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Abstract
Although depression is associated with poor memory for positive material, the underlying mechanisms remain unclear. 
We used the Hierarchical Drift Diffusion Model (HDDM) to determine whether slow evidence accumulation at retrieval 
contributes to depressed individuals’ difficulty remembering positive events. Participants completed the Beck Depression 
Inventory-II and were stratified into High BDI (HBDI; BDI-II > 20, n = 49) and Low BDI (LBDI; BDI-II < 6, n = 46) groups. 
Next, participants completed an oddball task in which neutral, negative, and positive pictures served as rare targets. One day 
later, recognition memory was tested by presenting the encoded (“old”) pictures along with closely matched (“new”) lures. 
Recognition accuracy was analyzed with a generalized linear model, and choice and response time data were analyzed with 
the HDDM. Recognition accuracy for old positive pictures was lower in HBDI versus LBDI participants, and the HDDM 
highlighted slow evidence accumulation during positive memory retrieval in the HBDI group. Impaired memory for positive 
material in depressed adults was related to slow evidence accumulation at retrieval. Because oddballs should elicit predic-
tion errors that normally strengthen memory formation, these retrieval findings may reflect weak positive prediction errors, 
at encoding, in depressed adults.
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Introduction

Depression affects more than 264 million adults annually 
(James et al., 2018), and it is associated with a broad range 
of cognitive and emotional problems (Gotlib & Joormann, 
2010). In particular, depressed adults often present with 
impaired episodic memory (Rock et al., 2014; Zakzanis 
et al., 1998). For instance, relative to nondepressed indi-
viduals, depressed adults have displayed overgeneral auto-
biographical memory retrieval (Dalgleish et al., 2007; Hall-
ford et al., 2021) and poorer recollection (MacQueen et al., 
2002; Ramponi, Barnard, and Nimmo-Smith, 2004). Most 
importantly for the current study, meta-analyses indicate 
that depressed adults often show relatively poor memory 
for positive material, whereas memory for negative material 

is unaffected or even enhanced (Burt et al., 1995; Matt et al., 
1992).

Difficulty retrieving positive memories is clinically rel-
evant, because it may weaken an individual’s ability to regu-
late their emotions and interrupt ongoing depressive states 
(Dalgleish & Werner-Seidler, 2014; Joormann & Siemer, 
2004). If the mechanisms underlying the positive memory 
deficit were well-characterized, they could be targeted for 
treatment. Unfortunately, however, the relevant psychologi-
cal and neural processes remain poorly understood.

We proposed that poor memory for positive events in depres-
sion reflects suboptimal encoding (Dillon, 2015; Dillon & Piz-
zagalli, 2018). This hypothesis rests on several observations, the 
first of which is of growing behavioral evidence, which shows 
that depressed adults perform poorly on reward-processing tasks 
compared with their nondepressed counterparts (Halahakoon 
et al., 2020 review and a meta-analysis). Recent studies also 
show that this reward task performance deficit is driven by dys-
functional dopaminergic circuits (Pizzagalli, 2014; Proudfit, 
2015; Treadway and Zald, 2011). Furthermore, there is strong 
evidence that dopamine (DA) neurons within dopaminergic 
circuits signal positive prediction errors (PPEs)—that is, they 
fire strongly when an event is better than expected (Schultz, 
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2016). Findings from animal (Bethus et al., 2010; Lisman and 
Grace, 2005) and healthy adult (Jang et al., 2019) studies sug-
gest that PPEs strengthen memory formation for positive events. 
Taken together, these observations form the cornerstone of our 
hypothesis; namely, that depressed adults would generate weak 
dopaminergic PPEs in response to positive events, which would 
result in poor encoding of those events into long-term memory.

Supporting this hypothesis, we used functional magnetic 
resonance imaging (fMRI) to show that responses within 
the ventral tegmental area/substantia nigra (VTA/SN)—
where DA neurons are most densely concentrated (Haber & 
Knutson, 2010)—positively predicted memory for rewarded 
stimuli in nondepressed controls but not in adults with Major 
Depressive Disorder (MDD) (Dillon et al., 2014). The fact 
that VTA/SN activation was weaker in participants with 
MDD, and that this effect helped explain the group differ-
ence (controls > MDD) in memory for rewarded stimuli, 
supports the hypothesis that weak PPEs, signaled by DA 
neurons, play a causal role in the positive memory deficit 
seen in MDD.

However, this prior study (Dillon et al., 2014) had two 
key limitations. First, a reward or nonreward outcome was 
delivered on every trial, and the two kinds of feedback 
were equiprobable (i.e., half of the encoding trials were 
rewarded). This is not ideal because PPE magnitude depends 
partly on surprise; it would be better to present rewarding 
stimuli less frequently, as rare deviations from a predict-
able sequence of stimuli. Such an arrangement should elicit 
robust PPEs and enhance memory in nondepressed controls, 
facilitating detection of the negative effects of blunted PPEs 
on memory in depressed adults. Second, participants in our 
prior study knew that their memories would be tested, rais-
ing the possibility of group differences in encoding strate-
gies. Administering a surprise memory test would avoid this 
problem.

To address these concerns and provide additional insight 
into mechanisms underlying poor memory for positive mate-
rial in depression, we designed an oddball task followed by 
a recognition memory test and administered it to adults with 
high versus low depressive symptoms. At encoding, par-
ticipants viewed an equal number of positive, negative, and 
neutral pictures presented as rare targets (“oddballs”) amidst 
a stream of rectangles (“standards”). Because the pictures 
appeared infrequently and unpredictably, we expected them 
to elicit prediction errors (PEs) whose signs should depend 
on the picture type: positive pictures should elicit PPEs, and 
negative pictures should elicit negative PEs (because of their 
neutral content, neutral pictures should elicit smaller and 
more weakly signed PEs than valenced pictures). Because 
depression weakens PPEs, we expected that positive odd-
balls—but not negative or neutral oddballs—would be 
poorly encoded in depressed adults. To test this prediction, 
we administered a recognition memory test for the oddballs 

one day later. Participants were not forewarned about the 
test, which was delayed by 24 hours, because the effects 
of DA release on memory may be consolidation-dependent 
(Bethus et al., 2010; but see Jang et al., 2019). Our primary 
hypothesis was that, relative to participants with low depres-
sive symptoms, the more severely depressed adults would 
show poorer memory for positive pictures.

Our intention was to acquire electroencephalography 
(EEG) data at encoding so that we could use the P300 event-
related potential as a marker of PE strength (Polich, 2007; 
Donchin and Coles, 1988). Unfortunately, however, the 
COVID19 pandemic precluded this plan. We thus conducted 
the study online, which presented a problem: the oddball 
task is very simple, and without EEG recordings there was 
no way to quantify PPEs at encoding. Therefore, we focused 
on analysis of the recognition memory data. Our rationale 
was that if PPEs elicited in the oddball task enhanced the 
encoding of positive pictures more strongly in nondepressed 
versus depressed adults, then it should be possible to detect 
the downstream consequences of these effects in partici-
pants’ recognition memory performance.

