bottom row). “Accident proneness” 
denotes the odds that an accident would involve a blue, as opposed to 
a green cab, had there been equal numbers of blue and green cabs
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Hierarchical Bayesian interpretation of base 
rate neglect

The biases discussed so far demonstrate how rational 
hierarchical inference can lead to decisions that seem 
biased. However, these biases were never specifically 
perceived as incompatible with the view of humans as 
Bayesian. In the next example, we use a hierarchical 
model to reinterpret a well-established bias that cast 
doubt on the ability of humans to perform Bayesian 
inference – base rate neglect (Tversky & Kahneman, 
1981a). In a classic example illustrating base rate 
neglect, participants are asked to judge the probability 
that a car involved in an accident belonged to the blue cab 
company vs. the green cab company, given that only 15% 
of cabs are blue and that a moderately reliable (i.e., 80% 
accurate) eyewitness said they saw a blue cab. The classic 
finding is that participants tend to underweight the 15% 
base rate and thus overestimate the probability that the 
cab in the accident was blue. Interestingly, however, if 
participants are told instead that 15% of cabs involved 
in accidents are blue, base rate neglect is substantially 
diminished or even entirely absent (Bar-Hillel, 1980; 
Tversky & Kahneman, 1980). This difference has led 
the former type of base rate to be termed an incidental 
base rate and the latter a causal base rate.

The hierarchical inference perspective offers a way to 
explain why people weight causal base rates more strongly 
than incidental base rates. Given a causal base rate, the 
probability that the cab in the accident was blue should be 
computed using a straightforward application of Bayes rule 
(Fig. 3a, blue). This precise computation was previously 
used to derive the same optimal answer for causal and inci-
dental base rates (Tversky & Kahneman, 1981a). However, 
a closer examination of the incidental base rate case sug-
gests that it requires a more complex computation. This is 
because the proportion of blue cabs out of all cabs involved 
in accidents is determined not only by the proportion of blue 
cabs out of all cabs, but also by the relative proneness to 
accidents of cabs from the green and blue cab companies 
(Fig. 3a, gold). Differences in accident proneness are likely, 
for instance, if the two cab companies operate in different 
areas, or if their driver hiring practices differ.

Although we are given no information about the 
relative proneness to accidents of the two cab companies, 
simply by accounting for our uncertainty about accident 
proneness, hierarchical inference produces a different 
answer concerning the cab involved in the accident. To 
see this, consider that the proportion of blue cabs involved 
in accidents (i.e., causal base rate C) can be computed by 
multiplying the proportion of blue cabs (i.e., incidental 
base rate I) by their accident proneness (P):

The precise result of this computation depends on our 
prior assumption about accident proneness. If we assume 
that the accident proneness of the two companies is equal, 
then the causal and incidental base rates are identical, 
and therefore hierarchical and nonhierarchical inferences 
produce the same result (Fig. 3b, left panel). By contrast, 
if we assume that accident proneness differs to an extreme 
extent such that one or the other company is responsible for 
100% of the accidents, then the causal base rate (Cblue) is 
either 1 or 0 with equal probability, and thus, the posterior 
probability that the cab was blue matches the reliability 
of the witness (Fig. 3b, right panel). That is, in this case 
the incidental base rate should be deemed completely 
irrelevant. Of course, a more reasonable assumption is that 
accident proneness may or may not differ. Implementing 
this assumption in the model (Fig.  3b, middle panel) 
demonstrates that the probability that the cab was blue 
should be influenced by the incidental base rate, but not as 
much as in the case of a causal base rate. In other words, 
hierarchical inference entails here that the incidental base 
rate should be partially neglected.

This account of base rate neglect is distinct in key ways 
from a compelling, alternative account founded on signal 
detection theory (Birnbaum, 1983). The basic idea of the 
latter account is that if participants assume the witness is 
aware of the incidental base rate, then they can already 
count on the witness taking the base rate into account, and 
therefore do not need to account for it further. Support for 
this account comes from a demonstration that base rate 
neglect indeed decreases once the scenario is modified such 
that the witness no longer performs a probabilistic judgment 
(Krynski & Tenenbaum, 2007). In this modified scenario, 
cab colors fade such that 20% of green cabs appear blue and 
20% of blue cabs appear green, whereas the witness reports 
precisely what they saw and thus has no reason to account 
for the base rate. However, although this is a compelling 
explanation for the incidental base rate data, it fails to 
explain why individuals perform differently when given 
causal base rates. Our hierarchical-inference explanation 
predicts this difference because causal base rates account 
for possible differences in accident proneness between the 
two cab companies, whereas incidental base rates do not.

When are hierarchical inferences rational?

Hierarchical inference is warranted by the assumption of 
hierarchically organized dependencies between different 
sets of observations. It is thus irrational whenever a 

Cblue =
IbluePblue

IbluePblue + IgreenPgreen
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dependency assumed to exist between observations is 
inconsistent with available evidence. For example, in 
the case of the halo effect described above, hierarchical 
inference makes the assumption that a student’s knowledge 
on different questions is linked together via the student’s 
general level of knowledge on the exam topic. Whereas this 
particular assumption may be justified, in other cases, a halo 
effect may result from erroneous assumptions. For instance, 
a person’s physical appearance influences judgment of their 
personality characteristics (Moore et al., 2011; Wade & 
DiMaria, 2003), which implies the assumption of a common 
cause underlying attractiveness and personality. In both 
cases, hierarchical inferences biases evaluations but only 
in the latter case the assumption is likely incorrect and the 
bias irrational.

The suggestion that some biases arise from hierarchical 
inference that is based on erroneous assumptions raises 
the question of why people would hold these erroneous 
assumptions in the first place. Indeed, establishing that 
people employ a certain inference model requires showing 
not only that the model produces people’s observed 
behavior, but also explaining why people would hold 
the assumptions embedded in the model (Devaine et al., 
2014; Geisler et al., 2001; Kemp et al., 2007). One way to 
justify a range of erroneous assumptions is proposed by 
the theory of ecological rationality (Hertwig et al., 2021; 
Todd & Gigerenzer, 2012), which posits that organisms 
rationally develop decision strategies that are suitable to 
many frequently encountered problems, and by consequence 
produce behavior that is not suited to infrequently 
encountered (e.g., experimentally contrived) contexts 
(Gigerenzer et al., 2011; Gigerenzer & Brighton, 2009). 
This idea is best exemplified by considering our model of 
the “outcome bias.”

An outcome bias is encountered, for instance, when 
people are asked to evaluate whether a surgeon made the 
right decision in choosing to perform a surgical procedure 
(Baron & Hershey, 1988). In this experiment, people are 
told the expected success rate of the surgery, and so it is 
irrelevant whether the surgery eventually succeeded or not. 
Nevertheless, they tend to evaluate the surgeon’s decision to 
operate more highly if the surgery succeeded. This outcome 
bias can be interpreted as the product of hierarchical 
inference assuming that the expected success rate for specific 
patients deviates from average due to random individual 
characteristics (e.g., differences in symptoms or in genes; 

Fig. 2). Given this assumption, a successful surgery despite a 
low expected success rate would indicate that for the specific 
patient the expected success rate was in fact higher than 
average, and thus, the surgeon’s decision to operate was 
more justified.

The traditional view holds people’s evaluations in this 
experiment to be irrational, because people are told that the 
surgeon did not have access to any additional information 
beyond the average expected rates of success (Baron & 
Hershey, 1988). However, in more naturalistic settings, 
we do not typically have complete knowledge of what 
information the decision maker has, nor do we know for 
certain what information can reliably predict a better or 
worse outcome. Thus, in evaluating real-world medical 
decisions, we should take into account both known (i.e., 
expected success rate) and unknown (i.e., variance in 
success rate between patients) factors. Using outcomes 
to hierarchically infer the correctness of ours and others’ 
decisions is thus rational and, in fact, essential to how we 
learn from experience in real life (Hertwig et al., 2021).