Specifically, we applied the Drift Diffusion Model 
(DDM) (Ratcliff and McKoon, 2008) to the recognition 
data. The DDM is a useful tool for breaking retrieval down 
into distinct cognitive processes (Ratcliff, 1978), and it 
has successfully detected negative effects of depression 
on cognition in prior studies (Lawlor et al., 2020; White 
et al., 2009, 2010). As illustrated in Fig. 1, the DDM quan-
tifies cognitive processes that support memory retrieval 
and that cannot be detected in standard analysis of mean 
accuracy and response times (RTs) (Ratcliff, 1978; Wiecki 
et al., 2013). The model is based on the assumption that 
the retrieval process consists of accumulating evidence 
(e.g., from memory networks in the brain) that is neces-
sary to decide whether an item was seen before (is “old,” 
from encoding) or not (is “new,” a lure). Individuals arrive 
at their decision by accumulating evidence over time from 
an initial starting point, z, towards one of two response 
boundaries that represent possible responses (“old” or 
“new”). The starting point, z, ranges from 0-1; values 
<0.5 indicate a bias towards the lower boundary (“new” 
in Fig. 1) and values >0.5 reflect a bias towards the upper 
boundary (“old” in Fig. 1). The distance between the two 
boundaries is represented by the parameter a, which indi-
cates the amount of evidence that needs to accumulate 
before reaching a decision. Although evidence is assumed 
to accumulate noisily on a trial-by-trial basis (e.g., the 
green or blue lines in Fig. 1), the average rate of accumula-
tion across trials (the “drift rate,” e.g., the solid black line 
in Fig. 1) is represented by the parameter v. The magnitude 
of the drift rate indicates the speed with which evidence 
is accumulated, such that higher absolute values reflect 
faster and more efficient evidence accumulation. The sign 

1173

1 3



Cognitive, Affective, & Behavioral Neuroscience (2022) 22:1172–1182 

of v (negative or positive) indicates the direction towards 
which evidence is being accumulated (e.g., either nega-
tively towards “new” or positively towards “old” in Fig. 1). 
Finally, the t0 parameter represents the time allotted to 
all “nondecision” processes in which participants engage 
outside of accumulating evidence for a given choice (e.g., 
stimulus perception and motor functions). By modeling the 
decision process dynamically, the DDM jointly estimates 
both choice proportions (represented by the proportion of 
trials in which the upper vs. lower boundary was reached) 
and response times (represented by the amount of time 
taken to reach a boundary), thus providing a well-con-
strained model of decision-making as it unfolds over time.

The DDM is helpful in the current context because one 
model parameter is especially sensitive to differences in 
encoding quality. Specifically, manipulations that influence 
encoding strength primarily affect the drift rate at recogni-
tion while leaving the other DDM parameters unaffected 
(Criss, 2010). Consequently, if depression blunts the PPEs 
elicited by positive oddballs at encoding, then that should 
result in a lower drift rate when those stimuli are presented 
again at recognition. Consistent with this argument, a prior 
study reported that nondysphoric students showed higher 
drift rates for positive vs. negative words presented in a rec-
ognition test, but this effect was not present in dysphoric 
students (White et al., 2009). This prior study (White et al., 
2009) is thus encouraging, and we sought to build upon it 
by testing our hypothesis about prediction errors in samples 
drawn from the adult population.

To this end, we used the Beck Depressive Inventory-II 
(BDI-II; Beck et al., 1996) to identify 49 adults with high 
BDI-II scores (HBDI group) and 46 with low BDI-II scores 
(LBDI group). These two groups then completed the odd-
ball task and the memory test using an online platform. We 
predicted that memory for positive oddballs would be worse 
in the HBDI versus LBDI group. We used the Hierarchi-
cal Drift Diffusion Model (HDDM; Wiecki et al., 2013), a 
Bayesian implementation of the DDM, to test the predic-
tion that that this deficit would be driven by slow accumula-
tion of positive memory evidence (i.e., lower drift-rates for 
“old” positive images) in the HBDI group at retrieval. As 
described above, we hypothesized that this pattern would 
emerge as a downstream consequence of weak PPEs in the 
HBDI group during encoding.

Materials and methods

Participants

Participants were recruited through the Harvard SONA sys-
tem (n = 95; Table 1). Prospective participants were eligible 
if they were fluent English speakers between ages 18 and 55 
years, with BDI-II scores less than 6 (LBDI) or greater than 
20 (HBDI). We chose 20 as the high cutoff score, because 
this is the recommended threshold for identifying adults 
with at least moderate depression (Beck et al., 1996). We 
chose 6 as the low cutoff, because to meet this criterion, 

Fig. 1  Drift diffusion model. Note. Drift Diffusion Model (DDM) 
used to model recognition data. The model includes two response 
boundaries: an upper boundary corresponding to “old” responses and 
a lower boundary for “new” responses. Starting bias (z) quantifies 
whether a participant is more likely to respond “old” or “new” before 
the beginning of each trial. Drift-rate (v) captures the speed of evi-

dence accumulation: the average time it takes to reach a boundary on 
each trial. This example shows relatively fast evidence accumulation 
towards the new boundary (dark blue line), and relatively slow evi-
dence accumulation towards the old boundary (green line). The deci-
sion threshold (a) quantifies the distance between the two boundaries
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adults would have to have minimal depressive symptoms 
such that the two groups would be distinct (i.e., no partici-
pants with mild symptoms). While it would be useful to 
study behavior across the full range of depressive symptoms, 
we used an “extreme groups” design (HBDI vs. LBDI) to 
maximize our chances of detecting the expected effect with 
relatively few participants (Preacher, 2015). All participants 
were compensated with one study pool credit or $15 per 
hour and assented to a protocol approved by the Mass Gen-
eral Brigham Institutional Review Board. No formal power 
analysis was conducted for this study. Instead, sample sizes 
were selected to be similar to or larger than those used in 
prior work (e.g., 21 subjects per group in Dillon et al., 2014; 
17-24 subjects per group in White et al., 2009).

Self‑report measures

Participants provided basic demographic information and 
completed the BDI-II questionnaire using Research Elec-
tronic Data Capture (REDCap) software (Harris et al., 2019). 
Consistent with the IRB protocol, participants were not pre-
sented with BDI-II question 9, which assesses suicidality.

Encoding and retrieval tasks

Stimuli The pictures used in the oddball task were 
selected from a separate picture norming study, which 
was used to generate pairs of similar images such that 
every picture shown in the oddball task would have a 
closely matched lure at recognition; commonly used 
image sets, such as the IAPS system (Lang et al., 1997), 
are not ideal for this purpose. See the Supplemental 
Methods for details of the picture norming study. Once 
that study was complete, 240 pictures were selected for 
the oddball task. This final set consisted of 120 pic-
ture pairs (40 positive, 40 negative, and 40 neutral). As 
described in the Supplemental Methods, the positive 
and negative images differed on valence but not arousal, 
and the neutral images differed from emotional images 
on both valence and arousal. One image from each pair 
was randomly selected to serve as a target for each par-
ticipant, with the other image serving as a lure. Four 

hundred rectangles of the same color for each participant 
and the same size as the pictures, served as standards 
(Goldstein et al., 2002); these rectangles constituted 77% 
of the stimuli. Each picture type—positive, negative, 
neutral—comprised 7.7% of the stimuli.

Procedure The experimental tasks included encod-
ing and retrieval sessions, spaced 24 hours apart. The 
encoding session consisted of instructions, nine practice 
trials, and the oddball task (~25 minutes). Participants 
were instructed to attend to the rapidly changing stimuli 
and to press the left arrow key in response to rectangles 
and the right arrow key in response to pictures. Some 
participants also were asked to make predictions about 
upcoming stimuli, but this manipulation did not affect 
the results; see Supplemental Methods for details. Stim-
uli were centrally presented (1,800 ms) and separated 
by a jittered interstimulus interval (250-1,000 ms). The 
task included 40 blocks with 10 trials per block and 1 
stimulus per trial. Stimuli were presented in a semiran-
dom order with the following constraints: (1) each block 
included 7 rectangles and 3 pictures (one per valence), 
(2) all pictures were separated by 1-7 rectangles, and (3) 
each block ended with a rectangle so two pictures never 
appeared sequentially across blocks. See Fig. 2A for a 
depiction of the oddball task.

Participants were not informed that their memory would 
be tested until they began the recognition test (Fig. 2B) 
during the retrieval session. The test was self-paced (~20 
minutes; up to 10 seconds per response) and included 120 
old pictures from encoding plus 120 closely matched lures. 
All pictures were presented in a unique, randomized order 
for each participant. Participants were instructed to identify 
each image as either old or new, and to rate their confidence 
(high, medium, low) in each response by using a scale shown 
below each picture.

Analyses Data were analyzed using Python 3.8 (van Ros-
sum, 1995) and R software version 3.6.1 (R Core Team, 
2019). Computational modeling was conducted using 
HDDM version 0.6.0 (Wiecki et al., 2013) in Jupyter Note-
books (Kluyver et al., 2016).

Table 1  Demographic and self-report data

BDI-II: Beck Depression Inventory-II (Beck et al., 1996); HBDI: High BDI-II (>20) group; LBDI: Low BDI-II (<6) group

Group BDI-II (mean ± SD) Gender Age (mean ± SD) Education (mean ± SD)

HBDI (N = 49) 29.92 ± 6.55 Female: 39
Male: 8
Other: 2

23.69 ± 6.27 12.83 ± 5.38

LBDI (N = 46) 2.3 ± 1.88 Female: 36
Male: 10
Other: 0

27.17 ± 8.91 15.98 ± 3.21
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Continuous self-report measures (BDI-II scores, age, 
and years of education) were analyzed using two-group 
t-tests. Gender differences between groups were analyzed 
using a chi-square test. All other measures were analyzed 
using linear models. To account for idiosyncratic stimu-
lus effects and individual differences in memory ability, 
all linear models contained Picture Name (unique for 
each image) and Subject ID as random intercepts (Bates 
et al., 2015).

For analysis of response accuracy at encoding and 
retrieval, trial-level accuracy (0 or 1) served as the 
dependent variable with Picture Type, Group, and Mem-
ory Status (old or new, for retrieval only), as independ-
ent variables. Covariates included Age, Trial Number, 
and Years of Education. A sensitivity analysis was con-
ducted to test the efficacy of this model (i.e.,  R2 devia-
tion from zero) using the G*Power 3.1 module for the 
“Linear multiple regression: Fixed model,  R2 deviation 
from zero” (Faul et al., 2007). The alpha was set at 0.05 
with 0.8 power, 95 sample size, and 7 predictors, to 
match the details of our data. Results of this sensitiv-
ity analysis indicate that the minimum effect size that 
can be detected with these parameters is f2 = 0.16 (F 
= 2.117), which corresponds to a medium effect size 
(Cohen, 1988). To further characterize group differences 
at retrieval, we compared the estimated marginal means 
for recognition accuracy sorted by picture type. Finally, 
response times (RTs) at encoding and recognition were 

(natural) log-transformed and filtered: we removed raw 
RTs that exceeded 10,000 ms at retrieval, as well as (log-
transformed) RTs that deviated from the participant’s 
mean ± 3 SD. This resulted in the removal of 3.3% of 
encoding trials and 0.22% of retrieval trials. Filtered RTs 
were entered as dependent measures in models in which 
Picture Type, Memory Status (old vs. new; for retrieval 
only), Pair Number (for encoding only) and Group were 
independent variables. Covariates were Age and Years 
of Education.

HDDM The HDDM is a Bayesian implementation of the 
DDM that has been validated relative to other software 
packages (Ratcliff and Childers, 2015) and that has uncov-
ered deficits in depressed adults in prior work (Lawlor et al., 
2020). It was fit to trial-level choice and untransformed 
RT data at retrieval following recommendations by model 
developers (Wiecki et al., 2013). All parameters [v, a, z, t0] 
were allowed to vary by Group and Picture Type. A total of 
10,000 samples, thinned by a factor of 5, were drawn from 
the posterior distribution, with the first 2,000 discarded as 
“burn-in” samples. Convergence was confirmed via diagnos-
tic plotting and by running the model five times to obtain 
the Gelman–Rubin statistic ( R̂< 1.1 for all parameters). 
To assess group differences, the between-group overlap of 
the posterior distributions for each parameter was plotted 
for each picture type (presented as q-values; Lawlor et al., 
2020).

Fig. 2  Experimental tasks. Note. A Encoding trial and (B) graphical overview of the retrieval task. The response arrows as well as the response 
scales were presented below the stimuli
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Results

Self‑report

See Table 1 for demographic and self-report data. The 
subject pool consisted of a broad community sample of 
adults. By design, the HBDI and LBDI groups differed 
on BDI-II scores, t(56.37) = 28.3, p < 0.001, Cohen’s d = 
5.66. The groups also differed on age (t(80.33) = −2.19, p 
= 0.032; d = 0.45) and years of education (t(3.48) = 79.41, 
p < 0.001; d = 0.71), as the HBDI group was younger and 
had completed fewer years of education than the LBDI 
group. Because of these group differences, Age and Years 
of Education were included as covariates in all other linear 
models. The groups did not differ on gender, χ2(1) = 0.17, 
p = 0.681; Φ = 0.07.

Encoding responses

We assessed attentiveness to the oddball task by analyzing 
response accuracy and RT at encoding (Table 2). The lin-
ear model on response accuracy did not return any signifi-
cant effects involving Group or Picture Type (ps > 0.05). 
Analysis of RTs, however, revealed a main effect of Group, 
t(94.14) = 2.77, p = 0.007, due to slower responses in the 
HBDI group.