Do biases reflect limited or enhanced 
cognition?

A hierarchical inference account of decision biases sharply 
diverges from prior accounts in suggesting that biases 
often result from a more complex, not simpler, form of 
computation. Almost all literature on this subject has thus 
far assumed the opposite, namely that biases arise due to 
limited cognitive capacity and a need to minimize cognitive 
costs. This assumption is at the very heart of the idea of 
bounded rationality (Simon, 1979) and has been a key 
principle of the heuristics and biases literature (Kahneman 
et al., 1982). More recently, this idea has been formalized 
and rationalized as the resource rationality framework 
(Dasgupta et al., 2018; Dasgupta et al., 2020; Gul et al., 
2018; Lieder, Griffiths, & Hsu, 2018a; Polanía et al., 2019). 
Put simply, this framework views biased decisions as a 
consequence of the rational deployment of limited cognitive 
resources to solve decision problems. For instance, to 
reduce cognitive load and computation time, people may 
estimate a probability distribution by drawing only a few 
samples from it (Sanborn & Chater, 2016) or plan only a 
limited number of steps into the future and beyond this rely 
on error-prone habits (Keramati et al., 2016). On this, the 
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resource-rationality framework agrees with the ecological 
rationality literature, as both view biases as consequences 
of computationally cheap decision rules (Gigerenzer et al., 
1988; Hertwig et al., 2021). By contrast, the hierarchical 
inference perspective suggests that reaching unbiased 
decisions can be less costly, because a biased decision 
maker processes contextual variables that an unbiased 
decision maker can ignore (e.g., a student’s typical level 
of knowledge in the halo effect, and accident proneness in 
base rate neglect).

If biases indeed arise from a complex and costly form 
of inference, and not from an attempt to minimize the 
use of limited resources, then we may expect biases to 
be diminished in people who invest less effort in solving 
a decision problem or whose inference capabilities are 
otherwise compromised. Indeed, recent findings suggest 
that, rather than being exacerbated, in some cases biases 
are diminished as a result of reduced neurocognitive 
function. First, preliminary work indicates that pupillary 
indices of cognitive load and effort are associated with a 
greater degree of bias in a range of decision-making tasks 
(both within and between subjects; Eldar, Felso, Cohen, 
& Niv, 2021). Additionally, anecdotal evidence suggests 
that lesions to ventromedial prefrontal cortex (vmPFC) are 
associated with diminished hot-hand illusions and context-
dependent biases in value learning (Manohar et al., 2021). 
Similarly, a recent study has shown that individuals on 
the autism spectrum are less susceptible to decision 
biases, because they tend to discount prior context and 
seemingly irrelevant information when making decisions 
(Rozenkrantz et  al., 2021). In all of these cases, the 
reduction in cognitive biases accompanies changes in 
behavior that suggest impaired hierarchical inference (e.g., 
impaired theory of mind in autism; Fields & Glazebrook, 
2020; Pezzulo et al., 2018). These findings, along with 
previous work showing that monetary incentives to 
act without bias often do not decrease bias (Tversky & 
Kahneman, 1981b), are consistent with a hierarchical-
inference account and not with the prevailing accounts of 
biases as means to minimize computational cost.