Recognition memory

As displayed in Fig. 3, relative to the LBDI group, individu-
als with HBDI showed lower recognition accuracy for (old) 
positive pictures but not neutral or negative pictures; there 
were no apparent group differences for correct rejections 
of (new) lures of any type. To statistically test this visual 
impression, we ran a generalized linear model on recognition 
accuracy. To highlight the most critical test, we set responses 
to Old Positive pictures in the LBDI group as the reference 
level for the generalized linear model. Consequently, a sig-
nificant main effect of Group (with a negative sign) would 
indicate that memory for old positive pictures was worse 
in the HBDI group, as predicted. As shown in Table 3, the 
model did indeed return a main effect of Group (specifically, 
HBDI) with a negative sign. This result confirms that rec-
ognition accuracy for old positive pictures was lower in the 
HBDI versus LBDI group. Although not strictly necessary, 
post-hoc pairwise analyses confirmed that group differences 
were not present for old neutral (Cohen’s d = 0.059, z = 0.6, 
p = 0.55) or old negative pictures (Cohen’s d = 0.11, z = 
−1.06, p = 0.29).

Table 2  Mean (± SD) encoding behavior in the oddball task

BDI -II: Beck Depression Inventory-II (Beck et  al., 1996); HBDI: 
High BDI-II (>20) group; LBDI: Low BDI-II (<6) group

Picture type Group RTs %Correct

Positive HBDI 0.71 ± 0.26 0.99 ± 0.09
LBDI 0.62 ± 0.19 0.99 ± 0.10

Neutral HBDI 0.71 ± 0.25 0.98 ± 0.13
LBDI 0.63 ± 0.19 0.98 ± 0.13

Negative HBDI 0.73 ± 0.28 0.99 ± 0.12
LBDI 0.63 ± 0.20 0.99 ± 0.10

Fig. 3  Recognition accuracy. Note. HBDI: High BDI-II group; LBDI: 
Low BDI-II group. The p value corresponds to the group difference 
in recognition memory accuracy for old positive pictures, based on 

the linear modeling results given in Table 3. The y-axes differ across 
panels A and B 
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The model returned three additional interactions involv-
ing Group. First, there was a Negative x HBDI interac-
tion. This indicates that the HBDI group showed a greater 
increase in memory accuracy for old negative versus old 
positive pictures than the LBDI group. This effect is driven 
primarily by the aforementioned group difference for old 
positive pictures, as accuracy in response to old negative 
pictures was similar across groups. Second, a New x HBDI 

interaction indicates that although all participants were bet-
ter at correctly rejecting new, positive lures than they were at 
identifying old, positive pictures, this difference was larger 
in the HBDI group versus the LBDI group. Note that this 
effect is also driven by poorer memory for old positive pic-
tures in the HBDI group, as the groups correctly rejected 
new positive pictures at a similar rate. Third, a significant 
Negative x New x HBDI interaction emerged, because the 
ability to correctly reject negative lures was slightly bet-
ter in the HBDI versus LBDI group. Precise quantitative 
interpretations for every term in the model, including ones 
not detailed here, can be made by examining the regression 
coefficients presented in Table 3.

HDDM

As shown in the top row of Fig. 4, there was substantial 
between-group overlap for drift-rates in response to old 
negative pictures (q = 0.44), little overlap for old neutral 
pictures (q = 0.1), and markedly less overlap for old positive 
pictures (q = 0.01). The last two results were driven by lower 
drift-rates in the HBDI group, and they indicate that memory 
evidence for old positive pictures (and, to a lesser extent, old 
neutral pictures) accrued more slowly in depressed adults. 
The bottom row shows that group differences were not pro-
nounced for new pictures.

The other model parameters revealed limited evidence 
of group differences. As depicted in Figure S1, decision 
boundaries were generally wider for the HBDI versus LBDI 
group but this effect was weakest for old positive pictures (q 
= 0.46), indicating that it did not drive the group difference 
in recognition accuracy for these stimuli. Figure S2 shows 
that nondecision times were longer in the HBDI group, and 

Table 3  Generalized linear mixed model results for trial-level recog-
nition accuracy

 BDI -II: Beck Depression Inventory-II (Beck et  al., 1996); HBDI: 
High BDI-II (>20) group; LBDI: Low BDI-II (<6) group. The refer-
ence condition for this model was Old Positive pictures in the LBDI 
group, thus the significant HBDI effect (in bold) confirms poorer rec-
ognition accuracy for old positive pictures in the HBDI group

Estimate SE Z-value p value

Intercept 0.31 0.08 3.86 <0.001
Negative 0.27 0.09 3.06 0.002
Neutral -0.47 0.09 -5.48 <0.001
New 1.24 0.08 15.65 <0.001
HBDI -0.23 0.10 -2.29 0.022
Age -0.03 0.04 -0.74 0.463
Trial number -0.06 0.02 -3.79 <0.001
Years of education 0.07 0.04 1.77 0.077
Negative x new -0.27 0.11 -2.37 0.018
Neutral x new 0.22 0.11 2.02 0.043
Negative x HBDI 0.33 0.10 3.42 <0.001
Neutral x HBDI 0.17 0.10 1.76 0.079
New x HBDI 0.28 0.11 2.51 0.012
Negative x New x HBDI -0.55 0.15 -3.55 <0.001
Neutral x New x HBDI -0.19 0.15 -1.27 0.206

Fig. 4  Posterior distributions for drift-rate. Note. Between-group overlap of posterior distributions for drift-rates, by Picture Types (columns) and 
Old/New status (rows). HBDI: High BDI-II group; LBDI: Low BDI-II group
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Figure S3 shows that there was also a weaker bias to respond 
“new” in the HBDI group. In both cases, the between-group 
overlap was substantial; thus, the group differences are mod-
est. Although we caution that the degree of overlap of poste-
rior probability distributions does not constitute a statistical 
significance test, no parameter other than the drift rate for 
old positive pictures showed less than 5% between-group 
overlap (i.e., no other q-value was below 0.05). Thus, the 
strongest result from the HDDM was the observation of 
slower drift-rates in response to old positive pictures in the 
HBDI group.

Discussion

This study found that, relative to adults with minimal depres-
sive symptoms, adults with elevated symptoms had greater 
difficulty recognizing positive pictures encoded a day ear-
lier. The HDDM linked this deficit to slow evidence accu-
mulation during memory retrieval. There were no group 
differences in recognition accuracy for old negative or old 
neutral pictures, or for correct rejections of new pictures 
of any valence. Furthermore, analysis of the other HDDM 
parameters revealed minimal evidence of group differences. 
In short, this study shows a selective association between 
elevated depressive symptoms and difficulty retrieving posi-
tive memories.

We interpret the retrieval results as reflecting poor encod-
ing of positive oddballs in the HBDI group. Although this 
interpretation is speculative given the lack of EEG data, 
we believe it is sensible for two reasons. First, the oddball 
task has successfully elicited prediction errors in hundreds, 
if not thousands, of EEG and fMRI studies over the past 
six decades. Consequently, it is reasonable to assume that 
it elicited PEs in the current study. Given that the pictures 
used as oddballs were selected based on their ability to elicit 
valenced responses in the picture norming study, it is also 
reasonable to assume that the positive pictures likely elicited 
positive PEs—PPEs—in the LBDI group. Given that PPEs 
elicit DA bursts (Schultz, 1998), strengthen memory forma-
tion in healthy adults (Jang et al., 2019), and that depressed 
adults perform poorly on reward-processing tasks (Halaha-
koon et al., 2020) due to diminished activity within brain-
reward networks (Proudfit, 2015; Treadway & Zald, 2011), 
a parsimonious conclusion is that PPEs at encoding were 
weaker in the HBDI group and that this contributed directly 
to the group difference in memory for positive oddballs.

The second point in favor of this interpretation concerns 
the overall pattern of the recognition memory data. It is 
noteworthy that although the HBDI group performed more 
poorly than the LBDI group in response to old positive pic-
tures, there were no group differences in response to new 
positive pictures. These results cannot be easily interpreted 

in terms of either a general insensitivity to positive valence 
(Levens and Gotlib, 2009) or diminished attention to posi-
tive events (Peckham et al., 2010), because the HBDI group 
did not show lower accuracy in response to old and new 
positive pictures, just old ones. The fact that the deficit was 
selective to previously studied pictures implies that encoding 
of positive material was less effective in the HBDI group. 
We hypothesize that this reflects blunted PPEs due to abnor-
malities in the DA system (Dillon, 2015; Dillon and Piz-
zagalli, 2018).

How would such abnormalities lead to slow evidence 
accumulation at retrieval? The speed of evidence accumu-
lation in recognition memory tests is thought to depend on 
how well the stimulus presented on a given trial matches 
its representation in long-term memory (Ratcliff, 1978). 
For correctly rejected new items, a parallel search process 
yields minimal evidence for a match and the drift process 
rapidly reaches the “new” boundary. For well-encoded old 
items, the match with the existing representation is good and 
thus the drift process efficiently reaches the “old” boundary. 
This match is weaker for poorly encoded items and evidence 
accumulation is slower and more meandering, sometimes 
terminating (incorrectly) at the “new” boundary and thus 
leading to lower recognition accuracy. If our interpretation is 
correct, then weaker PPEs in response to positive oddballs at 
encoding in the HBDI group ultimately led to poorer quality 
matches during the recognition test, causing slower drift-
rates and lower recognition accuracy.

These findings suggest an interesting hypothesis for 
future EEG/ERP and fMRI studies. A common result in 
the control literature is that when successful recogniton of 
old items (hits) is contrasted with correct rejection of lures, 
robust activation of parietal cortex emerges (Rugg and Cur-
ran, 2007; Spaniol et al., 2009). The specific mechanism 
underlying this activation remains controversial, but one 
possibility is that it reflects the accumulation of memory 
evidence supplied by the hippocampus and other cortical 
areas (Wagner et al., 2005). This idea builds on a large 
nonhuman primate literature indicating that lateral parietal 
regions support the accumulation of perceptual evidence 
(Gold and Shadlen, 2007; Shadlen and Newsome, 2001). 
The current data indicate that using EEG/ERP and fMRI to 
study emotional memory retrieval in depressed adults would 
be worthwhile, because in addition to any effects related to 
PEs at encoding, depression may disrupt the accumulation 
of positive—but not negative—memory evidence, and this 
disruption may be detectable by monitoring parietal acti-
vation. Indeed, an earlier study from our lab found lower 
amplitude, left parietal ERPs during recollection of neu-
tral memories in adults with MDD versus healthy controls 
(Barrick and Dillon, 2018), but extending this approach to 
emotional memories and linking EEG/ERP signals to model 
parameters remains a goal.
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Although the current findings are promising, several limi-
tations should be noted. First, participants only completed 
the BDI-II, so we have no information about other condi-
tions, such as anxiety, that are frequently comorbid with 
depression and that may have influenced the results. Second, 
the use of an extreme groups design comes at the cost of 
generalizability, as we do not know how adults with moder-
ate depressive symptoms would behave. Third, the lack of 
a neurophysiological measurement at encoding means that 
while we could make reasonable inferences about PPEs at 
encoding, we could not observe them directly. Thus, future 
studies should acquire neurophysiological data from larger, 
well-characterized samples whose depressive symptoms 
span the range from mild to severe.

An important focus of future research will be to trans-
late these findings to concrete clinical applications. Recent 
work in memory therapeutics (Dalgleish and Werner-Sei-
dler, 2014) is promising. For instance, Memory Specificity 
Training seeks to improve memory by training participants 
to increase the number of specific details they recall from 
their pasts. Our study suggests that depressed adults may 
benefit from focusing specifically on retrieving detailed posi-
tive memories, and indeed there is already evidence that this 
approach is therapeautic (Dalgleish et al., 2013; Hitchcock 
et al., 2017). It would be valuable to know whether therapy-
induced changes in the retrieval of positive, autobiographical 
memories are related to changes in drift rate.

Given the hypothesis that the positive memory deficit in 
depression is related to abnormalities in the DA system, it 
also would be useful to study the memory effects of inter-
ventions that stimulate DA production, either behaviorally 
(i.e., via mirthful laughter induction; Manninen et al., 2017) 
or pharmacologically (i.e., via bupropion administration; 
Stahl et al., 2004). Another clinical extension of this work 
might use noninvasive brain stimulation, which successfully 
enhanced cortical-hippocampal connectivity and improved 
memory performance in healthy adults (Wang et al., 2014). 
Given that evidence accumulation is linked to prefrontal 
and parietal function (Hanks et al., 2015), using noninva-
sive methods to stimulate these brain regions during positive 
memory retrieval might yield benefits for depressed adults.

Conclusions

The current study adds further support to the claim that 
depression can impair memory for positive material, and 
points to two relevant underlying mechanisms: blunted PPEs 
at encoding and slow evidence accumulation at retrieval. 
This study offers new insights into the harmful effects of 
depressive symptoms on memory and improves our under-
standing of why depressed individuals have difficulty 
remembering positive events. These findings also suggest 

new therapeutic interventions that might help alleviate the 
positive memory deficit in depressed individuals.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13415- 022- 01010-2.

Acknowledgments This work was supported by grants from the 
National Institute of Mental Health of the National Institutes of Health 
(K01 MH122672, awarded to Dr. Maksimovskiy; R01 MH111676, 
awarded to Dr. Dillon) and the National Institute on Drug Abuse of 
the National Institutes of Health (T32 DA015036, awarded to Dr. Scott 
Lukas). The authors thank Dr. Lukas for his help with stimulus prepara-
tion and experimental design.