Of course, the involvement of hierarchical inference 
in producing a bias would not always predict the bias 
will intensify with effort, as this prediction depends 
on algorithmic details that may vary from case to case. 
Indeed, more broadly, the evidence on the relationship 
of biases with effort and intact cognitive function is best 

summarized as mixed (Alós-Ferrer et al., 2016; Diederich 
et al., 2018; Epley & Gilovich, 2006; Igou & Bless, 2007; 
Keramati et al., 2016; Lieder et al., 2018a, b; Nestler et al., 
2008; Raoelison & De Neys, 2019; Simmons et al., 2010). 
This mixed picture coheres with the goal of the present 
paper: to demonstrate the viability and generativity of a 
hierarchical inference account to produce explanations of 
many, but not all, cognitive biases. Ultimately, we believe 
a complementary set of ideas is needed to comprehensively 
address the diverse set of cognitive biases, including not 
only hierarchical inference and resource rationality, but 
also evolutionary suboptimality and motivated cognition 
(Williams, 2020). Determining what explanation, or 
combination of explanations, best suits each instance 
of a bias requires careful case-by-case study, which we 
hope the present paper will motivate and inspire. For this 
purpose, future work could utilize the explicit models 
outlined here to devise experimental manipulations that 
would uniquely influence hierarchical inferences.

Conclusions

Despite being better informed and more challenging to 
implement than simple Bayesian inference, hierarchical 
inference may be responsible for a range of decision-making 
biases that are often used to highlight the limitations of 
human reasoning. We propose that the employment of 
hierarchical inference in these cases is best understood 
as a way to mitigate uncertainty at the cost of introducing 
bias. Understanding decision biases through this lens takes 
the characterization of a bias beyond phenomenological 
description and reveals the computations and assumptions 
it reflects. In so doing, the hierarchical inference lens shows 
how common human biases could arise from fundamental 
computations that a hierarchically structured brain has 
evolved to perform (Friston, 2012; Knill & Pouget, 2004). 
Studying how these computations are neurally implemented 
and encoded may thus foster a mechanistic understanding of 
how biases emerge. Furthermore, the hierarchical inference 
lens generates novel behavioral predictions concerning 
people’s decisions and their adaptive and maladaptive 
consequences. It may thus inform both scientists and 
policy makers with a richer understanding of human 
decision-making.
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Box 3. Generative hierarchical models of decision biases. 
We provide here generative hierarchical models justifying each of the biases discussed in the paper. For each 

model, we describe an example decision query, and probabilistic relationships between variables the 

decision maker observes (capitalized) and those she needs to infer (marked in bold). Further specified are 

additional quantities, the estimates of which influence the resulting biases. Priors are left unspecified. 

Halo effect

Example: Inferring a student’s knowledge on open-ended exam questions from their answers.

Target inference:

 – student’s knowledge on question i∈ [0,1]

Observed variables:

 – number of correct features (out of ) identified in student’s answer to question i∈ {0,1,2,…, }

Other inferred variables:

 – student’s typical knowledge ∈ [0,1]
 – consistency of student’s knowledge across questions ∈ ℝ +

Relationships between variables:

p( │ ) = Binomial( | = )
p( │ ) = Beta( )

Affective evaluation

Example: An animal learns the expected value of harvesting fruit from different trees (specific actions) in its 

valley (general environmental factor) by harvesting them and observing how much fruit was obtained from 

each (observed reward). 

Target inferences:

 – value of action i at time t∈ ℝ

Observed variables:

 – observed reward for action i at time t∈ ℝ

Other inferred variables:

 – value of a general environmental factor at time t∈ ℝ

Relationships between variables:
p( │ ) = Normal( | , )
p( │ ― 1, , ― 1) = Normal( | ― 1 + ( ― ― 1), )
p( │ ― 1) = Normal( | ― 1, )

Additional estimated quantities:

 – deviation of individual rewards from expected value ∈ ℝ +

 – independent volatility, of specific action values∈ ℝ +

 – common volatility, of general environmental factor∈ ℝ +

Attribute framing

Example: Estimating the quality of a computer (product value) after a friend (experimenter) tells you from 

her experience the proportion of times the computer did (positively framed attribute) or did not (negatively
framed attribute) handled tasks efficiently.