Declarations 

Disclaimer The content is solely the responsibility of the authors and 
does not necessarily represent the official views of the National Insti-
tutes of Health.

References

Barrick, E. M., & Dillon, D. G. (2018). An ERP study of multidimen-
sional source retrieval in depression. Biological Psychology, 132, 
176–191. https:// doi. org/ 10. 1016/j. biops ycho. 2018. 01. 001

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear 
Mixed-Effects Models Using lme4. Journal of Statistical Soft-
ware, 67(1), 1–48. https:// doi. org/ 10. 18637/ jss. v067. i01

Beck A, Steer RA, Brown GK (1996). Beck Depression Inventory – 
Second Edition: Manual. The Psychological Corporation: San 
Antonio, TX.

Bethus, I., Tse, D., & Morris, R. G. (2010). Dopamine and memory: 
modulation of the persistence of memory for novel hippocampal 
NMDA receptor-dependent paired associates. Journal of Neuro-
science, 30(5), 1610–1618. https:// doi. org/ 10. 1523/ JNEUR OSCI. 
2721- 09. 2010

Burt, D. B., Zembar, M. J., & Niederehe, G. (1995). Depression and 
memory impairment: a meta-analysis of the association, its pat-
tern, and specificity. Psychological Bulletin, 117(2), 285–305. 
https:// doi. org/ 10. 1037/ 0033- 2909. 117.2. 285

Cohen, J. (1988). Statistical power analysis for the behavioral sciences 
 (2nd ed.). Hillsdale, NJ: Erlbaum.

Criss, A. H. (2010). Differentiation and response bias in episodic 
memory: Evidence from reaction time distributions. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 
36(2), 484–499. https:// doi. org/ 10. 1037/ a0018 435

Dalgleish, T., Navrady, L., Bird, E., Hill, E., Dunn, B. D., & Golden, 
A. M. (2013). Method-of-loci as a mnemonic device to facili-
tate access to self-affirming personal memories for individuals 
with depression. Clinical Psychological Science, 1(2), 156–162. 
https:// doi. org/ 10. 1177/ 2F216 77026 12468 111

Dalgleish, T., & Werner-Seidler, A. (2014). Disruptions in autobio-
graphical memory processing in depression and the emergence 
of memory therapeutics. Trends in Cognitive Sciences, 18(11), 
596–604. https:// doi. org/ 10. 1016/j. tics. 2014. 06. 010

Dalgleish, T., Williams, J. M. G., Golden, A. M. J., Perkins, N., Bar-
rett, L. F., Barnard, P. J., et al. (2007). Reduced specificity of 
autobiographical memory and depression: the role of executive 
control. Journal of Experimental Psychology: General, 136(1), 
23–42. https:// doi. org/ 10. 1037/ 0096- 3445. 136.1. 23

1180

1 3

https://doi.org/10.3758/s13415-022-01010-2
https://doi.org/10.1016/j.biopsycho.2018.01.001
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1523/JNEUROSCI.2721-09.2010
https://doi.org/10.1523/JNEUROSCI.2721-09.2010
https://doi.org/10.1037/0033-2909.117.2.285
https://doi.org/10.1037/a0018435
https://doi.org/10.1177/2F2167702612468111
https://doi.org/10.1016/j.tics.2014.06.010
https://doi.org/10.1037/0096-3445.136.1.23


Cognitive, Affective, & Behavioral Neuroscience (2022) 22:1172–1182  

Dillon, D. G. (2015). The neuroscience of positive memory deficits in 
depression. Frontiers in Psychology, 6, 1295. https:// doi. org/ 10. 
3389/ fpsyg. 2015. 01295

Dillon, D. G., Dobbins, I. G., & Pizzagalli, D. A. (2014). Weak reward 
source memory in depression reflects blunted activation of VTA/
SN and parahippocampus. Social cognitive and affective neurosci-
ence, 9(10), 1576–1583.

Dillon, D. G., & Pizzagalli, D. A. (2018). Mechanisms of memory dis-
ruption in depression. Trends in Neurosciences, 41(3), 137–149. 
https:// doi. org/ 10. 1016/j. tins. 2017. 12. 006

Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifes-
tation of context updating? Behavioral and brain sciences, 11(3), 
357–374. https:// doi. org/ 10. 1017/ S0140 525X0 00580 27

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 
3: A flexible statistical power analysis program for the social, 
behavioral, and biomedical sciences. Behavior Research Methods, 
39(2), 175–191. https:// doi. org/ 10. 3758/ bf031 93146

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision mak-
ing. Annual Review of Neuroscience, 30, 535–574. https:// doi. org/ 
10. 1146/ annur ev. neuro. 29. 051605. 113038

Goldstein, A., Spencer, K. M., & Donchin, E. (2002). The influence 
of stimulus deviance and novelty on the P300 and novelty P3. 
Psychophysiology, 39(6), 781–790. https:// doi. org/ 10. 1017/ S0048 
57720 20104 8X

Gotlib, I. H., & Joormann, J. (2010). Cognition and depression: current 
status and future directions. Annual review of clinical psychology, 
6, 285–312.

Hanks, T. D., Kopec, C. D., Brunton, B. W., Duan, C. A., Erlich, J. 
C., & Brody, C. D. (2015). Distinct relationships of parietal and 
prefrontal cortices to evidence accumulation. Nature, 520(7546), 
220–223. https:// doi. org/ 10. 1038/ natur e14066

Halahakoon, D. C., Kieslich, K., O’Driscoll, C., Nair, A., Lewis, G., 
& Roiser, J. P. (2020). Reward-processing behavior in depressed 
participants relative to healthy volunteers: A systematic review 
and meta-analysis. JAMA Psychiatry, 77(12), 1286–1295. https:// 
doi. org/ 10. 1001/ jamap sychi atry. 2020. 2139

Hallford, D. J., Rusanov, D., Yeow, J. J. E., & Barry, T. J. (2021). Over-
general and specific autobiographical memory predict the course 
of depression: an updated meta-analysis. Psychological Medicine, 
51(6), 909–926. https:// doi. org/ 10. 1017/ S0033 29172 10013 43

Harris, P. A., Taylor, R., Minor, B. L., Elliott, V., Fernandez, M., 
O'Neal, L., et al. (2019). The REDCap consortium: Building an 
international community of software platform partners. Journal 
of Biomedical Informatics, 95, 103208. https:// doi. org/ 10. 1016/j. 
jbi. 2019. 103208

Hitchcock, C., Werner-Seidler, A., Blackwell, S. E., & Dalgleish, T. 
(2017). Autobiographical episodic memory-based training for the 
treatment of mood, anxiety and stress-related disorders: A system-
atic review and meta-analysis. Clinical Psychology Review, 52, 
92–107. https:// doi. org/ 10. 1016/j. cpr. 2016. 12. 003

James, S. L., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., 
Abbasi, N., et al. (2018). Global, regional, and national incidence, 
prevalence, and years lived with disability for 354 diseases and 
injuries for 195 countries and territories, 1990–2017: a systematic 
analysis for the Global Burden of Disease Study 2017. The Lancet, 
392(10159), 1789–1858. https:// doi. org/ 10. 1016/ S0140- 6736(18) 
32279-7

Jang, A. I., Nassar, M. R., Dillon, D. G., & Frank, M. J. (2019). Posi-
tive reward prediction errors during decision-making strengthen 
memory encoding. Nature Human Behaviour, 3(7), 719–732. 
https:// doi. org/ 10. 1038/ s41562- 019- 0597-3

Joormann, J., & Siemer, M. (2004). Memory accessibility, mood 
regulation, and dysphoria: Difficulties in repairing sad mood 
with happy memories? Journal of Abnormal Psychology, 113(2), 
179–188. https:// doi. org/ 10. 1037/ 0021- 843X. 113.2. 179

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, 
M., Frederic, J., et al. (2016). Jupyter Notebooks-a publishing 
format for reproducible computational workflows, 2016, 87–90. 
https:// doi. org/ 10. 3233/ 978-1- 61499- 649-1- 87

Haber, S. N., & Knutson, B. (2010). The reward circuit: linking primate 
anatomy and human imaging. Neuropsychopharmacology, 35(1), 
4–26. https:// doi. org/ 10. 1038/ npp. 2009. 129

Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). International 
affective picture system (IAPS): Technical manual and affective 
ratings. NIMH Center for the Study of Emotion and Attention, 
1(39-58), 3.

Lawlor, V. M., Webb, C. A., Wiecki, T. V., Frank, M. J., Trivedi, M., 
Pizzagalli, D. A., & Dillon, D. G. (2020). Dissecting the impact of 
depression on decision-making. Psychological Medicine, 50(10), 
1613–1622. https:// doi. org/ 10. 1017/ S0033 29171 90015 70

Levens, S. M., & Gotlib, I. H. (2009). Impaired selection of relevant 
positive information in depression. Depression and Anxiety, 26(5), 
403–410. https:// doi. org/ 10. 1002/ da. 20565

Lisman, J. E., & Grace, A. A. (2005). The hippocampal-VTA loop: 
controlling the entry of information into long-term memory. Neu-
ron, 46(5), 703–713. https:// doi. org/ 10. 1016/j. neuron. 2005. 05. 002

MacQueen, G. M., Galway, T. M., Hay, J., Young, L. T., & Joffe, R. 
T. (2002). Recollection memory deficits in patients with major 
depressive disorder predicted by past depressions but not current 
mood state or treatment status. Psychological Medicine, 32(2), 
251–258. https:// doi. org/ 10. 1017/ S0033 29170 10048 34

Matt, G. E., Vázquez, C., & Campbell, W. K. (1992). Mood-congruent 
recall of affectively toned stimuli: A meta-analytic review. Clini-
cal Psychology Review, 12(2), 227–255. https:// doi. org/ 10. 1016/ 
0272- 7358(92) 90116-P

Manninen, S., Tuominen, L., Dunbar, R. I., Karjalainen, T., Hirvonen, 
J., Arponen, E., et al. (2017). Social laughter triggers endoge-
nous opioid release in humans. Journal of Neuroscience, 37(25), 
6125–6131. https:// doi. org/ 10. 1523/ JNEUR OSCI. 0688- 16. 2017

Peckham, A. D., McHugh, R. K., & Otto, M. W. (2010). A meta-analy-
sis of the magnitude of biased attention in depression. Depression 
and Anxiety, 27(12), 1135–1142. https:// doi. org/ 10. 1002/ da. 20755

Pizzagalli, D. A. (2014). Depression, stress, and anhedonia: toward a 
synthesis and integrated model. Annual Review of Clinical Psy-
chology, 10(1), 393–423. https:// doi. org/ 10. 1146/ annur ev- clinp 
sy- 050212- 185606

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. 
Clinical Neurophysiology, 118(10), 2128–2148. https:// doi. org/ 10. 
1016/j. clinph. 2007. 04. 019

Preacher, K. J. (2015). Extreme groups designs. The Encyclopedia of 
Clinical Psychology, 2, 1189–1192.

Proudfit, G. H. (2015). The reward positivity: From basic research on 
reward to a biomarker for depression. Psychophysiology, 52(4), 
449–459. https:// doi. org/ 10. 1111/ psyp. 12370

R Core Team (2019). R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Aus-
tria. URL https:// www.R- proje ct. org/

Ramponi, C., Barnard, P., & Nimmo-Smith, I. (2004). Recollection 
deficits in dysphoric mood: An effect of schematic models and 
executive mode? Memory, 12(5), 655–670. https:// doi. org/ 10. 
1080/ 09658 21034 40001 89

Ratcliff, R. (1978). A theory of memory retrieval. Psychological 
Review, 85(2), 59–108. https:// doi. org/ 10. 1037/ 0033- 295X. 85.2. 
59

Ratcliff, R., & Childers, R. (2015). Individual differences and fitting 
methods for the two-choice diffusion model of decision making. 
Decision, 2(4), 237. https:// doi. org/ 10. 1037/ dec00 00030

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: the-
ory and data for two-choice decision tasks. Neural Computation, 
20(4), 873–922. https:// doi. org/ 10. 1162/ neco. 2008. 12- 06- 420

1181

1 3

https://doi.org/10.3389/fpsyg.2015.01295
https://doi.org/10.3389/fpsyg.2015.01295
https://doi.org/10.1016/j.tins.2017.12.006
https://doi.org/10.1017/S0140525X00058027
https://doi.org/10.3758/bf03193146
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.1017/S004857720201048X
https://doi.org/10.1017/S004857720201048X
https://doi.org/10.1038/nature14066
https://doi.org/10.1001/jamapsychiatry.2020.2139
https://doi.org/10.1001/jamapsychiatry.2020.2139
https://doi.org/10.1017/S0033291721001343
https://doi.org/10.1016/j.jbi.2019.103208
https://doi.org/10.1016/j.jbi.2019.103208
https://doi.org/10.1016/j.cpr.2016.12.003
https://doi.org/10.1016/S0140-6736(18)32279-7
https://doi.org/10.1016/S0140-6736(18)32279-7
https://doi.org/10.1038/s41562-019-0597-3
https://doi.org/10.1037/0021-843X.113.2.179
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1038/npp.2009.129
https://doi.org/10.1017/S0033291719001570
https://doi.org/10.1002/da.20565
https://doi.org/10.1016/j.neuron.2005.05.002
https://doi.org/10.1017/S0033291701004834
https://doi.org/10.1016/0272-7358(92)90116-P
https://doi.org/10.1016/0272-7358(92)90116-P
https://doi.org/10.1523/JNEUROSCI.0688-16.2017
https://doi.org/10.1002/da.20755
https://doi.org/10.1146/annurev-clinpsy-050212-185606
https://doi.org/10.1146/annurev-clinpsy-050212-185606
https://doi.org/10.1016/j.clinph.2007.04.019
https://doi.org/10.1016/j.clinph.2007.04.019
https://doi.org/10.1111/psyp.12370
https://www.r-project.org/
https://doi.org/10.1080/09658210344000189
https://doi.org/10.1080/09658210344000189
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1037/dec0000030
https://doi.org/10.1162/neco.2008.12-06-420