Target inference:

 – a product’s value∈ ℝ

Observed variables:

 – an attribute of the product∈ ℝ
 – frame∈ {0 = negative,1 = positive}
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Other inferred variables:

∈ ℝ – experimenter’s evaluation of the product

Relationships between variables:

p( = 1| ) = logistic( )
p( | ) = Normal( | , )
p( | ) = Normal( | , )

Additional estimated quantities:

∈ ℝ+ – influence of experimenter’s evaluation on frame

∈ ℝ+ – reliability of experimenter’s evaluation

∈ ℝ+ – relation between value and attribute 

Anchoring bias

Example: Estimating the GDP (quantity of interest) of the US using both common knowledge (known facts) 
and a related value (anchor) provided by an experimenter.  

Target inference:

∈ ℝ – a quantity of interest 

Observed variables:

∈ ℝ – anchor

⃗ ∈ ℝ – known facts of size n

Other inferred variables:

∈ ℝ – experimenter’s estimate of the quantity

Relationships between variables:

p( | ) = Normal( | , )
p( | ) = Normal( | , )
p( ⃗| ) = Normal( ⃗| , Σ )

Additional estimated quantities:

∈ ℝ+ – reliability of experimenter’s estimate

∈ ℝ+ – deviation of anchor from experimenter’s knowledge

Σ ∈ ℝ × – similarity between known facts

Hot hand illusion

Example: Inferring a basketball player’s changing ability to make baskets based on their recent history of 

made and missed baskets.

Target inference:

, ∈ ℝ – ability of basketball player i at time t

Observed variables:

, ∈ {0 = miss, 1 = make} – make or miss by basketball player i at time t

Relationships between variables:

p( , = 1| , ) = logistic( , )
p( , | , −1) = Normal( , | , −1, )

Additional estimated quantities:

∈ ℝ+ – volatility of basketball players’ ability

Base-rate Neglect

Example: Judging the probability that a car involved in an accident belonged to the blue cab company, as 

opposed to the green cab company, given that only 15% of cabs are blue (incidental base rate) and that a 

moderately-reliable (i.e., 80% accurate) eyewitness said they saw a blue cab.
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Target inference:

∈ {0 = green, 1 = blue} – cab involved in accident

Observed variables:

∈ {0 = green, 1 = blue} – cab reported by eyewitness

blue ∈ [0,1] – incidental base rate of blue cab

green = 1 − blue – incidental base rate of green cab

Other inferred variables:

blue ∈ [0,1] – relative accident proneness of blue cab

green = 1 − blu – relative accident proneness of green cab

Relationships between variables:

p( = 1| blue , green ) = blue blue

blue blue + green green

p( = 1| ) = 0.8 + 0.2 (1 − )

Outcome bias

Example: Determining whether a surgeon made the correct decision to perform surgery (decision 
correctness) based on the known success rate of the surgery (fixed expected outcome), what might be known 

about the individual patient’s characteristics (random effects), and the outcome of the surgery. 

Target inference:

∈ {0 = incorrect, 1 = correct} – decision correctness

Observed variables:

∈ {0 = unsuccessful, 1 = successful} – outcome

∈ [0,1] – fixed expected outcome

Other inferred variables:

∈ ℝ – random effects

Relationships between variables:

p( = 1| , ) = logistic(logit( ) + )

= {1 if p( = 1| , ) >
0 else

Additional estimated quantities:

∈ [0,1] – threshold for evaluating a decision as correct

Availability heuristic

Example: Guessing the chance a massive flood will occur somewhere in North America, or conversely, a 

massive flood will occur due to an earthquake in California.

Target inference:

∈ ℝ+ – frequency of flood of type i

Observed variables:

∈ ℝ+ – rate of information coming to mind about flood of type i

Other inferred variables:

∈ ℤ+ – number of previous encounters with flood of type i

Relationships between variables:

p( | ) = Gamma( | = , )
p( | ) = Poisson( | + )

Additional estimated quantities:

∈ ℝ+ – effect of number of encounters on average rate of information coming to mind
+ – variability in rate of information due to factors other than number of encounters

– variability in rate of encounters due to factors other than the flood’s frequency
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