Cognitive, Affective, & Behavioral Neuroscience (2022) 22:1172–1182 

Rock, P. L., Roiser, J. P., Riedel, W. J., & Blackwell, A. D. (2014). Cog-
nitive impairment in depression: a systematic review and meta-
analysis. Psychological Medicine, 44(10), 2029–2040. https:// doi. 
org/ 10. 1017/ S0033 29171 30025 35

Rugg, M. D., & Curran, T. (2007). Event-related potentials and rec-
ognition memory. Trends in Cognitive Sciences, 11(6), 251–257. 
https:// doi. org/ 10. 1016/j. tics. 2007. 04. 004

Schultz, W. (1998). Predictive reward signal of dopamine neurons. 
Journal of neurophysiology, 80(1), 1–27. https:// doi. org/ 10. 1152/ 
jn. 1998. 80.1.1.

Schultz, W. (2016). Dopamine reward prediction-error signaling: a 
two-component response. Nature Reviews Neuroscience, 17(3), 
183–195. https:// doi. org/ 10. 1038/ nrn. 2015. 26

Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual 
decision in the parietal cortex (area LIP) of the rhesus monkey. 
Journal of Neurophysiology, 86(4), 1916–1936. https:// doi. org/ 
10. 1152/ jn. 2001. 86.4. 1916

Spaniol, J., Davidson, P. S., Kim, A. S., Han, H., Moscovitch, M., 
& Grady, C. L. (2009). Event-related fMRI studies of episodic 
encoding and retrieval: meta-analyses using activation likelihood 
estimation. Neuropsychologia, 47(8-9), 1765–1779. https:// doi. 
org/ 10. 1016/j. neuro psych ologia. 2009. 02. 028

Stahl, S. M., Pradko, J. F., Haight, B. R., Modell, J. G., Rockett, C. B., 
& Learned-Coughlin, S. (2004). A review of the neuropharmacol-
ogy of bupropion, a dual norepinephrine and dopamine reuptake 
inhibitor. Primary care companion to the Journal of clinical psy-
chiatry, 6(4), 159. https:// doi. org/ 10. 4088/ pcc. v06n0 403

Treadway, M. T., & Zald, D. H. (2011). Reconsidering anhedonia in 
depression: Lessons from translational neuroscience. Neurosci-
ence and Biobehavioral Reviews, 35(3), 537–555. https:// doi. org/ 
10. 1016/j. neubi orev. 2010. 06. 006

van Rossum, G., 1995. Python tutorial (Report No. CS-R9526). Com-
puter Science/Department of Algorithmics and Architecture, 
National Research Institute for Mathematics and Computer Sci-
ence. https:// ir. cwi. nl/ pub/ 5007/ 05007D. pdf

Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). 
Parietal lobe contributions to episodic memory retrieval. Trends 
in Cognitive Sciences, 9(9), 445–453. https:// doi. org/ 10. 1016/j. 
tics. 2005. 07. 001

Wang, J. X., Rogers, L. M., Gross, E. Z., Ryals, A. J., Dokucu, M. E., 
Brandstatt, K. L., et al. (2014). Targeted enhancement of cortical-
hippocampal brain networks and associative memory. Science, 
345(6200), 1054–1057. https:// doi. org/ 10. 1126/ scien ce. 12529 00

White, C., Ratcliff, R., Vasey, M., & McKoon, G. (2009). Dysphoria 
and memory for emotional material: A diffusion-model analysis. 
Cognition and Emotion, 23(1), 181–205. https:// doi. org/ 10. 1080/ 
02699 93080 19767 70

White, C. N., Ratcliff, R., Vasey, M. W., & McKoon, G. (2010). Using 
diffusion models to understand clinical disorders. Journal of 
Mathematical Psychology, 54(1), 39–52. https:// doi. org/ 10. 1016/j. 
jmp. 2010. 01. 004

Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchi-
cal Bayesian estimation of the Drift-Diffusion Model in Python. 
Frontiers in Neuroinformatics, 7, 14–14. https:// doi. org/ 10. 3389/ 
fninf. 2013. 00014

Zakzanis, K. K., Leach, L., & Kaplan, E. (1998). On the nature and 
pattern of neurocognitive function in major depressive disorder. 
Neuropsychiatry, Neuropsychology, & Behavioral Neurology, 
11(3), 111–119 https:// hollis. harva rd. edu/ perma link/f/ 1mdq5 o5/ 
TN_ cdi_ proqu est_ misce llane ous_ 73926 383

Open Practice Statement
The data and materials from the experiments reported here is 

available upon request and upon approval from the Institutional 
Review Board (IRB). These data were not preregistered.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

1182

1 3

https://doi.org/10.1017/S0033291713002535
https://doi.org/10.1017/S0033291713002535
https://doi.org/10.1016/j.tics.2007.04.004
https://doi.org/10.1152/jn.1998.80.1.1
https://doi.org/10.1152/jn.1998.80.1.1
https://doi.org/10.1038/nrn.2015.26
https://doi.org/10.1152/jn.2001.86.4.1916
https://doi.org/10.1152/jn.2001.86.4.1916
https://doi.org/10.1016/j.neuropsychologia.2009.02.028
https://doi.org/10.1016/j.neuropsychologia.2009.02.028
https://doi.org/10.4088/pcc.v06n0403
https://doi.org/10.1016/j.neubiorev.2010.06.006
https://doi.org/10.1016/j.neubiorev.2010.06.006
https://ir.cwi.nl/pub/5007/05007D.pdf
https://doi.org/10.1016/j.tics.2005.07.001
https://doi.org/10.1016/j.tics.2005.07.001
https://doi.org/10.1126/science.1252900
https://doi.org/10.1080/02699930801976770
https://doi.org/10.1080/02699930801976770
https://doi.org/10.1016/j.jmp.2010.01.004
https://doi.org/10.1016/j.jmp.2010.01.004
https://doi.org/10.3389/fninf.2013.00014
https://doi.org/10.3389/fninf.2013.00014
https://hollis.harvard.edu/permalink/f/1mdq5o5/TN_cdi_proquest_miscellaneous_73926383
https://hollis.harvard.edu/permalink/f/1mdq5o5/TN_cdi_proquest_miscellaneous_73926383

	Sluggish retrieval of positive memories in depressed adults
	Abstract
	Introduction
	Materials and methods
	Participants
	Self-report measures
	Encoding and retrieval tasks

	Results
	Self-report
	Encoding responses
	Recognition memory
	HDDM


	Discussion
	Conclusions
	Acknowledgments 
	References




